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The flow physics of turbulent boundary layers is investigated using spectral analysis
based on the spanwise scale decomposition of the Reynolds stress transport equation,
with data obtained from a direct numerical simulation of the turbulent boundary layer
at Reτ � 2020. Here, we extend the framework of Kawata & Alfredsson (Phys. Rev. Lett.,
vol. 120, 2018, p. 244501) for plane Couette flows to zero-pressure-gradient boundary
layers. The equation contains three fundamental fluxes, which govern the Reynolds stress
transport: (i) a scale flux of the interaction between small-scale and large-scale structures,
and two spatial fluxes dominated by (ii) pressure and (iii) turbulent transport along the
wall-normal direction. The scale flux reveals evidence of the inverse turbulent kinetic
energy transfer, from small to large scales, occurring at the near-wall region, whereby for
the scale flux of the Reynolds shear stress transport, the inverse transfer extends across the
entire boundary layer. The wall-normal fluxes reveal the interactions occurring between
scales at the buffer and logarithmic regions. In addition, there is interaction between the
large-scale structures and the free stream flow occurring at the edge of the boundary
layer, which was not observed in the Couette flow. Flow structures associated with inverse
interscale transport of Reynolds shear stress are identified by applying conditional analysis
to the spectrally decomposed velocity fields. While the inverse transport is interpreted as
the net energy transfer from small-scale ejections (Q2) and sweeps (Q4) to the large-scale
counterparts, conditional time estimates of the direct and inverse interscale transport reveal
that both processes play a substantial role across a broad range of scales.

Key words: Navier–Stokes equations, turbulent boundary layers

1. Introduction

The interactions of wall-bounded turbulence, between multiple scales and between inner-
and outer-region turbulence, are of great scientific interest, as they become increasingly
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complex with increasing Reynolds numbers. A classical view of wall-bounded turbulence
is that the generation of small-scale or large-scale turbulence is due to self-sustained
mechanisms (e.g. Hamilton, Kim & Waleffe 1995; Jiménez & Pinelli 1999; Panton
2001; Schoppa & Hussain 2002; Hwang & Cossu 2010, among others). There is also
reported evidence of multiscale and inner–outer turbulence interactions in the literature
(e.g. Bandyopadhyay & Hussain 1984; Hunt & Morrison 2000; Abe, Kawamura & Choi
2004; Hoyas & Jiménez 2006; Pirozzoli, Bernardini & Orlandi 2011) and mechanisms
that relate to inner–outer interactions, for instance, large-scale modulations (Hutchins
& Marusic 2007b; Mathis, Hutchins & Marusic 2009; Ganapathisubramani et al. 2012)
and cosupporting mechanisms (Toh & Itano 2005). From a mathematical perspective, for
instance, the scale-energy balance (Marati, Casciola & Piva 2004; Cimarelli, De Angelis
& Casciola 2013; Cimarelli et al. 2016) and the spectral Reynolds stress equation (Mizuno
2016; Cho, Hwang & Choi 2018; Lee & Moser 2019) provide statistical evidence that
the small scales contribute to the large-scale motions and the existence of inverse energy
cascades in channels, i.e. opposite from the classical view of the Richardson–Kolmogorov
energy cascade.

Recently, Kawata & Alfredsson (2018) proposed an interscale transport equation using
scale decomposition on the Reynolds stress transport equation for plane Couette flow
and they reported the small-scale dependence of Reynolds shear stress for large-scale
structures. The present work is motivated by this recent development. Here we investigate
the interscale transport equation for a relatively high Reynolds number turbulent boundary
layer (TBL). The aim of the present work is to provide fundamental analysis for interscale
and spatial transport in TBLs at moderately high Reynolds numbers.

Perhaps the most important question is how this interscale transport mechanism
of Reynolds shear stress relates to the interactions between coherent structures in
wall-bounded turbulence, such as the hairpin-vortex signatures and low-momentum
zones of hairpin packets (e.g. Adrian, Meinhart & Tomkins 2000; Tomkins & Adrian
2003), the vortex clusters (del Álamo et al. 2006) and the sweep-ejection pairs
(Lozano-Durán, Flores & Jiménez 2012). The hairpin-packet paradigm has been
widely investigated experimentally (e.g. Head & Bandyopadhyay 1981; Adrian et al.
2000; Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003) and
numerically using direct numerical simulations (DNS) with significant evidence of
hairpins in TBLs (e.g. Wu & Moin 2009). The vortex clusters give an alternative
explanation to the aforementioned hairpin-packet paradigm (del Álamo et al. 2006), in
which negative quadrant events are defined in terms of the second and fourth quadrants
of plane of the streamwise and wall-normal velocity fluctuations as ejections (Q2) and
sweeps (Q4) (Wallace, Eckelmann & Brodkey 1972; Willmarth & Lu 1972). Extensions
of work based on this model by Lozano-Durán & Jiménez (2014) studied the temporal
evolution of three-dimensional structures of Reynolds shear stress in turbulent channels
up to friction Reynolds number Reτ ≈ 4200 (where Reτ is the Reynolds number based
on the friction velocity uτ = √

τw/ρ, τw is the wall shear stress and ρ is the density,
the boundary layer thickness δ and the kinematic viscosity ν) and showed that during
the lifetimes of these structures, the ejections are generated by shear near the wall and
rise to their mean wall-normal distance by vertical advection (+uτ ) before disappearing,
whilst sweeps are produced away from the wall and move towards the wall quickly (−uτ )

and they assemble into side-by-side sweep-ejection pairs (Lozano-Durán et al. 2012).
Lozano-Durán & Jiménez (2014) investigated the interactions associated with tall-attached
sweep and ejection events. They found that the merging and splitting of large-scale sweeps
and ejections with small-scale structures are prevalent processes during their lifecycle and
those interactions are well-balanced over a broad range of scales.
921 A13-2
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In addition to the channels, Fiscaletti, de Kat & Ganapathisubramani (2018) studied the
intense quadrant events in TBLs. They revealed that quadrant events in TBLs have smaller
vertical convection velocities when compared with channel flows, and the intense ejection
events are smaller than the intense sweep events, which is likely due to the presence
of entrainment. In both models, ejections and sweeps are important constituents in the
ensemble-averaged point of view, also because of their well known substantial contribution
to the Reynolds shear stress and they are expected to be broadband length scale structures.
Therefore, it is expected that a scale decomposition approach applied to the Reynolds shear
stress transport equation will yield in-depth insights into their multiscale characteristics.

Large- and small-scale decomposition performed using spectral filters has been widely
utilised for characterising large- and small-scale motions and their interactions. Hutchins
& Marusic (2007b) studied the interactions between large- and small-scale motions in
TBLs. By spectral filtering the streamwise velocity fluctuation into large- and small-scale
components, they revealed the large-scale modulation on the near-wall scales. A follow
up study by Mathis et al. (2009) investigated the Hilbert transform of the decomposed
small-scale fluctuation, where the modulation effects were analysed to be the large-scale
envelope obtained by Hilbert transformation of the small-scale fluctuation. The study
revealed a strong correlation between the near-wall cycle and the large-scale motions
associated with the logarithmic region. Subsequently, Ganapathisubramani et al. (2012)
extended the analysis to the frequency domain. They used time series data, obtained
by hot-film shear stress sensors with traversing hot-wire probes, and investigated the
temporal modulation of the large-scale structures on the smaller scales. By a time
scale decomposition with time scales of the order of O(δ/U∞), that study revealed
the strong wall-normal dependence of the frequency modulation. More recently, Lee
& Moser (2019) examined the large- and small-scale contributions to turbulent kinetic
energy and the kinetic energy transport equation using a spectral filter. They examined
the streamwise scale decomposition of turbulent kinetic energy production and provided
statistical evidence of the interactions between the near-wall and outer turbulence as the
large-scale modulation of the near-wall turbulence. In the present study, we examine
turbulent kinetic energy and Reynolds shear stress transport by extending the approach
of Kawata & Alfredsson (2018) to data obtained in a new DNS TBL. The goal of this
paper, firstly, is to investigate the interscale transport mechanisms in TBLs and compare
them with previous plane Couette flow studies. Secondly, we attempt to understand the
relationship between the observed inverse Reynolds shear stress transport and the coherent
structures that are responsible for momentum transport, i.e. the ejection and sweep events
in TBLs. To this end, the large- and small-scale quadrant events and their contributions to
the Reynolds shear stress are analysed statistically using a spectral filter.

The remainder of this paper is organised as follows. In § 2 we first introduce the
numerical code and validate the new DNS TBL. In § 3 we extend and summarise the
generalised interscale transport equation for TBLs and the alternative forms of scale and
spatial fluxes in the turbulent kinetic energy and Reynolds shear stress balance. In § 4
we analyse and discuss the roles of the fluxes. We also identify the major differences and
similarities between TBLs and the previous work by Kawata & Alfredsson (2018) for plane
Couette flow. Finally, in § 5 the length and time scales associated with the Reynolds shear
stress transport are investigated and discussed.

2. Numerical procedure

The mean and fluctuating velocity components in the streamwise (x), wall-normal ( y)
and spanwise (z) directions are denoted U, V , W, u, v and w, respectively. The mean
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and fluctuating pressure are denoted as P and p, respectively. The operator 〈·〉 indicates
spanwise and temporal averages. A superscript (+) indicates inner-scaling with kinematic
viscosity ν and friction velocity uτ . In addition, the outer scales are the free stream velocity
U∞ and boundary layer thickness δ (99 %).

Direct numerical simulations of a TBL up to Reτ = δ+ � 2020 or equivalently up to
Reθ = U∞θ/ν � 6700 (where θ is the momentum thickness) were performed. The DNS
solver is based on the fully spectral numerical method, as used by Schlatter & Örlü (2010),
with two-dimensional parallelisation (Li, Schlatter & Henningson 2008). Periodic Fourier
series with 3/2 zero-padding full dealiasing are used in the wall-parallel direction and
Chebyshev polynomials in the wall-normal direction. A low-amplitude volume force trip is
applied to the Navier–Stokes equations at the region very close to the inlet to trigger a rapid
transition to turbulent flow. For further details on the method of numerical tripping, the
reader is referred to Schlatter & Örlü (2012). To retain the periodic boundary conditions in
the streamwise direction, a fringe region is employed at the downstream of the flow, close
to the end of the computational domain. In the fringe region, the flow is damped via a
volume force until it returns to the inflow condition (Chevalier, Lundbladh & Henningson
2007). A total of 12 800 × 769 × 1024 spectral modes are employed. The domain size is
xL × yL × zL = 10 000 × 300 × 360 in units of displacement thickness at the inlet of the
domain, δ∗

0 . This yields a resolution of Δx+ � 8.6 and Δz+ � 3.9. There are at least 22
Chebyshev collocation points within the region y+ � 10. The first grid point away from
the wall is at y+ � 0.02 and the maximum spacing is Δy+

max � 10. The time advancement
is carried out by a second-order Crank–Nicolson scheme for the viscous terms and a
third-order four-stage Runge–Kutta scheme for the nonlinear terms.

