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Abstract Let F be a field of characteristic two and G a finite abelian 2-group with an involutory
automorphism η. If G = H × D with non-trivial subgroups H and D of G such that η inverts the elements
of H (H without a direct factor of order 2) and fixes D element-wise, then the linear extension of η to
the group algebra FG is called a nice involution. This determines the groups of unitary and symmetric
normalized units of FG. We calculate the orders and the invariants of these subgroups.
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1. Introduction

Let F be a field with two elements, and G a finite abelian 2-group with an automorphism
η of order 2. Extending η to the group algebra FG by setting( ∑

g∈G

αgg

)η

=
∑
g∈G

αgg
η

we obtain an involution of the algebra FG (which will be called η as well). In the group

V (FG) =
{ ∑

g∈G

αgg ∈ FG |
∑
g∈G

αg = 1
}

of (normalized) units of FG, the subgroups of η-unitary units and of η-symmetric units
are defined, respectively, by

Vη(FG) = {x ∈ V (FG) | xη = x−1} and Sη(FG) = {x ∈ V (FG) | xη = x}.
∗ Corresponding author.
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We intend to study these groups for a certain type of involution. We call η a nice involution
provided that

G = H ×D

with subgroups H and D of G such that η inverts the elements of H and fixes D element-
wise. We then always assume that H has no direct factor of order 2.

When η is the canonical involution ∗ (i.e. the linear extension of the anti-automorphism
g �→ g−1 of G to the group algebra KG), the problem of determining the invariants and
an explicit basis of V∗(FG) has been raised by Novikov (see [15]). A satisfactory solution
for ∗ was given in [8,10]; these results were extended later in [11] to abelian p-groups
of odd order. In this paper, we calculate the orders and invariants of the two groups
Sη(FG) and Vη(FG) for the 2-group G when η is a nice involution. The determination
of explicit bases remains open. However, we give an explicit description of the group of
unitary units.

Theorem 1.1. Let η be a nice involution of a finite abelian 2-group G. Then the group
of η-unitary units in the normalized group of units V (FG) of the group algebra FG over
the field F of characteristic 2 is given by

Vη(FG) = H · (W (FG) × ΩV (FD) × T (G))

and

log |Vη(FG)| = log |ΩH| + 1
2 (|G| + |ΩH||D|) − |D2|.

Here, W (FG) = {xηx−1 | x ∈ V (FG)}, which is obviously a subgroup of Vη(FG). The
group T (G) is an elementary abelian subgroup of Vη(FG), to be defined later in § 4, and
is related to Sandling’s multiplicative basis of V (FG) (see [16]). For a positive integer
i, we shall write ΩiG for the subgroup of G of all elements of order dividing 2i (and
abbreviate Ω1 to Ω). The logarithm is to base 2, of course.

Much of the following depends on the observation that the 2nd power mapping ϕ : x �→
x2 is an F -algebra endomorphism of FG.

We remark that commutative modular group algebras have several applications in
coding theory [1,2,18], cryptography [13,14], bent function theory [6] and threshold
logic [3]. For a non-commutative group algebra, the study of unitary and symmetric
units is an interesting problem by itself, with many applications (see [4,5,7,9,12,17]).

2. η-symmetric units

First, we indicate how to calculate the invariants of Sη(FG).
We begin with some preparations for our first lemma, so as not to obstruct the view of

the line of proof. We suppose that η is a nice involution. We write Gη for the subgroup
of fixed points of η on G. Obviously, we can choose a subset E of G \Gη such that
E ∩ Eη = ∅ and G = Gη ∪ E ∪ Eη (disjoint union). Since η acts on the cosets of Gη in
G, we can even choose E as a union of cosets of Gη in G. We set E0 = {e ∈ E | e2 ∈ Gη}
and E1 = E \ E0, so that E = E0 ∪ E1 (disjoint union). Note that if e ∈ E0, we can write
e = hd with h ∈ H, d ∈ D and h of order 4, since e �∈ Gη but e2 ∈ Gη, and then hD ⊆ E0.
Also, if h is an element of H of order 4, then either h or h−1 belongs to E0 (since the
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action of η interchanges both elements). Remembering that |Ω2P | = |ΩP | · |ΩP 2| for any
abelian 2-group P , we therefore have

|E0| = 1
2 (|Ω2H| − |ΩH|) · |D| = 1

2 |ΩH| · (|ΩH2| − 1) · |D|. (2.1)

