
J. Fluid Mech. (2016), vol. 794, pp. 154–174. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.149

154

The impact of imperfect heat transfer on
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We consider convective instability in a deep porous medium cooled from above with
a linearised thermal exchange at the upper surface, thus determining the impact of
using a Robin boundary condition, in contrast to previous studies using a Dirichlet
boundary condition. With the linearised surface exchange, the thermal flux out of
the porous layer depends linearly on the temperature difference between the effective
temperature of a heat sink at the upper boundary and the temperature at the surface
of the porous layer. The rate of this exchange is characterised by a dimensionless
Biot number, Bi, determined by the effective thermal conductivity of exchange with
the heat sink relative to the physical thermal conductivity of the porous layer. For a
given temperature difference between the heat sink at the upper boundary and deep in
the porous medium, we find that imperfectly cooled layers with finite Biot numbers
are more stable to convective instabilities than perfectly cooled layers which have
large, effectively infinite Biot numbers. Two regimes of behaviour were determined
with contrasting stability behaviour and characteristic scales. When the Biot number
is large the near-perfect heat transfer produces small corrections of order 1/Bi to
the perfectly conducting behaviour found when the Biot number is infinite. In the
insulating limit as the Biot number approaches zero, a different behaviour was found
with significantly larger scales for the critical wavelength and depth of convection both
scaling proportional to 1/

√
Bi.

Key words: buoyancy-driven instability, convection, convection in porous media

1. Introduction
Convection in porous media is observed in a wide variety of settings (Nield & Bejan

2013) ranging from the dissolution of supercritical carbon dioxide sequestered in the
subsurface (Ennis-King, Preston & Paterson 2005) through to industrial solidification
processes (Copley et al. 1970). We focus on transient problems where a change in
buoyancy forcing at one of the boundaries creates a boundary layer which grows
over time and accumulates potential energy to drive a convective instability. Of
particular interest with these transient problems is determining the onset time at which
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Porous boundary layer convection with imperfect heat transfer 155

convective overturning begins. This has been studied in some detail for systems with
a sudden instantaneous change in Dirichlet boundary conditions, corresponding to a
fixed buoyancy perturbation imposed at a boundary (e.g. Caltagirone 1980, or see
subsequent studies as reviewed by Rees, Selim & Ennis-King 2008 and Tilton, Daniel
& Riaz 2013). Applications include solute-driven convection in carbon sequestration
(e.g. Hassanzadeh, Pooladi-Darvish & Keith 2006) and thermally driven groundwater
convection (van Dam et al. 2009).

The stability of the system to the development of convective disturbances is usually
identified in terms of a Rayleigh number, Rp, which characterises the strength of
driving buoyancy forces compared with viscous and thermal dissipation. Unlike
static stability problems, the time-dependent nature of transient boundary layer
growth means that different definitions of the instability will produce different
results for the critical Rayleigh number. While the underlying physical scalings
usually remain independent of the method used for problems with step changes in
a Dirichlet boundary condition, the numerical coefficients can differ significantly. A
few common methods are compared in Tilton et al. (2013). Some recent studies
(e.g. Riaz et al. 2006; Kim & Choi 2012) have identified the thermal diffusion
length

√
κ t̂ as the relevant length scale, where κ is the thermal diffusivity of the

medium and t̂ is the dimensional time. Indeed, both the critical Rayleigh number and
critical wavenumber scale proportional to 1/

√
κ t̂. For a system much deeper than

this length scale, the thermal diffusion length becomes the only relevant distance and
a non-dimensionalisation based on the thermal diffusion length yields a self-similar
solution to the problem.

However, in many settings a Dirichlet boundary condition, which effectively
assumes that the boundary is perfectly conducting, does not accurately reflect a
more general dependence of the buoyancy forcing on the surface temperature. This
applies particularly in cases when the boundary does not act as a perfect conductor.
Hurle, Jakeman & Pike (1967) considered Rayleigh–Bénard convection in a pure
liquid of finite depth with an imperfectly conducting upper boundary, where the
heat flux depends linearly on the surface temperature through a Robin boundary
condition. These are characterised in terms of the Biot number, Bi, which represents
the rate of thermal transport across the boundary. An infinite Biot number represents
a perfectly conducting boundary and a Biot number of zero represents a perfectly
insulating boundary. Wilkes (1995) was one of the first to consider such a boundary
condition for a horizontal porous layer and since then, there have been a number
of studies considering convection in a porous rectangular domain which apply a
Robin boundary condition to the thermal perturbation, either on the vertical walls
(e.g. Nygård & Tyvand 2010) or horizontal walls (e.g. Barletta & Storesletten 2012).
Barletta, Tyvand & Nygård (2015) took this further and applied a Robin boundary
condition to both the thermal and vertical velocity perturbations on the upper and
lower boundaries. They found that Dirichlet boundary conditions (constant temperature
or no normal flow) are the most restrictive of convective instability, while Neumann
boundary conditions (no heat flux or no horizontal flow) are the most liberating.
However, few studies have considered how a Robin boundary condition affects
convection through changes to the underlying base-state temperature profile, instead
only applying the Robin boundary condition to the perturbations. Kubitschek &
Weidman (2003) investigated convection in a porous cuboid with insulating sidewalls,
an isothermal upper boundary and an imperfectly conducting lower boundary. The
temperature of the heat sink for the lower boundary was held constant. However,
the temperature just inside the porous layer differs from the temperature of the heat
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sink as a result of changes to the effective boundary conductivity, through changes
to the Biot number. They calculated the magnitude of this effect and proposed a
Biot-modified Rayleigh number defined by Rp Bi/(1+ Bi) to account for this change.
Their Biot-modified Rayleigh number tends to a constant value in both the high and
low Biot number limits, with a monotonic decrease as the Biot number decreases, in
agreement with the observation of Barletta et al. (2015) that insulating boundaries are
less restrictive. Robin boundary conditions have also been considered in a variety of
different geometries, including a horizontal cylindrical pipe (Barletta & Storesletten
2011) and a vertical cylinder (Barletta & Storesletten 2013).

Here, we consider the impact of such a linearised thermal boundary condition on
convective instability in a growing thermal boundary layer in a porous medium, with
the previously uninvestigated time-dependent nature of the growing boundary layer
adding a new dimension to the study. Physically, this could for example represent
a linearisation of convection driven by sensible heat fluxes and radiative cooling
to the atmosphere, which would occur in ground water convection with an open
upper boundary (van Dam et al. 2009). It will also help build insight into the more
complex problem of convection in solidifying alloys (Emms & Fowler 1994; Hwang
& Chung 2008) which is relevant to the growth of young sea ice (Wettlaufer, Worster
& Huppert 2000; Wells, Wettlaufer & Orszag 2011). The more complex cooling
mechanisms involving a Robin boundary condition may also be useful for allowing
convective instability to be controlled in industrial problems involving porous media,
such as metal casting processes involving the solidification of a binary alloy (Copley
et al. 1970; Beckermann, Gu & Boettinger 2000).

