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Abstract

An accurate turbulent mixing model for gravitationally induced instabilities with arbitrarily variable accelerations
has been developed to capture the following physical aspects:~1! directed transport,~2! correct buoyancy forces,
~3! turbulence diffusion, and~4! geometrical aspects. We present the two-structure two-fluid two-turbulence concept
~2SFK!, which consistently answers these requirements by identifying the large-scale transport structures in a statistical
approach. An example of a 2SFK-based model is given and applied to the Rayleigh–Taylor case.

Keywords: Mixing instabilities; Rayleigh–Taylor; Richtmyer–Meshkov; Self-similar flows; Turbulence modeling;
Two-fluid flows

1. INTRODUCTION

Turbulent mixing in Rayleigh–Taylor~RT! and Richtmyer–
Meshkov~RM! instabilities has so far been modeled within
two main different Reynolds-averaged Navier–Stokes
~RANS!-based frameworks, which can be broadly desig-
nated by single and two-fluid approaches. Fluids transport
is described in the former by a mass~or Favre! average
velocity,ru0r, and a concentration flux,cmru ~.: ensemble
average,r: density, u: velocity, cm: mass fraction of
fluid m!, whereas in the latter the velocities of each fluid,
cmru0cmr, are used. Although formally equivalent, some
approaches implicitly bias the subsequent closure assump-
tions, leading sometimes to different, unreliable, or even
unphysical model results in practical situations~Llor, 2003!.

This situation has motivated the reassessment of the basic
physical phenomena that are to be captured, and to design a
new modeling approach to meet these requirements. Follow-
ing the recent analysis of the RT and RM cases by Dimonte
~2000!, and of the self-similar variable acceleration RT flows
~SSVARTs! by Llor ~2002!, we have considered it crucial to
capture the following physical aspects by using the corre-
sponding model features:~1! the directed transport by a
two-fluid approach,~2! the correct buoyancy force by in-
cluding mass transfer between fluids,~3! the turbulence

diffusion by including most of the standardk–« features, and
~4! the geometrical aspects by consistent closures of the
length scales.

Our strategy here is to combine and to adapt as much as
possible the relevant features from simple and efficient ex-
isting models, such as thek–« model~Hanjalic & Launder,
1972! for the turbulence dynamics, the two-fluid model of
Youngs~1989! to match the directed transport that is dom-
inant in RT and SSVARTs cases, and the mass exchange
model of Youngs~1995! to generate appropriate buoyancy
forces.

The model of Youngs~1995! meets most of the four con-
ditions above and was used as a starting point for this study.
Although it seems to be reasonably accurate and robust
~Llor, 2002!, it carries some clearly identified problems as
detailed in Bailly & Llor ~2002!, among which the most
important stands in the characteristic length scale,l, and its
phenomenological equation: It is not RANS based and over-
estimates the effective Knudsen numbera of the turbulent
transportkT ~defined as the ratio between the turbulent in-
tegral length scale and the thickness of the turbulent mixing
zone ~TMZ !! by a factor of 6.5 in the Rayleigh–Taylor
instability, independently of acceleration history~Llor, 2002!.

To consistently address these difficulties, it is necessary
to answer to following questions: what are the transported0
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transporting structures in the TMZ, and what mechanisms
control the size~and thus the drag! of the structures? We
introduce here a general concept, called two-structure two-
fluid two-turbulent~2SFK!,b which provides these answers
within a RANS-based framework. It thus permits calibra-
tions on measured correlations and avoids phenomenologi-
cal length equations.

The key features of a 2SFK-based model are given in
Section 3 and preliminary numerical results are given in
Section 4 to illustrate the relevance of the 2SFK concept
~see Bailly and Llor, 2002, for more details!.

2. THE 2SFK CONCEPT

Foremost to any modeling approach is the definition of
transport structuresassociated with the motion of fluids at
large scalesacross the TMZ. According to authors’ prefer-
ences and emphasis on different phenomena, these can be
designated and treated as bubbles, turbulent eddies, ther-
mals, plumes, and so forth.