2.1. Validation of the DNS boundary layer
Figure 1 shows the inner-scaling mean velocity profile, turbulent intensities, Reynolds
shear stress and the k-budget (where k = 〈uiui〉/2 is turbulent kinetic energy) for Reτ �
2020. The data is compared and validated against the DNS of the TBL from Sillero
et al. (2013) at Reτ � 1998, showing very good agreement. The one-dimensional spanwise
premultiplied velocity spectra are plotted in figure 2 for Reτ � 2020. Overall, the figure is
consistent with the consensus in the literature: (i) the inner peak at λz

+ � 100, y+ � 15
characterises the near-wall structures (Kline et al. 1967; Smith & Metzler 1983; Tomkins &
Adrian 2003); (ii) the outer peak at λz � 0.7δ, y � 0.15δ characterises the very large-scale
motions (Kim & Adrian 1999; Tomkins & Adrian 2005; Guala, Hommema & Adrian 2006;
Hutchins & Marusic 2007a; Monty et al. 2009); (iii) the two peaks in the premultiplied
(either kx or kz) Euu and E−uv spectra correspond to the small-scale and large-scale
structures that contain the streamwise turbulent kinetic energy and Reynolds shear stress,
which are not observed in the Evv and Eww spectra (Lee & Moser 2015); (iv) the
penetration (through the dashed-line linear ridge λz = 8y) of the large-scale contribution
onto the near-wall region in the Euu and Eww but are not observed in Evv and E−uv owing
to the impermeability of the wall (Hutchins & Marusic 2007a; Lee & Moser 2015; Hwang
2016).

3. Mathematical approach

3.1. Interscale transport equations for boundary layers
An analytical approach for large-scale and small-scale interactions, based on the spectral
analysis, was proposed by Kawata & Alfredsson (2018) for plane Couette flow. Here, we
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Figure 1. The inner-scaling of (a) mean velocity U+, (b) turbulence intensities 〈(uiui)
1/2〉+ and Reynolds

shear stress 〈uv〉+, (c) k-balance Dk+/Dt = 0. Symbol (◦) for present DNS TBL at Reτ � 2020; (– – –)
Sillero, Jiménez & Moser (2013) at Reτ � 1998.
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Figure 2. The one-dimensional premultiplied spectra at Reτ � 2020: (a) kzE+
uu; (b) kzE+

vv ; (c) kzE+
ww;

(d) kzE+
−uv . Symbol (×) marks the near-wall streaks at y+ � 15 with average characteristic length scale

λ+z � 100 and the large-scale structures at y � 0.15 δ with λz � 0.7 δ.

adopt the approach and extend it to TBLs with zero pressure gradient, as described here.
A scale decomposition based on the spanwise Fourier mode and a cutoff length scale
λz = 2π/kz is used to separate the velocity fluctuation into large-scale (u′

i) and small-scale
components (u′′

i ):

ui(x, t) = u′
i(kz, x, t) + u′′

i (kz, x, t). (3.1)

The large-scale and small-scale components satisfy

〈uiuj〉( y) = 〈u′
iu

′
j〉(kz, y) + 〈u′′

i u′′
j 〉(kz, y). (3.2)
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The governing equations are the incompressible Navier–Stokes equations

∂t(Ui + ui) + (Ul + ul)∂xl(Ui + ui) = − 1
ρ

∂xi(P + p) + νΔ(Ui + ui). (3.3)

Transport equations for large-scale and small-scale velocity fluctuations are obtained by
introducing the Reynolds decomposition and scale decomposition (3.1) into (3.3). By
multiplying the large-scale components u′

j and taking the average, then interchanging i and
j and summing up the resulting equation, the transport equation for large-scale Reynolds
stress 〈u′

iu
′
j〉 is obtained as follows:

D〈u′
iu

′
j〉

Dt
= P

′
ij + Dt,′

ij + Φ
′
ij + Dν,′

ij − ε
′
ij − Trij, (3.4)

and the small-scale transport equation is obtained in a similar manner:

D〈u′′
i u′′

j 〉
Dt

= P
′′
ij + Dt,′′

ij + Φ
′′
ij + Dν,′′

ij − ε
′′
ij + Trij. (3.5)

The terms in the large-scale (3.4) are

P
′
ij = −〈u′

j u′
l〉∂xlUi − 〈u′

i u′
l〉∂xlUj, Φ

′
ij = − 1

ρ
[〈u′

j∂xip〉 + 〈u′
i∂xjp〉],

Dν,′
ij = νΔ〈u′

iu
′
j〉, ε

′
ij = 2ν〈∂xlu

′
j∂xlu

′
i〉,

Dt,′
ij = −∂xl(〈u′

iu
′
ju

′
l〉 + 〈u′

iu
′
ju

′′
l 〉 + 〈u′′

i u′
ju

′′
l 〉 + 〈u′

iu
′′
j u′′

l 〉),
Trij = 〈u′

ju
′
l∂xlu

′′
i 〉 + 〈u′

iu
′
l∂xlu

′′
j 〉 − 〈u′′

i u′′
l ∂xlu

′
j〉 − 〈u′′

j u′′
l ∂xlu

′
i〉,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (3.6)

where are, on the right-hand side of (3.4), the large-scale parts of production, turbulent
transport, pressure transport, viscous transport, dissipation and interscale flux (Kawata
& Alfredsson 2018). All the terms in the small-scale (3.5) are obtained by interchanging
the superscripts ′ and ′′ in (3.6). Note that Trij in (3.4) and (3.5) are of opposite signs,
representing a local transfer of 〈uiuj〉 between the large-scale 〈u′

iu
′
j〉 and small-scale 〈u′′

i u′′
j 〉

at the cutoff wavelength λz (or wavenumber kz). The other terms in the (3.4) are the
decoupling of large-scale components from their small-scale components. The transport
equations for 〈uiuj〉 can be obtained as follows:

D〈uiuj〉
Dt

=
D〈u′

iu
′
j〉

Dt
+

D〈u′′
i u′′

j 〉
Dt

. (3.7)

The interscale transport equation for the Reynolds stress tensor Eij(kz, y) can be obtained
by differentiating (3.4) with respect to the cutoff wavenumber kz,

DEij

Dt
(kz, y) = prij + dt

ij + φij + dν
ij − εij + trij, ∀ kz, (3.8)

where the large-scale contribution 〈u′
iu

′
j〉 satisfies

〈u′
iu

′
j〉 =

∫ kz

0
Eij(k̂, y) dk̂, ∀ kz, (3.9)

where the terms in (3.8) are

prij = −Ejl∂xlUi − Eil∂xlUj, φij = − 1
ρ
∂kz[〈u′

j∂xip〉 + 〈u′
i∂xjp〉],

dν
ij = νΔEij, εij = 2ν∂kz〈∂xlu

′
j∂xlu

′
i〉, dt

ij = ∂kzD
t,′
ij , trij = −∂kzTrij.

⎫⎬
⎭ (3.10)
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3.2. One-dimensional spatial and scale fluxes
Note that when (3.8) is integrated over the wavenumber kz → ∞, we have∫ ∞

0

DEij

Dt
(k̂, y) dk̂ = D〈uiuj〉

Dt
= Pij + Dt

ij + Φij + Dν
ij − εij (3.11)

and ∫ ∞

0
trij(k̂, y) dk̂ = 0, ∀ y, (3.12)

where (3.11) is the Reynolds stress transport equation (3.7), and (3.12) indicates that Trij
represents the scale flux along the length scale kz, and trij represents the interscale transport
at each length scale. In addition, the turbulent term dt

ij in (3.10) can be written as

dt
ij = −∂xl[∂kz(〈u′

iu
′
ju

′
l〉 + 〈u′

iu
′
ju

′′
l 〉 + 〈u′′

i u′
ju

′′
l 〉 + 〈u′

iu
′′
j u′′

l 〉)], (3.13)

and the pressure term φij in (3.8) can be decomposed as

φij = dp
ij + Πij, (3.14)

where dp
ij and Πij are the pressure transport and pressure strain, respectively,

dp
ij = − 1

ρ
∂kz[∂xi〈pu′

j〉 + ∂xj〈pu′
i〉], Πij = 1

ρ
∂kz[〈p(∂xiu

′
j + ∂xju

′
i)〉]. (3.15a,b)

Here we adopt the approximations for boundary layers with the parallel-flow assumption
(i.e. ∂y〈·〉  ∂x〈·〉). Then dt

ij (3.13) and dp
ij in (3.15a,b) can be expressed as

dt
ij(kz, y) ∼ −∂y[∂kz(〈u′

iu
′
jv

′〉 + 〈u′
iu

′
jv

′′〉 + 〈u′′
i u′

jv
′′〉 + 〈u′

iu
′′
j v

′′〉)] = −∂yTij|y, (3.16)

dp
ij(kz, y) ∼ − 1

ρ
∂y[∂kz(〈pu′

j〉δ∗
i2 + 〈pu′

i〉δ∗
j2)] = −∂yRij|y, (3.17)

where δ∗ is the Kronecker delta. Here (3.16) and (3.17) indicate that Tij and Rij are the
spatial fluxes along the wall-normal direction. Notably, Tij and Rij, together with Trij (3.10),
are the spatial fluxes and scale flux, indicating the directions of the energy flows. The
turbulent kinetic energy scale flux Trk and the wall-normal flux Tk are shown in figure 3.
The positive flux (black contour lines) indicates that the energy flows along the positive
kz-axis direction (where the reversed direction is in the λz-axis) for the scale flux Trk, or
along the positive y-axis direction for the wall-normal flux Tk. The direction is indicated
by the black arrow. The negative flux (white contour lines) indicates energy flows in the
opposite direction (indicated by the white arrow). The boundary that separates the positive
and negative flux can be interpreted as the driving scale of such energy transport. The
turbulent kinetic energy balance can be expressed as

prk + dν
k − εk = ∂y(Tk + Rk) + ∂kz(Trk), ∀ kz, (3.18)

where the pressure strain spectrum Πk = Πii/2 = 0 transfers energy between the velocity
components through the continuity equation. In (3.18), prk and εk represent the source and
sink of the turbulent kinetic energy, respectively, and dt,p

k = −∂y(Tk + Rk) represent the
spatial transport along the wall-normal direction in the physical space and trk = −∂kz(Trk)
represents the interscale transport of turbulent kinetic energy in the space of scales.
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Figure 3. Contour maps of premultiplied (a) kinetic energy scale flux, Trk, and (b) wall-normal turbulent flux,
Tk, for Reτ � 2020, along with isolines showing the positive flux (black) and negative flux (white). The lines
are isolines of constant flux with contour levels of (a) 0.005[0.01]0.1 (black) and −0.1[0.005] − 0.005 (white)
and (b) 1[80]800 (black) and −20[2] − 0.1 (white). Black and white arrows indicate the direction of the fluxes.