Our idealised model of the system is described in § 2 and the dynamical equations
are discussed in § 2.1. The stability analysis methodology is described in § 3 and the
numerical method in § 4. In § 5, we present results for the stability to fully nonlinear
two-dimensional convective disturbances. Two limiting behaviours are found with key
differences in the scaling of the time for the onset of instability and wavenumbers of
the most unstable modes, corresponding to highly conducting boundaries (§ 5.1) and
highly insulating boundaries (§ 5.2). We conclude with a summary of the work and
discussion of potential implications in § 6.

2. Model
To understand the impact of effective boundary thermal conductivity on convective

instability, we consider a simplified system consisting of an infinitely deep, two-
dimensional porous medium with temperature-independent thermal properties and
uniform porosity, as illustrated in figure 1. We consider thermal properties which
differ between the solid and liquid phases, but show that with a suitable rescaling of
the variables used, this reduces to the case of equal thermal properties between the
two phases.

The fluid is initially at rest with an initial temperature of T∞ everywhere. At time
t̂ = 0, heat loss begins to a heat sink of temperature Te with the rate of heat loss
depending on the temperature difference between the heat sink and the surface of the
porous layer:

∂T
∂ ẑ
= h
λ∗
(T − Te) at ẑ= 0. (2.1)

Here λ∗ is the combined phase-weighted thermal conductivity of the solid matrix and
interstitial fluid, h is the heat transfer coefficient which modulates the rate of heat loss
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Boundary

Porous layer

FIGURE 1. (Colour online) A diagram illustrating the model described in the main text.
Heat is lost through imperfect thermal conduction, described by (2.1), to a heat sink of
temperature Te, which results in an evolving thermal base state temperature, TB(ẑ, t̂), that
depends on depth ẑ and time t̂. The evolving base state forms a diffusive boundary layer
of characteristic depth

√
κ t̂. The base state velocity, ûB, is zero everywhere. The other

boundary conditions on temperature, T , and velocity, û, are discussed in the main text.

from the porous layer, T is the temperature of the porous layer and ẑ is the vertical
position. We will use hats ˆ to denote dimensional lengths, times and velocities. The
heat transfer coefficient and thermal conductivity can be combined to give a length
scale associated with the boundary conductivity effects, l̂c= λ∗/h which we will make
use of later. As motivation, one example of how a boundary condition in this form
might arise is given in appendix A, which considers sensible heat fluxes and longwave
radiative exchange in growing sea ice. However, our results apply more generally
to any surface exchange that can be linearised into the form (2.1). Previous studies
of convection from a growing boundary layer have tended to focus on the limit of
perfect boundary conductivity, replacing (2.1) with T = Te, or a boundary temperature
which evolves linearly in time, replacing (2.1) with T = Te − At̂ for constant A,
(see Hassanzadeh et al. 2006, for an example of both).

This imperfect heat exchange can be non-dimensionalised by introducing a length
scale, d̂, and associated time scale, d̂2/κ , where κ is the thermal diffusivity (defined
in the next section). This can be thought of as the thermal diffusion length scale after
some chosen interrogation time at which we want to observe the system. In § 3, we
will show that this distance can be scaled out of the problem in favour of the time-
dependent boundary layer thickness

√
κ t̂, but for the purposes of our analysis it is

useful to initially non-dimensionalise using a time-independent length scale. The non-
dimensional temperature, θ = (T − Te)/1T , is also introduced, where 1T = T∞ − Te.
The upper boundary condition then becomes

∂θ

∂z
= Bi θ at z= 0, with Bi= hd̂

λ∗
= d̂

l̂c

, (2.2a,b)

while z= ẑ/d̂ and t= t̂κ/d̂2. The Biot number, Bi, represents the rate of heat transfer
into the heat sink compared with thermal diffusion within the porous layer, and can be
interpreted as an effective thermal conductivity of the surface boundary, hd̂, relative
to the thermal conductivity of the porous layer, λ∗. This combination hd̂ does not
necessarily represent a physical conductivity of the adjacent medium, but instead is
equivalent to an effective conductivity for general, linearised heat transfer across the
surface boundary and into the heat sink at z< 0. The Biot number can alternatively
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be considered as the ratio of the length scale associated with the imperfect boundary
cooling, l̂c, and the representative length scale of the domain (currently d̂ and later√
κ t̂). An infinite Biot number represents an effective conductivity equivalent to a

perfect thermal conductor at the boundary, and a Biot number of zero represents a
boundary which does not conduct heat, equivalent to a perfect insulator.

We assume that at large depths the fluid is unaffected by the cooling above and
hence temperatures and velocities approach their initial values:

θ→ 1, ez · u→ 0, as z→∞, (2.3a,b)

where ez is the vertical unit vector and u= ûd̂Λ/κ non-dimensionalises the Darcy flux
û (with units of velocity) for constant thermal lag Λ defined below. We also assume
that there is no fluid flux across the upper boundary, ez · u = 0 at z = 0, which is
applied in addition to the surface flux condition (2.2).

2.1. Dynamical equations
The transfer of thermal energy within the porous layer is governed by the dimensional
advection–diffusion equation

[φ(ρcp)l + (1− φ)(ρcp)s]∂T
∂ t̂
+ (ρcp)lû · ∇̂T = ∇̂ · ([φλl + (1− φ)λs]∇̂T). (2.4)

Here, φ represents the porosity, (ρcp) represent the volumetric heat capacities, λ
represents the thermal conductivity, and the subscripts l and s denote a value in the
liquid and solid phases respectively. The thermal conductivity, λ∗, used in (2.1) is
the porosity-weighted conductivity, given by λ∗ = φλl + (1− φ)λs. In a material with
uniform porosity and thermal properties which do not vary with temperature, we can
rearrange this equation to give

∂T
∂ t̂
+Λû · ∇̂T = κ∇̂2T. (2.5a)

Λ= (ρcp)l

φ(ρcp)l + (1− φ)(ρcp)s
, κ = φλl + (1− φ)λs

φ(ρcp)l + (1− φ)(ρcp)s
, (2.5b,c)

where we define the thermal diffusivity, κ , which was introduced previously as part of
the non-dimensionalisation, and a parameter, Λ, which controls the amount of thermal
lag within the system.

