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In the last decades, robust estimation has been widely applied to overcome the presence of
gross errors in observations. Recently it has been shown that robust estimation, if computed

appropriately, is able to cope with a larger amount of gross errors and also capable of
providing reliable estimations in situations where systematic errors are present. It is the
purpose of this paper to propose the use of global robust estimation for computing baselines
strongly affected by multipath effects.
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1. INTRODUCTION. Signal multipath is the result of signal reflections from
objects in the environment (Braash 1996). This effect degrades the signal and may
be able to impede ambiguity resolution. Consequently, many efforts have been
devoted to avoid multipath, the most obvious being the selection of a location free
from potential reflections and antenna design improvements.

However, for many practical situations, especially in surveying engineering
works, multipath effects remain after observation thus entering into the estimation
stage. Many multipath mitigation techniques have been developed to act in the
estimation process, to cite just a few: analysis of signal-to-noise ratio (Axelrad et al
1996), wavelet analysis (Souza and Monico 2004, Satirapod and Rizos 2005, Zhong
et al 2007, Aram et al 2007), modelling by means of harmonic functions (Amiri-
Simkooei and Tiberius 2007), multipath reconstruction (Lau and Cross 2007) and a
very long etcetera.

On the other hand, robust estimation foundations were developed by Andrews
et al (1972), Huber (1981) and others, and then widely applied to geodesy and survey-
ing (Fuchs 1982, Harvey 1993, Yang et al 1999, and Qingming and Jinshan 1999, for
instance) to provide a reliable estimation in an adjustment process in which gross
errors participate. In particular, robust estimation was successfully applied to GPS
positioning in a pioneer work by Wieser and Brunner (2002). Their conclusion was
that ‘‘ if the data contain outliers the result of robust estimation is far better than that of
standard least squares. Otherwise the results are equal. ’’ However, they computed
the estimator by the usual means of an iteratively reweighted least squares (IRLS)
algorithm. Recently Baselga (2007) has shown that the process of computing a robust
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estimator by means of an IRLS algorithm highly undermines its estimation capa-
bilities : IRLS robust estimation turns out to be only a local optimization around
the initial least squares solution. Since this initial solution may be highly contami-
nated by the presence of undesirable errors and the correct solution may be far from
the initial one, a process of global optimization was proposed to compute the robust
estimator. Furthermore, this Global Robust Estimation (GRE) scheme proved to
be capable of avoiding not only gross errors but also systematic errors, and it was
successfully applied to the estimation of single frequency GPS baselines affected by
a strong ionospheric delay which were unsolvable by classic methods (Baselga and
Garcı́a-Asenjo 2008).

This paper will show how baseline solutions free from multipath influences can be
obtained by GRE. First we will present the adjustment problem, i.e. the mathematical
model to be considered along with a suitable minimizing function (the robust esti-
mator), then the computing strategy to be applied will be presented and finally we
will consider an illustrative example in which GRE succeeds whereas classic methods
fail in avoiding multipath effects.

2. MATHEMATICAL MODEL. Let us restrict the formulation, just for
simplicity, to the case of single frequency phase observations (L1 phases). Note,
however, that the use of additional observation types would not modify the essen-
tials of the estimation process that we are proposing.

Let us consider observed single phases of receivers i and j from satellites r and s.
The double differenced phase observing equation may be written as

rDwrs
ij =rDrrsij xlrDNrs

ij +rDTrs
ijxrDIrsij+ersij (1)

where subscripts denote receivers and superscripts satellites, rDwrs
ij is the observed

double differenced phase, rDrrsij the double differenced geometric range, rDNrs
ij

the double differenced ambiguity for wavelength l andrDTrs
ij andrDIrsij respectively

the double differenced tropospheric delay, which is usually modelled, and the double
differenced ionospheric delay, which is usually neglected for short baselines (or which
cancels out in the dual frequency case). Residuals ersij are assumed to follow a
Gaussian distribution centred on zero, which happens if no significant systematic
errors are present in the functional model, i.e. if Equation (1) accurately represents
the observation reality.