In addition, the term dν
k is relatively small and represents the viscous transport at the

near-wall region. The Reynolds shear stress balance can be expressed as

pr−uv + Π−uv + dν
−uv − ε−uv = ∂y (T−uv + R−uv) + ∂kz(Tr−uv), ∀ kz. (3.19)

Here, as expected, ε−uv and dν−uv are relatively small because viscosity plays little part in
Reynolds shear stress dynamics (Mansour, Kim & Moin 1988). Here pr−uv represents the
source, the pressure strain Π−uv represents the sink and suppresses the produced Reynolds
shear stress by its strain-rate (∂yu′ + ∂xv

′), and dt,p
−uv and tr−uv represent the dominant

wall-normal and interscale transport of Reynolds shear stress in physical space and scale,
respectively.

4. Results and discussion

4.1. Interscale and spatial transport in TBLs
The premultiplied interscale transport of kinetic energy trk is shown in figure 4(a). Also
superimposed are isolines, representing 0.2 and 0.4 of the maximum of the production
prk spectra. For the prk, the inner peak (marked with ◦) is located at y+ � 15 and λ+z � 100
and the outer peak (marked with ∗) is located at y/δ � 0.35 and λz � 0.8δ. The inner peak
of the prk corresponds to the near-wall cycle of streamwise streaks and quasi-streamwise
vortices (Kline et al. 1967; Smith & Metzler 1983; Hamilton et al. 1995). The outer peak
is related to the large-scale motions, which carry a significant portion of turbulent kinetic
energy and Reynolds shear stress (Kim & Adrian 1999; Guala et al. 2006; Balakumar &
Adrian 2007). The inner and outer peaks are marked in all spectra maps (figure 4). There
are two scales involved in the interscale transport trk. The first scale is approximately along
λ+z ∼ ( y+)1/2, for y+ > 100 (marked with a dashed line), which follows the classical
Richardson–Kolmogorov energy cascade from large scales to small scales. The second
scale is approximately along λ+z ∼ y+, for y+ < 100 (marked with a solid line), in addition
to following the classical energy cascade, there is an inverse energy cascade where energy
is transferred from small scales to large scales (marked with a dotted line). The negative
isocontour (figure 4a) is well-aligned with the production spectrum and the corresponding
outer and inner peaks. This indicates that large-scale production exhibits a classical energy
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Figure 4. The one-dimensional premultiplied of the (kzy+) transport spectrum: (a) tr+
k ; (b) tr+

−uv ; (c) dt+
k ;

(d) dt+
−uv ; (e) dp+

k ; ( f ) dp+
−uv at Reτ � 2020. Symbol (◦) marks the inner peak of production at y+ � 15 with

an average characteristic length scale λ+z � 100 and (∗) marks the outer peak of production at y � 0.35 δ with
λz � 0.8 δ. The line contours in panel (a) show the 0.2 and 0.4 of the value of maximum prk. The solid line
in panel (b) is at λ+z = 23 ( y+)0.55. Black and white arrows indicate the direction of the fluxes. Solid lines in
panels (c– f ) indicate the mean wall-normal location of TNTI (see also Appendix A for details).

cascade, and the energy is transferred directly for viscous dissipation (marked with a
dotted–dashed line, η+ ∼ ( y+)1/4 where η = (ν3/εk)

1/4 is the Kolmogorov length scale,
corresponding to the outer peak of viscous dissipation), whilst the classical and inverse
energy cascades are involved at the near-wall cycle, where kinetic energy is redistributed
to the adjacent scales. To provide further insight into the inverse energy transport of the
kinetic energy balance, the interscale transport of 〈u2〉, 〈v2〉 and 〈w2〉 is presented in
figure 5. Our results indicate that the near-wall inverse interscale transport is governed
by the wall-parallel velocity components (〈u2〉 and 〈w2〉). On the other hand, the inverse
interscale transport of wall-normal velocity component 〈v2〉 is absent near the wall.
The present results on inverse energy transport in 〈u2〉 and 〈w2〉 are consistent with the
recent DNS study conducted by Lee & Moser (2019) for turbulent channel flows based
on the spectral decomposition of the Reynolds stress transport equation, who reported
that the inverse energy transports occur at y+ � 15 for 〈u2〉 and y+ � 25 for 〈w2〉. We
have found that the inverse kinetic energy transport is associated with the wall-parallel
velocity components at approximately similar wall-normal locations, which agrees with
the findings of Lee & Moser (2019). The premultiplied interscale transport of Reynolds
shear stress tr−uv is shown in figure 4(b). Consistent with the observations of plane
Couette flow (Kawata & Alfredsson 2018), the interscale transport tr−uv exhibits inverse
transfer of Reynolds shear stress from small to large scales for y+ > 10, despite the higher
Reynolds number in the current study, which suggests that the mechanism is Reynolds
number invariant. In the logarithmic region (defined here to be y+ � 50, y/δ � 0.2), the
band of wavelength increases with the distance from the wall (marked with the black
dashed line, roughly along y1/2). The inverse cascade takes place across a broad range of
scales. The positive and negative tr−uv regions are separated approximately along the line
λz ∼ y0.55 (see the solid line in figure 4b). One possible explanation for the inverse cascade
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Figure 5. One-dimensional premultiplied interscale transport (kzy+trij) for (a) 〈u2〉, (b) 〈v2〉 and (c) 〈w2〉 at
Reτ � 2020.

may be the growth of the hairpin-vortex packets, with considerable evidence that: (i) the
spanwise spacing of the hairpin-packets grows with distance from the wall (Tomkins &
Adrian 2003); (ii) hairpins-vortex signatures carry a significant fraction of the Reynolds
shear stress (Ganapathisubramani et al. 2003; Adrian 2007); (iii) the hairpin legs can
exist at a near wall less than ( y+ � 20) with spanwise spacing much less than λ+z � 100
(Tomkins & Adrian 2003); (iv) hairpin packets are most common in the lower part of the
boundary layer, but sometimes also extend beyond the logarithmic region, and, in some
instances, extend to the edge of the boundary layer (Head & Bandyopadhyay 1981; Adrian
et al. 2000). It is important to note that there is also evidence to argue the persistence of
hairpins in fully developed TBLs (e.g. Jeong et al. 1997; Schlatter et al. 2014). Therefore,
an alternative explanation for the observed inverse cascade is discussed in section § 5.

These results also imply very different mechanisms for the scale transport trij = −∂kTrij
between the kinetic energy and Reynolds shear stress (see figure 4a,b). The premultiplied
turbulent transport spectra for turbulent kinetic energy dt

k and Reynolds shear stress dt−uv

are shown in figure 4(c,d), respectively. The first notable finding is that the two negative
peaks in the near-wall region, are centred at y+ � 15 for kinetic energy and located slightly
higher for the Reynolds shear stress (y+ � 20–30), indicating the transport of energy to
the wall ( y+ � 10) and to the logarithmic region (50 � y+ � 0.2Reτ ). In addition, there
are two disparate spanwise scales involved: one centred at λ+z � 50–60, and the other
centred at λ+z � 250–300. This may suggest that small scales are involved in creating
the large scales. A possible explanation for the larger distinct scale may be the merging
mechanism of the near-wall streaks of less than λ+z < 100, which give rise to a larger
streak spacing, particularly those occurring in the region 10 � y+ � 30 (Smith & Metzler
1983) and analysis of the packets merging that further extended to y+ � 100 (Tomkins
& Adrian 2003). In addition, the strong upward transport of turbulent kinetic energy and
Reynolds shear stress is therefore the consequence of stretched vortex-loops by mutual
induction (Kline et al. 1967; Head & Bandyopadhyay 1981; Smith & Metzler 1983). The
larger length scale (λ+z � 250–300) is also consistent with the observed spanwise width of
low-speed regions. Tomkins & Adrian (2003) reported large-scale regions of momentum
deficit created by aligning vortex signatures as the small-scale and large-scale interactions
in the lower part of the logarithmic region ( y+ � 100). However, the smaller length
scale (λ+z � 50–60) identified here differs from the conditionally averaged small-scale
structures (λ+z � 100) at this height, as reported by Tomkins & Adrian (2003) (which
are likely due to the specific threshold value used for the conditional average). The
above results clearly reveal the importance of the buffer layer process in transporting
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turbulent kinetic energy and Reynolds shear stress from the buffer region to the inner
part of the logarithmic region and to the wall. A further finding in figure 4(c,d) is the
turbulent transport due to shear at the turbulent–non-turbulent interface (TNTI). The
mean wall-normal location of the TNTI is estimated based on the kinetic energy deficit,
where the kinetic energy reaches a threshold value K̃ � Kt (see Appendix A for details).
The mean TNTI location is defined here as 〈Yt〉 = 0.902δ (marked with solid lines in
figure 4c–f ). The positive and negative peaks at the TNTI location suggest that there is a
significant loss of turbulent kinetic energy and Reynolds shear stress from the large-scale
structures to the free stream flow, which were not observed in plane Couette flow.