When non-dimensionalising this equation, we note that we can include a non-unitary
thermal lag parameter in the velocity scale without affecting the boundary conditions
above, by using a non-dimensional velocity u= ûΛd̂/κ . Using this velocity scale, the
non-dimensional thermal equation is

∂θ

∂t
+ u · ∇θ =∇2θ. (2.6)

We assume that momentum and mass conservation are described by incompressible,
Boussinesq, Darcy flow within the uniform porous layer with a linearised equation of
state for the fluid density, ρ = ρ0[1− α(T − Te)]. This yields

− ν

Π0
û= 1

ρ0
∇̂p̂+ gα(T − Te)ez, ∇̂ · û= 0. (2.7a,b)
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Here, ν is the kinematic viscosity, Π0 is the permeability of the solid matrix, p̂ is the
fluid pressure, the acceleration due to gravity is g, the thermal expansion coefficient
is α and ρ0 is a Boussinesq reference density.

We non-dimensionalise (2.7a) and use (2.7b) to introduce a non-dimensional stream
function, u=∇×ψey. Taking the curl of (2.7a) then leads to the vorticity equation:

∇2ψ =−Rp
∂θ

∂x
. (2.8)

The porous medium Rayleigh number, Rp=gα1TΠ0Λd̂/κν, characterises the strength
of buoyancy forcing compared with thermal and viscous dissipation in a porous
medium. It can also be interpreted as a ratio of length scales, comparing the imposed
depth, d̂, with the buoyancy length scale, l̂b = κν/gα1TΠ0Λ.

We note that, with this non-dimensionalisation, any effects of thermal lag have been
scaled out of the non-dimensional problem and will only appear when the results are
translated back to dimensional coordinates.

2.2. Base-state solution
Only the temperature profile evolves before convection begins, with no initial fluid
motion, u=uB(z, t)≡0, and the solution to the thermal diffusion equation (2.6) subject
to (2.2a) and (2.3a) is

θ = θB ≡ erf
(

z
2
√

t

)
+ exp

(
− z2

4t

)
erfcx

(
z

2
√

t
+ Bi
√

t
)
. (2.9)

where the scaled complementary error function is defined by erfcx (y)= exp(y2) erfc (y)
(see Carslaw & Jaeger 1959). The z-dependence contains two effective length scales
that evolve over time, the thermal diffusion length scale,

√
t in dimensionless scaling,

and a length scale associated with the radiative cooling effects, 1/Bi.
For z+ 2Bi t� 2

√
t, the solution reduces to

θB ∼ erf
(

z
2
√

t

)
, for

z+ 2Bi t
2
√

t
� 1. (2.10)

We refer to (2.10) as the conductive limit because it arises when Bi→∞, but note that
it also applies for finite Bi at large depths with z�√t, or long times with t� 1/Bi2.

3. Stability analysis
To perform a stability analysis on this base state, we consider general perturbations,

θ1 and ψ1, satisfying

θ(x, z, t)= θB(z, t)+ θ1(x, z, t), ψ(x, z, t)=ψ1(x, z, t), (3.1a,b)

with u1 = ∇ × ψ1ey. We use the energy stability method of Slim & Ramakrishnan
(2010) to calculate the stability of the system by considering the maximal growth
rate of arbitrarily sized perturbations. The method therefore provides a strong lower
bound for the stability of the system, with all disturbances decaying below the
threshold it provides, and convection permitted above it. For perfectly conducting
boundaries, a number of methods have been used to determine the onset of
instability, but we note that the these other methods generally assume small linear
perturbations which means they may not capture an instability triggered by a finite
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amplitude perturbation. The popular propagation method (e.g. Kim & Choi 2012)
also requires that perturbations spread vertically with the growing thermal diffusion
length scale, which may break down here following the introduction of a second
length scale, l̂c, to the infinite-depth problem.

However, it is important to remember that the stability bound presented here
identifies the first perturbations that are able to grow in amplitude. Determining the
time for convective disturbances to develop to a specified finite-amplitude threshold
constitutes a different problem, and would depend on both the full details of the
initial perturbation and the subsequent time development of these disturbances (see
Tilton & Riaz 2014; Emami-Meybodi et al. 2015).

When interpreting the results we will also make use of relevant linearised dynamics
(discussed in § 3.2) where the perturbations are assumed to be small compared with
the base state.

3.1. Energy stability method
Our main calculations follow the energy stability method of Slim & Ramakrishnan
(2010), which we summarise below. This method considers the maximal growth rate
of the perturbation-amplitude functional:

E0 =
∫

V

θ 2
1

2
d3x. (3.2)

The integration volume, V , here is over the full depth of the domain and a suitable
width which allows horizontal boundary conditions to cancel, as discussed below.
By finding the maximal growth rate of this functional with respect to all possible
perturbations θ1 that are constrained by the dynamics in (2.6) and (2.8), we can
determine the nonlinear stability of the system with respect to an arbitrary perturbation.
We have chosen a functional of θ1 rather than a functional of ψ1 because the equations
include no time derivatives of ψ1. This functional represents a generalised energy,
rather than a physical energy. Differentiating E0 with respect to time and using the
energy equation (2.6) to eliminate ∂θ1/∂t leads to

Ė0 = dE0

dt
=
∫

V
θ1∇2θ1 − θ1(u1 · ∇)θB − (u1 · ∇)

(
θ 2

1

2

)
d3x. (3.3)

The nonlinear term in (2.6) gives rise to the non-quadratic third term above.
Integrating this term by parts gives∫

V
u1 · ∇

(
θ 2

1

2

)
d3x=

∮
S

n ·
[
θ 2

1

2
u1

]
d2x−

∫
V

θ 2
1

2
∇ · u1 d3x, (3.4)

where S is the surface bounding the volume V . Incompressibility (2.7b) causes the
contribution from the final term to vanish. We focus on systems where the boundary
terms also vanish or are negligible, with u1 · n= ∂ψ1/∂x= 0 at z= 0 and as z→∞,
and then either assuming horizontal periodicity, impermeable or isothermal sidewalls,
or a domain of sufficient width for end contributions to be small compared with
the full volume integral. Hence, the only nonlinear term in the original dynamical
equations makes no contribution to the stability of the system and we will obtain the
same stability results for linearised and nonlinear perturbations.
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We now write the growth rate functional as

σ = Ė0 + Ė1

2E0
, (3.5)

where Ė0/E0 is the normalised perturbation growth rate and a new term, Ė1/E0,
is introduced to ensure that any variations on this functional are constrained by the
vorticity equation (2.8). We add this constraint using a distributed Lagrange multiplier,
µ1(x, t), with

