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THE IDENTITY OF ARGUMENT-PLACES

JOOP LEO

Department of Philosophy, Utrecht University

Abstract. Argument-places play an important role in our dealing with relations. However, that
does not mean that argument-places should be taken as primitive entities. It is possible to give an
account of ‘real’ relations in which argument-places play no role. But if argument-places are not
basic, then what can we say about their identity? Can they, for example, be reconstructed in set
theory with appropriate urelements? In this article, we show that for some relations, argument-places
cannot be modeled in a neutral way in V[A], the cumulative hierarchy with basic ingredients of the
relation as urelements. We argue that a natural way to conceive of argument-places is to identify
them with abstract, structureless points of a derivative structure exemplified by positional frames. In
case the relation has symmetry, these points may be indiscernible.

1. Introduction. “Adam” occurs first in “Adam loves Eve,” but Adam does not occur
first in Adam’s loving Eve. The order is a representational artifact since there simply
is no intrinsic order or direction between the arguments in the states of a relation. A
more faithful, neutral representation makes use of unordered argument-places like lover
and beloved. It is often assumed that such argument-places are primitive entities. But as
convincingly argued by Fine (2000), there is a more basic neutral view on relations in
which argument-places do not occur as primitives. In this so-called antipositionalist view
on relations, a key role is played by the general operation of substitution.

If we should not take argument-places as primitive, what can we say about their identity?
Can we (re)construct them in a satisfactory way? These questions are particularly of inter-
est since argument-places play such a prominent role in the way we deal with relations in
ordinary life.

In Leo (2008), we showed that for so-called simple relations of finite degree, we can
construct argument-places or positions that are unique, modulo some equivalence relation.
But this result does not seem completely satisfactory from a metaphysical point of view.
Could we perhaps also construct them as unique in an absolute sense?

Whether this is possible may depend on the demands we want to impose on such a
construction. One demand seems obvious: we do not want to allow arbitrary choices within
the construction.

According to Fine, we can transform biased relations, that is, relations in which the
arguments are ordered, into unbiased ones by taking a ‘permutation class’ of biased rela-
tions and by identifying each argument-place of the unbiased relation with a function that
takes each biased relation of the permutation class into a corresponding numerical position
(Fine, 2000, p. 15). However, Fine also mentions—without further elaboration—that there
are certain complications (Fine, 2000, p. 15, footnote 9).

Received: May 14, 2008

c© 2008 Association for Symbolic Logic
doi:10.1017/S1755020308080222

https://doi.org/10.1017/S1755020308080222 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020308080222


336 JOOP LEO

We show that Fine’s construction only works for relations without strict symmetry.
Initially, I guessed it would be possible to develop a similar construction that would work
for any relation. But after several attempts to find such a construction, this turned out
to be impossible. This suggest that we should look for a radically different approach to
define argument-places in a neutral way. We propose to define them as abstractions of
the positions of positional frames for relations. This may be the most natural view on the
identity of relations, although the ontological status of such abstract argument-places may
still be a point of discussion.

The outline of this article is as follows. In Section 2, we give an informal explanation
of the different views on relations and of ways to reconstruct argument-places. Then,
in Section 3, we define mathematical models/frames corresponding with the views on
relations. Most of our results are formulated in terms of relational frames.

Fine’s construction to transform biased relations into unbiased ones is discussed in
Section 4. In Section 5, we introduce a formal notion of neutrality of a set with respect to
another set, and in Section 6, we show that argument-places cannot always be constructed
in a formally neutral sense with respect to the permutation class of biased relational frames.
We use this result in Section 7 to prove that for certain simple relations, no formally neutral
reconstruction of argument-places is possible within the context of ordinary set theory.

In Section 8, we argue that the impossibility of the construction may be due to limitations
of ordinary set theory as a modeling medium. In Section 9, we consider the possibility
of conceiving argument-places as abstractions of the positions of positional frames for
relations. We end in Section 10 with a consideration about the metaphysical relevance of
the results.

2. Informal explanation. Fine (2000) presents three views on relations: the standard
view, the positionalist view, and the antipositionalist view. For readers not familiar with
Fine’s article ‘Neutral relations’ or with my article ‘Modeling relations’, I start with a very
brief characterization of the views.

According to the standard view, the arguments of any relation are ordered. We have, for
example, the biased relation loves and its converse is loved by. But as we remarked in the
Introduction, there is no order between the arguments of the state of Adam’s loving Eve.
So, if this state is a genuine relational complex, it should contain a relation in which the
arguments are not ordered.

The positionalist view assumes that any relation comes with positions, as, for example,
lover and beloved. A great advantage of this view is that we can identify a neutral relation
for the state of Adam’s loving Eve. But an ontological objection against this view is that it
regards positions as part of the ‘fundamental furniture of the universe’.

The antipositionalist view does not assume any ordering between arguments and any
positions. Instead, the states of a relation form a network of states interrelated by substitu-
tions. For example, from the state of Adam’s loving Eve, we can obtain the state of Clark’s
loving Lois by substituting Clark for Adam and Lois for Eve.

A proponent of any of the three views may be interested in adequate positional represen-
tations for relations. The main question of this article is how positions of a relations can be
constructed in an unbiased or neutral way. Here, we consider this question by discussing
a few examples.

Take as starting point the set � of the biased relations loves and is loved by. These
relations are permutations of each other. The first (second) numerical position of loves
corresponds to the second (first) position of is loved by. Now we get an unbiased positional
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representation of the amatory relation by identifying the position lover with the function
from � to {0, 1} that maps loves to 0 and is loved by to 1 and by identifying the position
beloved with the function that maps loves to 1 and is loved by to 0.

Also for certain permutation classes of symmetric relations, we may define positions in
a neutral way. Take for example the adjacency relation. Then, the permutation class of this
relation consists just of nothing but the adjacency relation itself. Defining positions as the
set {0, 1} gives an unbiased representation.

Unfortunately, not for every relation with symmetry, we can construct positions as a
neutral set. Take the complex relation � with �abcd the state of a’s loving b, b’s hating
c, c’s loving d, and d’s hating a. We argue in Section 6 that such a relation puts us in a
situation similar to that of Buridan’s ass. It seems impossible to define positions for such
relations as a set in V[S, O], the cumulative hierarchy with states S and objects O of the
relation as urelements, in a completely nonarbitrary way.