Here, we shall combine the basic aspects of turbulence
and directed transport by assuming that their respective struc-
tures, namely large eddies and bubbles, actually describe
identicalfluid structures. This transport structure concept is
central to the 2SFK modeling approach, and is experimen-
tally and numerically supported by the observed identity of
bubble sizes and integral length scales~Dalzielet al., 1999;
Dimonte & Schneider, 2000!. Intuitively, it means that sep-
aration of fluids inside bubbles is marginal because of the
high turbulence level they contain and of the large drag of
smaller structures.

The 2SFK concept is illustrated in Figure 1. The bound-
aries between upward and downward moving structures fol-
low the turbulence field contrast, butnot the distribution of

the fluids. Mass transfer between structures is induced by
turbulent diffusion, resulting in a nonuniform composition
of the transport structures across the TMZ. The growth of
the structures is controlled by the dynamics of turbulence
and their motion by the buoyancy–drag balance as dis-
cussed by Dimonte~2000!. A statistical model should then
contain the following three basic elements:~1! two veloci-
ties to capture directed transport,~2! mass exchange to
capture appropriate densities and buoyancy, and~3! two
turbulence fields to define structures and capture their
evolution.

The 2SFK approach can be readily adapted to a RANS-
based model derivation. Let the structures, labeled1and2,
be defined by the presence functionsb6 ~5 0 or 1!. In the
initial state, the fluids are separated andc1 5 b2 andc2 5
b1. The evolution of the structures is defined by a velocityw
according to

]t b
6 1 wj b, j

6 5 0. ~1!

A generic quantitya evolves as]t~ ra! 1 ~ rauj !, j 5 s 2
~uj !, j wherea stands forc1,2 or the velocityu, s is the source
term, andu is the flux. The statistical RANS method con-
sists here in the ensemble conditional averaging byb6,
leading to

]t ~a
6r6A6! 1 ~a6r6A6Uj

6!, j

5 S6 2 ~Qj
6!, j 2 ~Fj

6!, j 7 XA 7 CA, ~2!

where the following structure characteristic quantities are
thus defined:a6 5 b6 volume fractions,r6 5 b6r0a6

densities,U 6 5 b6ru0~a6r6! mean velocities,u6 5 u 2
U 6 velocity fluctuations, andA6 5 b6ra0~a6r6!
other mean quantities. Fluxes, turbulent fluxes, and source
terms per structure are respectivelyQ6 5 b6u, F6 5
b6rau60~a6r6!, and S6 5 b6s. Finally, fluxes and ex-
changes between structures areXA 5 ~¹b6!{u6 andCA 5
ra~¹b6!{~w 2 u! ~for a 5 u, XA contains buoyancy and
drag!.

An important feature here is that turbulent kinetic
energies of structures are defined asK 6 5 0.5 3
b6ru6{u60b6r. Although it is not completely micro-
scopically defined,b6 can always be made to follow the
large-scale contrast of velocity fluctuations. Therefore, the
doubleK 6 description is able to capture the intermittency
between laminar and turbulent zones at the edge of the
TMZ.

3. THE 2SFK MODEL

Introducing the generalized derivative DA6 5 ]t A
6 1

~A6Uj
6!, j and assuming single pressure, the 2SFK incom-

pressible model is derived from Eq.~2!:bPreviously called TTT in Bailly and Llor~2002!.