Fixing Cartesian geocentric coordinates for one end of the baseline (say Xi, Yi, Zi),
using any approximate coordinates for the other end of the baseline (Xj0, Yj0, Zj0) and
reformulating the problem as the determination of the coordinate differentials for
the end of the baseline (dXj, dYj, dZj) along with the double differenced ambiguities
(rDNrs

ij ), one can express the above equation, after adding the modelled tropospheric
delay to rDrrsij0 and reordering, as
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where subscript 0 denotes particularization for the approximate coordinates
(Xj0, Yj0, Zj0).
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Therefore, the system of double differenced phase equations can be expressed,
as usual, by

Ax=l+n (3)

where A is the coefficient matrix, x the vector of unknowns – which contains differ-
ential corrections to approximate coordinates (float values) and ambiguities (integer
values in theory) – l is the vector of observed minus approximate values and finally
n is the vector of residuals.

This system of equations has to be considered along with weight matrix P. A
reasonable choice may be taken, for instance, from the SIGMA-e weight model
(Hartinger and Brunner, 1999). After adjustment, baseline components will be
obtained by means of final coordinate differences : DX=Xj0+dXjxXi, DY=
Yj0+dYjxYi, DZ=Zj0+dZjxZi.

3. ESTIMATION PROCESS. We are in presence of a dual estimation
process, that is, some unknowns (coordinates) are float numbers whereas others
(ambiguities) have to be integers. Classically the solution can be obtained by several
different methods but all of them involve the application, under one or other
scheme, of the least squares estimator, which is highly vulnerable to gross and
systematic errors. As mentioned, Wieser and Brunner (2002) proposed the use of
robust estimators computed, as usual, by an IRLS scheme. We propose an alterna-
tive that according to Baselga (2007) means a significant improvement : the use of
global robust estimation to overcome the possibility that robust estimation by
IRLS falls only in a local optimum in the most complicated cases.

3.1. Least squares estimation. The classic least squares estimation process, see
e.g. Teunissen 1995, is performed in three steps :

’ Least squares solution of the system, Equation (3). This yields real-valued
ambiguities, which result in an approximate estimation for the baseline
coordinates, namely the ‘‘float solution’’.

’ Integer ambiguity determination. The search for the best set of integer ambi-
guities is performed in the neighbourhood of the least squares solution found
in the previous step.

’ Constrained least squares adjustment of the system with the integer ambi-
guities found in the previous step. The result is known as the baseline ‘‘fixed
solution’’.

Note that if prior assumptions, i.e. the validity of the model and the presence of only
random errors in the observations do not hold, then least squares adjustment no
longer yields the most likely solution. Such is the case, for example, in the presence
of multipath effects. Robust estimation is then a powerful alternative.

3.2. Robust estimation. Robust estimation is based on minimizing a function –
named estimator – in order to attain a solution maximally resistant to the non-
fulfilment of the mathematical model or the appearance of gross or systematic errors
in observations, so that it also yields a solution almost identical to that of classic
least squares when the model is correct and the observations are affected only by
random errors.
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Let us apply one of the most successful robust estimators that is widely used
in literature (Fuchs 1982, Harvey 1993, etc.) : the L1-norm. Its solution is the one
that minimizes the sum of absolute values of the residuals

min
X

nij j (4)

Typically, the routine to compute such a problem is an IRLS scheme, that is, the
estimator minimization (4) is performed by successive least squares adjustments
computing for each iteration adapted weights based on the previous adjustment
residuals. The equivalent weight function for the L1-norm estimator to be used within
least squares is

vi=
1

nij j (5)

Therefore, minimizing the sum of squared residuals with weights (5) yields the
L1-norm minimization.

min
X

ni
2vi=min

X
ni

2 1

nij j=min
X

nij j (6)

However, the problem with robust estimation as IRLS is a computational one, for
if the initial least squares solution lies far away from the correct solution then the
iterative process may attain only a local optimum. It seems quite obvious that if
one has decided to abandon least squares estimation in favour of robust esti-
mation, then solving robust estimation by means of an iteratively re-weighted least
squares process may not be the most desirable solution. In Baselga (2007) it was
shown that, in fact, robust estimation by means of an iteratively re-weighted least
squares process provides only a sort of ‘‘ local robust estimation’’, whereas robust
estimation’s best capabilities are only achieved if it is dealt with as a global opti-
mization problem, thus forgetting all reference to least squares. Below, we present
a possible scheme for robust estimation as a global optimization problem, GRE in
short.