But if positions cannot be defined in V[S, O] in a neutral way, then there is still a
viable alternative. We propose to define positions as abstractions, that is, as structureless
places exemplified by representations in V[S, O]. Assigning objects to such positions
yields states. Despite the fact that such positions may be indiscernible, it would in general
be wrong to assume that objects occupy positions within the states. In the next sections,
these ideas are elaborated in more detail.

3. Relational models. In Leo (2008), we defined frames for relations to model the
logical space of relations, the frames being all of the form 〈S, O, . . .〉, where S is a non-
empty set of states and O a nonempty set of objects. We reserved the word models for exten-
sions of the frames with a subset H of S representing the states that obtain. Here, we briefly
repeat the main definitions.

3.1. Relational frames. We present three types of frames corresponding with different
views on relations as presented by Fine (2000):

directional frames ∼ standard view

positional frames ∼ positionalist view

substitution frames ∼ antipositionalist view.

These type of frames are not uniquely defined by the different views. But for our pur-
poses, they adequately model the different views on relations.

3.1.1. Directional frames. A directional frame models the logical space of relations in
which the arguments are ordered in a specific way.

DEFINITION 3.1. A directional frame is a quadruple F = 〈S, O, α, �〉, where S is a
nonempty set of states, O is a nonempty set of objects, α is an ordinal number, and � is a
function from Oα to S.

We call the cardinality of α the degree of the frame. We denote it as degreeF .

For the relation loves, we can make a directional frame with � depicted as:
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3.1.2. Positional frames. A positional frame models the logical space of neutral rela-
tions, that is, relations for which the order of the arguments is irrelevant.

DEFINITION 3.2. A positional frame is a quadruple F = 〈S, O, P, �〉, where S is a
nonempty set of states, O is a nonempty set of objects, P is a set of positions, and � is a
function from O P to S.

We call the cardinality of P the degree of the frame. We denote it as degreeF .

For the love relation, we can make a positional frame with � depicted as:

3.1.3. Substitution frames. A substitution frame also models the logical space of neu-
tral relations. This type of frame is more abstract and at first sight probably more difficult
to appreciate than the two other types. It might be helpful to take a look at Leo (2005,
pp. 23–25) where substitution frames are developed in a number of steps.

DEFINITION 3.3. A substitution frame is a triple F = 〈S, O, �〉, where S is a nonempty
set of states, O is a nonempty set of objects, and � is a function from S × O O to S such
that:

1. �(s, idO) = s,

2. �(s, δ′ ◦ δ) = � (�(s, δ), δ′).
For convenience, we often write s ·F δ or s · δ for �(s, δ), and f · g for g ◦ f .
For the love relation, we can make a substitution frame with � depicted as:

We define for a substitution frame the objects of its states and the degree of its states and
of the frame itself as follows.

DEFINITION 3.4. Let F = 〈S, O, �〉 be a substitution frame. We call A ⊆ O an object-
domain of s ∈ S if for every δ, δ′ : O → O:1

δ =A δ′ ⇒ s · δ = s · δ′.
We define the core of s as:

CoreF (s) =
⋂

{A | A is an object-domain of s}.
If CoreF (s) is an object-domain, then we call this set the objects of s. We denote this set as
ObF (s). If CoreF (s) is not an object-domain, then we leave ObF (s) undefined.

We often write Core(s) and Ob(s) for CoreF (s) and ObF (s).

1 We say that f =X g if f �X = g�X , that is, f restricted to X is equal to g restricted to X .
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DEFINITION 3.5. Let F = 〈S, O, �〉 be a substitution frame. For a state s in S, we define
the degree of s as:

degreeF (s) = glb {|A| | A is an object-domain of s}.
The degree of F we define as:

degreeF = lub {degreeF (s) | s ∈ S}.
Here, |A| denotes as usual the cardinality of A, glb denotes the greatest lower bound,

and lub denotes the least upper bound.

3.2. Permutations and positional variants. Directional frames have permutations.

DEFINITION 3.6. A directional frame F = 〈S, O, α, �〉 is a permutation of a frame F ′ =
〈S′, O ′, α′, �′〉 if S = S′, O = O ′, α = α′, and there is a bijection π : α → α such that
for each f ∈ Oα , �( f ) = �′( f ◦ π).

We denote F as π(F ′) and define the permutation class of F as:

�F = {π(F) | π ∈ Perm(α)},
with Perm(α) the bijections from α to α.

We say that F has strict symmetry if there is a bijection π : α → α with π = idα such
that F = π(F).

Note that if F is a permutation of F ′, then �F = �F ′ .
In a similar way, we define for positional frames the notion of positional variants.

DEFINITION 3.7. A positional frame F = 〈S, O, P, �〉 is a positional variant of a frame
F ′ = 〈S′, O ′, P ′, �′〉 if S = S′, O = O ′, and there is a bijection π : P ′ → P such that
for each f ∈ O P , �( f ) = �′( f ◦ π).

We denote F as π(F ′).

3.3. Corresponding frames. Directional and positional frames may correspond in an
obvious way.

DEFINITION 3.8. A directional frame F = 〈S, O, α, �〉 and a positional frame G =
〈S′, O ′, P, �′〉 correspond if S = S′, O = O ′, and there is a bijection μ : P → α such
that for each f ∈ Oα , �( f ) = �′( f ◦ μ).

We denote F as μ(G).
Note that directional frames corresponding to a positional frame G are not necessarily

permutations of each other. This is a consequence of our somewhat arbitrary choice to
demand in the definition of permutations of directional frames that α = α′.

For substitution frames and directional/positional frames, we define correspondence as
follows.

DEFINITION 3.9. A substitution frame F = 〈S, O, �〉 and a directional/positional frame
G = 〈S′, O ′, X, �〉 correspond if:

1. S = S′ = im �,

2. O = O ′,
3. �( f ) ·F δ = �( f · δ).

As said at the beginning of Section 3, relational models can be defined by extending the
frames with a subset H of S representing the states that obtain. But also more luxurious
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models can be considered by taking into account possible worlds where states can obtain.
In our analysis, however, only the logical space of relations plays a role.

4. Fine’s construction. In this section, we show that directional frames without strict
symmetry, that is, frames for which F = π(F) only if π = idα , have corresponding
positional frames that are uniquely determined by �F , the permutation class of F . The
construction of the positional frames is essentially Fine’s construction to transform biased
relations into unbiased ones (Fine, 2000, p. 15).