Let X = ΩG ⊆ Gη. We also note that E0X ⊆ EX ⊆ E and (E0X)2 = E2
0 ⊆ Gη, so

E0X = E0 and E1X = E1.
We have Gη = ΩH ×D. So |E| = 1/2(|G| − |Gη|) = 1/2(|G| − |ΩH| · |D|). Taking this

together with (2.1) it follows that

|E1| = |E| − |E0| = 1
2 (|G| − |ΩH| · |ΩH2| · |D|).

We have |X| = |ΩH||ΩD|. Remembering that for any abelian 2-group P , we have |P | \
|ΩP | = |P 2|, we finally obtain what will be needed in our first lemma

|E1|
|X| =

1
2
(|G2| − |ΩH2||D2|). (2.2)

Lemma 2.1. Suppose that η is a nice involution. Then the following hold:

(i) log |Sη(FG)| = 1/2(|G| + |ΩH||D|) − 1;

(ii) log |Sη(FG)2| = 1/2(|G2| − |ΩH2||D2|) + |D2| − 1.

Proof. Each x ∈ Sη(FG) can be written as

x =
∑
e∈E

αe(e+ eη) +
∑

g∈Gη

βgg (2.3)

with uniquely determined coefficients αe (for e ∈ E) and βg (for g ∈ Gη) in F such
that

∑
g∈Gη

βg = 1. Conversely, given such coefficients from F , Equation (2.3) defines
an element x from Sη(FG). Hence

log |Sη(FG)| = |E| + |Gη| − 1

= 1
2 (|G| − |Gη|) + |Gη| − 1 = 1

2 (|G| + |Gη|) − 1.

Now Gη = ΩH ×D and (i) follows.
Squaring both sides of (2.3) gives

x2 =
∑
e∈E

αe(e2 + (e2)η) +
∑

g∈Gη

βgg
2. (2.4)

Let T be a system of coset representatives of X in Gη. Then we can write for the second
summand on the right-hand side of (2.4)

∑
g∈Gη

βgg
2 =

∑
t∈T

∑
x∈X

βtx(tx)2 =
∑
t∈T

( ∑
x∈X

βtx

)
t2.

Note that s2 �= t2 for s, t ∈ T with s �= t. We have |T | = |ΩH ×D|/|ΩH × ΩD| = |D2|.
The first summand on the right-hand side of (2.4) really extends over only the elements
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e from E1. Since E1X = E1, we can choose S ⊆ E1 such that E1 is the disjoint union of
the cosets sX, s ∈ S. Then we have

∑
e∈E1

αe(e2 + (e2)η) =
∑
s∈S

∑
x∈X

αsx((sx)2 + ((sx)2)η)

=
∑
s∈S

( ∑
x∈X

αsx

)
(s2 + (s2)η).

Again, note that s2 �= t2 for s, t ∈ S with s �= t.
We have seen that the number of ‘free parameters’ for a unit in Sη(FG)2 is |S| + |D2| −

1. From (2.2), which gives us |S|, (ii) follows. �

3. The unit group modulo η-symmetric units

Suppose that η is a nice involution; explicitly, G = H ×D such that the automorphism
η is given by hη = h−1 for h ∈ H and dη = d for d ∈ D, where H has no direct factor of
order 2.

We denote by C(m)
n a direct product of m copies of a cyclic group of order n > 1. Then,

for some positive integers k and integers m1, . . . , mk ≥ 0 (multiplicities), we have

H ∼= C
(mk)

2k+1 × · · · × C
(m2)
8 × C

(m1)
4 .