Ė1 =
∫

V
µ1

[
∇2ψ1 + Rp

∂θ1

∂x

]
d3x. (3.6)

To find the maximal growth rate σmax, we vary σ with respect to θ1, ψ1 and µ1
resulting in the system:

∇2θ1 − 1
2
∂θB

∂z
∂ψ1

∂x
− σmaxθ1 = Rp

2
∂µ1

∂x
, ∇2ψ1 =−Rp

∂θ1

∂x
, ∇2µ1 + ∂θB

∂z
∂θ1

∂x
= 0,

(3.7a−c)

with boundary conditions on µ1 identical to those on ψ1.
Despite considering non-linear perturbations, the resulting derived system (3.7) is

linear and invariant under horizontal translations, and so we assume a horizontally
periodic perturbation structure and perform a Fourier decomposition with wavenumber,
k, writing θ1(x, z, t)

ψ1(x, z, t)
µ1(x, z, t)

=
 θf (k, z, t)

ikψf (k, z, t)
ikµf (k, z, t)

 eikx, (3.8)

where the subscript f indicates that the variables have been Fourier transformed in the
horizontal direction. The eigenvalue problem (3.7) reduces to:

Ay− Rp By= σmaxCy, (3.9a)

y=
 θf
ψf
µf

 , A=



∂2

∂z2
− k2 k2

2
∂θB

∂z
0

0
∂2

∂z2
− k2 0

∂θB

∂z
0

∂2

∂z2
− k2

 , (3.9b,c)

B=

 0 0 −k2

2
−1 0 0
0 0 0

 , C =
1 0 0

0 0 0
0 0 0

 . (3.9d,e)

The boundary conditions are expanded in the same way as the dynamical equations
and become

∂θf

∂z
= Bi θf , ψf = 0, µf = 0, at z= 0 (3.10a−c)

θf → 0, ψf → 0, µf → 0, as z→∞. (3.10d−f )
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As a final step, we note that time now only appears explicitly through the θB terms and
can be removed by transforming to the self-similar coordinates natural to the thermal
diffusion problem:

z̃= z√
t
, k̃= k

√
t, R̃p= Rp

√
t, B̃i= Bi

√
t, σ̃ = σmaxt. (3.11a−e)

This transformation effectively replaces the non-dimensionalisation length d̂ with
the thermal diffusion length scale

√
κ t̂ and leaves the form of (3.9) and (3.10)

unchanged (with each variable replaced by its rescaled counterpart). With the
similarity transformation, the base-state temperature profile (2.9) becomes

θB = erf
(

z̃
2

)
+ exp

(
− z̃2

4

)
erfcx

(
z̃
2
+ B̃i

)
. (3.12)

The removal of t via this rescaling has the advantage of reducing the parameter space
that needs to be considered when constraining the stability and we calculate our
results in these similarity coordinates, corresponding to scales measured relative to
the instantaneous thickness of the thermal boundary layer, before later translating back
to time-independent physical scales. Note also that by performing this transformation
after deriving the stability system (3.9) we have avoided any a priori assumption of
self-similar disturbances, so that our energy stability analysis encompasses general
two-dimensional disturbances rather than just disturbances confined to spread at the
same rate as the boundary layer.

This eigenvalue problem can be solved for the maximal growth rate at a given
Rayleigh number, wavenumber and Biot number, with instability allowed if the real
part of σ̃ is greater than zero. This yields the neutral stability curve R̃p(k̃, B̃i) where
the real part of the growth rate is equal to zero. If the imaginary part of σ̃ is also zero
on the neutral stability curve, then the neutral stability curve can be found directly by
setting σ̃ = 0 in (3.9) and solving for R̃p. Whilst we did not formally prove that the
growth rate is purely real, we found in preliminary investigations that there were no
complex growth rates for a sample of Biot numbers, B̃i= 0.05, 1, 50, as well as when
B̃i→∞, and that both of methods produced the same results for the position of the
neutral stability curve. To accelerate the computations, we therefore neglect oscillatory
modes and set the growth rate to zero in all subsequent calculations and solve for the
neutral stability curve directly.

3.2. Linearised dynamics
Having established above that the energy stability method yields the same stability
criteria for linear and nonlinear perturbations, we will also make use of linearised
dynamics when interpreting our results. We assume that the perturbations in equation
(3.1) are small compared with the base-state values, and terms that are quadratic in
perturbations can be neglected. The linearised forms of (2.6) and (2.8) are

∂θ1

∂t
+ ∂θB

∂z
∂ψ1

∂x
=∇2θ1, ∇2ψ1 =−Rp

∂θ1

∂x
. (3.13a,b)

Eliminating θ1 results in (
∂

∂t
−∇2

)
∇2ψ1 = Rp

∂θB

∂z
∂2ψ1

∂x2
. (3.14)
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Thus, the linearised perturbation dynamics are driven by the quantity Rp ∂θB/∂z. We
will make use of this observation later when interpreting results, noting that the form
of this equation is unchanged under the similarity transformation (3.11).

4. Numerical method
To solve the eigenvalue problem in (3.9), we use a Chebyshev pseudospectral

discretisation of the three variables, θf , ψf and µf , and the differential operators are
rewritten as matrix operators on the Chebyshev modes (see Trefethen 2000). The
discretised form of the boundary conditions (3.10) are algebraically rearranged to
express the boundary values in terms of the internal values. This is then used to
write an eigenvalue problem for the internal points with eigenfunctions that satisfy
both the dynamical equations and boundary conditions.

Convergence testing was performed to ensure that the results are numerically
consistent, and independent of both the number of Chebyshev modes used, Nz, and
the numerically imposed finite domain depth, H̃, for suitably large H̃. The resolution
was increased at fixed H̃ to obtain numerical convergence. This was then repeated
at larger H̃ until the resolution-converged values also showed no significant variation
with depth. For B̃i > 1, good convergence is found using Nz > 40 and H̃ > 70. For
B̃i< 1, a deeper domain and more grid points were needed. For B̃i= 0.001, the lowest
Biot number investigated, convergence was only found once Nz > 90 and H̃ > 475.