THEOREM 4.1. Let F = 〈S, O, α, �〉 be a directional frame without strict symmetry, and
let GF = 〈S, O, P, �〉 be defined by:

P = {p : �F → α | ∀π ∈ Perm(α) (p(π(F)) = π(p(F)))},
�( f ) = �( f ◦ μ) with μ : α → P such that ∀i ∈ α (μ(i)(F) = i).

Then, GF is a positional frame corresponding to F , and if F ′ is a permutation of F , then
GF = GF ′ .

Proof. We show that (1) GF is a well-defined positional frame; (2) GF corresponds to F ;
(3) if F ′ = τ(F), then GF = GF ′ .

1. To prove that � is well defined, it is sufficient to show that there is exactly one function
μ ∈ Pα such that ∀i ∈ α (μ(i)(F) = i). We assumed that F has no strict symmetry. So,
π(F) = π ′(F) ⇔ π = π ′. Therefore, for every i ∈ α, there is exactly one p ∈ P with
p(F) = i .

2. To prove that GF corresponds toF , it is sufficient to show that μ is bijective. Now μ is
clearly injective because for every i ∈ α, μ(i)(F) = i . Furthermore, let p be an arbitrary
element of P . Then, μ(p(F))(F) = p(F), from which it follows that μ(p(F)) = p.
So, μ is also surjective.

3. Let F ′ = 〈S, O, α, �′〉 be another frame in �F , say F ′ = τ(F), and let GF ′ =
〈S, O, P ′, �′〉. To prove that P ′ = P , let p be an element of P . Then,

p(π(F ′)) = p(π(τ(F)))

= p((π ◦ τ)(F))

= (π ◦ τ)(p(F))

= π(τ(p(F)))

= π(p(τ (F)))

= π(p(F ′)).

Thus, p also belongs to P ′. So, P ⊆ P ′ and, mutatis mutandis, P ′ ⊆ P .
To prove that �′ = �, let μ′ ∈ Pα be such that ∀i ∈ α (μ′(i)(F ′) = i). We have

to prove that for any f ∈ O P , �′( f ◦ μ′) = �( f ◦ μ). Because F ′ = τ(F), we have
�′( f ) = �( f ◦ τ). So, in particular, �′( f ◦μ′) = �( f ◦μ′ ◦ τ). So, it is sufficient to prove
that μ′ ◦ τ = μ.
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(μ′ ◦ τ)(i)(F) = μ′(τ (i))(F)

= μ′(τ (i))(τ−1(F ′))

= τ−1(μ′(τ (i))(F ′))

= τ−1(τ (i))

= i.

Because there is exactly one μ ∈ Pα such that ∀i ∈ α (μ(i)(F) = i), we see that
μ′ ◦ τ = μ. �

Unfortunately, if F has strict symmetry, then the construction of GF in Theorem 4.1
fails because then not for every i ∈ α, there is a p ∈ P with p(F) = i . In such cases,
P may contain less than card(α) elements. For example, ifF has complete strict symmetry,
then P is empty. And if F is a ternary frame with F = π(F) iff π(1) = 1, then P does
not contain three functions—as we would like to have—but only one.

5. Neutrality. The positional frame constructed in Theorem 4.1 is in an intuitive sense
neutral with respect to the permutation class of F . In this section, we give a formal
definition of neutrality for set theory with atoms or urelements. We use this notion in the
next section to show that the permutation classes of some directional frames have no neutral
corresponding positional frame in the cumulative hierarchy with the elements of S and O
as urelements.

Let V[A] be the cumulative hierarchy with atoms A. Any function u : A → A can be
lifted to a function ũ : V[A] → V[A] in an obvious way:

• ũ(a) = u(a) for any a ∈ A,
• ũ(X) = {̃u(x) | x ∈ X}.

We may regard ũ(X) as the result of a transformation where for each a ∈ A, all its
occurrences in X are substituted by u(a).

We treat any function f as a set of ordered pairs. Thus, we may speak about ũ( f ) as the
image of this set.

We have the following elementary properties for ũ.

LEMMA 5.1. Let u : A → A be lifted to ũ : V[A] → V[A]. Then:

1. ũ ◦ v = ũ ◦ ṽ .

2. If u = idA, then ũ = idV[A].

3. u is injective iff ũ is injective.

4. If u is bijective, then ũ−1 = ũ−1.

5. If u is injective, then ũ maps any function f : X → Y with X, Y ∈ V[A] to a
function ũ( f ) : ũ(X) → ũ(Y ) with

(ũ( f ))(ũ(x)) = ũ( f (x)).

6. If u is injective, then ũ is an endo-functor on V[A], that is,

(a) For any X ∈ V[A], ũ(idX ) = idũ(X)

(b) For any function f : X → Y and g : Y → Z with X, Y, Z ∈ V[A],

ũ( f · g) = ũ( f ) · ũ(g).
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Proof. We prove Property 1 by ∈-induction: (i) If x ∈ A, then ũ ◦ v(x) = u ◦ v(x) =
u ◦ ṽ(x) = ũ ◦ ṽ(x). (ii) Let x ∈ V[A] and assume ũ ◦ v(z) = ũ ◦ ṽ(z) for every z ∈ x .
Then, ũ ◦ v(x) = {ũ ◦ v(z) | z ∈ x} = {̃u ◦ ṽ(z) | z ∈ x} = ũ({̃v(z) | z ∈ x}) = ũ ◦ ṽ(x).
So, by ∈-induction, ũ ◦ v = ũ ◦ ṽ .

Properties 2–4 can be proved in a similar way by ∈-induction.
To prove Property 5, assume u : A → A is injective. Then, by Property 3, ũ is also

injective. So, if f is a function, then ũ( f ) is a function as well. Furthermore, if f : x �→ y,
then ũ( f ) : ũ(x) �→ ũ(y).

Property 6(a) is trivial and Property 6(b) follows from Property 5:

(ũ( f · g))(ũ(x)) = ũ(( f · g)(x))

= ũ(g( f (x))

= (ũ(g))(ũ( f (x)))

= (ũ(g))((ũ( f ))(ũ(x)))

= (ũ( f ) · ũ(g))(ũ(x)). �
Using this lemma, it is easy to prove that ifF and G are corresponding frames in V[S, O]

and u : S ∪ O → S ∪ O is injective, then ũ(F) and ũ(G) correspond as well.
We now define what it means for a set in V[A] to be neutral with respect to another set

in V[A].