3.3. Global robust estimation. Having decided to focus on the L1-norm estimator,
the estimation problem can be stated as

Ax=l+n
min S nij j

�
(7)

For convenience we have transformed the general system of correlated observations
(3) into a system of uncorrelated observations (expressed here with the same
notation) by means of singular value decomposition of the original weight matrix P
and subsequent transformation of (3) by pre-multiplication with the eigenvectors
matrix, a procedure through which the vector of unknowns x remains invariant.
The resulting system of equations has also been reduced to unit weight.

We will now conduct a global optimization process in the search for the best vector
x in the sense of least L1-norm. Several successful global optimization techniques
have been developed up to the moment, among them Genetic Algorithms (GA) and
the Simulated Annealing (SA) method. We will only sketch the algorithm for the
use of SA, a method that tries to emulate the process of crystalline networks’
self-construction provided a sufficiently slow decrease in temperature occurs. In any
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case, the reader is referred to Baselga (2007) and Berné and Baselga (2004) for further
details. The computational scheme may be as follows:

1. Start with an initial random solution xowithin the search domain D.
In the present case the search domain may be a sufficiently wide area centred in the
initial least-squares float solution with boundaries xitksxi (for a sufficiently large k,
30 or 50 for instance). Note the different requirements for the solution vector
elements : some need to be real values (coordinate increments) and the rest integer
values (double differenced ambiguities).

2. Obtain an increment to the previous solution and thus a new solution
(provided it is in the search domain) xi+1=xi+Dxi.

Displacement Dxi has to be generated at random, usually from a Gauss distribution
whose standard deviation si decreases with iterations. For example, one may start
with an initial si0=ksxi/2 so that the search domain can be easily inspected and
apply a cooling factor of 0.999999n, where n is the iteration number. The affordable
cooling speed depends on the problem complexity. Pay attention again to the differ-
ent requirements for the solution vector elements : some are real values (coordinate
increments) whilst other have to be integers (ambiguities).

3. Accept the new solution if it yields a better value for the score function – in our
case the robust estimator (4) – otherwise: accept it with probability p (a small
figure such as 0.01) or reject it.

4. Return to step 2 until typical displacement sizes sxi are below the required
precision (for example 0.001 m for coordinates).

The solution obtained is guaranteed to be the global optimum in probabilistic terms,
i.e. if the cooling process has been sufficiently slow. At any rate, a sufficient condition
for the global optimum attainment can be easily checked: repeated executions of the
algorithm must provide the same result.

4. EXAMPLE. Three very short baselines forming a triangle were observed by
GNSS techniques. One of its vertex, point A, was selected to be in an environment
potentially affected by strong multipath, see Figure 1.

The results in Table 1 were obtained after an observation time of one hour and
a register interval of 30 seconds by means of the Trimble Geomatics Office 1.62
software. Multipath in point A is clearly manifest : the first and third baselines, those
including A, have large reference variances and large standard errors, along with
low ratios that make us doubt the validity of these determinations. However, the
closure computation gives sensible results, which reinforces the validity of the base-
line determinations.

Let us now reduce observation times to 8 minutes. An analogous computation by
Trimble Geomatics Office yields the results in Table 2. In this case, the short obser-
vation period has prevented the computation procedure from obtaining a correct
solution: the closure computation points towards some incorrect determination
and the comparison with the solution obtained for a one hour observing period
locates the incorrectness in baseline A-B. In addition, it is significant how the
reference variance and the standard error have increased for this baseline in re-
ducing the observation time. However, note that the ratio for this baseline has
increased to a value of 4.2, which, deceivingly, could have suggested that this

NO. 3 MULTIPATH MITIGATION BY GLOBAL ROBUST ESTIMATION 389

https://doi.org/10.1017/S0373463308004803 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463308004803


incorrect determination was trustworthy. Moreover, a careful inspection of the
residuals shows that marginal values (e.g. these exceeding 2.5s) happen many times
more than expected for the Gaussian behaviour assumption.

