
approach which may increase the time between inspections or may
decrease the length of an inspection will assuage this financial
burden. At present the inspection methods most commonly used by
industry fall within the area of nondestructive evaluation (NDE)(1)

which includes such techniques as ultrasonic inspection, radiog-
raphy, dye penetration and acoustic emission, among others. These
methods usually require a priori specification of an area of interest,
meaning that they work on a local scale. A large degree of expertise
is also usually required in the identification of the areas of interest
and in the interpretation of the resulting data.  It is also generally the
case that it is required that the structural areas of interest be acces-
sible. All in all, applying these inspection techniques on structures of
any great size generally results in very lengthy inspections which
may be directly translated into economic terms. 

It is against the backdrop discussed in the previous paragraph that
the highly active research field of structural health monitoring
(SHM) should be viewed. It would be very desirable to owners of
high-cost structures if reliable, robust, global and intelligent health
monitoring systems could be developed to reduce inspection times
without jeopardising safety. In general the SHM approaches to
identifying damage have concentrated upon changes to the dynamic
properties of the system. Doebling et al(2) have published an
extensive literature review of such vibration-based methods.
According to Pai and Jin(3) they can be categorised into four main
domains; namely spatial, modal, time and frequency-domain. Spatial
domain methods use changes in mass, damping and stiffness
matrices while the modal domain methods use changes in natural

ABSTRACT
This paper presents an automated optimisation procedure for the
feature selection stage of a previously proposed structural health
monitoring methodology using a genetic algorithm. The same
diagnostic is used in the attempt to progress up the levels of damage
detection to location and severity. It was validated experimentally on
a Gnat aircraft wing. An artificial neural network is used as a
classifier and the work is compared with the previous selection
strategy based on engineering judgement. 

NOMENCLATURE
Y1 (ω) Acceleration frequency spectrum recorded at the reference 

accelerometer

Y2 (ω) Acceleration frequency spectrum recorded at the non-
reference accelerometer

1.0 INTRODUCTION
The safety and economic benefits resulting from a robust damage
identification strategy are numerous. Nowadays, it is commonplace
for many civil and aerospace structures to continue to be used
beyond their intended operational life which will often result in
lengthy inspection procedures. These operations may account for a
large proportion of the cost of ownership of a structure. Any
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frequencies and mode shapes. Time domain methods examine
changes in input and output signals and finally the frequency domain
methods use changes in frequency responses functions (FRFs) or
transmissibility functions (TFs).

Although damage detection can be a very difficult problem, it is
generally considered to have a hierarchical structure, starting from
the simple detection of damage through to an estimation of the
residual life of the structure. Perhaps the most well-known such
framework is that of Rytter(4), with four levels of damage identifi-
cation; namely, Level 1 – Detection, Level 2 – Localisation, Level 3
– Assessment and Level 4 – Prognosis. A series of papers from two
of the authors has previously proposed a method for a health
monitoring system, based on novelty detection techniques, where an
attempt was made to progress up the levels of the hierarchy(5-8). The
whole idea was validated experimentally on a Gnat aircraft wing in a
body of research funded by DERA/QinetiQ.

By viewing the problem of damage identification as a one of pattern
recognition, an organising principle to progress from the acquisition of
raw data to decision making is required. It is arguable that the feature
extraction stage is the most crucial part of such an attempt. More
specifically, in the context of novelty detection, a feature would be
some set of values derived or calculated from measured (or pre-
processed) data which will distinguish between different data classes.
Again, a previous attempt to optimise this phase achieved excellent
results(9) although the optimisation phase was preceded by the
engineering judgement feature selection phase outlined in(7). The
current work aims to fully automate the feature selection process
through a genetic algorithm (GA) optimisation framework.

Genetic algorithms have been used successfully before in optimi-
sation problems such as sensor placement(10) and feature selection for
machine condition monitoring(11). The work here centres on the
feature selection stage of a previously proposed methodology aimed
at Levels 2 and 3 of the damage identification hierarchy, namely
damage location and damage severity.