The premultiplied pressure transport spectra dp
k for turbulent kinetic energy and dp

−uv

for Reynolds shear stress are shown in figure 4(e, f ), respectively. The dp
k is a wall-ward

transport of turbulent kinetic energy, for the smaller scales at the buffer region and for
the larger scales at the lower part of the logarithmic region. The dp

−uv indicates upward
transport at smaller scales and wall-ward transport at larger scales. There are distinct
differences of wall-normal pressure transport between the turbulent kinetic energy and
Reynolds shear stress because dp

k is governed by the wall-normal gradient of 〈pv〉 in the
absence of the streamwise velocity component, whilst dp

−uv is governed by the wall-normal
gradient of 〈pu〉. In addition, figure 4( f ) is reminiscent of the streamwise velocity sweep
and ejection events associated with hairpin heads and legs. The findings here may not
solely be explained by the aforementioned hairpin-vortex signature with wall-attached legs
because we can clearly see the fundamental differences of wall-normal pressure transport
associated with turbulent kinetic energy and Reynolds shear stress (figure 4e, f ). Another
possible explanation for the reverse cycle of wall-normal pressure transport (figure 4f ) may
be the effect of the cosupporting cycle between small-scale and large-scale motions (Toh
& Itano 2005). In this mechanism, the small scales narrower than λ+z � 100 (centred at
λ+z � 50–60) are therefore the merging and eruption events of the low-speed (u) fluids, and
the scales wider than λ+z � 100 (centred at λ+z � 250–300) correspond to the large-scale
spanwise modulation on the near-wall structures. Another important finding in figure 4( f )
is the interaction between the large-scale structures near y = δ and the free stream flow,
whereby a significant amount of Reynolds shear stress from the interface is transferred to
the large-scale structures. This is not observed in Couette flow, suggesting that the TNTI
plays an important role in Reynolds shear stress transport at the edge in boundary layers.
Collectively, the results and findings of figure 4 provide insight, suggesting that Reynolds
stress transport is unlikely to be due to a single mechanism but rather due to different
mechanisms for wall-bounded flows.

5. Interscale transport of Reynolds shear stress

In the previous section, the multiscale behaviour of Reynolds shear stress transport
in TBLs was shown. The results up to now are conjectured and mainly interpreted
from phenomena observed in the buffer region and beyond. In order to obtain a more
comprehensive view of the inverse interscale transport of Reynolds shear stress, it is
necessary also to consider the phenomena associated with the logarithmic region. The
large-scale ejection and sweep events are well known coherent structures of momentum
transfer and are responsible for Reynolds shear stress transport and account for the major
contribution to the Reynolds shear stress (e.g. Lozano-Durán et al. 2012; Lozano-Durán
& Jiménez 2014; Fiscaletti et al. 2018). These coherent structures have also been
demonstrated to be associated with the evolution of uniform momentum zones in TBLs
(Laskari et al. 2018). In this section we study the interscale transport of Reynolds shear
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stress as the interaction between the large-scale and small-scale ejection and sweep events
(which we will hereafter refer to as QL and QS, respectively), particularly emphasising the
logarithmic region.

5.1. Filtering procedure
Filtering of data at suitable spanwise cutoff wavelengths allows us to distinguish
the large-scale structures associated with the regions of positive energy density and
small-scale structures associated with regions of negative energy where energy is
distributed from smaller scales (negative) to larger scales (positive), as shown in
figure 4(b). Therefore, spanwise spectral filters were applied to the present dataset in
Fourier space and the filtered large-scale and small-scale flow fields in physical space were
analysed based on quadrant analysis, with emphasis on the large-scale and small-scale
ejection and sweep events. Under one-dimensional spanwise filtering, the information
about the length scales of the structures related to the interscale process is retained. In the
following sections, the spanwise and streamwise length scales and wall-normal extents of
the large-scale and small-scale ejection and sweep events are presented. In the streamwise
direction, Taylor’s hypothesis is utilised on the temporal dataset ( y, z) to evaluate the
streamwise length scales of the structures in the filtered fields. In addition, the interscale
transport of Reynolds shear stress is tracked in time and the time-resolved information is
presented.

The (high-pass and low-pass) filter is defined by the spanwise cutoff wavelength
(denoted by Λz and wavenumber kz = 2π/Λz). The cutoff wavelength Λz is determined
based on the observations in figure 4(b) that: (i) the spanwise size of the structures that
are associated with interscale transport of positive and negative tr−uv scales with wall
distance; (ii) a clear separation of the positive or negative spectral peaks occurs at the
considered cutoff wavelengths (which is also the local peak of the interscale flux Tr−uv).
Hence a filter of varying cutoff wavelengths as a function with wall-normal distance is
applied. The cutoff wavelength is defined as

Λ+
z � β ( y+)α, (5.1)

for the varying cutoff wavelength filter; we will term it as variant cutoff filter. The
large-scale (low-pass) and small-scale (high-pass) filtered fields are given by

ui(x, t) = u′
i(kz, x, t) + u′′

i (kz, x, t), (5.2)

where the large-scale and small-scale components satisfy

ϕL( y, β, α) =
∫ kz

0
tr−uv(k̂, y) dk̂ > 0, ∀ y, (5.3)

ϕS( y, β, α) =
∫ ∞

kz

tr−uv(k̂, y) dk̂ < 0, ∀ y, (5.4)

and the mean Reynolds shear stress satisfy

〈uv〉( y) = 〈u′v′〉(kz( y), y) + 〈u′′v′′〉(kz( y), y), (5.5)

and the Reynolds shear stress with zero mean,

〈u′v′′〉 = 〈u′′v′〉 = 0. (5.6)

To validate the filters, figure 6(a) shows the contributions (5.3) and (5.4) as functions
of Λ+

z (β, α). The first type of Λ+
z with (β, 0), i.e. a constant cutoff filter, had been
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Figure 6. (a) The large-scale and small-scale contributions (black) ϕ+
L and (red) ϕ+

S of the interscale transport
tr−uv . Lines with symbols are based on the constant cutoff filters: Λ+

z (β, 0) = 300, 500 and 1500 (indicated
by the arrow direction); variant cutoff filter Λ+

z (23, 0.55) (——); variant cutoff filters for Λ+
z (10, 0.55),

Λ+
z (10, 0.65), Λ+

z (23, 0.35) and Λ+
z (30, 0.35) (– – –). (b) Fractional contribution of the (◦) large-scale and

(without symbols) small-scale quadrant events to the total Reynolds shear stress: Q1 (——); Q2 (– – –);
Q3 (· · · · ··); Q4 (– · – · – ·); variant cutoff filter Λ+

z (23, 0.55) (blue); constant cutoff filter Λ+
z = 300 (black).

widely used to investigate amplitude modulation between large-scale and small-scale
streamwise velocity fluctuations (e.g. Hutchins & Marusic 2007b; Mathis et al. 2009;
Ganapathisubramani et al. 2012), is deemed less suitable for the present study to
investigate interscale transport because conditions (5.3) and (5.4) do not hold (marked
with symbols and the arrows indicate increasing β in figure 6a). The reduced value of
ϕ with increasing β is due to the cancellation of energy between large scales and small
scales. The second type of Λ+

z , i.e. the variant cutoff filter, with (β, α) in the combinations
ranging from (10, 23, 30; 0.35, 0.55, 0.65) are tested where the conditions (5.3) and (5.4)
hold. Note that the choice is not unique but rather appears to be the reasonable range of
cutoff wavelengths, which attempts to separate the scales associated with the observations
of the interscale process as shown in figure 4(b) at the height considered (marked with a
solid line in figure 4b). The rationale here is that if the Reynolds shear stress structures
are essentially scaled with wall-distance, a spectral filter with variant cutoff wavenumbers
will retain the velocity fluctuations corresponding to large scales and small scales at each
height, respectively. This is also true for employing a constant cutoff spectral filter to
analyse, for instance, small-scale and large-scale (u2) contributions (see for example Lee
& Moser 2019).

5.2. The large-scale and small-scale ejection and sweep events
In this section, quadrant analysis is applied to the large-scale and small-scale filtered
fields to identify the structures carrying the Reynolds shear stress. The ejection and sweep
events are defined based on the pointwise velocity fluctuations as Q2L(u′ < 0, v′ > 0) and
Q4L(u′ > 0, v′ < 0) for the large-scale components, and similarly, Q2S(u′′ < 0, v′′ > 0)

and Q4S(u′′ > 0, v′′ < 0) for the small-scale counterparts. Figure 7 shows snapshots of
the isocontours of the Reynolds shear stress fields Q2L (black), Q4L (red), Q2S (light blue)
and Q4S (light red) for the variant cutoff filter Λ+

z (23, 0.55) (figure 7a,b) and the constant
cutoff filter Λ+

z (300, 0) (figure 7c,d) at the same time instance. A clear distinction between
the Reynolds shear stress structures is observed between Λ+

z (23, 0.55) and Λ+
z (300, 0).

The large scales differ in the near wall, whereas the small scales differ in the logarithmic
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Figure 7. Instantaneous (z, y) sections of large-scale and small-scale Q2 and Q4 based on (a,b) Λ+
z (23, 0.55)

and (c,d) Λ+
z (300, 0) with (black) Q2L, (red) Q4L, (light blue) Q2S and (light red) Q4S. Contour levels range

from −5[0.5]0. The box plot in panel (a) illustrates direct measurement of the structure’s spanwise width and
height based on H0 (5.7).

and outer regions. This is as expected due to the choice of filter bands. For instance, an
organised structure (marked with an arrow in figure 7c) isolated by the constant cutoff
filter considered to represent a Q2L is characterised by a Q2S in the variant cutoff filter
(marked with an arrow in figure 7b). The filtering process is also reflected in figure 6(b).
The mean contributions to the total Reynolds shear stress are plotted for the two different
filters (Λ+

z (23, 0.55) and Λ+
z = 300). For the filter Λ+

z (23, 0.55), at y+ > 100 the negative
Reynolds shear stress (ejections and sweeps) in the small-scale components are higher than
those in the filter Λ+

z = 300, while the negative Reynolds shear stress in the large-scale
components are higher for Λ+

z = 300 when compared with Λ+
z (23, 0.55).