DEFINITION 5.2. For X, Y ∈ V[A], we say that Y is neutral with respect to X if for any
bijection u : A → A,

ũ(X) = X ⇒ ũ(Y ) = Y .

Note that if Y is neutral with respect to X and Z is neutral with respect to Y , then Z is
also neutral with respect to X . However, if Y and Z are both neutral with respect to X , then
Z is not necessarily neutral with respect to Y .

EXAMPLE 5.3. Let A = {a, b} be a set of atoms. Then, {a, b} and every set in V are
neutral with respect to {a, b}, but {a} and {a, {b}} are not. However, every set in V[A] is
neutral with respect to {a, {b}}.

To see the relevance of this formal notion of neutrality for modeling ‘real’ structures,
consider a set A of specific entities. Suppose we are given a set X ∈ V[A] that models
certain connections between the entities in A. Then, for any deterministic construction of
a set Y purely on the basis of the structure of X (treating the elements of A as atoms), the
set Y must be neutral with respect to X . Thus, if we can show that no member of a certain
class of models is neutral with respect to a given model, then this may give us valuable
information about the impossibility of certain constructions.

6. Neutrality w.r.t. permutation classes. In this section, we treat the states S and
objects O as urelements. Unless mentioned otherwise, we do not assume that S and O are
disjoint.

Let us now face the case in which a directional frame F = 〈S, O, α, �〉 may have
strict symmetry. Then, it is simple to construct a corresponding positional frame G =
〈S, O, P, �〉 in which all frames in �F , the permutation class of F , are more or less
equally well represented:
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1. Choose 	 ⊆ Perm(α) with idα ∈ 	 and ∀F ′ ∈ �F ∃! π ∈ 	(π(F) = F ′).
2. Define P = {p : �F → α | ∀π ∈ 	(p(π(F)) = π(p(F)))}.
3. Define �( f ) = �( f ◦ μ) with μ such that ∀i ∈ α (μ(i)(F) = i).

We can prove in a similar way as we did for the frames without strict symmetry that
G corresponds to F . But if F belongs to V[S, O], then G is not necessarily neutral with
respect to the permutation class ofF , as a consequence of Theorem 6.7 later in this section.

The next lemma shows that if u : S ∪ O → S ∪ O is injective, then ũ��F is a structure
preserving mapping.

LEMMA 6.1. LetF = 〈S, O, α, �〉 ∈ V[S, O] be a directional frame. If u : S∪O → S∪O
is injective and π ∈ Perm(α), then ũ��F : �F → �ũ(F) is a bijection for which the
following diagram commutes:

Proof. Let π(F) = 〈S, O, α, �′〉. Then, by Lemma 5.1,

(ũ(�′))(ũ( f )) = ũ(�′( f )) = ũ(�( f ◦ π)) = (ũ(�))(ũ( f ) ◦ π).

So, ũ(π(F)) = π(ũ(F)), from which it follows that the diagram of the lemma commutes
and that ũ��F : �F → �ũ(F) is surjective. By Property 3 of Lemma 5.1, we also see that
ũ��F is injective. �

As we might have expected, if F has no strict symmetry, then the corresponding posi-
tional frame GF defined in Theorem 4.1 is neutral with respect to �F .

THEOREM 6.2. Let F = 〈S, O, α, �〉 ∈ V[S, O] be a directional frame without strict
symmetry, and let GF = 〈S, O, P, �〉 be defined by:

P = {p : �F → α | ∀π ∈ Perm(α) (p(π(F)) = π(p(F)))},
�( f ) = �( f ◦ μ) with μ such that ∀i ∈ α (μ(i)(F) = i).

Then, GF is neutral with respect to �F .

Proof. Let u : S ∪ O → S ∪ O be a bijection such that ũ(�F ) = �F . We show that
ũ(P) = P and that ũ(�) = �.

With the use of Lemmas 5.1 and 6.1, it is easy to see that:

ũ(P) = {p : ũ(�F ) → α | ∀π ∈ Perm(α) (p(π(ũ(F))) = π(p(ũ(F))))}.
Because �F = ũ(�F ) and because, by Theorem 4.1, GF = Gũ(F), it follows that
ũ(P) = P . Furthermore, by Lemma 5.1,

(ũ(�))(ũ( f )) = (ũ(�))((ũ( f )) ◦ ũ(μ)),

with ũ(μ) such that ∀i ∈ α ((ũ(μ))(i)(ũ(F)) = i).
Because ũ(P) = P and because GF = Gũ(F), it also follows that ũ(�) = �. �
For the next results, we need the notion of permutation-based frames.
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DEFINITION 6.3. Let F = 〈S, O, α, �〉 be a directional frame. We define the permutation
group of F as:

PermF = {π ∈ αα | π is a bijection & ∀ f ∈ Oα (�( f ◦ π) = �( f ))}.
We call F a permutation-based frame if for every f, f ′ ∈ αα ,

�( f ′) = �( f ) ⇒ f ′ = f ◦ π for some π ∈ PermF .

Every directional frameF with complete strict symmetry has a corresponding positional
frame that is neutral with respect to �F .

EXAMPLE 6.4. Let F = 〈S, O, α, �〉 ∈ V[S, O] be a directional frame with complete
strict symmetry, that is, PermF = Perm(α). Then obviously, 〈S, O, α, �〉 considered as a
positional frame is neutral with respect �F since F is the only frame in �F .

Also for certain cyclic frames, we have a positive result.

EXAMPLE 6.5. Let F = 〈S, O, 4, �〉 ∈ V[S] be a permutation-based frame with permu-
tation group PermF generated by:

π0 =
(

0 1 2 3

3 0 1 2

)
.

Let π1 =
(

0 1 2 3

3 2 1 0

)
. Define GF = 〈S, O, P, �〉 with:

P = {p : {F, π1(F)} → {0, 1, 2, 3} | p(π1(F)) = π1(p(F))},
�( f ) = �( f ◦ μ) with μ such that ∀i ∈ α (μ(i)(F) = i).

Then, GF corresponds to F and is neutral with respect to �F .
To see this, first note that by Lemma 6.1, if u : S → S is a bijection such that ũ(�F ) =

�F , then ũ(F) = F or ũ(F) = π1(F). It follows by an analysis similar to the one in
Theorem 6.2 that ũ(P) = P and ũ(�) = �.