The layout of the paper is as follows: the next section considers
the experimental set-up and discusses the data acquisition process.
This is then followed by sections on feature selection for the damage
location problem, the first using engineering judgement and the
second using genetic algorithms. The next two sections follow the
same approach for the damage severity problem. The paper is
completed with some discussion and conclusions.

2.0 TEST SET-UP AND DATA CAPTURE
The experimental set-up and data capture procedure was very
similar for both the damage location and the damage severity
problems. The structure under investigation was a Gnat trainer
aircraft and in particular its starboard wing as shown in Fig. 1(a).
The fact that the actual structure was not allowed to be damaged
led to the simulation of a fault as the sequential removal of
inspection panels. Clearly, removal of inspection panels will not
result in the same type of changes in the damage signals as the
changes observed when true damage is present. That said, this
approach allowed the structural health monitoring strategy to be
demonstrated and it also had the advantage that each damage
scenario was reversible and monitoring the repeatability of the
measurements was feasible. Nine panels were used for the exper-
iment and their choice was mainly based on their ease of removal
and also the range of cover sizes. 

The distribution of the inspection panels can be seen in the
schematic of Fig. 1(b). The actual panel areas are given in Table 1.
Panels P3 and P6 were deemed likely to be the most problematic as
they are by far the smallest. Each panel was fixed to the wing by a
number of screws, the number varying between 8 and 26. The screws
were secured and removed with an electric screwdriver with a
controllable torque. In the attempt to control variability in the fixing
conditions the same torque setting was used throughout the test.
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Figure 1. (a) Photograph and (b) schematic of Gnat trainer aircraft
starboard wing showing numbering of inspection panels and trans-

ducers. The panel area that was used for damage severity problem is
highlighted. 

(a)

(b)
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as the highlighted area in Fig. 1(b). In order to investigate damage
severity in the absence of permission to actually damage the aircraft,
it was decided that several copies of each of the three panels be
made and damage introduced into the copies in a controlled manner.
Each panel was reproduced four times. One of the copies was left
undamaged to act as a reference, while the other three were
subjected to three levels of damage: one eighth, one quarter and one
half of the panel area was excised (symmetrically). During the
experimental phase, data were also recorded for a complete removal
of each panel, giving four different damage states for each panel.
There are thus 12 different severity/location combinations for the
damage which were labelled D1 to D12 (D1 to D4 refer to
increasing damage in panel P7 etc.). 

In all, 34 tests were carried out – ten normal condition tests were
conducted and two tests for each of the 12 different severity/location
combinations. Each test comprised 121 measurements: 120 one-shot
transmissibility measurements followed by one 16-average transmis-
sibility. Therefore, in total 240 one-shot transmissibilities were
obtained for each damage state and 1,200 were taken for normal
condition. This was considered a large enough sample to allow a
principled statistical and neural analysis. The 16-average measure-
ments were again used to try and identify regions of the frequency
domain, which appeared to be sensitive to damage i.e. for feature
selection. For the purposes of the current work, only the damage data
D1 to D4 pertaining to damage in panel P7 was used.

The planned strategy had been to use the single-shot transmissibility
functions obtained from the network of accelerometers on the structure
to construct novelty detectors. However, due to excessive noise on
these measurements, the novelty detectors did not perform sufficiently
well. For this reason, and to have a sufficient amount of data for
training the novelty detectors and avoid neural network generalisation
problems, a bootstrapping technique was adopted to construct 120 16-
average transmissibility measurements for each transmissiblity for each
of the test conditions. The procedure was as follows:

1. For the first transmissibility (between accelerometers CR and
C1) for the first normal condition set, randomly select 16
single-shot measurements from the 120 available and construct
a 16-average measurement.

2. Repeat to give 120 16-average measurements.

3. Repeat process for the second and third transmissibilities (i.e.
between CR and C2 and between CR and C3).

4. Repeat process for all other normal and damage conditions.

3.0 FEATURE SELECTION BASED ON 
ENGINEERING JUDGEMENT – 
DAMAGE LOCATION PROBLEM

In the original damage location analysis(7), the first stage was to
establish which features could be used to individually detect damage
in the plates. The detection algorithm used was the outlier analysis
procedure described and validated in Refs 5 and 6. The main idea of
the method is that after constructing a statistical model of the normal
data, subsequent data will be tested to see if they are statistically
consistent with the normal data. Inconsistent data vectors are taken
to infer damage. More details may be found in the standard
reference(12).