We set H0 = H and D0 = D, so G = G20
= H0 ×D0. Note that η induces an automor-

phism on each 2-power of G. For i ≥ 0, there are (essentially) unique subgroupsHi and Di

of G2i

with G2i

= Hi ×Di and Hi having no direct factor of order 2, such that hη = h−1

for h ∈ Hi and dη = d for d ∈ Di. For 0 ≤ i < k, an easy induction on i (we set m0 = 0)
shows that

G2i ∼= C
(mk)

2k−(i−1) × · · · × C
(mi+1)
4︸ ︷︷ ︸

∼=Hi

× C
(mi)
2 ×D2i︸ ︷︷ ︸

∼=Di

.

(For the induction step, notice that when we take the second power of G2i

, the factor
C

(mi)
2 vanishes.) For example, we have

G2k−1 ∼= C
(mk)
4︸ ︷︷ ︸

∼=Hk−1

× C
(mk−1)
2 ×D2k−1︸ ︷︷ ︸

∼=Dk−1

.

Furthermore, G2k

= Dk
∼= C

(mk)
2 ×D2k

and G2i

= D2i

for i > k.
Now observe that for i ≥ 0,

log |ΩHi| =
k∑

j=i+1

mj and log |ΩH2i | =
k∑

j=i

mj
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(with the usual convention for the empty sum). For i ≥ 0, it follows that

log(|ΩHi| · |Di|) = log |ΩHi| + log |Di|

=
( k∑

j=i+1

mj

)
+ (mi + log |D2i |)

=
( k∑

j=i

mj

)
+ log |D2i | (shift it back)

= log |ΩH2i | + log |D2i | = log(|ΩH2i ||D2i |),
that is,

|ΩHi||Di| = |ΩH2i ||D2i | for i ≥ 0. (3.1)

Lemma 2.1(i), applied to G2i

instead of G, shows that for i ≥ 0 we have

log |Sη(FG2i

)| = 1
2 (|G2i | + |ΩHi||Di|) − 1.

Taking this together with (3.1), we obtain

log |Sη(FG2i

)| = 1
2 (|G2i | + |ΩH2i ||D2i |) − 1 for i ≥ 0. (3.2)

We dispose of a homomorphism ψ : V (FG) → Vη(FG), given by ψ(x) = xηx−1 for x ∈
V (FG). By definition, the kernel of ψ is Sη(FG). The image of ψ will be denoted by
W (FG). So, W (FG) = {xηx−1 | x ∈ V (FG)}, and we have an exact sequence

1 −→ Sη(FG) −→ V (FG) −→W (FG) −→ 1. (3.3)

We only remark that this sequence, when defined for odd p, is split.

Lemma 3.1. The following hold.

(i) W (FG2i

) = W (FG)2
i

and

log |W (FG2i

)| = 1
2 (|G2i | − |ΩH2i ||D2i |) for all i ≥ 0.

(ii) log |ΩW (FG)| = 1
2 (|G| − |ΩH||D|) − 1

2 (|G2| − |ΩH2||D2|).
Proof. Inclusion W (FG)2 ⊆W (FG2) is straightforward. If x ∈ V (FG), then writing

x =
∑

g∈G αgg shows that x2 =
∑

g∈G αgg
2 ∈ V (FG2) and so

(xηx−1)2 = (x2)η(x2)−1 ∈W (FG2).

The same argument shows that each element of V (FG2) is the square of an element
of V (FG). An element x in V (FG2) can be written as

∑
g∈G αgg

2 for some choice of
coefficients, and setting y =

∑
g∈G αgg we have y ∈ V (FG) and y2 = x. It follows that

xηx−1 = (yηy−1)2 ∈W (FG)2,

showing that W (FG2) ⊆W (FG)2. Hence W (FG2) = W (FG)2, and induction shows
that W (FG2i

) = W (FG)2
i

for all i ≥ 0.
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From (3.3), applied to G2i

instead of G, and (3.2), we obtain

log |W (FG2i

)| = log |V (FG2i

)| − log |Sη(FG2i

)|
= (|G2i | − 1) − ( 1

2 (|G2i | + |ΩH2i ||D2i |) − 1)