To investigate the physical sizes of the Q events present in the filtered fields, we will
undertake two distinct approaches: (i) direct measurement and (ii) two-point correlation.
With the first approach, we measure the sizes of the structures in the low- and high-pass
filtered fields (such as those in figure 7) of pointwise Reynolds shear stress that satisfy

|u′v′( y, z)| > H|urmsvrms( y)|, |u′′v′′( y, z)| > H|urmsvrms( y)|, (5.7)

where H is the Reynolds shear stress threshold. Two cases will be discussed in the
following: (i) for H = 0 (hereafter referred to as case H0) and (ii) for H = 1.75 (hereafter
referred to as case H1.75). The root mean square is defined as 〈(uiui)

1/2〉, see also
figure 1(b). The ratio of standard deviation to its mean is |〈uv〉( y)|/|urmsvrms( y)| � 0.4
(Lozano-Durán & Jiménez 2014), which is true for y � δ. The criterion (5.7) is similar
to those in Lozano-Durán et al. (2012), Lozano-Durán & Jiménez (2014) and Fiscaletti
et al. (2018). Measurements of Q events with width or height less than approximately
10 wall units are excluded to avoid resolution issues. The total numbers of identified
quadrant events for both H0 and H1.75 are provided in table 1, and the percentages show
the fractions of identified events that are used for the analysis. It has also been checked

921 A13-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.504


Interscale transport in turbulent boundary layers

Case Q2L Q2S Q4L Q4S

H0 46.7 162.4 43.3 161.3
91.0 % 78.2 % 92.7 % 79.3 %

H1.75 4.14 12.0 6.36 7.57
77.1 % 46.3 % 75.7 % 50.3 %

Table 1. Total number (106) of identified quadrant events. The percentage below the total number of quadrant
events stands for the fraction of the total number of samples contributing to the statistics analysed in each
case.

that the contribution of the discarded small-scale events on the statistics did not influence
the statistics presented in the following section. Here Δz and Δy denote the spanwise
width and height of the structures and ymax = ymin + Δy is the maximum distance of the
structures from the wall (as illustrated in figure 7a) and the results are smoothed using a
Gaussian distribution.

Figure 8 shows the probability distributions of the spanwise width Δz of the individual
structures as the probability density functions (p.d.f.s) and y based on H0. The spanwise
size distributions between the large-scale Q2L and Q4L and between the small-scale Q2S
and Q4S are similar. The mean width scales with wall distance (marked with a black dashed
line) in the logarithmic region, as may be expected by the filter operation. However, it is
clear that the large-scale and small-scale sweeps and ejections follow different scalings,
approximately along 〈Δz〉 ∼ y2/3 and y1/3, respectively. On the other hand, for the constant
wavenumber filter (Λ+

z = 300) the spanwise widths of the large-scale and small-scale
events have less dependence on the wall distance 〈Δz〉 ∼ y1/5, i.e. the spanwise width
distribution does not scale with the wall-normal distance (not shown). Furthermore,
figure 9 shows the p.d.f.s of the height Δy and maximum distance from the wall ymax of the
individual structures. The mean height of the large-scale QL events scales approximately
with the maximum distance away from the wall 〈Δy〉 ∼ ymax, while the small-scale QS
scale approximately with (∼ y2/3). In addition to their spanwise and wall-normal length
scales, we measure their Reynolds shear stress intensity, which is defined as

u′v′
Δi

z
=

∫
Δi

z

u′v′ dz∫
Δi

z

dz
, i = 1, . . . , M, (5.8a)

u′′v′′
Δ

j
z
=

∫
Δ

j
z

u′′v′′ dz∫
Δ

j
z

dz
, j = 1, . . . , N, (5.8b)

for M large-scale structures and a similar definition for the small-scale mean intensity.
Figure 10 shows the mean uv intensity of Q2 and Q4 events. The mean intensities of
the Q4S have generally lower values than Q2S at all heights. For the large-scale Q2L
and Q4L, the mean intensity of Q4L is higher than that of Q2L, at approximately below
y+ � 300 (y/δ � 0.15) and is opposite above this wall-normal location. This is consistent
with the observation that the Q2 events have an overall higher contribution than the Q4
events, owing to the smaller size but higher intensity and larger number of Q2 than Q4
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Figure 8. The p.d.f.s P(Δz) of the spanwise width of the large-scale and small-scale Q2 and Q4 events
normalised by their local means as a function of the wall-normal distance with (a) Q2L, (b) Q4L, (c) Q2S
and (d) Q4S. (a,b) The line style (——) indicates Δz ∼ y0.65, (c,d) (——) indicates Δz ∼ y0.35, black dashed
lines indicate the mean values and blue dashed lines denote one standard deviation from the mean.

(Fiscaletti et al. 2018). The reversed contributions of large-scale Q2L and Q4L at
approximately y+ � 300 or y � 0.15δ may be attributed to their relative changes in
mean size within the logarithmic region (Fiscaletti et al. 2018). In addition, the mean
intensities of the QS and QL presented here are reminiscent of the total Reynolds shear
stress carried by attached Q2 and Q4 with heights of 100ν/uτ < ymax < 0.4h (relatively
short) and 0.4h < ymax < h (relatively tall), respectively (see figure 6 in Lozano-Durán
et al. (2012)). This suggests that QS and QL share similar characteristics of Reynolds shear
stress contributions with the attached Q2 and Q4 of intermediate height in channels. In
addition, the results may suggest that QL are analogous to the tall-attached Q2 and Q4,
and the QS are similar to the small-scale part of the attached Q2 and Q4, and they are not
likely to be the detached groups because they contribute to the mean Reynolds shear stress
(Lozano-Durán et al. 2012). However, it remains unclear at this point because the QL and
QS appear to have distinct differences in the spanwise width and height from the attached
Q2 and Q4 (Lozano-Durán et al. 2012), as shown in figures 8 and 9.

It has been shown that sweeps are taller than ejections in TBLs (Fiscaletti et al. 2018).
This finding can be extended to the large-scale and small-scale sweeps and ejections.
Figure 11(a) shows the mean height comparison between the large-scale and small-scale
events for H0 (black lines) at 0.01 < y/δ < 0.5. The ratios increased from 1 to 2.5 with
wall distance until y/δ � 0.5, showing that QL are essentially taller than QS, except at
y/δ � 0.02 (marked with a vertical line) and that they have approximately the same mean
height 〈Δy,L〉/〈Δy,S〉 ≈ 1. The ratios increased with the distance from the wall, which also
implies that QL grow faster than the QS. A further finding in figure 11(a) is that Q2L and
Q4L are similar in mean size (black line with symbol), which is true for H0. As will be
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Figure 9. The p.d.f.s of height of the large-scale and small-scale Q2 and Q4 events normalised by their local
means, as a function of their maximum distance from the wall with (a) Q2L, (b) Q4L, (c) Q2S and (d) Q4S.
(a,b) The line style (——) are Δy ∼ y0.95, (c,d) (——) are Δy ∼ y0.65, black dashed lines are the mean values
and blue dashed lines are one standard deviation above the mean.

102

–4 –3 –2 –1 0

1.0

P
y+

0.5

0

103

102

–4 –3 –2 –1 0

1.0

P 0.5

0

103

102

–4 –3 –2 –1 0

1.0

P
y+

0.5

0

103

102

–4 –3 –2 –1 0

1.0

P

u′v′+
Δz u′v′+

Δz

0.5

0

103

(b)(a)

(c) (d )

u′′v′′+
Δz u′′v′′+

Δz

Figure 10. The p.d.f.s of the mean Reynolds shear stress intensity, as defined in (5.8), of the large-scale and
small-scale Q2 and Q4 events as a function of their wall-normal distances, normalised by the local mean with
(a) Q2L, (b) Q4L, (c) Q2S and (d) Q4S. Solid lines indicate the mean values.
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Figure 11. (a) The mean height ratio of Q2 and Q4 events with (blue) H1.75 and (black) H0 based on direct
measurement. Solid lines with symbols in panel (a) are Q4L/Q2L. A vertical solid line indicates y/δ = 0.02
up to y/δ = 0.5. (b) Self-aspect ratios Δx/Δz of sweep and ejection events based on a correlation map with
coefficient C = 0.2 up to y/δ = 0.25.
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Figure 12. The Cττ correlation coefficients (a,b) (shaded) Q2L, (black ——) Q4L, (light blue ——) Q2S
and (red – – –) Q4S. In panels (c,d) (shaded) Q2 and (——) Q4. The shaded and line contours are levels of
0.2[0.2]0.8. Here (a,c) y/δ = 0.05 and (b,d) y/δ = 0.1.

discussed in the next section, the Q4L are essentially larger than Q2L if a higher threshold
of Reynolds shear stress is chosen (e.g. H = 1.75).

We have investigated the probability distributions of the direct measurements of the
large-scale and small-scale Q events, in the wall-normal–spanwise plane, in order to
investigate the spanwise and wall-normal physical length scales of structures associated
with the positive and negative interscale transport, as shown in figure 4(b). In the
second approach, we will adopt the two-dimensional correlations to investigate the spatial
coherence of the fluctuating components of the instantaneous Reynolds shear stress.
The streamwise–spanwise correlations are reconstructed using Taylor’s hypothesis by
assuming that the Q events move with the mean convection velocity Uc. Using the temporal
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dataset, the correlation coefficient can be written as

Cττ (Δx, Δz) = 〈τ(x, z, t)τ (x + Δx, z + Δz, t)〉
στστ

� 〈τ(x, z, t)τ (x, z + Δz, t + Δt)〉
στστ

,

(5.9)

where Δt = Δx/Uc and τ = u′v′ for large-scale Reynolds shear stress, with a similar
definition for the small-scale component. There is evidence that ejections move more
slowly than the local mean velocity by 1.5uτ , while sweeps move faster than that by the
same amount (Lozano-Durán & Jiménez 2014). We adopt a similar approach here in our
analysis. Henceforth, we use the mean convection velocity Uc = U( y) + 1.5uτ for the
large-scale sweep events and Uc = U( y) − 1.5uτ for the large-scale ejection events, while
Uc = U( y) is used for the small-scale events, based on the assumption that Q2L (Q4L)
move slightly more slowly (faster) than the local mean velocity, and the small scales move
approximately with the local mean velocity (see for example del Álamo & Jiménez (2009),
for more details on Taylor’s hypothesis).