5. Results
To test the accuracy of our code, we first solved the porous boundary layer

convection problem in the limit of a perfectly conducting boundary, with an infinite
Biot number. We found the critical wavenumber, k̃∞, and Rayleigh number, R̃p∞,
to be

k̃∞ = 0.378, R̃p∞ = 6.92, (5.1a,b)

in agreement with the results of Slim & Ramakrishnan (2010), who used an
equivalent definition of stability. The results here are also of a similar magnitude
to calculations using alternative definitions of stability (see Tilton et al. 2013 for a
review). We note that the fixed dimensionless wavenumber k̃∞ and Rayleigh number
R̃p∞ results from the similarity transformation (3.11), and leads to time dependence
in physical coordinates. Reversing the transformation leads to a dynamic stability
criteria compared with the fixed physical scales.

The Biot number appears in the upper boundary conditions (2.2a) and in the
base-state temperature profile (3.12). In addition to the full system calculations, we
ran two additional sets of diagnostic simulations as sensitivity studies to isolate the
impacts of B̃i-dependent changes of potential energy in the background profile, and
B̃i-dependent modulation of the perturbation boundary conditions. The profile effects
set, denoted by superscript p, uses a conductive boundary condition, θf = 0 at z= 0,
for the perturbation but the full B̃i-dependent base-state temperature profile (3.12).
Meanwhile the boundary effects set, denoted by superscript b, uses the conductive
limit of the base-state temperature profile, θB ∼ erf (z̃/2), but maintaining the full
B̃i-dependent boundary condition for the perturbation. These two extra sets are
not intended to represent physically realisable configurations, but instead provide
diagnostic insight into the mathematical scalings obtained.

Figure 2(a) shows how the Rayleigh number at neutral stability, with σ̃ = 0,
varies with wavenumber, k̃, and Biot number, B̃i, along with showing the critical
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FIGURE 2. (Colour online) Stability properties against Biot number. (a) The colour scale
shows the Rayleigh number at neutral stability as a function of wavenumber and Biot
number. Overlayed are the critical wavenumbers of the three calculation sets described
in the text. To aid viewing of the different limits, the wavenumber is displayed on a
logarithmic scale for k̃< 0.3 and linear scale for k̃> 0.3, with the transition marked by a
dashed line. (b) The critical Rayleigh number varies with Biot number. The data is shown
on a linear scale for R̃pc < 12.5 and a logarithmic scale for R̃pc > 12.5.

wavenumbers, k̃c. Figure 2(b) shows the variation of the resulting critical Rayleigh
numbers, R̃pc, with B̃i. It is clear that decreasing the Biot number monotonically
increases the critical Rayleigh number for the full system (figure 2b), while the effect
on the critical wave number is more complex. There is an increase when compared
with the conductive limit for B̃i > O(1) and a decrease for B̃i < O(1), as shown in
figure 2(a). There are two distinct regimes for large and small Biot numbers, which
are emphasised using a change of scale at k̃ = 0.3 in figure 2(a) and R̃pc = 12.5 in
figure 2(b). We find no indication of any secondary minima in the stability curves,
R̃pc(k̃), for each B̃i.

The structure of the instability differs in these two limits, as illustrated in
figure 3. For large Biot numbers, the unstable convective cells are narrower and
do not penetrate as deeply as the cells for low Biot numbers. By normalising the
perturbations such that the integrated amplitude over all three perturbation variables is
equal to 1, we can also see that the thermal variations and velocities have significantly
larger amplitude when the Biot number is large. This suggests that the instability will
be more intense in this regime but less disperse. This conclusion is also supported by
looking at the growth rates, σ̃ , at the critical wavenumber and with a Rayleigh number
equal to double the critical value. When B̃i= 100, this non-dimensional growth rate is
σ̃ = 0.35, while for B̃i= 0.022 the growth rate is σ̃ = 0.016, which suggests that after
onset of instability, the disturbance will initially develop more rapidly at large Biot
numbers than it will for small Biot numbers. However, determining the long-time
development will require a study of the time-dependent evolution of perturbations to
confirm whether such trends continue.

5.1. High Biot number limit
Boundaries that can rapidly remove heat from a medium have a large Biot number
and behave as good effective conductors, with an infinite Biot number representing
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FIGURE 3. Representative convective instability structure for (a) B̃i= 100, and (b) B̃i=
0.022. The colour scale shows the thermal variation with hot regions coloured red and
cold regions coloured blue. Stream lines are also shown with clockwise cells in black
and anticlockwise cells in grey, with ψf =±0.03, ±0.06 and ±0.09 contours plotted. Note
that the temperature scale for (a) is 100 times larger than the scale in (b) and there is
no ψf = 0.09 contour in (b). The same vertical and horizontal scales are used in the two
panels and the instability continues periodically beyond the region shown, with alternating
directions of neighbouring convection cells.

a perfectly conducting boundary. Behaviour in the large Biot number limit, B̃i �
1, is dominated by the limiting case of a perfectly conducting boundary (discussed
above) with only small B̃i-dependent variations. To illustrate the underlying scalings,
figure 4 shows compensated plots taking the deviation from the perfectly conducting
limit and scaling by the Biot number, plotting B̃i(R̃pc − R̃p∞) for the compensated
critical Rayleigh number and B̃i(k̃c − k̃∞) for the compensated critical wavenumber.
We observe that both groupings tend to a constant value for large Biot numbers. The
critical Rayleigh number and critical wavenumber therefore behave as

R̃pc ∼ R̃p∞ +
3.25
B̃i

, R̃p
p
c ∼ R̃p∞ +

6.35
B̃i

, R̃p
b
c ∼ R̃p∞ −

3.10
B̃i

, for B̃i� 1,

(5.2a−c)

k̃c ∼ k̃∞ + 0.054
B̃i

, k̃p
c ∼ k̃∞ + 0.088

B̃i
, k̃b

c ∼ k̃∞ − 0.034
B̃i

, for B̃i� 1,

(5.3a−c)

corresponding to the full calculation, profile effects and boundary effects in each
of (5.2) and (5.3). These trends remain accurate for B̃i & 5. We also note that in
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FIGURE 4. (Colour online) Scaled deviations from the perfectly conducting limit:
(a) B̃i(R̃pc − R̃p∞) for the compensated critical Rayleigh number and (b) B̃i(k̃c − k̃∞) for
the compensated critical wavenumber. The scaled deviation of both the Rayleigh number
and wavenumber asymptote to a constant value for large Biot numbers. In this limit, the
deviation for the full system matches a linear sum of the deviation caused by the boundary
effects, and the deviation caused by profile effects. At small Biot numbers, B̃i(R̃pc− R̃p∞)
again tends to a constant (but different) value for the full dynamics and profile effects.

both cases the sum of the deviations caused by the profile effects only, plus the
deviations caused by the boundary effects only is very similar to the deviation of the
full system

1R̃pc = R̃pc − R̃p∞ ≈1R̃p
p
c +1R̃p

b
c, 1k̃c = k̃c − k̃∞ ≈1k̃p

c +1k̃b
c . (5.4a,b)

This suggests that nonlinear interactions between the changes in the base-state profile
and perturbation boundary condition are negligible when the Biot number is large.