In Section 4, we saw how to create a neutral positional frame for the love relation.
But now consider relation � in which �abcd represents the state of a’s loving b and c’s
loving d. Let F ∈ V[S, O] be a directional frame for this relation, and let G ∈ V[S, O]
be a corresponding positional frame. We claim that G cannot be neutral with respect to the
permutation class �F . We sketch a proof in the next example. Then, in Theorem 6.7, we
prove a generalization of the claim.

EXAMPLE 6.6. Let F = 〈S, O, α, �〉 ∈ V[S, O] be a directional frame with for any
a, b, c, d ∈ O, (

0 1 2 3
a b c d

)
��−→ a −→♥ b & c −→♥ d.

Let G = 〈S, O, P, �〉 ∈ V[S, O] be a corresponding positional frame with P = {p0, p1,
p2, p3}, and (

p0 p1 p2 p3
a b c d

)
��−→ a −→♥ b & c −→♥ d.

Let u : S ∪ O → S ∪ O be such that,

u(a −→♥ b & c −→♥ d) = b −→♥ c & d −→♥ a,
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and u�O = idO. Obviously, u ◦ u = idS∪O, and so, by Lemma 5.1, ũ ◦ ũ = idV[S,O].
Furthermore, it is not difficult to see that ũ(�F ) = �F .

Now suppose G is neutral with respect to �F . Then,(
ũ(p0) ũ(p1) ũ(p2) ũ(p3)

a b c d

)
��−→ b −→♥ c & d −→♥ a.

Thus,

ũ(p0, p1, p2, p3) = (p1, p2, p3, p0) or ũ(p0, p1, p2, p3) = (p3, p0, p1, p2).

But then, ũ�P ◦ ũ�P = idP , contradicting ũ ◦ ũ = idV[S,O]. Therefore, G cannot be neutral
with respect to �F .

How should we interpret this example? It surely does not say that it is impossible to find
a natural positional frame for the disjoint conjunction of two love relations. A quite natural
positional frame for it is the frame with positions Lover1, Beloved1, Lover2, and Beloved2.
Interestingly, this frame is neutral with respect to the permutation class of F if F would
have been defined in V[S0, O], with S0 being the states of the ordinary love relation, and
the conjunction of states s1 and s2 would have been modeled as {s1, s2}.

In the example, we could depict each state as four objects equally spaced on a circle such
that rotating them by 180◦ always gives the same state, but rotating them by 90◦ gives a
different state when the objects are not all the same. In the next theorem, we prove that any
positional frame F ∈ V[S, O] with this property and S, O disjoint has no corresponding
positional frame that is neutral with respect to the permutation class of F . We use this
theorem to argue that it is very unlikely that for any ‘real’ relation, we can always make a
neutral choice for a corresponding positional frame.

THEOREM 6.7. Let F = 〈S, O, 4, �〉 ∈ V[S, O] be a permutation-based frame with
S ∩ O = ∅ and permutation group PermF generated by:

π0 =
(

0 1 2 3

2 3 0 1

)
.

Then, no corresponding positional frame is neutral with respect to �F .

Proof. Let π1 =
(

0 1 2 3
3 0 1 2

)
. Define u : S ∪ O → S ∪ O by:

u(x) =
{

�( f ◦ π1) if x = �( f ),

x otherwise.

We show that:

1. u is a well-defined bijective function with u ◦ u = idS∪O .

2. ũ(�F ) = �F .

3. ũ(G) = G for any positional frame G corresponding to F .

1. Suppose �( f ′) = �( f ). Then, because F is permutation based, f ′ = f or f ′ =
f ◦ π0. Assume f ′ = f ◦ π0. Then, f ′ ◦ π1 = f ◦ π1 ◦ π0 because π0 = π1 ◦ π1. So,
�( f ′ ◦ π1) = �( f ◦ π1) because π0 ∈ PermF . It follows that u is well defined. Because
(u ◦ u)(�( f )) = �( f ◦ π1 ◦ π1) = �( f ◦ π0) = �( f ), we see that u ◦ u = idS∪O . So, u is
bijective and, by Lemma 5.1, ũ ◦ ũ = idV[S,O].
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2. Because S ∩ O = ∅, we have u�O = idO . Thus, ũ(F) = π1(F), and so, because
�F = �π1(F), we have by Lemma 6.1, ũ(�F ) = �F .

3. Let G = 〈S, O, P, �〉 be a positional frame corresponding to F . Say G = μ0(F)
with:

μ0 =
(

0 1 2 3

p0 p1 p2 p3

)
.

Now suppose ũ(G) = G. Then, because ũ(P) = P , for any f ∈ O P and any p ∈ P ,

f (ũ(p)) = ( f ◦ ũ�P)(p)

= ũ(( f ◦ ũ�P)(p)) because u�O = idO

= (ũ( f ◦ ũ�P))(ũ(p)) by Lemma 5.1, Property 5.

So, f = ũ( f ◦ ũ�P). Therefore,

�( f ) = (ũ(�))( f ) because ũ(�) = �

= (ũ(�))(ũ( f ◦ ũ�P))

= ũ(�( f ◦ ũ�P)) by Lemma 5.1, Property 5.

Because �( f ) = �( f ◦ μ0) and ũ(�( f )) = u(�( f )) = �( f ◦ π1), we get:

�( f ◦ μ0) = �( f ◦ ũ�P ◦ μ0 ◦ π1).

Because PermF is generated by π0, we have |O| ≥ 2, and so, because F is permutation
based, μ0 = ũ�P ◦ μ0 ◦ π1 or μ0 = ũ�P ◦ μ0 ◦ π1 ◦ π0. It follows that:

ũ�P =
(

p0 p1 p2 p3

p1 p2 p3 p0

)
or ũ�P =

(
p0 p1 p2 p3

p3 p0 p1 p2

)
.

But this contradicts that u ◦ u = idS∪O . So, ũ(G) = G. �
Note that for any O with at least two objects, a frame can be defined that fulfills the

conditions of the theorem. Also note that if F would be in V[S] and O ∈ V, then we would
get a similar result as in the theorem.

What conclusions can we draw from this theorem? Does it follow that some ‘real’
relations do not have a positional frame that is neutral with respect to the permutation
class of any reasonable frame for it? Unfortunately, we have not found an example of an
atomic ‘real’ relation that could be modeled by frame F of the theorem. So, let us look at
molecular relations.

Suppose we have two binary relations �1 and �2. Let � be the quaternary relation, with
�abcd being the state of

�1ab & �2bc & �1cd & �2da.