Fig. 1. Schematic representation of the 2SFK TMZ; dashed line: structure
boundary; gray shading: fluid mass fraction levels.
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Dt
6~a6r6Cm6! 5 2Fj, j

m6 7 Cm

Dt
6~a6r6Ui

6! 5 2a6P, i 1 a6r6gi 2 Rij , j
6

7 Di 7 Mi 7 Xi
U 7 Ci

U, ~3!

where Cm6 is the averaged mass fraction of fluidm in
structure6, P is the mean pressure,g is the acceleration
field, R 6 are the Reynolds stresses,D andM are the drag
and the added mass forces respectively,X U is the turbulent
buoyancy force, andCU is the momentum exchange term.
The dissipative terms in the momentum equation lead to
production terms ofK 6: ~1! shear of structuresP6, ~2! drag
work Pd, and~3! loss ofKD by mass exchangePC. TheK 6

dissipation rates,«6, are modeled assuming that general
principles of the usualk–« model ~Hanjalic & Launder,
1972! hold. This is indeed appropriate because structures, as
defined byb6, do match the large-scale turbulent motions.
Spectral quasi-equilibrium is also assumed inside struc-
tures. Thus, production and dissipation terms of«6 equa-
tions are mirrored from theK 6 equations withC«1 andC«2

constants, so, Eqs.~3! are completed with:

Dt
6~a6r6K 6! 5 P6 1 j6Pd 1 x6PC 2 a6r6«6 2 Fj, j

K6 7 CK

Dt
6~a6r6«6! 5 C«1

«6

K 6
~P6 1 j6Pd 1 x6PC !

2 C«2a6r6
~«6!2

K 6
2 Fj, j

«6 7 C«. ~4!

The unknown terms that appear in Eqs.~3! and~4! have to
be closed. The simplest are deduced from classical single-
fluid approaches, such as gradient laws for turbulent fluxes,
closure relations for Reynolds stresses, turbulent viscosi-
ties, turbulent integral ratess6 5 «60K 6, and turbulent
integral length scalesl6 5 ~K 6!3020«6, and will not be
discussed here. Eqs.~4! reduce to the usualk–« equations in
the pure structure limits, enabling application to shear layers
such as the Kelvin–Helmholtz~KH ! case.

The exchange process results from two simultaneous phys-
ical phenomena: turbulent diffusion and evolution of struc-
ture boundaries because laminar structures are absorbed
progressively by turbulent ones. Extending the approach of
Youngs ~1995! and according to Figure 2, the exchange
terms are proportional to an approximate interface density
a1a2 and the volume fractions per unit time affected by
growth are proportional tos6. The mixing layer thus de-
fined is assumed to be homogeneous and the turbulent flux
due to mass exchange is proportional tos1 2 s2. There-
fore, we write for the quantityA6 51,Cm6, U 6, K 6, or«6:

CA 5 Cc a1a2~j2s2r1A1 2 j1s1r2A2!, ~5!

wherej65s60~s11s2!. The constantCc is close to 1, in
order to match the dissipation rate of density fluctuations in

homogeneous isotropic turbulence~Mantel, l993!, and is
independent ofA6 to ensure Galilean and thermodynamic
invariance. The dissipation ofKD by momentum exchange
results in the total production ofK 6 as

Pc 5 FCU 2 C
~U 1 1 U 2!

2
G{dU

5 Cc a1a2~j2s2r1 1 j1s1r2!
dU{dU

2
, ~6!

which is distributed on structures according to thej6 and
with dU 5 U 1 2 U 2.

The analogy with thePc term suggests to close the drag
force as

D 5 Cd a1a2~s1r1 1 s2r2!~dU 2 W!, ~7!

whereCd is the drag constant. This is a Stokes-like closure,
because the structure turbulent Reynolds number is about
1.7. Moreover, it assumes that shear due todU is evenly
spread on structures, where the structure viscosities induce
dissipation. The total production ofK 6 by D is

Pd 5 D{dU ~8!

and spread on structures according tox65s6r60~s1r11
s2r2!. The dispersion drift velocity is given by:

W 5 2DWS¹~a1r1!

a1r1
2

¹~a2r2!

a2r2 D, ~9!

with the diffusion coefficientDW proportional todU{dU.