= 1
2 (|G2i | − |ΩH2i ||D2i |),

completing the proof of (i).
Finally, (ii) follows from (i) since |P | = |P/P 2| for any abelian 2-group P . �

Obviously, Sη(FG)2
i ≤ Sη(FG2i

), but equality cannot be expected here. Indeed, by
(3.2) and Lemma 2.1(ii), we have

log |Sη(FG2) : Sη(FG)2| = (|ΩH2| − 1)|D2|.

4. Elementary abelian subgroups

We suppose that η is a nice involution, that is, we have G = H ×D with subgroups H
and D of G such that η inverts the elements of H and fixes D element-wise, and we
assume that H has no direct factor of order 2. We can write H = H1 × · · · ×Hr with
(non-trivial) cyclic subgroups Hi of H. Let P denote the power set of {1, . . . , r} minus
the singleton {∅}. For S ∈ P, let HS = 〈Hi | i ∈ S〉 ≤ G, and let ĤS denote the sum of
the elements of HS in FG.

We define, on the basis of these choices, the set

T (G) =
{

1 +
∑
S∈P

cSĤS | cS ∈ FD for all S ∈ P
}
.

Applying the Frobenius endomorphism to the elements of T (G), we see that its elements
�= 1 are units of order 2, since (ĤS)2 = 0 for S ∈ P. Obviously, T (G) is closed under
multiplication, so T (G) is an elementary abelian subgroup of V (FG).

We will count the number of elements in T (G). Suppose that there is a relation∑
S∈P cSĤS = c, with c ∈ FD and also all cS in FD. We claim that c and all cS are

0. We proceed by induction on r, the base case r = 1 being obvious. Let r > 1. We can
rewrite the relation as

Ĥ{1}
∑

S∈P, 1∈S
cSĤS\{1} +

∑
S∈P, 1 �∈S

cSĤS = c

(with the convention that Ĥ∅ = 1). Here, both sums on the left-hand side have support
in the subgroup U = (H2 × · · · ×Hr)D. Picking a generator h1 of H1 and comparing
coefficients of elements of the coset h1U on both sides of the relation shows that the first
sum is 0. By the induction hypothesis, our claim follows. Note that |P| = 2r − 1. Thus,
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we have shown that |T (G)| = |FD||P| = 2|D|(2r − 1). With 2r = |ΩH| we obtain

log |T (G)| = (|ΩH| − 1)|D|. (4.1)

For later use, we note that

B = {1 + dĤS | S ∈ P, d ∈ D}
is a minimal generating set of T (G). In fact, it has the right cardinality. If S ∈ P and
c =

∑
d∈D αdD ∈ FD, all αd ∈ F , then

1 + cĤS =
∏
d∈D

(1 + αddĤS) ∈ 〈B〉.

Suppose that cS ∈ FD (for S ∈ P) are such that
∏

S∈P(1 + cSĤS) = 1, with some cS �= 0.
Choose M in P of minimal cardinality with cM �= 0. Multiplying out, we obtain

0 =
∏
S∈P

(1 + cSĤS) − 1 =
∑
S∈P

c′SĤS

for some c′S ∈ FD, and obviously c′M = cM �= 0, in contradiction to the above-noted addi-
tive independence of the elements ĤS . Hence, multiplicative independence follows from
additive independence (the connection with Sandling’s multiplicative basis for V (FG)
should be clear at this time).

We have to define, for G2, the group T (G2) in a compatible way. We may suppose that
H1, . . . , Hs, for some s, are the factors of H of order > 4. Then A = Hs+1 × · · · ×Hr is
a direct product of cyclic groups of order 4 (possibly A = 1). Let P ′ denote the power
set of {1, . . . , s} minus {∅}. We have

G2 = (H2
1 × · · · ×H2

s ) × (A2 ×D2)

where the factors on the right-hand side are the ‘new H’ and the ‘new D’. So we define

T (G2) =
{

1 +
∑
S∈P′

cSĤ2
S | cS ∈ F [A2 ×D2] for all S ∈ P ′

}
.