Then, depending on properties of �1 and �2, the relation � may have a frame F as in
Theorem 6.7. It may even be the case that if F is defined in V[S1, S2, O], with S1 being
the states of �1 and S2 being the states of �2, then there is no corresponding positional
frame that is neutral with respect to �F . This is, for example, the case when �1ab is the
state of a′s loving b and �2ab the state of a′s hating b. Examples like this put us more or
less in a similar position as Buridan’s ass. Like the ass cannot choose between two piles
of hay, we seem to be unable to make a deliberate choice of sets for the positions of the
relation �.
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7. Neutrality w.r.t. substitution frames. In the previous section, we started with
permutation classes of biased frames to create positional frames that are neutral with
respect to these classes. But it is not clear that such a class of biased frames itself always
gives an unbiased account of the underlying relation. It may be better to start instead with
more primitive means, like substitution frames. We investigate that in this section.

We restrict our discussion to simple substitution frames.

DEFINITION 7.1. Let F = 〈S, O, �〉 be a substitution frame. We call F a simple substi-
tution frame if there is a state s0 such that

S = {s0 · δ | δ : O → O}.
We call s0 an initial state.

In Leo (2008), we defined the notion of a simple relation in terms of metaphysical
principles satisfied by the relation. In this article, we use the term in a more loose sense by
calling a relation simple if it can adequately be modeled by a simple substitution frame.
Furthermore, we say that a simple relation has a neutral positional frame if the positional
frame corresponds to a substitution frame for the relation, and it is neutral with respect to
this substitution frame.

In Leo (2008), we proved the following theorem about the relationship between substi-
tution and positional frames.

THEOREM 7.2. A substitution frame F corresponds to some positional frame G of the
same degree iff F is a simple substitution frame.

Furthermore, if degreeF is finite, then G is unique, modulo positional variants.

In the proof of the theorem, we constructed G as follows:

1. Choose an initial state s0 ∈ S.

2. Choose an object-domain A of s0 with |A| = degreeF (s0).

3. Define P = A.

4. Let f be an arbitrary element of O P . Let f + extend f to O → O .
Define �( f ) = s0 ·F f +.

Obviously, we may get in this way many positional frames that are each not neutral with
respect to F .

DEFINITION 7.3. Let F = 〈S, O, �〉 be a substitution frame of finite degree. We say that
F has strict symmetry if there is a state s ∈ S and a δ = idOb(s) such that s · δ = s.

For any substitution frame of finite degree without strict symmetry, we can construct a
corresponding positional frame that is neutral with respect to it:

EXAMPLE 7.4. Let F = 〈S, O, �〉 ∈ V[S, O] be a simple substitution frame of
finite degree without strict symmetry. Let S0 be the set of initial states of F . Define G =
〈S, O, P, �〉 with:

P = {p : S0 → O | ∀s ∈ S0 (p(s) ∈ Ob(s) &
∀ bijection π : O → O (p(s ·F π) = π(p(s))))},

�( f ) = s0 · δ with s0 ∈ S0 and ∀p ∈ P (δ(p(s0)) = f (p)).

It is not difficult to show that G is neutral with respect to F .

As an aside, we note that the positions defined in the example can be identified with the
roles of the substitution frame.
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DEFINITION 7.5. LetF = 〈S, O, �〉 be a simple substitution frame of finite object-degree.
Then, for any initial state s0 ∈ S and a0 ∈ Ob(s0), we define the role of a0 in s0 as:

Role(s0, a0) = {(s, a) | ∃δ (s · δ = s0 & a ∈ Ob(s) & δ(a) = a0)}.

Furthermore, we define the roles of F as:

RolesF = {Role(s0, a0) | s0 ∈ S is an initial state & a0 ∈ Ob(s0)}.

The next theorem in combination with the results of the previous section shows that there is
little hope for a neutral reconstruction of argument-places in ordinary set theory for every
relation.

THEOREM 7.6. Let substitution frame F = 〈S, O, �〉 ∈ V[S, O] and directional frame
G = 〈S, O, α, �〉 be corresponding frames of the same finite degree. Then, F and �G , the
permutation class of G, are neutral with respect to each other.

Proof. An informal argument to see the correctness of this theorem is that we can con-
struct F deterministically purely based on the structure of �G and vice versa. Our formal
argument requires a few more steps.

Let u : S ∪ O → S ∪ O be a bijection such that ũ(�G) = �G . Then, there is a bijection
π : α → α such that for each f ∈ Oα , (ũ(�))( f ) = �(π · f ). Furthermore, because
F and G correspond, there is for each s ∈ S, an f such that s = �( f ). So,

ũ(s) ·ũ(F) ũ(δ) = ũ(s ·F δ) by Lemma 5.1, Property 5

= ũ(�( f ) ·F δ)

= ũ(�( f · δ)) because F and G correspond

= (ũ(�))ũ( f · δ) by Lemma 5.1, Property 5

= �(π · ũ( f · δ))

= �(π · ũ( f ) · ũ(δ)) by Lemma 5.1, Property 6

= �(π · ũ( f )) ·F ũ(δ) because F and G correspond

= ũ(�( f )) ·F ũ(δ)

= ũ(s) ·F ũ(δ).

It follows that ũ(F) = F , and thus that F is neutral with respect to �G .
Conversely, let u : S ∪ O → S ∪ O be a bijection such that ũ(F) = F . Then, for

each s ∈ S and δ ∈ O O , u(s) ·F ũ(δ) = u(s ·F δ). Let s0 be an initial state of F . Then,
u(s0) is also an initial state. Because F and G are of the same finite degree, we have for
some injection f0, s0 = �( f0), and for some injection f1, u(s0) = �( f1). So, because
im f1 = Ob(u(s0)) = ũ(Ob(s0)) = ũ(im f0), there is a bijection π : α → α such that
f1 = π · ũ( f0). Furthermore, for each f ∈ Oα , there is a δ such that f = f0 · δ. So,
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(ũ(�))(ũ( f )) = ũ(�( f )) by Lemma 5.1, Property 5

= ũ(�( f0) ·F δ) because F and G correspond

= �( f1) ·ũ(F) ũ(δ) by Lemma 5.1, Property 5

= �( f1) ·F ũ(δ) because ũ(F) = F
= �(π · ũ( f0)) ·F ũ(δ)

= �(π · ũ( f0) · ũ(δ)) because F and G correspond

= �(π · ũ( f0 · δ)) by Lemma 5.1, Property 5

= �(π · ũ( f )).