Fig. 2. Schematic representation of inter-structure mass transfer and struc-
ture growth.
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4. RELEVANCE OF THE 2SFK APPROACH:
NUMERICAL RESULTS

Some important features of the 2SFK concept are illustrated
by the following one-dimensional~1D! self-similar RT flows
atAt5 0.2. Calculations were carried out using a simple 1D
all-purpose test code~for more details, see Bailly and Llor,
2002, and Cournède, 2001! on a mesh of 100 equal cells
spanning the@0,1# interval. Cells 1 to 49 and 52 to 100 were
initialized with pure, at rest, and laminar, light and heavy
fluids respectively. To mimic the expected self-similar RT
parameters at the initial state, cells 50 and 51 were mixed
and turbulent so that:~1! the turbulent energy was half of the
gravitational energy loss~with respect to pure cells! and~2!
the integral length scales were one-fifth of the cell size. The
final observed self-similar behaviors did not depend signif-
icantly on the details of the initial condition.

The effect of mass transfer between structures is shown in
Figure 3, where the profiles ofa6 are not linear in contrast
with the profiles of the fluid volume fractions, as experimen-
tally observed by Dimonte and Schneider~2000!. Indeed a
fraction of the laminar structure is absorbed by the turbulent
structure along the relative motion.

Structure turbulent kinetic energy profiles, plotted versus
position in Figure 4, show clearly that the laminar pure
structures become turbulent when progressing across TMZ.
The large-scale intermittency between laminar and turbu-
lent zones at the edges of the TMZ is captured.

The~single fluid! velocity fluctuations are here due to the
superposition of the almost anisotropic Reynolds stress ten-
sors per structure and to the purely axial directed energy
KD 5 0.53 a1r1a2r2dU{dU0~a1r1 1 a2r2!. As shown
in Figure 5, the profiles ofK 5a1r1K11a2r2K2 andKD

are very close, yielding a 4:1 ratio between longitudinal and
transverse components of the overall Reynolds stress tensor.

This is in reasonable agreement with the 3:1 available esti-
mate of Youngs~1994!. Previous estimates~Llor, 2002! of
the directed energy were based on atwo–fluidanalysisKD

f 5
0.5 3 a1r1a2r2~U 2 2 U 1!{~U 2 2 U 1!0~a1r1 1 a2r2!
that can be reconstructed from the 2SFK variables. As given
in Figure 5, the ratio ofKD

f toK f 5K1KD 2KD
f is about 1:3,

showing the importance of mass exchange and fluid entrain-
ment in the longitudinal transport.

The 2SFK constantsCd and Cc have been adjusted to
match the growth rate of the TMZ and the molecular mixing
fraction as in Youngs~1991!. Remarkably, without any other
adjustments, the effective Knudsen number is also correctly
captured:kT 5 0.14 compared to a value of 0.09 calculated

Fig. 5. Profiles of mean turbulent kinetic and directed energies in the
RT TMZ.

Fig. 3. Profiles of structure and fluid volume fractions in the
RT TMZ.

Fig. 4. Profiles ofK 6 in the RT TMZ.
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by Llor ~2002, 2003! from previous experimental results.
This reflects the overall consistency of the dissipative pro-
cesses in the 2SFK model. The residual discrepancy may be
due to the crudeness of the closures in this first proposed
model and to experimental errors in estimatingkT.

The 2SFK model also gives appropriate results for both
SSVART and RM flows, as shown in Bailly and Llor~2002!.

5. CONCLUSIONS

The 2SFK concept based on a two-field RANS approach,
has been introduced and shown to be physically consistent
with the main known features of transport in RT-type mix-
ing layers: directed transport, buoyancy, turbulence, and
characteristic length scales. An explicit model has been de-
veloped within this framework, as described in Bailly and
Llor ~2002!. With a limited number of constants, it appro-
priately captures the growth laws of the TMZ width, the
TMZ average global energy balance, and the associated
length scales such as the effective Knudsen number.

The 2SFK model will be improved regarding the influ-
ence of Atwood number, response to KH, and the consis-
tency with simulated correlations, as currently explored by
Youngs and Llor~2002!.
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