Figure 12(a,b) shows the streamwise–spanwise correlations for QL and QS at
wall-normal locations y/δ = 0.05 and y/δ = 0.1. For the small-scale events (Q2S and
Q4S), they are similar in size with an aspect ratio of Δx/Δz ≈ 2.5 and their Δx+ ≈ 60η

based on a correlation coefficient C = 0.2 at both y/δ = 0.05 and y/δ = 0.1 (see also
figure 11b for their aspect ratios based on C = 0.2). The aspect ratio reinforces the idea
that that Q2S and Q4S are not likely to be the detached structures, which are found to be
isotropically oriented and the Reynolds shear stress cancels in the mean (del Álamo et al.
2006; Lozano-Durán et al. 2012). On the other hand, Q2S and Q4S have sizes of the order
of the Kolmogorov scale fragments, which are of order O(30η) and merge with large-scale
structures (Lozano-Durán & Jiménez 2014). For the large-scale events (Q2L and Q4L), Q2L
have similar streamwise length scales to Q4L but are narrower using C � 0.2 to demarcate
the length scales. When using higher correlation to define the length scales of the events,
Q2L is smaller than Q4L. Analysing the length scales at different correlation coefficients,
the results show that Q2L has a longer but narrower low intensity tail (C � 0.2) with aspect
ratio Δx/Δz ≈ 3, while Q4L has a wider and longer high-intensity tip (C ≥ 0.4) and aspect
ratio Δx/Δz ≈ 1. The large-scale events are not similar to the tall-attached sweeps and
ejections as observed in Lozano-Durán & Jiménez (2014), for example, the aspect ratios
are approximately Δx/Δz ≈ 1 for C ≥ 0.4, which differ from the tall attached structures
that follow self-similar aspect ratios of approximately Δx/Δz ≈ 2. A possible reason for
the difference is that the threshold for the Reynolds shear stress is set to H = 0, resulting
in the large-scale but low Reynolds shear stress intensity structures exhibiting a higher
aspect ratio. To investigate this further, we have computed the correlations for Q2 and
Q4 events as shown in figure 12(c,d). The Q4 events are generally longer and wider than
the Q2 events, which is consistent with the findings by Fiscaletti et al. (2018) for TBLs,
suggesting that the threshold value of Reynolds shear stress is not likely to be the primary
reason for the observed divergence. In order to facilitate comparison with other studies on
intense ejection and sweep events (Lozano-Durán et al. 2012; Lozano-Durán & Jiménez
2014; Fiscaletti et al. 2018), we performed similar measurements to the previous case H0,
but based on H = 1.75 (see (5.7)).

By setting the threshold for the Reynolds shear stress (H1.75), both Q2 and Q4 are
distributed over a narrower band of spanwise width Δz, as shown in figure 13. The mean
widths of the large-scale events (Q2L, Q4L) follow the same ridge of the criterion H0
(5.7) as Δz ∼ y2/3 but are shifted to the left compared with H0 (to the smaller spanwise
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Figure 13. The p.d.f.s of spanwise width of the large-scale and small-scale Q2 and Q4 events normalised by
their mean values as a function of the wall-normal distance for H = 1.75. In panels (a,b) (——) indicates
Δz ∼ y0.65 and in panels (c,d) indicates Δz ∼ y0.24. Black dashed lines are the mean values and blue dashed
lines are one standard deviation from the mean.

width Δz band), suggesting that they are the self-similar structures with higher intensity
as identified in figure 7(a). The result for the small-scale events (Q2S, Q4S) is presented in
(figure 13c,d). The mean spanwise widths follow the order of the Kolmogorov microscale
(O(10η)). This suggests that the small-scale events with higher intensities have sizes of the
order of the Kolmogorov microscale, and differ from the H0 case when the low-intensity
small-scale events are included.

The p.d.f.s of the height Δy and ymax of the Q events are shown in figure 14, and the ratios
between their height are shown in figure 11(a). First, similar to H0, the QL grow faster than
the QS with increasing wall-normal distance, but the height and mean size ratios imply
that an increasing Reynolds shear stress threshold decreases the size of ejections (Q2) and
increases the size of sweeps (Q4). This is true if we consider that Q4 events are taller
but with lower intensity than Q2 (Fiscaletti et al. 2018). The distinct difference in size
between the large-scale ejection (Q2L) and sweep events (Q4L) appears more prominent
compared with H0, which is up to Q4L/Q2L � 1.5, also supporting this view, as shown in
figure 11(a). Second, similar to H0, the ratios begin to drop above y � 0.5δ, which may
be due to the interaction with the irrotational fluid at the bottom edge of the intermittent
region ( y � 0.5δ) that limits the growth of the large-scale events. The large-scale ejections
can extend from the wall across the opposite wall in channels while this is not true for
boundary layers due to the existence of the intermittent region (Jiménez et al. 2010).

It is noted that in the logarithmic region, intense sweep events are longer than intense
ejection events in TBLs (Fiscaletti et al. 2018). This is also true for the large-scale events
in H1.75, as shown in figure 15. The Q4L are significantly longer and wider than Q2L, on
average are 50 % longer and 25 % wider across 0.05δ � y � 0.25δ. The aspect ratio of Q2L
is approximately Δx/Δz ≈ 1.1 and the aspect ratio of Q4L is approximately Δx/Δz ≈ 1.5,
at y/δ = 0.05 and y/δ = 0.1, as shown in figure 11(b). On the other hand, the small-scale
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Figure 14. The p.d.f.s of height of the large-scale and small-scale Q2 and Q4 events normalised by their
mean values as a function of their maximum distance from the wall for H = 1.75. In panels (a,b) (——) are
Δy ∼ y0.75 and in panels (c,d) are Δy ∼ y0.4. Black dashed lines are the mean values and blue dashed lines are
one standard deviation above the mean.
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Figure 15. The Cττ correlation coefficients for H1.75 with (shaded) Q2L, (black ——) Q4L, (light blue ——)
Q2S and (red – – –) Q4S. The shaded and line contours are levels of 0.2[0.2]0.8. Here (a) y/δ = 0.05 and
(b) y/δ = 0.1.

events (Q2S and Q4S) are similar in size, with aspect ratio Δx/Δz ≈ 2 and their Δx+ ≈
50η based on C = 0.2 at both y/δ = 0.05 and y/δ = 0.1, similar to the size and aspect
ratio reported at H0 (figure 12).

There are similarities and differences between the QL and QS reported here and the
intense sweeps and ejections that are responsible for the total momentum transfer as
described by Lozano-Durán & Jiménez (2014). The small-scale events (Q2S and Q4S) have
similar orders of size and aspect ratio to the Kolmogorov scale fragments for splitting and
merging with the large-scale structures (Lozano-Durán & Jiménez 2014). The large-scale
events (Q2L and Q4L), on the other hand, are distinctly different from the tall-attached
sweeps and ejections (Lozano-Durán & Jiménez 2014): (i) the lower aspect ratios based on
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Figure 16. The one-dimensional premultiplied production spectra of the Reynolds shear stress pr−uv

superimposed by the interscale transport spectra tr−uv (isolines) at Reτ � 2020. The contour lines indicate
negative contour-levels (blue) at −0.3[0.1] − 0.1 and positive contour-levels (red) at 0.1[0.1]0.3 of kzy+tr+

−uv .

H1.75 and (ii) different scaling laws of their sizes with respect to wall distances compared
with the tall attached sweeps and ejections. The discrepancies, however, might be related
to the fundamental differences between channels and boundary layers at the outer edge
of the logarithmic region (Jiménez et al. 2010). For instance, we have already shown in
figure 4(d, f ) that the exchange of Reynolds shear stress occurring between the large-scale
structures and the interface is not likely to be observed at the core region of the turbulent
channel flows (Kawata & Alfredsson 2018). To provide further insight into the interactions
between large- and small-scale events, the production spectra of the Reynolds shear stress
pr−uv � Evv∂yU (3.10) with respect to the interscale transport is plotted in figure 16. The
only energy source in the Reynolds shear stress balance is the production term pr−uv

governed by the shear (3.19). The alignment between the negative tr−uv and the positive
pr−uv at the highlighted region (blue isocontours) in figure 16, confirms that the energy
source of the small scales inversely transferring to large scales is pr−uv . This provides
further evidence that small scales are locally produced by shear stress and the interscale
transport can be interpreted as the small-scale (Q2S and Q4S) and large-scale (Q2L and
Q4L) interactions.

5.3. Conditional time evolution
The interscale flux indicates directional information of the energy transfer between scales,
negative fluxes indicate the inverse transfer from small scales to large scales, while positive
fluxes indicate the opposite (Kawata & Alfredsson 2018). The interscale transport, which
is the derivative of the fluxes, represents the gain or loss of the energy at a local scale (also
the loss or gain of energy of the fluxes). To understand the interscale transport process
further, we investigate the time scales associated with the fluctuations. The instantaneous
interscale transport of Reynolds shear stress t̃r−uv can be measured according to the
occurrence

t̃r−uv < 0, t̃r−uv > 0, (5.10)

where ·̃ denotes the instantaneous quantity and tr = 〈t̃r〉 is as defined in (3.10). This
measures the time elapsed between a local loss ΔTn and when a local gain appears,
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Figure 17. Examples of the instantaneous interscale fluxes (a,b) T̃r−uv and transport of Reynolds shear
stress (c,d) t̃r−uv , normalised by their mean maximum at the wall-normal location (a,c) y+ = 13 and
(b,d) y/δ = 0.15.

and a similar definition for the latter, is denoted as ΔTp. This process is illustrated in
Appendix B. The above measurements were based on the temporal dataset. To reduce the
noise due to the high data acquisition rate, the dataset was first filtered in time with a
moving average filter of window length ΔT+ ≈ 5. This value is similar to the reference
value of minimum flow time scales in the analysis of experimental boundary layer data,
as discussed by Hutchins et al. (2009). Measurements of ΔT+ < 5 in the results were
further excluded to avoid measurements that are close to the temporal resolution limit of
the dataset.

Figure 17 shows snapshots of T̃r−uv (panels (a,c)) and t̃r−uv (panels (b,d)), normalised
by the absolute value of the local maximum, at near-wall region y+ = 13 and logarithmic
region y/δ = 0.15. It is clear that the instantaneous interscale transports exhibit both
positive and negative energy transfer, while the instantaneous interscale fluxes indicate
the direction of instantaneous energy flow. Linking the observations of instantaneous
interscale energy transfer to the physical processes of merging (inverse) and splitting
(direct) of the small-scale and large-scale ejection and sweep events (QL, QS) (see § 5.2),
the snapshots suggest that both splitting and merging are prevalent and occur nearly
simultaneously. The mean time duration 〈ΔTn〉 for t̃r−uv < 0, and 〈ΔTp〉 for t̃r−uv > 0,
at spanwise scales and wall-normal locations are shown in figure 18(a,b). Notice that close
to the wall (y+ ≈ 13), the average duration of t̃r−uv > 0 at larger scales (λ+z � 300) is
approximately ΔT+

p � 20, which is approximately twice that of the duration of t̃r−uv < 0
at the smaller scales λ+z � 50 (ΔT+

n � 10). The overall time duration (ΔT+ ≈ O(10))
is significantly lower than: (i) the bursting period in the buffer layer of T+ ≈ O(100)

(Flores & Jiménez 2010; Jiménez 2013; Hwang & Bengana 2016); (ii) the lifetime of
the tall attached structures; (iii) the average time of merging and splitting (Lozano-Durán
& Jiménez 2014). On the other hand, the time scales are comparable with the average
residence time of uniform momentum zones states associated with negative large-scale
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Figure 18. The mean time duration 〈ΔTn〉 for (a) a local loss t̃r−uv < 0, and (b) 〈ΔTp〉 for a local gain
t̃r−uv > 0. (c) The total time duration ratio Ts (5.11). The dashed lines indicate λz ∼ y0.55.