Finally, let us apply Global Robust Estimation to this example, in a similar fashion
as we did in Baselga and Garcı́a-Asenjo (2008) for coping with ionospheric delays.
In this case we have followed the Simulated Annealing method as sketched in
Section 3.3. We are trying to benefit from the fact that robust estimation is maximally
resistant towards the non-fulfilment of the functional model and the appearance

Figure 1. Point A in a potential multipath environment.

Table 1. Baseline solutions for an observation time of 1 hour by TGO.

Baseline Ratio s0
2 RMS (m) DX (m) DY (m) DZ (m) Solution type

A–B 1.9 11.85 0.011 29.024 x17.219 x34.267 L1 fixed

B–C 17.4 2.09 0.005 x25.365 14.902 29.597 L1 fixed

A–C 2.2 17.65 0.014 3.659 x2.316 x4.665 L1 fixed

Closure 0.000 x0.001 x0.005

Table 2. Baseline solutions for an observation time of 8 minutes by TGO and component differences with

respect to the 1 hour observation solution.

Baseline Ratio s0
2 RMS (m) DX (m) DY (m) DZ (m) Diff. Diff. Diff. Solution

typeDX (m) DY (m) DZ (m)

A–B 4.2 45.22 0.030 29.040 x17.226 x34.398 0.016 x0.007 x0.131 L1 fixed

B–C 9.4 2.04 0.005 x25.364 14.903 29.595 x0.001 x0.001 0.002 L1 fixed

A–C 4.0 17.42 0.015 3.660 x2.320 x4.664 x0.001 0.004 x0.001 L1 fixed

Closure 0.016 x0.003 x0.139
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of gross errors, thus exploiting its ability to obtain correct results from largely
contaminated samples. In our case, the highly contaminated sample – in which the
proportion of reflected signals (i.e. with a multipath term) with respect to direct
signals is high – is, in addition, of a short observing time (8 minutes). Results and
comparison with the one-hour observation computations are shown in Table 3.

As we can see, contrarily to the classic baseline estimation process, GRE succeeds
in obtaining correct baseline components despite the multipath affected observations
and the short observation period.

5. CONCLUSION. Robust estimation computed as a global optimization
process, or Global Robust Estimation, is presented as a powerful alternative to deal
with multipath affected observations. After revising robust estimation basics, both
for the classic iteratively re-weighted least squares scheme and for the successful
global optimization scheme, we proposed to solve the functional model of double-
differenced phases jointly in one step considering the dual nature of unknowns
(float-integer) by a global optimization method upon minimization of a robust esti-
mator functional. An example showed GRE advantages versus the classic least
squares determination.

REFERENCES

Amiri-Simkooei AR, Tiberius CCJM (2007). Assessing receiver noise using GPS short baseline time series.

GPS Solutions, 11(1) : 21–35.

Andrews DF, Bickel PJ, Hampel FR, Huber PJ, Rogers WH, Tukey JW (1972). Robust estimates of

location.: Surveys and advances. Princeton University Press, Princeton, NJ.

AramM, El-Rabbany A, Krishnan S, Anpalagan A (2007). Single frequency multipath mitigation based on

wavelet analysis. The Journal of Navigation, 60, 281–290.

Axelrad P, Comp CJ, Macdoran PF (1996). SNR-based multipath error correction for GPS differential

phase. IEEE Transactions on Aerospace and Electronic Systems, 32 : 650–660.

Baselga S (2007). A Global Optimization Solution of Robust Estimation. Journal of Surveying Engineering,

133(3): 123–128.

Baselga S, Garcı́a-Asenjo L (2008). GNSS differential positioning by robust estimation. Journal of

Surveying Engineering 134(1): 21–25.
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