It follows that ũ(�G) = �G and thus that �G is neutral with respect to F . �
So, if the degree of the frames is finite, then it makes for a neutral reconstruction of

argument-places no real difference whether we start with a substitution frame or with a
permutation class of a corresponding directional frame of the same degree. But what if the
degrees are infinite?

In the first part of the proof of the theorem, we did not use any restriction on the degrees
of the frames. So, if F and G correspond, then F is always neutral with respect to the
permutation class of G. Interestingly, we need the restriction for the converse.

EXAMPLE 7.7. Let F1 = 〈S1, O, �1〉 with O = ω, the set of natural numbers,
S1 = {s : ω → (ω ∪ {∞}) | ∃i (s(i) = ∞)}, and �1 defined by:

(s ·F1 δ)(i) =
∑

δ( j)=i

s( j),

with i + ∞ = ∞ + i = ∞ + ∞ = ∞.
Let

s0 = [0∞, 1, 2, 3, . . .], that is, s0(0) = ∞, and for i ≥ 1, s0(i) = 1;

s′
0 = [0∞, 1∞, 2, 3, . . .], that is, s′

0(0) = s′
0(1) = ∞, and for i ≥ 2, s′

0(i) = 1.

Define

G1 = 〈S1, O, ω, �1〉 with �1( f ) = s0 ·F1 f ;

G′
1 = 〈S1, O, ω, �′

1〉 with �′
1( f ) = s′

0 ·F1 f .

In Leo (2008), we showed that G1 and G′
1 correspond to F1 and that G1 and G′

1 are not
permutations of each other.

Now define F = 〈S, O, �〉 with S = S1 × S1, and

(s, s′) ·F δ = (s ·F1 δ, s′ ·F1 δ).

Furthermore, define G = 〈S, O, ω + ω,�〉 with:

�( f ) = (�1( f1), �
′
1( f ′

1)) with f1(α) = f (α) and f ′
1(α) = f (ω + α).

Obviously, F is a substitution frame and G is a corresponding directional frame. Now
conceive F and G as elements of V[S]. Define u : S → S with u(s, s′) = (s′, s). It is not
difficult to verify that ũ(F) = F , but ũ(�G) = �G .
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From Theorems 6.7 and 7.6, and the fact that every simple substitution frame has a
corresponding positional frame, it follows the following.

COROLLARY 7.8. Not every simple substitution frame has a corresponding positional
frame that is neutral with respect to it.

Note that by Theorem 6.7, the corollary already applies to frames of degree 4.

8. Alternative constructions. What do the results in the previous sections tell us?
Does it follow from the fact that for certain relations, positions cannot be modeled in a
neutral way as sets that these relations cannot have argument-places as derived entities?

I think such a conclusion would be too hasty. First of all, we should ask ourselves if
we did not perhaps use too limited a notion of neutrality. Maybe we could well-order
the objects or states of a relation and exploit this to deterministically construct or select
a positional frame for it. The next example shows that for a given well-ordering of the
objects, such a selection can be made for simple relations of finite degree.

EXAMPLE 8.1. Let F = 〈S, O, α, �〉 be a frame of finite degree for a given relation. Sup-
pose we are given a well-ordering < of the objects O. Then, this induces a lexicographical
ordering < of Oα . Because α is finite, this ordering of Oα is clearly a well-ordering. So,
for any F ′ = 〈S, O, α, �′〉 and F ′′ = 〈S, O, α, �′′〉, we may define

F ′ < F ′′ :if �′( f0) < �′′( f0) with f0 the least element of
{ f : α → O | �′( f ) = �′′( f )}.

It is easy to see that this last relation is a linear order. Because α is finite, �F is finite.
So, the permutation class �F contains a least element, which we can select as positional
frame for the relation by ignoring the order of α.

If α is infinite, then the lexicographical ordering of Oα is not always a well-ordering. So,
in that case, the construction of the previous example does not work. If O and α are both
N, the set of natural numbers, then no method for how to well-order Oα is known. Perhaps
other constructions might work to uniquely select one frame in �F . For example, if O and
S are representable in V, the cumulative hierarchy, and if V = L, with L the constructible
universe, then we can use a definable well-ordering of L to uniquely select an element of
�(F).

But how realistic is it to assume that O and S can always be well-ordered in a deter-
ministic way or that they are representable by sets in any model of ZFC, that is, Zermelo-
Fraenkel set theory (ZF) with the axiom of choice (AC)? Recall that O and S are objects
and states. We may even have no reason to assume a priori that the elements of O and S are
always all discernible. But even if we would restrict ourselves to relations with each a finite
set of discernible objects, then because of the diversity of objects, it is still questionable
whether a single method can be found to deterministically order each set O . Also, it is not
very mathematically elegant to require an extrinsic ordering of the objects. In summary,
I doubt that looking for specific orderings of the sets of objects and states of a relation is
very promising as a general solution.

There is a stronger argument why the conclusion that relations cannot have argument-
places as derived entities is too hasty. There is up front no reason why argument-places
would have to be sets in V or V[S, O]. It could be the case that ordinary set theory as a
modeling medium is too limited. Other modeling media might be more adequate for some
relations. We could, for example, model the quaternary relation � at the end of Section 6.
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Fig. 1. A neutral graphical representation of argument-places.

graphically in a neutral way, as shown in Figure 1. But I doubt that for every simple relation
of finite degree, a nonarbitrary graphical representation is possible. For example, if we have
an atomic relation with a directional model as in Theorem 6.7, then I do not see how to label
the positions in a neutral way. There is, however, a related and more promising approach
to define argument-places in a neutral way. The approach will probably appeal to at least
the structuralists among us. We discuss it in the next section.

9. Argument-places as abstractions. Let � be a simple relation of finite degree,
and F be a substitution frame for it. As we remarked earlier and proved in Leo (2008),
a corresponding positional frame G exists, which is unique modulo positional variants.
I propose to define the argument-places of � as structureless places exemplified by the
positions of G (Figure 2).

This approach gives us argument-places as entities of a structure obtained by abstraction.
I have no strong opinion about the question whether we should take them literally as
genuine objects or that we should regard talk of argument-places as abstractions, as nothing
but a convenient way of saying something about the underlying positional frames. I regard
this issue as part of a much more comprehensive ontological debate that I want to avoid
here (see, e.g., Parsons, 2004; Shapiro, 1997).