The O(1/B̃i) deviations found in this limit can be considered as a first-order
expansion in the small parameter 1/B̃i around the perfectly conducting limit and
this is also reflected in the profiles of θf , ψf and µf having only small deviations
from the conducting limit (not shown here). The observed signs of the deviations
are explained as follows. For large Biot numbers, the thermal forcing term identified
previously in (3.14) is approximately:

R̃p
∂θB

∂ z̃
= R̃p√

π
exp

(
− z̃2

4

) [
1− z̃

2B̃i
+O

(
1

B̃i
2

)]
, for B̃i� 1. (5.5)

When the Biot number decreases from the perfectly conducting limit, the thermal
forcing decreases because the potential energy available for convection has been
reduced. This change in the background profile necessarily causes an increase in the
critical Rayleigh number, 1R̃p

p
c > 0, but it also affects the critical wavenumber by

changing the vertical distribution of the available energy. By decreasing the energy
available at depth to a greater extent than the energy available close to the boundary,
the change in forcing confines the convection to a shallower layer near the surface. In
turn, this is consistent with a smaller convective wavelength and larger wavenumber,
1k̃p

c > 0, when viewed as relative fractions of the corresponding diffusion length scale
of the growing boundary layer.
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However, the Biot number dependence of the perturbation boundary condition
causes the opposite effect, as shown by the scaling of the boundary effects simulations.
The change in boundary condition allows the energy close to the upper boundary to
be more effectively utilised by permitting modes to develop with non-zero thermal
variation on the upper boundary. This tends to decrease the critical Rayleigh number,
1R̃p

b
c < 0. It is also consistent with a tendency for stronger and deeper-penetrating

convection, leading to larger convective cells with a longer wavelength and smaller
wavenumber, 1k̃b

c < 0. Barletta et al. (2015) noted a similar effect for steady-state
convection in a finite horizontal domain. As the Biot number decreases they observed
that the critical Rayleigh number and critical wavenumber also decrease as the
boundary conditions become less restrictive on the allowable perturbations (note that
their parameters ai and bi (i= 1, 2) are equivalent to 1/Bi).

The combined effect of these profile and boundary effects is an increase in both
the critical Rayleigh number and critical wavenumber compared to the perfectly
conducting limit. This suggests that the changes caused by the available potential
energy in the background profile are more significant than the modification to the
heat-flux boundary conditions on the growing perturbations.

The above results have considered the impact of effective boundary conductivity
on wavenumbers and Rayleigh numbers scaled relative to the time-dependent thermal
diffusion timescale

√
κ t̂. We can invert the scaling behaviour in (5.2) to find the

physical instability time of the system

t̂i = 47.9 t̂b[1+ 0.136 RB+O(RB)2], for RB� 1, (5.6)

where the buoyancy time scale is t̂b = l̂2
b/κ , and we define the effective boundary

Rayleigh number as the ratio of boundary-cooling and buoyancy lengthscales,

RB= Rp
Bi
= gα1TΠ0Λλ

∗

κνh
= l̂c

l̂b

. (5.7)

The instability time (5.6) is dominated by the buoyancy time scale t̂b. As the heat
transfer coefficient increases, h → ∞, the boundary length scale correspondingly
decreases, l̂c→ 0, and the time of instability reduces to the time found by Slim &
Ramakrishnan (2010). For finite h, l̂c is non-zero and convective instability is delayed
in a way that depends on the boundary Rayleigh number (5.7). Larger values of RB
correspond to increasingly imperfect cooling and convection is delayed by a greater
amount. The conductive limit corresponds to RB→ 0, and the subsequent expansion
(5.6) in small RB is accurate to within 10 % for RB . 14.4.

We can also find the physical wavenumber at the moment of convective instability,

k̂i = 0.0546

l̂b

[1− 0.0206 RB+O(RB)2] for RB� 1. (5.8)

The dominant length scale in this limit is therefore the buoyancy length scale l̂b. We
note that this approximation is accurate to within 10 % of the true value for RB . 4.8,
which is a smaller range of RB than for (5.6). Intriguingly, we see that whilst (5.3)
predicts that boundary conductivity effects increase the wavenumber scaled relative to
the thermal diffusion length, there is still a net decrease in the physical wavenumber
observed at the time of convective instability. This is a consequence of the delayed
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FIGURE 5. (Colour online) These two graphs show the variation of (a) the physical
instability time and (b) most unstable wavenumber with the boundary Rayleigh number,
RB = (gα1TΠ0Λλ

∗)/κνh. The full dynamics are compared to the limiting trends given
in (5.6) and (5.8) for the highly conducting limit (High. cond. lim.) and (5.11) and (5.14)
for the insulating limit. The perfectly conducting limit (Perf. cond. lim.) is given by (5.6)
and (5.8) with RB= 0.

instability time described in (5.6) and the trend of wavenumber variation is now
monotonic for all values of RB. The delay of instability allows growth of a thicker
diffusive boundary layer before convection is triggered. Combined with the relative
changes in the distribution of available potential energy across the boundary layer
depth, and modulation of growing perturbations by surface boundary conditions, the
net effect is an increase of the physical wavelength of the perturbation expected at
the moment of instability.

In figure 5, we illustrate the full behaviour of the onset time (scaled by the
buoyancy time), t̂i/t̂b, and onset wavenumber (scaled by the buoyancy length), k̂i l̂b.
We also plot the limiting behaviour found in (5.6) and (5.8) for the highly conducting
limit, and those for the insulating limit which is discussed in the next section. Note
that the non-monotonic variation found for the self-similar wavenumber (figure 2a)
does not appear in the physical onset wavenumber (figure 5b), as discussed above.

5.2. Low Biot number limit
In the low Biot number limit, the upper boundary is a poor thermal conductor and
thus heat removal is much slower. The limiting case of B̃i= 0 represents a perfectly
insulating boundary with no cooling and no convection. The behaviour for B̃i � 1
shows very different scaling to the high Biot number regime.