(average-Q2/Q4) events in TBLs (Laskari et al. 2018) and the autogeneration mechanism
cycle based on the hairpin-packets model (Jodai & Elsinga 2016).

To quantify the balance between the positive and negative interscale transfer, the total
time duration ratio is defined as

Ts =
∑

ΔTp − ∑
ΔTn∑

ΔTp + ∑
ΔTn

, (5.11)

where the positive value (0 < Ts < 1) indicates the prevalence of gain at a local scale
during the total time duration and the negative value (−1 < Ts < 0) suggests the opposite.
The result is shown in figure 18(c). In the buffer region (y+ < 100), the small scales exhibit
more frequent t̃r−uv < 0 than large scales. While for large scales, the opposite trends are
observed (t̃r−uv > 0). Further away from the wall (y+ > 100), both direct and inverse
energy transport are almost balanced in a wide range of scales, which is indicated by
the dashed lines in figure 18(c). This finding reveals that both processes are prevalent
with respect to time above the buffer region. Furthermore, figure 18(a,b) suggests that
the interscale transport is of the order of the viscous time scale T+ = O(10) and is not
proportional with distance from the wall. The time scales identified here differ from the
time scales reported for merging and splitting of tall attached branches (Lozano-Durán &
Jiménez 2014). One possible explanation is the different methodologies used to compute
the time scales and the definition of the lifetime used by Lozano-Durán & Jiménez (2014).
Their time scales correspond to lifetimes of structures that merge and split with similar
sizes; whereas, in our study, we measured the time elapsed between a local gain and loss
of energy at a given scale (Fourier mode). To further quantify the net rate in the local
energy gain and loss at local scales, we compute the conditional estimates for each time
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Figure 19. (a,b) The premultiplied conditional averaged loss trn and gain trp. (c) The mean conditional loss
(blue) trn and gain (red) trp, at different wall-normal locations for y+ = 13, 50, 100, 200 and 500 (indicated by
the arrow direction). The dashed straight lines in panels (a,b) indicate λz ∼ y0.55. In panel (b) dashed and solid
isolines are contour levels of 1[1]6 and −6[1] − 1 of trp and trn, respectively.

elapsed interval defined as

t̃rn =

∫
Tn

t̃r−uv dt∫
Tn

dt
, t̃rp =

∫
Tp

t̃r−uv dt∫
Tp

dt
. (5.12)

The averages trn = 〈t̃rn〉 and trp = 〈t̃rp〉 are shown in figure 19(a,b). The local energy gain
and loss are quite balanced in their conditional averages. The mean values trn and trp are
also shown in figure 19(c) from the near-wall region to the logarithmic region (y+ = 13
to y/δ � 0.25). There is asymmetry between trn and trp, with larger wavelengths having
higher values of trp than the smaller wavelengths, while smaller wavelengths have lower
values of trn than the higher wavelengths. This trend shifts towards relatively larger scales
with increasing distance from the wall (indicated by an arrow). The slightly imbalanced
trends between trn and trp reflect the net gain (loss) of energy at larger (smaller) scales
across a broad range of y and scales. This reinforces the idea that interscale transport is a
multiscale process reflecting the merging and splitting of Reynolds shear stress structures
(QL, QS) and providing further support for the concept that the merging and splitting are
important and non-negligible.

6. Conclusions

We performed a study on the interscale and spatial transport of turbulent kinetic energy and
Reynolds shear stress by means of DNS of TBLs for Reynolds numbers up to Reτ � 2020.
We have analysed the interscale Reynolds stress transport equation (3.18) and (3.19) for
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TBLs based on the approach by Kawata & Alfredsson (2018). The findings are summarised
below.

First, the inverse interscale transport trij (3.12) of turbulent kinetic energy occurs in
the near-wall region (figure 4a), while the inverse interscale transport of Reynolds shear
stress occurs across almost the entire boundary layer (figure 4b). The inverse interscale
transport of Reynolds shear stress may be related to the presence of hairpin-vortex packets
in TBLs, based on the hairpin-packet paradigm (Adrian et al. 2000; Tomkins & Adrian
2003). Second, the spatial turbulent transport (3.16) and pressure transport (3.17) revealed
two fundamental scales for carrying turbulent kinetic energy (figure 4c,e) and Reynolds
shear stress (figure 4d, f ) between the buffer region and the lower part of the logarithmic
region. Specifically, the mechanism of the pressure transport dp+

−uv may be related to
the cosupporting cycle (Toh & Itano 2005) between the large-scale structures in the
outer region and the near-wall structures. In addition, there is a large-scale interaction
at the TNTI (figure 4c–f ), which is not observed in plane Couette flow. The findings
above suggest that different mechanisms may coexist to govern the Reynolds stress
transport.

To study the multiscale transfer of Reynolds shear stress as observed, we have extended
the analysis based on low-pass and high-pass filters (5.1) to retain the structures containing
large-scale and small-scale velocity fluctuations (5.2). The current observed inverse
interscale transport of Reynolds shear stress is interpreted as the net energy transfer from
the small-scale ejection (Q2) and sweep (Q4) events to their large-scale counterparts (5.5),
which are defined by their pointwise Reynolds shear stress value (quadrant analysis) as
Q2L, Q4L, Q2S and Q4S. The length scales characteristic of large-scale and small-scale
events were assessed through direct measurement and two-point correlation based on the
Reynolds shear stress threshold (5.7) at H = 0, and at H = 1.75 for further comparison
with the intense ejection and sweep events (Lozano-Durán et al. 2012; Lozano-Durán
& Jiménez 2014; Fiscaletti et al. 2018). It is shown that the sizes of the large-scale and
small-scale sweeps and ejections scale differently with the wall distance (figures 8, 9 and
12). The size ratios between QL and QS suggest that the former grows much faster than
the latter (figure 11a). The interscale transport of Reynolds shear stress was qualitatively
compared with the merging and splitting process of intense sweep and ejection, as
discussed by Lozano-Durán & Jiménez (2014). The small-scale events (Q2S, Q4S) are sizes
of the order of the Kolmogorov microscale (figures 13c,d, 14c,d, 15) with an approximately
constant aspect ratio of Δx/Δz � 2 (figure 11b) and are similar to the small-scale viscous
fragments (Lozano-Durán & Jiménez 2014). The large-scale events (Q2L, Q4L), on the
other hand, are statistically different from the tall-attached sweeps and ejections based on
their sizes (figures 13a,b, 14a,b, 15) and aspect ratios (figure 11b).

Finally, the time scale of the interscale transport was conditionally estimated (see
(5.10)). It was found that both direct and inverse instantaneous energy transport are roughly
balanced in a broad range of scales (figures 18c and 19). The results also suggest that they
are of the order of T+ = O(10) and exhibit viscous scaling behaviours (figure 18a,b)
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Appendix A. Estimation of the TNTI location

A.1. The relative kinetic energy and deficit threshold
The approach for the estimation of TNTI location Yt is similar to Chauhan et al. (2014)
and Laskari et al. (2018). The instantaneous relative kinetic energy is defined as

K̃ = [(ũ − U∞)2 + ṽ2 + w̃2] × 100
U∞

, (A 1)

where ũ, ṽ and w̃ are the instantaneous streamwise, wall-normal and spanwise velocity
components, respectively. The location of TNTI is defined as the wall-normal location
where K̃(Yt) � Kt, where Kt is the kinetic energy deficit threshold. Figure 20(a) shows
the p.d.f. of the height of the TNTI and the mean value is 〈Yt〉/δ � 0.902. The kinetic
energy deficit threshold Kt = 0.08 is determined based on the intermittency profile of the
scalar field K̃ expressed in a binary representation based on the criteria K̃ < Kt =⇒ 1
and K̃ ≥ Kt =⇒ 0 as shown in figure 20(b) and the mean and standard deviation of Yt,
for a set of Kt values that satisfy 〈Yt〉 + 3σ � 1.3δ (1.3 δ was used to account for the 99 %
boundary layer thickness definition), as shown in figure 20(c).

Appendix B. Time measurement of the interscale transport

Figure 21(a,b) represents a schematic diagram illustrating the time measurement method
based on (5.10). The ΔTn and ΔTp indicate the time intervals of when t̃r−uv < 0 and
t̃r−uv > 0 for each valid measurement. For illustration purposes, we selected at the same
height y+ � 15, λ+z = 350 representing (see panel (a)) the larger scale case and λ+z = 60
representing (see panel (b)) the smaller scale case. Figure 21(c,d) shows the p.d.f.s of ΔT
and t̃r−uv for both cases. The positively skewed distributions of blue solid line and red
dashed line are evident. There are approximately 6 % of the measurements for the latter
case where ΔT+

p > 50, suggesting that extreme instantaneous transport events are quite
common.

921 A13-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-0707-6265
https://orcid.org/0000-0002-0707-6265
https://orcid.org/0000-0001-9627-5903
https://orcid.org/0000-0001-9627-5903
https://orcid.org/0000-0002-2709-4321
https://orcid.org/0000-0002-2709-4321
https://doi.org/10.1017/jfm.2021.504


C.I. Chan, P. Schlatter and R.C. Chin

–0.12

0

10 20 30 40 50

100
t+

�Tn

P
(�

T
)

�Tp

σ

0

0.12

tr–uv tr–uvtr
–
uv

–0.12

0

–0.4 –0.2 0 0.2 0.4

100
t+

�Tn

�Tp

σ

0

0.12

P
(tr

 – u
v
)

(b)(a)

(c) (d )

�T+ tr–
+

uv

Figure 21. The schematics illustrate the conditional estimates of time intervals satisfying (5.10) at the near-wall
region ( y+ � 15) for (a) λ+z = 350 with a positive mean (– – –) and (b) λ+z = 60 with a negative mean
(– – –). The dashed–dotted lines (– · – · – ·) show the values of tr−uv ± σ where σ is the standard deviation.
(c) The p.d.f. of the measurements distributions: (red) ΔTp and (blue) ΔTn, for (– – –) λ+z = 350 and (——)
λ+z = 60. (d) The p.d.f. of value of t̃r−uv , at (red) λ+z = 350 and (blue) λ+z = 60.