Consider the adjacency relation. With the view of argument-places as abstractions, the
two argument-places for this relation fulfill exactly the same role. Since the argument-
places have no internal structure, the two argument-places are completely indiscernible
from each other. More generally, the argument-places of a relation fulfilling the same role
are indiscernible. For simple relations of finite degree, the concept of roles as we use it
here matches with the roles as defined in Section 7.

Fine (2000, p. 17) gave the following objection against the positionalist view that a
relation has argument-places. On this view, the adjacency relation has two argument-
places, say Next and Nixt. Assigning a to Next and b to Nixt will intuitively give the same
state as assigning a to Nixt and b to Next. Yet, they must be distinct since the argument-
places occupied by a and b are distinct. As a consequence, strictly symmetric relations
cannot have argument-places.

In Leo (2008, p. 358), I countered Fine’s objection by arguing that we could also assume
that assigning objects to argument-places yields states and that I see no reason to assume
that objects occupy argument-places within the states. I think the view of argument-places
as abstractions gives us additional ammunition against Fine’s objection since if the argu-
ments would occupy argument-places, then switching arguments would not give a distinct
state if the argument-places are indiscernible.
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Fig. 2. Construction of abstract argument-places.

Nevertheless, we should not conclude that on the view of argument-places as abstrac-
tions for any relation, the arguments may occupy argument-places in the states. For con-
sider the relation � with �abc being the state of a’s loving b and b’s loving c. Then, the
relation has three discernible argument-places, say p0, p1, and p2. If assigning a to p0, b
to p1, and a to p2 gives the state of a’s loving b and b’s loving a, then we get the same
state if we assign b to p0, a to p1, and b to p2. Since in the first case, a is assigned to
two argument-places, and in the second case to only one argument-place, it is obviously
impossible for the arguments to occupy the argument-places.

On the view of argument-places as abstractions, the internal structure of positions of a
positional model is not particularly interesting since on this view, argument-places have by
definition no internal structure. The main value that a specific positional model may have
from this perspective is that in some cases, it gives a nice or canonical representation for
the argument-places of a relation.

We should not, in general, regard the positions of a positional frame as names for the
argument-places as abstractions. They could only be names if each would uniquely refer
to an entity, but this is impossible if the argument-places are indiscernible. What we can
do, however, is regard the positions of a positional frame collectively as a representation
of the abstracted argument-places.

The indiscernibility of argument-places as abstractions might be a problem in the fol-
lowing respect: how can we assign different objects to them when they are indiscernible?
For a relation with complete strict symmetry, it might be enough just to say which objects
are to be assigned to the argument-places, but for cyclical relations, somehow an order has
to be specified. A solution might be to use a representative positional frame: first, we assign
objects to its positions, and then, we abstract to get the required assignment.

The construction of argument-places as abstractions is not applicable for every sub-
stitution frame. Some substitution frames of infinite degree have corresponding posi-
tional frames that are at first sight equally natural but that are nevertheless not positional
variants of each other (e.g., F1 in Example 7.7). Consequently, for relations with such
substitution frames, a construction of argument-places as abstractions seems impossible.
Maybe we should not interpret this as a weakness of the construction but rather as a
peculiarity of certain exotic relations (if they exist) that they do not have argument-
places.
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In Shapiro (1997), a theory of structures is sketched, and in Fine (2002), a framework
for a general theory of abstraction is given. It would be interesting to investigate whether
argument-places as abstractions fit into these theories.

With argument-places as abstractions, we obviously take a step outside the realm of
ordinary set theory. However, we may define them in an extension of ZF along the lines
sketched in Fine (1998). By taking as urelements not only the states in S and the objects
in O but also what Fine calls variable objects, positions could be defined as a system of
variable objects.

10. Conclusions. We started our analysis with the presupposition that argument-places
are not primitive entities. I think that argument-places are indeed not primitive since we
can give a position-free account of relations based on the notion of substitution, which I
regard as more primitive than the notion of argument-places. But to vindicate a position-
free account, either a satisfactory construction of argument-places is needed or an argument
why the notion of argument-places is problematic.

For a (re)construction of argument-places, we made use of mathematical models for
relations. Using a new formal notion of neutrality, we showed that every simple relation
without strict symmetry and some other simple relations, like those with complete strict
symmetry, have neutral positional frames. But we also showed that it is impossible to
construct for every simple relation, even if its degree is finite, a neutral positional frame.
As a consequence, it is highly unlikely that for every relation, argument-places can be
defined in a canonical way in ordinary set theory.

I consider the positive and the negative results about the existence of neutral positional
frames to be primarily of interest from a representational perspective. I do not immediately
see what conclusions we should draw about the ontological character of the argument-
places for relations that do have a natural and neutral positional frame. Also, with inter-
preting the negative results, we should be careful. I certainly do not want to conclude from
them that the identity of argument-places is problematic. But the negative results do show
that for a neutral construction of argument-places of certain relations, we have to go beyond
the limits of ordinary set theory.

We showed that for the class of simple relations of finite degree, a unique construction
of argument-places as places in a structure exemplified by positional frames is possi-
ble. I personally find this view of argument-places as abstractions very natural. However,
I do not know whether we should consider argument-places as genuine objects or that we
should only talk about them as such. Regarding them as genuine objects is obviously in
conflict with Leibniz’s Principle of the Identity of Indiscernibles. Since we are dealing
with constructed entities, I do not expect that a further analysis of argument-places will
itself provide a ground for giving up Leibniz’s Principle. We can probably paraphrase all
references to argument-places as objects in terms of references to positions of positional
frames. But if Leibniz’s Principle is denied for whatever reason, then perhaps the assign-
ment of an ontological status to argument-places may be just a matter of choice motivated
by what appears to us as the most convenient perspective.

One may question whether the results obtained have any metaphysical significance, for
we did not discuss any new metaphysical principles, nor did we reveal any relationship
between ontologically fundamental entities. However, by giving a clarification and justi-
fication of the notion of argument-places, we contributed in an indirect way to forming
and elaborating ideas about the essence of relations. Our ordinary way of using argument-
places apparently is pretty much in agreement with treating argument-places as abstractions.
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I consider this not only to be support for common sense but also to be confirmation of the
antipositionalist view on relations. As such, the results do have metaphysical significance.
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