A feature was a region of the given transmissibility which
separated unambiguously the normal condition data from the
damage data. It was also decided that features should be classified as
strong, fair or weak according to the following criteria:

� A strong feature is a region of the frequency range on which the
normal data and damage data appear to be structurally different.
Also, the damage data should be strongly separated compared
to the spread of the normal data. See Fig. 2(a).

The base experimental measurements were transmissibilities
across each panel as they had previously proved effective for the
problems of novelty detection(6) and the extension to damage
location(7) and damage severity(8). The panels were split into three
groups: A, B and C. Each group was allocated a centrally placed
reference accelerometer (denoted AR, BR and CR respectively in
Fig. 1b), together with three other accelerometers (A1, A2, A3 etc.).
This resulted in their being a transmissibility path between a
reference accelerometer and an associated accelerometer for each

inspection panel. Note, the transmissibility is defined as the ratio   

0, where Y1 (ω) (resp. Y2 (ω) ) is the acceleration frequency spectrum
recorded at the reference accelerometer (resp. the acceleration
frequency spectrum recorded at the other accelerometer). Although
this network of accelerometers had the potential of forming many
transmissibilities, in this study only those measured directly across
each plate were used. The accelerometers used were standard piezo-
electric accelerometers manufactured by PCB. For the damage
location problem, the removal of all nine inspection panels was
considered and measurements were recorded using all three trans-
missibility groups, A, B and C. The damage severity problem,
however, only considered panels P7, P8 and P9 and measurements
were only recorded using the group C accelerometers.

In order to obtain the transmissibility measurements, the wing was
excited using a Ling electrodynamic shaker attached directly below
panel P4 on the bottom surface of the wing. A white Gaussian
excitation was generated within the acquisition system and amplified
using a Gearing and Watson power amplifier.

All the measurements were acquired using a DIFA Scadas 24-
channel acquisition system controlled by LMS software running on a
HP workstation. In all cases 1,024 spectral lines were measured
between the frequencies 1,024 and 2,048Hz. Both real and imaginary
parts of the function were obtained, however these were converted to
magnitudes for feature selection and the phases were discarded. 

2.1 Data acquisition for damage location

In total, 25 sets of measurements were made, two sets for each
damage state (specific panel removal) and seven for the normal
condition. This was done in order to investigate variability of the
normal and damaged condition data. In all cases, each transmissi-
bility was first obtained using 16 averages (to provide a clean
reference to help with feature selection). Next, 100 measurements
were taken sequentially using only one average. Over the full
sequence of 25 configurations, this gave 700 one-shot measurements
for the normal condition and 200 for each damage condition.

2.2 Data acquisition for damage severity 

As previously mentioned, in the damage severity problem, damage
was only investigated in panels P7, P8 and P9 and measurements
were only recorded using the group C accelerometers. This is shown
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Panel

P1
P2
P3
P4
P5
P6
P7
P8
P9

Area (m2)

0·022
0·050
0·008
0·080
0·018
0·008
0·040
0·047
0·023

Table 1
Area of inspection panels

( )
( )

1

2

Y
Y

ω
ω
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� A fair feature is a region of the frequency range on which the
normal data and damage data appear to be structurally different
or the damage data are strongly separated compared to the
spread of the normal data. See Fig. 2(b).

� A weak feature is a region of the frequency range on which the
normal data and damage data are separated. See Fig. 2(c).

In total, 44 features were assessed as strong or fair. For each of
these features, a novelty detector was constructed using outlier
analysis. Each detector gave a scalar variable or novelty index which
could be tested against a threshold to indicate damage if it exceeded
it. Figure 3 shows the novelty indices over all of the damage states
from a novelty detector which was selected for its performance in
identifying the removal of P1. The horizontal dashed line is the 99%
confidence in identifying an outlier, calculated using a Monte-Carlo
approach as outlined in Ref. 5. The x-axis labels the damage state
and there are three repetitions as the data were divided into training,
validation and testing sets for the neural network training.