We now clarify the position of T (G) relative to some other subgroups of V (FG).

Lemma 4.1. The following hold.

(i) T (G) ∩W (FG) = 1.

(ii) The group Q generated by ΩV (FD), T (G) and W (FG) is a direct product,

Q = W (FG) × ΩV (FD) × T (G).

Proof. Let x ∈ T (G) ∩W (FG). We will prove x = 1 by induction on the order of
G. We can write x = 1 +

∑
S∈P cSĤS with uniquely determined cS in FD. Fix some

i between 1 and r and set Ki = 〈Hj |1 ≤ j ≤ r, j �= i〉. We have a natural isomorphism
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G/Hi
∼= Ki ×D which we shall treat as an identification. Let bars denote the natural

map FG→ FG/Hi. Note that η induces on the abelian group G a nice involution, with
associated decomposition G = Ki ×D. Also T (G) = T (FG) if T (FG) is properly defined,
and obviously W (FG) ⊆W (FG). Hence we can assume inductively that x = 1, which
means

∑
S∈P, i �∈S cSĤS = 0. So we have seen that cS = 0 for all S of cardinality less than

r, and we have x = 1 + cĤ for some c ∈ FD.
Now also x ∈W (FG), so x = y−1yη for some y ∈ V (FG). It follows that y−1yη − 1 =

cĤ and yη + y = ycĤ = mĤ for some m ∈ FD. From this we obtain m = 0, as otherwise
the support of mĤ would contain an element from D, while the support yη + y does not
contain an element from D. It follows that c = 0 and x = 1, proving (i).

Next, note that ΩV (FD) ∩ T (G) = 1 simply because FD ∩ T (G) = 1 (as shown above).
Note that for y ∈ T (G), we have yĤ = Ĥ. Also note that an element of W (FG) is

mapped to 1 under the natural map FG→ FG/H ∼= FD, so for w ∈W (FG) we also
have wĤ = Ĥ. Now suppose that x ∈ ΩV (FD) and y ∈ T (G) are such that xy ∈W (FG).
Then Ĥ = xyĤ = xĤ, showing that x = 1. Now y = 1 by (i), and (ii) is proved. �

For later use, we record the following.

Lemma 4.2. We have L(FG) ∩W (FG) = 1, where

L(FG) =
{

1 +
∑
S∈P′

cSĤS | cS ∈ F [A2 ×D2] for all S ∈ P ′
}
.

Proof. The proof is the proof of Lemma 4.1(i) with appropriate modifications. �

We need a little preparation before we can compute the orders of the various other
groups.

Suppose that K is an arbitrary subgroup of G. We shall write I(K) for the ideal of
FK generated by the elements k − 1 for k ∈ K (the radical of FK). Then I(K)FG is
the ideal of FG generated by I(K). Note that FG/I(K)FG is naturally isomorphic to
F [G/K], the group algebra of the factor group G/K, which gives

V (FG)/(1 + I(K)FG) ∼= V (F [G/K]).

We remark that part (ii) of the following lemma is a special case of Lemma 2.1 from
Sandling’s paper (see [16]). Part (iii) will only be needed once in the proof of Lemma
4.4(i).

Lemma 4.3. The following hold.

(i) Let T be a transversal of K in G. Then a basis over F of the ideal I(K)FG of FG
is given by { (k − 1)t | t ∈ T, 1 �= k ∈ K}.

(ii) ΩV (FG) = 1 + I(ΩG)FG.