REFERENCES

ABE, H., KAWAMURA, H. & CHOI, H. 2004 Very large-scale structures and their effects on the wall
shear-stress fluctuations in a turbulent channel flow up to Reτ ≈ 640. Trans. ASME J. Fluids Engng
126 (5), 835–843.

ADRIAN, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
ADRIAN, R.J., MEINHART, C.D. & TOMKINS, C.D. 2000 Vortex organization in the outer region of the

turbulent boundary layer. J. Fluid Mech. 422, 1–54.
DEL ÁLAMO, J.C. & JIMÉNEZ, J. 2009 Estimation of turbulent convection velocities and corrections to

Taylor’s approximation. J. Fluid Mech. 640, 5–26.
DEL ÁLAMO, J.C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R.D. 2006 Self-similar vortex clusters in the

turbulent logarithmic region. J. Fluid Mech. 561, 329–358.
BALAKUMAR, B.J. & ADRIAN, R.J. 2007 Large- and very-large-scale motions in channel and boundary-layer

flows. Phil. Trans. R. Soc. Lond. A 365 (1852), 665–681.
BANDYOPADHYAY, P.R. & HUSSAIN, A.K.M.F. 1984 The coupling between scales in shear flows. Phys.

Fluids 27 (9), 2221–2228.
CHAUHAN, K., PHILIP, J., DE SILVA, C.M., HUTCHINS, N. & MARUSIC, I. 2014 The turbulent/non-turbulent

interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119–151.
CHEVALIER, M., LUNDBLADH, A. & HENNINGSON, D.S. 2007 Simson–a pseudo-spectral solver for

incompressible boundary layer flow. Tech. Rep. TRITA-MEK 2007:07. KTH Mechanics.
CHO, M., HWANG, Y. & CHOI, H. 2018 Scale interactions and spectral energy transfer in turbulent channel

flow. J. Fluid Mech. 854, 474–504.
CIMARELLI, A., DE ANGELIS, E. & CASCIOLA, C.M. 2013 Paths of energy in turbulent channel flows.

J. Fluid Mech. 715, 436–451.
CIMARELLI, A., DE ANGELIS, E., JIMÉNEZ, J. & CASCIOLA, C.M. 2016 Cascades and wall-normal fluxes

in turbulent channel flows. J. Fluid Mech. 796, 417–436.
FISCALETTI, D., DE KAT, R. & GANAPATHISUBRAMANI, B. 2018 Spatial–spectral characteristics of

momentum transport in a turbulent boundary layer. J. Fluid Mech. 836, 599–634.
FLORES, O. & JIMÉNEZ, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids

22 (7), 071704.
GANAPATHISUBRAMANI, B., HUTCHINS, N., MONTY, J.P., CHUNG, D. & MARUSIC, I. 2012 Amplitude

and frequency modulation in wall turbulence. J. Fluid Mech. 712, 61–91.

921 A13-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.504


Interscale transport in turbulent boundary layers

GANAPATHISUBRAMANI, B., LONGMIRE, E.K. & MARUSIC, I. 2003 Characteristics of vortex packets in
turbulent boundary layers. J. Fluid Mech. 478, 35–46.

GUALA, M., HOMMEMA, S.E. & ADRIAN, R.J. 2006 Large-scale and very-large-scale motions in turbulent
pipe flow. J. Fluid Mech. 554, 521–542.

HAMILTON, J.M., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence structures.
J. Fluid Mech. 287, 317–348.

HEAD, M.R. & BANDYOPADHYAY, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech.
107, 297–338.

HOYAS, S. & JIMÉNEZ, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Reτ ≈ 2003.
Phys. Fluids 18 (1), 011702.

HUNT, J.C.R. & MORRISON, J.F. 2000 Eddy structure in turbulent boundary layers. Eur. J. Mech. (B/Fluids)
19 (5), 673–694.

HUTCHINS, N. & MARUSIC, I. 2007a Evidence of very long meandering features in the logarithmic region
of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

HUTCHINS, N. & MARUSIC, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc.
Lond. A 365 (1852), 647–664.

HUTCHINS, N., NICKELS, T.B., MARUSIC, I. & CHONG, M.S. 2009 Hot-wire spatial resolution issues in
wall-bounded turbulence. J. Fluid Mech. 635, 103–136.

HWANG, Y. 2016 Mesolayer of attached eddies in turbulent channel flow. Phys. Rev. Fluids 1, 064401.
HWANG, Y. & BENGANA, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel

flow. J. Fluid Mech. 795, 708–738.
HWANG, Y. & COSSU, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett.

105, 044505.
JEONG, J., HUSSAIN, F., SCHOPPA, W. & KIM, J. 1997 Coherent structures near the wall in a turbulent

channel flow. J. Fluid Mech. 332, 185–214.
JIMÉNEZ, J. 2013 Near-wall turbulence. Phys. Fluids 25 (10), 101302.
JIMÉNEZ, J., HOYAS, S., SIMENS, M.P. & MIZUNO, Y. 2010 Turbulent boundary layers and channels at

moderate Reynolds numbers. J. Fluid Mech. 657, 335–360.
JIMÉNEZ, J. & PINELLI, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359.
JODAI, Y. & ELSINGA, G.E. 2016 Experimental observation of hairpin auto-generation events in a turbulent

boundary layer. J. Fluid Mech. 795, 611–633.
KAWATA, T. & ALFREDSSON, P.H. 2018 Inverse interscale transport of the Reynolds shear stress in plane

Couette turbulence. Phys. Rev. Lett. 120, 244501.
KIM, K.C. & ADRIAN, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417–422.
KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNSTADLER, P.W. 1967 The structure of turbulent

boundary layers. J. Fluid Mech. 30, 741–773.
LASKARI, A., DE KAT, R., HEARST, R.J. & GANAPATHISUBRAMANI, B. 2018 Time evolution of uniform

momentum zones in a turbulent boundary layer. J. Fluid Mech. 842, 554–590.
LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200.

J. Fluid Mech. 774, 395–415.
LEE, M. & MOSER, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high

Reynolds number. J. Fluid Mech. 860, 886–938.
LI, Q., SCHLATTER, P. & HENNINGSON, D.S. 2008 Spectral simulations of wall-bounded flows on massively

parallel computers. Tech. Rep. KTH Mechanics.
LOZANO-DURÁN, A., FLORES, O. & JIMÉNEZ, J. 2012 The three-dimensional structure of momentum

transfer in turbulent channels. J. Fluid Mech. 694, 100–130.
LOZANO-DURÁN, A. & JIMÉNEZ, J. 2014 Time-resolved evolution of coherent structures in turbulent

channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.
MANSOUR, N.N., KIM, J. & MOIN, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent

channel flow. J. Fluid Mech. 194, 15–44.
MARATI, N., CASCIOLA, C.M. & PIVA, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid

Mech. 521, 191–215.
MATHIS, R., HUTCHINS, N. & MARUSIC, I. 2009 Large-scale amplitude modulation of the small-scale

structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337.
MIZUNO, Y. 2016 Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers.

J. Fluid Mech. 805, 171–187.
MONTY, J.P., HUTCHINS, N., NG, H.C.H., MARUSIC, I. & CHONG, M.S. 2009 A comparison of turbulent

pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431–442.

921 A13-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.504


C.I. Chan, P. Schlatter and R.C. Chin

PANTON, R.L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4),
341–383.

PIROZZOLI, S., BERNARDINI, M. & ORLANDI, P. 2011 Large-scale motions and inner/outer layer interactions
in turbulent Couette–Poiseuille flows. J. Fluid Mech. 680, 534–563.

SCHLATTER, P., LI, Q., ÖRLÜ, R., HUSSAIN, F. & HENNINGSON, D.S. 2014 On the near-wall vortical
structures at moderate Reynolds numbers. Eur. J. Mech. (B/Fluids) 48, 75–93.

SCHLATTER, P. & ÖRLÜ, R. 2010 Assessment of direct numerical simulation data of turbulent boundary
layers. J. Fluid Mech. 659, 116–126.

SCHLATTER, P. & ÖRLÜ, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length
and tripping effects. J. Fluid Mech. 710, 5–34.

SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453,
57–108.

SILLERO, J.A., JIMÉNEZ, J. & MOSER, R.D. 2013 One-point statistics for turbulent wall-bounded flows at
Reynolds numbers up to δ+ ≈ 2000. Phys. Fluids 25 (10), 105102.

SMITH, C.R. & METZLER, S.P. 1983 The characteristics of low-speed streaks in the near-wall region of a
turbulent boundary layer. J. Fluid Mech. 129, 27–54.

TOH, S. & ITANO, T. 2005 Interaction between a large-scale structure and near-wall structures in channel flow.
J. Fluid Mech. 524, 249–262.

TOMKINS, C.D. & ADRIAN, R.J. 2003 Spanwise structure and scale growth in turbulent boundary layers.
J. Fluid Mech. 490, 37–74.

TOMKINS, C.D. & ADRIAN, R.J. 2005 Energetic spanwise modes in the logarithmic layer of a turbulent
boundary layer. J. Fluid Mech. 545, 141–162.

WALLACE, J.M., ECKELMANN, H. & BRODKEY, R.S. 1972 The wall region in turbulent shear flow. J. Fluid
Mech. 54, 39–48.

WILLMARTH, W.W. & LU, S.S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 65–92.
WU, X. & MOIN, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient

flat-plate boundary layer. J. Fluid Mech. 630, 5–41.

921 A13-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.504

	1 Introduction
	2 Numerical procedure
	2.1 Validation of the DNS boundary layer

	3 Mathematical approach
	3.1 Interscale transport equations for boundary layers
	3.2 One-dimensional spatial and scale fluxes

	4 Results and discussion
	4.1 Interscale and spatial transport in TBLs

	5 Interscale transport of Reynolds shear stress
	5.1 Filtering procedure
	5.2 The large-scale and small-scale ejection and sweep events
	5.3 Conditional time evolution

	6 Conclusions
	A.1 The relative kinetic energy and deficit threshold

	A Appendix B. Time measurement of the interscale transport
	References