The ultimate purpose of the whole procedure was to produce a
damage location system. The algorithm chosen was a Multi-Layer
Perceptron (MLP) neural network(13). The idea was simply to map a
set of the novelty indices obtained from the transmissibilities to the
damage location (here, to which panel was removed). Nine novelty
indices were formed from the best nine features. Although this
selection process was informed by statistical evidence, it cannot be
called objective as the chosen features were a subset selected from a
larger feature set which were chosen based upon engineering
judgement.

The outputs from the nine novelty detectors were used for the
training of the neural network following the guidelines recom-
mended in Ref. 13. The data were, as previously mentioned, divided
equally into training, validation and testing set. The network
structure consisted of nine input nodes (one for each novelty index)
and nine output nodes (one for each damage class). The number of
hidden nodes was determined during training using a process of
cross-validation. In order to estimate the classification accuracy of
each network the one of M strategy was employed. This means that
each class was assigned a specific network output(13). By using this
strategy, if the network is presented with a test vector, the appro-
priate class is assigned after finding the highest output. With this
procedure however, the network has in a sense been tuned to both
the training and validation sets (as a part of the number of hidden
units finding process) and therefore an independent testing set was
required for proper verification of the network.

It transpired that, when the networks were trained, the one that
gave the lowest validation error had ten hidden units and gave a
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(a)

Figure 2. Examples of (a) a strong feature, (b) a fair feature and (c) a
weak feature from different transmissibility functions.

(b)

(c)

Figure 3. Outlier statistics for all damage states for the novelty
detector trained to recognise panel 1 removal.
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The mutation operator was the factor which departed most from
a conventional genetic algorithm. Since each chromosome
contained the encoded information about the three feature
parameters, namely transmissibility number, starting point and
window size, and in the initialisation integer, it was decided that
four different mutation operators should be employed. A fifth one
was added later after preliminary results showed it could be
useful. In detail, the transmissibility function number and the
window size were ‘mutated’ with a  adjustment. The same
procedure was followed for the seed. Larger mutations (subse-
quently referred to as ‘long jump’) were permitted for the starting
point was as this was an integer between 1 and 974. The fifth
mutation also acted on the starting point, but with only a slight
modification of between –10 and +10 (subsequently referred to as
‘short jump’).

The optimisation was run several times. The final GA settings
that were used were population size equal to 20, crossover proba-
bility 0·8, length, seed and transmissibility mutation probability
0·2, starting point mutation ‘long jump’ 0·1 and ‘short jump’ 0·4.
The standard MLP neural network was trained with 25 cycles. Its
structure was fixed to nine nodes in the input and output layer and
with ten hidden units, the same structure as selected in the
Engineering judgement approach. The software package that was
used to train the neural network was NETLAB(16) and not the same
in-house package as in Refs 7 and 9. The optimisation results
proved to be very encouraging for such a large optimisation
problem with a 100 generation run often returning a classification
rate of 93 to 94% on the validation set. This is still slightly lower
than the 99% found in the validation set of the combined
engineering judgement and optimisation approach used in Ref. 9,
but a lot better than 86·5 % from the engineering judgement only
approach used in(7). However, using the above GA settings and
allowing the algorithm to run for 300 generations (approximately
one hour on current PC) returned validation classifications rates
around 95 to 96%. This is mainly a result of the low number of the
neural network training cycles, which avoids overtraining. Finally,
when the Evolution Program was left running for 689 generations,
it was able to achieve a validation classification rate of 98·3%, as
shown in Fig. 4, which returned a corresponding testing set classi-
fication rate of 96·9%.

It is not a straightforward matter to assess which of the nine
features was predominantly associated with the neural network
correctly classifying a certain panel removal. The features which
were selected by the genetic algorithm to give the 98·3% validation
classification rate were examined. Normal data was compared to
data from each of the panel removals and a subjective label of
strong, fair or weak were attached to each panel removal/feature
combination, according to the criteria discussed in the previous

misclassification error of 0·155, corresponding to a training error of
0·158. The best results were obtained after 150,000 presentations of
data. The network weights were updated after each presentation, i.e.
the training epoch was one. When the best network was tested, it
gave a generalisation error of 0·135, i.e. 86·5% of the patterns were
classified correctly. As anticipated, most errors were associated with
panels 3 and 6 (the smallest), with some additional confusion
between panel 8 and 9 removals. The results were very encouraging,
but there was certainly room for improvement so a further attempt
was conducted(9). This time a genetic algorithm was used to select
the best nine features out of the total 44 pre-selected, i.e. the GA
performed a combinatorial optimisation. The best classification rate
achieved was 98 % in the testing set. In the next section, this work
will be extended to remove the engineering judgement entirely from
the feature selection process. Instead, a genetic algorithm will be
employed to choose the features from the transmissibility data.