(iii) log |ΩV (FG)| = |G| − |G|2.
Proof. Part (i) is well known (and easy to prove).
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We have (1 + I(ΩG)FG)2 = 1 + I(ΩG)2FG2 = 1, showing one inclusion in (ii). Con-
versely, let u ∈ ΩV (FG). Let T denote a transversal of ΩG in G with 1 ∈ T , and write
u =

∑
t∈T xtt with xt ∈ FΩG for t ∈ T . Let ε(xt) denote the augmentation of xt. Then

1 =
( ∑

t∈T

xtt

)2

=
∑
t∈T

x2
t t

2 =
∑
t∈T

ε(xt)t2,

and s2 �= t2 for s, t ∈ S with s �= t, so ε(x1) = 1 and ε(xt) = 0 for 1 �= t ∈ T . It follows
that u ∈ 1 + I(ΩG)FG, and (ii) is proved.

We have

log |ΩV (FG)| = dimF I(ΩG)FG

= (|ΩG| − 1) |G|
|ΩG| = |G| − |G|2,

by (ii) and (i), proving (iii). �

Lemma 4.4. The following hold.

(i) ΩVη(FG) = ΩW (FG) × ΩV (FD) × T (G).

(ii) For the group Q = W (FG) × ΩV (FD) × T (G) from Lemma 4.1(ii), we have
log |Q| = 1

2 (|G| + |ΩH||D|) − |D2|.
(iii) H ∩Q = H2 ⊆W (FG).

(iv) log |HQ| = log |ΩH| + log |Q|.
(v) log |HQ| − log |ΩVη(FG)| = log |ΩH| + 1

2 (|G2| − |ΩH2||D2|).

Proof. First, note that the groups ΩV (FD), ΩW (FG) and T (G) are contained in
ΩVη(FG) for obvious reasons, and that their product is direct, by Lemma 4.1. By
definition, ΩVη(FG) = ΩSη(FG), so we see from Lemma 2.1 that

log |ΩVη(FG)| = log |Sη(FG)| − log |Sη(FG)2|
= 1

2 (|G| + |ΩH||D|) − 1
2 (|G2| − |ΩH2||D2|) − |D2|.

By Lemma 3.1(ii), Lemma 4.3(iii) and (4.1), we have

log |ΩW (FG)| = 1
2 (|G| + |ΩH||D|) − |ΩH||D|
− 1

2 (|G2| − |ΩH2||D2|),
log |ΩV (FD)| = |D| − |D2|,

log |T (G)| = |ΩH||D| − |D|.

These ranks add up to the rank of ΩVη(FG). Thus (i) is proved.
By Lemma 3.1(i), log |W (FG)| = 1/2(|G| − |ΩH||D|). Taking this together with the

last two displayed equations, (ii) follows.
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ObviouslyH2 ⊆W (FG) since η inverts the elements ofH. SoH2 ⊆ H ∩Q. An element
of W (FG) can be written as xηx−1 for some x ∈ V (FG). Since η induces the identity
on the quotient F [G/H2], we see that W (FG) maps to 1 under the natural map FG→
F [G/H2]. Also, T (G) is mapped to 1 under this map, since each ĤS is mapped to 0.
Now let h ∈ H ∩Q. We have seen that h has the same image in F [G/H2] as an element
of FD. It follows that h maps to 1 under the map FG→ F [G/H2], so h ∈ H2, and (iii)
is proved.

Finally, (iii) gives

|HQ| = |H||Q|/|H ∩Q| = |H||Q|/|H2| = |ΩH||Q|,

so (iv) holds. Part (v) follows from the above calculations. �

We finally note the following.

Lemma 4.5. We have Vη(F [A×D])2 = A2.

Proof. Suppose that x ∈ Vη(F [A×D]) satisfies x2 �= 1. Since x2 lies in the group
algebra F [A2 ×D], on which η acts trivially, x2 must be an involution and x is of order
4. Let T ⊆ A \ {1} such that {1} ∩ T is a transversal of A2 ×D in A×D. Then T consists
of elements of order 4 which are inverted by η. We can write

x = β1 +
∑
t∈T

βtt

with β1, βt ∈ F [A2 ×D], for all t ∈ T . Then

(x2β1) +
∑
t∈T

(x2βt)t = x2x = x−1 = xη = β1 +
∑
t∈T

(βtt
2)t.