Figure 4(a) shows that the scaled deviations for both R̃pc and R̃p
p
c tend to a constant

value for B̃i� 1, consistent with the profile effects controlling the behaviour of the
full dynamics, while the deviation for R̃p

b
c goes to zero. As B̃i→ 0, B̃i · R̃p∞→ 0 and

hence the asymptotic behaviour is consistent with

R̃pc ∼
1.9
B̃i
, R̃p

p
c ∼

8.0
B̃i
, for B̃i� 1. (5.9a,b)
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The dominating influence of the profile effects on the stability criteria suggests that
the instability is controlled by the amount of potential energy available for convection
with little dependence on the perturbation boundary conditions. This scaling can
be explained by approximating the thermal forcing term in (3.14) for small Biot
numbers:

R̃p
∂θB

∂ z̃
∼ R̃p B̃i erfc

(
z̃
2

)
, for B̃i� 1. (5.10)

Clearly, the vertical structure of the forcing is independent of the Biot number
(leading to the constant critical wavenumber for the profile effects) but the amplitude
of the forcing has a linear dependence on R̃p B̃i. We therefore expect that the critical
Rayleigh number should scale as R̃pc = ∝ 1/B̃i, as observed. Hence in the limit
of poor thermal transport by the boundary, convection is suppressed because the
available potential energy in the background profile is reduced.

This argument might suggest the introduction of a local Rayleigh number,
R̃pL∝ R̃p[1− θ(0, t)], which is dependent on the time-evolving temperature difference
within the porous media rather than the externally imposed constant temperature
difference 1T . This local Rayleigh number is an analogue to the Biot-modified
Rayleigh number of Kubitschek & Weidman (2003) for a fixed depth, steady-state
system. However, whilst such a modification would capture the correct form of
Biot-number dependence by accounting for variation in the global critical Rayleigh
number caused by changes to the surface temperature, it does not determine the
correct numerical prefactor. There are still Bi-dependent variations in R̃pL which arise
from the changing perturbation boundary conditions and from the changing vertical
forcing structure. This second effect does not appear in Kubitschek & Weidman (2003)
because their base-state temperature profile has a linear vertical structure which is
unchanged by variations in the Biot number. The time-dependent nature of the local
Rayleigh number used here means that it requires more careful interpretation than the
global Rayleigh number, but might be useful for order of magnitude estimates when
considering applications of the results.

We can invert these scalings to find the dimensional convective instability time:

t̂i ∼ 1.9 RB t̂b = 1.9(t̂b t̂c)
1/2 = 1.9

l̂c l̂b

κ
, for RB & 1.0× 105. (5.11)

The leading-order scaling of the instability time in this nearly-insulating limit depends
on the diffusion time scale over a distance given by the geometric mean of the
boundary-cooling length scale l̂c and the buoyancy length scale l̂b. This contrasts with
the high Biot number limit, where we found that the dependence on l̂c, and hence
on the rate of heat transfer h, is only through weak higher-order corrections in the
effective boundary Rayleigh number RB. The transition towards this limit for RB� 1
is illustrated in figure 5(a).

Despite the perturbation boundary conditions playing no significant role in
controlling the instability time, they intriguingly are significant for selecting a
preferred wavelength. Figure 2(a) shows that the scaling of the critical wavenumber
is consistent between the full dynamics and the boundary effects simulations, but
differs substantially from the scaling found for the profile effects simulations. The
observed asymptotic trends are

k̃c ∼ 0.73
√

B̃i, k̃b
c ∼ 0.67

√
B̃i, for B̃i� 1. (5.12a,b)
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Expressing this in dimensional coordinates leads to

k̂c ∼ 0.73

√
1

l̂c

√
κ t̂
, (5.13)

which indicates that the critical wavenumber scales inversely with the geometric mean
of the two thermal length scales in the problem, namely the thermal diffusion length
scale,

√
κ t̂, and the boundary cooling length scale, l̂c, which contains the effects of

the heat transfer coefficient, h.
At the physical instability time (5.11), this wavenumber becomes

k̂i ∼ 0.62

RB3/4 l̂b

= 0.62

l̂3/4
c l̂1/4

b

, for RB & 3.1× 104. (5.14)

Thus, there is stronger dependence of the critical wavenumber on boundary
conductivity effects, scaling as l̂−3/4

c and therefore h3/4, than on the buoyancy effects,
scaling as l̂−1/4

b . The transition towards the scaling (5.14) for the insulating limit is
illustrated in figure 5(b).

6. Conclusion
In this paper we have investigated the convective stability of a growing thermal

boundary layer in a semi-infinite porous medium cooled from above via exchange
with a heat sink with imperfect thermal transport. The system stability depends on the
dimensionless Biot number, B̃i, which characterises the ratio of the effective thermal
conductivity of heat exchange with the surface heat sink, compared with thermal
conduction in the porous media. Stability also depends on a porous medium Rayleigh
number, R̃p, representing the relative strength of buoyancy forcing versus dissipative
mechanisms. Both B̃i and R̃p increase with time as the thermal boundary layer (and
hence available potential energy) grows. We have identified two distinct regimes of
behaviour. For large Biot numbers, efficient cooling produces a boundary condition
behaving similarly to a perfect conductor. For small Biot numbers, the boundary
condition behaves like a poor conductor. In the large Biot number regime, B̃i� 1, we
observe O(1/B̃i) deviations from the perfectly conducting limit (B̃i→∞) which has
been previously studied in some detail (e.g. Slim & Ramakrishnan 2010; Tilton et al.
2013). The net deviation causes a weak increase in stability, and is consistent with a
competition between reduction of available potential energy by vertical confinement
of the background profile, and the tendency of the modified perturbation boundary
condition to reduce stability by allowing greater variation in surface temperature (see
Barletta et al. 2015). For smaller Biot numbers, the reduction in available potential
energy strongly dominates and leads to a substantial increase in the critical Rayleigh
number, which scales as R̃pc ∼ 1.9/B̃i for B̃i� 1. Hence, the convective stability of
a growing boundary layer is enhanced if the supply of potential energy is decreased
by imperfect heat transfer to the neighbouring medium. This leads to a delay in
the instability compared with settings that have perfectly conducting boundaries and
a temperature difference of T∞ − Te within the porous layer. In the limit of poor
boundary conductivity, one might interpret the scaling with Biot number in terms of
a modified criterion with instability occurring when a local Rayleigh number, based
on the temperature difference across the porous medium rather than the externally

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.149


Porous boundary layer convection with imperfect heat transfer 171

imposed temperature difference, exceeds a constant value. This local Rayleigh number
would depend on the surface temperature of the porous layer, which is an intrinsic
part of the problem that evolves in time. To determine the prefactor accurately, one
also needs to account for changes in the perturbation boundary condition and vertical
structure of the forcing.