4.0 FEATURE SELECTION USING A 
GENETIC ALGORITHM – DAMAGE 
LOCATION PROBLEM

For a more detailed analysis of genetic algorithms (GAs), the
reader is referred to Refs 14 and 15. Briefly speaking, they are
algorithms that imitate the mechanism of natural selection,
meaning that out of a random initial ‘population’ of solutions, the
‘fittest’ have a greater chance of propagating all or part of their
‘information’ to subsequent generations. Genetic operations such
as crossover and mutation are generally used to exploit good
solutions and to explore new solutions respectively. In their most
traditional form, each potential solution is encoded with binary bit-
strings. To many practitioners, the structure of the genetic
algorithm (GA) is fixed and the problem should be modified, if
necessary, to conform to this structure. It is the authors’ belief, in
agreement with Michalewicz(15), that the problem should not be
modified to fit the algorithm, but rather the genetic algorithms
themselves should be modified to suit the problem at hand, leading
to what Michalewicz terms “evolution programs”. As far as the
authors are concerned, these algorithms are simply a means to an
end, namely, seeking the optimal value of some function and may
be altered in any way which improves this process. 

In the current problem, the most suitable encoding of the problem
was to use strings of integer numbers. Each string was made up of
nine parts with each part representing one of the nine novelty
indices. Each of these parts consisted of three integer numbers: the
first integer indicated which of the 18 (9 normal and 9 reciprocal)
transmissibility functions was to be used to form the feature, the
second integer specified the starting point (between one and 974)
within the transmissibility function for the feature and the third
integer specified the feature length (either 10, 20, 30, 40 or 50 lines
represented as an integer between one and five). One final integer
was included after the 27 (9 sets of 3) feature integers which was an
integer between one and ten to control the random initialisation of
the neural network weights. Following the attempt in the previous
work(7) to simplify the feature selection process by separating the
removed panels into groups of three (see Fig. 1(b)) and selecting the
novelty indices from the relevant transmissibility functions only, the
first of the three integers (controlling the transmissibility) was
limited to 1 – 6, 7 – 12 and 13 – 18 in each group respectively.

The fitness value for each chromosome was simply the final
classification rate in the validation set after the neural network
training. In order for the potential parents to be selected, a roulette-
wheel approach was used along with single point crossover(14).
Retaining the elite chromosome was another important aspect of
the evolution program (in each generation the best chromosome
was compared to the previous best one and changed or saved
accordingly). 
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Figure 4. Fitness over number of generations in a run when the GA
was not restricted to a specified number of generations. After 689

generations the algorithm reached a 98·3% classification rate.
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For the network structure, the input layer had five nodes, one

for each novelty index, and the output layer had a single node, for

the severity value (0 indicating no damage and 1 indicating the

panel is missing). The number of hidden nodes for each case was

determined during training as for the location. Instead of the

network structure being determined based on the lowest misclassi-

fication error, it was based upon the lowest mean squared error

between the predicted damage severity and the actual damage

severity. 

The network with the lowest mean squared error on the

validation set (4·7%) had five hidden units with the best results

obtained after 120,000 presentations of data. which returned a

mean square error of 5·6% on the testing data set. The neural

network prediction is shown in Fig. 5. As can be seen, the first

repetition of the 0·75 damage case has returned severity values

close to 1·0 indicating that the network is confusing this with the

plate missing situation. It should be noted that the damage condi-

tions have been relabelled 0·25, 0·50 and 0·75 in order to spread

them out evenly. This amounts to a nonlinear transformation and

may not be the most satisfactory.

At this point, it should be mentioned that the neural network

training was conducted using an in-house package which used

gradient descent to perform the weight optimisation. To provide a

fair comparison with the features selected by genetic algorithm,

the outputs from the novelty detectors trained on the Engineering

judgement features were used as inputs to a multi-layer perceptron

neural network which optimised the network weights using the

superior scaled conjugate gradient technique. This was conducted

using the NETLAB software package(16). During this study it was

found using the logarithmic values of the novelty indices resulted

in lower network errors and so this will be repeated for the

engineering judgement features described above.

A total of ten runs were conducted with different random

initialisation seeds and the best run gave a validation set mean

square error of 1·89% and a corresponding testing set error of

1·45%. The neural network prediction for the testing set is shown

in Fig. 6. A significant improvement from Fig. 6 may be observed,

especially in the first repetition of the 0·75 damage.

In the next section, it will be seen if the results shown in Fig. 6

may be improved upon by conducting the feature selection process

using a genetic algorithm.

section. Table 2 shows which features seem to relate to which
panel removal. As may be expected, in many cases there is no
single strong feature and the neural network achieves its goal via
combinations of multiple features. That said, feature three seems to
be important in detecting the removal of panels P2, P5 and P9. 

To summarise, a genetic-algorithm approach to feature selection
has resulted in significant improvement in classification rates over
the engineering judgement approach and almost as high a classifi-
cation rate as the Engineering judgement/combinatorial optimi-
sation approach. The most important aspect of the GA approach is
the fact that it avoids the extremely time-consuming visual
selection of features without compromising on performance. In the
next two sections, the technique will be extended to the problem
of damage severity.

5.0 FEATURE SELECTION BASED ON 
ENGINEERING JUDGEMENT – 
DAMAGE SEVERITY PROBLEM

This section consider the features which were selected to assess
damage severity in panel P7 (as shown in Fig. 1b) as part of a
previous study(8). In that study, the issue of damage severity was
considered for all three panels, P7, P8 and P9, in the highlighted
region of Fig. 1(b). It was found that the greatest testing set error
occurred with panel P7 and so panels P8 and P9 will not be
discussed further in this work. 

Five features were highlighted from transmissibility between
accelerometers CR and C1 as being potential features for
detecting damage in panel P7 using Engineering Judgement.
These were spectral lines 71-80, 110-119, 558-577, 880-919 and
930-949 of the 1,024 line transmissibility plot. Novelty detectors
were formed for each of these features by using the 120 16-
average bootstrapped measurements from the first eight normal
condition sets as training data. The other two normal condition
sets and all the damage condition sets were used to form the
testing sets. Outlier analysis was again used to detect when an
observation in the testing set was statistically unlikely to have
been generated by the same mechanism as those in the training
set. Once the damage was successfully located using the damage
localisation classifier, the outputs from the five novelty detectors
were then passed to the level three neural network to give a
measure of the damage severity.

The network was a multi-Layer perceptron (MLP) neural
network. The idea was to try to map the novelty indices obtained
from the transmissibilities to the damage severity. The neural
network is supplied with the values of the five novelty indices at
the input layer and required to predict the damage severity at the
output layer.
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Feature Number (Transmissibility Function in brackets)   
1 (1*) 2 (3) 3 (1*) 4 (6*) 5 (4*) 6 (4) 7 (8*) 8 (8) 9 (8) 

P1 F         

P2   F/S       

P3        W  

P4     S     

P5  F/S F/W    S   

P6          

P7          

P8       F/S   

Panel 

P9   F       

Table 2. 
Features that were selected by the GA (with 98·3 % in Fig. 4) to

detect each of the nine panels. The * denotes reciprocal.
Symbols F, S and W mean fair, strong and weak respectively.

Figure 5. Original neural network prediction of damage severity for
panel P7 using features selected by engineering judgement. 
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6.0 FEATURE SELECTION USING A 
GENETIC ALGORITHM – DAMAGE 
SEVERITY PROBLEM 

In the previous section, a significant improvement was observed in the
severity prediction capability simply by using logarithmic novelty
indices and a more sophisticated neural network package. That said,
there is still room for improvement and, in this section, the genetic
algorithm approach to feature selection will be investigated to see if
this may further improve the severity prediction capabilities of the
technique.