The most unstable wavenumber also varies depending on the rate of boundary
cooling, with the viewpoint depending on the particular non-dimensionalisation
considered. When scaled relative to the time-dependent diffusion length

√
κ t̂ the

most unstable dimensionless wavenumber shows non-monotonic variation with the
Biot number. As B̃i is reduced from the perfectly conducting limit of B̃i → ∞,
the dimensionless wavenumber first increases, consistent with enhanced vertical
confinement of the background profile generating shallower convection cells with
shorter wavelengths as a fraction of the diffusion length

√
κ t̂. The dimensionless

wavenumber eventually begins to decrease as B̃i is decreased further and reaches an
asymptotic limit k̃c ∼ 0.73

√
B̃i for B̃i� 1. This leads to larger, deeply penetrating

convective cells with longer wavelengths when the surface cooling is inefficient and
acts like a poor conductor. However, when calculating dimensional wavenumbers, the
above relative effects must be combined with the impact of cooling rate on the onset
of convective instability. Slower cooling results in delayed instability and growth of a
thicker diffusive boundary layer. The net effect of delayed instability and the changes
relative to the boundary-layer depth is a monotonic decrease in the dimensional
wavenumber as the cooling rate is reduced.

The physical instability times found, and corresponding wavenumbers, agree with
the results of previous studies when the heat transfer coefficient is infinite, h→∞,
and otherwise depend on a boundary Rayleigh number, RB, defined in (5.7) which
represents the ratio of buoyancy effects to viscous dissipation and thermal dissipation
through exchange with the overlying heat sink. The boundary Rayleigh number RB
can be interpreted as the ratio of two lengthscales. The boundary cooling length scale
l̂c = λ∗/h describes a characteristic scale for heat transfer within the domain with
conductivity λ∗, and driven by surface cooling with heat transfer coefficient h. The
buoyancy length scale l̂c = κν/gα1TΠ0Λ describes a natural scale for convective
motion before a buoyant perturbation is dissipated within the porous medium. When
the boundary acts as a relatively good conductor, the leading-order scaling of the
instability time t̂i ∝ t̂b is controlled by the buoyancy timescale. Deviations of t̂i
from this conducting limit are characterised by a Taylor expansion (5.6) in terms of
RB, which is a small parameter in this limit. When the overlying heat sink acts as a
relatively poor conductor, we see different behaviour with t̂i∝RB t̂b= l̂c l̂b/κ depending
on both the boundary-cooling and buoyancy scales. The wavelength at the moment of
instability also shows similar behaviour, scaling with the buoyancy length scale for
highly conducting boundaries, but for near-insulating boundaries the most unstable
wavelength scales with the combination RB3/4 l̂b = l̂3/4

c l̂1/4
b of boundary-cooling and

buoyancy length scales. Thus we expect much longer wavelength convective features
to be favoured at the moment of instability when boundary heat transfer is relatively
poor. These results for boundary-layer convection in a porous medium echo results
for Rayleigh–Bénard convection in a pure fluid of fixed depth with poorly conducting
boundaries (Hurle et al. 1967).

The results here will provide valuable insight into the effects of imperfect boundary
cooling in more complex settings involving convection in porous media. Surface
cooling conditions are significant during the growth of porous mushy layers, such
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as sea ice growth or metal castings. The aim for future work will be to develop a
more representative model of mushy-layer growth that accounts for the additional
complexities of growth into an underlying liquid, compositional effects and reactive
porosity. It may also be possible to apply aspects of this work in industrial processes
where the rate of cooling could be modified to change the wavelength of convection
patterns, or modify the properties of a solidifying binary alloy by suppressing or
promoting instability.
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Appendix A. Linearised heat exchange in sea ice growth
To motivate the use of (2.1), we present an example of how sensible heat fluxes

and radiative exchange between a porous layer and an overlying atmosphere can be
represented by the linearised boundary condition. Our description of thermal energy
loss to the overlaying atmosphere is motivated by the thermodynamic model of
young sea ice proposed by Maykut (1978), who identified a number of processes
contributing to the cooling of sea ice which are illustrated in figure 6. Shortwave
radiation and latent heat fluxes were significantly smaller than longwave radiative
exchange and sensible heat fluxes. Thus, the dominant contributions to the cooling
can be described by

λ∗
∂T
∂ ẑ
= ρacpCsuw(T − Ts)+ εσsbT4 − Fin

LW at ẑ= 0, (A 1)

where ρa is the Boussinesq reference density of the overlying air, cp is the specific
heat capacity of the atmosphere, Cs is a heat transfer coefficient with a typical value
of 3.3 × 10−3, uw is the atmospheric wind speed, Ts is the atmospheric temperature
above the surface of the ice, ε is the surface emissivity, σsb is the Stefan–Boltzmann
constant and Fin

LW is the heating caused by incoming longwave radiation.
We use the incoming longwave radiative flux to define an effective upper

atmospheric temperature Tua such that Fin
LW = εσsbT4

ua. By assuming that the surface
and effective upper atmospheric temperatures are close, |T − Tua| � Tua, we can
simplify the relationship for the net longwave flux to

Fnet
LW ≈ 4εσsbTua

3(T − Tua)+O([T − Tua]2) at ẑ= 0. (A 2)

This then allows us to approximate the full energy balance as

λ∗
∂T
∂ ẑ
= γ (T − Te) at ẑ= 0, (A 3a)

γ = ρacpCsuw + 4εσsbTua
3, Te = ρacpCsuwTs + 4εσsbTua

4

ρacpCsuw + 4εσsbTua
3 , (A 3b,c)
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Atmosphere

Porous layer

g

FIGURE 6. (Colour online) A diagram of the main thermal processes by which a porous
layer occupying depths ẑ> 0 can lose heat to an overlying atmosphere. A sensible heat
flux, FSH , allows the loss of heat through turbulent exchange with the lower atmosphere
while longwave radiative fluxes Fin/out

LW exchange heat with the higher atmosphere through
black body radiation. Heat can also be lost through latent heat fluxes FLH if evaporation
occurs, or gained through incoming shortwave radiation FSW but we do not consider these
contributions here. The cooling at the surface balances thermal conduction within the
porous layer, with flux ρ0cpκez · ∇T .

where Te is an effective atmospheric temperature and γ represents the strength of
cooling. Defining the boundary length scale to be l̂c = ρ0cpκ/γ , we recover (2.1).

We note that whilst this derivation was performed in the context of ice growth, the
derivation would also be applicable to ground water convection where the processes
are the same. Shortwave radiation can be included by a redefinition of Fin

LW to include
these contributions and any constant flux forcing can also be included by a redefinition
of Te and l̂c. We also note that boundary conditions of the form (2.1) will arise in
many other physical settings.
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