For the problem at hand, the issue of encoding potential solutions
was as detailed for the damage location problem discussed above with
the simplification that the severity problem does not require the speci-
fication of transmissibility numbers (as there was only one transmissi-
blity function used). Each feature would be encoded by the starting
spectral line integer and a window size (this was fixed to being 10, 20,
30, 40 or 50 lines). At the end of each chromosome another integer
between one and ten was added which controlled the random initiali-
sation seed for the neural network training. These meant a five feature
chromosome would be encoded using 11 integers, five of these would
be between one and 974 to represent the start line, another five which
would be between one and five for the window size and the final
integer between one and ten for the network seed. 

On this occasion, the fitness values were calculated by taking the
reciprocal of the mean square error of the validation set prediction.
Parental selection was conducted using a weighted roulette-wheel
approach and single-point crossover was used. Options of the injection
of new blood and retaining the elite chromosome were also included.
Rather than use the usual single mutation operator, the authors have
chosen again to employ multiple mutation operators, as in the damage
location case. 

The optimisation was run five times using the logarithmic novelty
index data. The GA settings were population size = 20, 100 genera-
tions, 0·6 crossover probability (single-point), 0·2 for each of four
mutations, 20% new blood and retention of the elite chromosome.
The run which gave lowest validation error of 0·25% returned a
chromosome with very different features (lines 46-85, 117-166, 176-
215, 613-662 and 925-944) from those chosen using engineering
judgement. A mean square error of 0·26% was returned when the
testing data set was propagated through the neural network trained on
these features and Fig. 7 shows the neural network prediction for the
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testing set. The lower error is evident in the more ‘staircase-like’
structure of the plot.

Due to time considerations, a relatively small number of optimisation
runs were conducted with subjectively chosen parameters. It was
comforting to note however, that the mean validation error of the five
runs was 0·28% and the largest error of the five runs was 0·38%, all a
significant improvement on the 1·89% using the Engineering judgement
features. That said, there is probably room for further improvement, if it
were desired – this has been confirmed by validation error of 0·17%
during a run where 500 generations were used.

7.0 DISCUSSION AND CONCLUSIONS
A structural health monitoring strategy is often envisaged using a data
to decision flowchart. Within this process the feature selection stage
seems to be arguably the most crucial. Therefore it requires significant
time and effort and it is generally conducted with a large degree of
subjectivity. Genetic algorithms or evolution programs present a rather
promising and high potential solution to optimisation problems. They
also offer automation and satisfactory objectivity to this critical phase
of a structural health monitoring programme. 

The work in this paper showed their use on the same methodology
for a damage diagnostic in three levels, detection, location and
severity. The results were very good for the first two levels even
though they did not exceed those found in(9). However, here the
features were selected by the GA from a completely random point. It
is also important that it is unlikely that the GA parameters that were
used are the optimal parameters, but they seemed robust to small
changes. In a similar approach for the severity problem, a reduction in
testing set error from 1·45%, using a network trained with features
selected by engineering judgement, to 0·26%, with GA-selected
features was found. 

Throughout this work, Level 2 and 3 damage identification was
conducted in a supervised manner (i.e. assuming that data pertaining
to all damage states were available), as is necessary with neural
network classifiers. In reality, one will not have access to damage data
and therefore recourse may need to be made to high-fidelity models of
the structure and relevant damage models. Alternatively, it may be
possible to develop approaches of extracting ‘damage-like’ features
from a structure without actually damaging the structure – it is
towards overcoming this problem that the authors are concentrating
a large degree of effort.

Figure 6. NETLAB neural network prediction of damage severity for
panel P7 using logarithmic valued features selected by engineering

judgement.

Figure 7. NETLAB neural network prediction of damage severity for
panel P7 using logarithmic valued features selected by 100 generation

genetic algorithm.
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In order to return to the present work, it should be stated that, if
the field of structural health monitoring is to fully make the
transition from the laboratory to real, complex structures, the key
process of feature selection must be done in an automated,
objective manner. It is hoped that the current work contributes to
that goal.
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