Again, remember that x2 ∈ F [A2 ×D]. It follows that x2β1 = β1 and x2βt = βtt
2 for all

t ∈ T . The first equation shows that β1 has augmentation 0 (otherwise β1 would be a
unit and so x2 = 1). Since x has augmentation 1, it follows that some βt (t ∈ T ) has
augmentation 1, whence it is a unit, and therefore x2 = t2 ∈ A2. �

5. A crucial computation

We shall need some kind of ‘going up’ from T (G2) to T (G). Suppose that H is a cyclic
group of order q, a power of 2, and let h denote a generator of H. We shall write ĥi for
〈̂hi〉, for any integer i. We begin by noting the well-known fact that

(h+ 1)q−1 = Ĥ. (5.1)

Indeed, multiplying out (h+ 1)q−1 shows that the element has 1 in its support, so
(h+ 1)q−1 �= 0. Also (h+ 1)q = (hq + 1) = 0, so h(h+ 1)q−1 = (h+ 1)q−1, giving (5.1).
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A variation on (5.1) is that

(h+ 1)q−2m

= (h2m

+ 1)q/2m−1 = ĥ2m

as long as 2m divides q. For example, if q ≥ 4, it follows that

(h±2 + 1)q−1 = (h±2 + 1)(h±2 + 1)q−2 = (h±2 + 1)ĥ4,

(h±1 + 1)q−3 = (h±1 + 1)(h±1 + 1)q−4 = (h±1 + 1)ĥ4.

We will make use of these formulas shortly. We have to introduce some notation only for
the formulation and the proof of the next lemma. For a positive n ∈ Z, let

En = {(ε1, . . . , εn) ∈ {1, 2,−1}n | εi �= 2 for at least one index i}.

For ε ∈ En, we shall write ε = (ε1, . . . , εn), that is, εi denotes the ith entry of ε. Let π
be the permutation on {1, 2, −1} which interchanges 1 and −1. Then an obvious action
(component-wise) of the group 〈π〉 of order 2 on En is given by (επ)i = επ

i (1 ≤ i ≤ n)
for ε ∈ En. Clearly, π acts without fixed points on En, so we can choose E ⊂ En with
En = E ∪ Eπ (disjoint union).

Suppose now that η is a nice involution, and n ≤ r, so H1, . . . , Hn are direct
factors of G associated with η on which η acts by inversion. For 1 ≤ i ≤ n, let hi

denote a generator of Hi, of order qi. For ε ∈ En, we define ν(ε) ∈ {qi − 3, qi − 1}n as
ν(ε) = (ν(ε)i, . . . , ν(ε)i) with ν(ε)i = qi − 1 if εi = 2 and ν(ε)i = qi − 3 otherwise. By
the formulas above,

(hεi
i + 1)ν(ε)i = (hεi

i + 1)ĥ4
i

for ε ∈ En and 1 ≤ i ≤ n. Finally, we unveil the reason for introducing the set E. We will
write K = H1 × · · · ×Hn and let T denote a transversal of K4 in K2. Then

T +
∑

ε∈En

n∏
i=1

(hεi
i + 1)

is the sum of the elements of a transversal of K4 in K, as if we formally multiply out the
products in the sum, we obtain a summand hεi1

i1
h

εi2
i2

· · ·hεil
il

, for 1 ≤ i1 < i2 < · · · < il ≤ n,
all εik

∈ {1, 2, −1} and some εik
not = 2, exactly 3n−l times.

Lemma 5.1. With notation as above, suppose that H1, . . . , Hn are of order > 4. For
a symmetric element c in FG (i.e. cη = c), set

u = 1 + c
∑

ε∈En

n∏
i=1

(hεi
i + 1)ν(ε)i .

Then u2 = 1, and ψ(u) = u−1uη = (1 + cK̂2)(1 + cK̂), where K = H1 × · · · ×Hn.
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Proof. We calculate

uuη =
(

1 + c
∑
ε∈E

n∏
i=1

(hεi
i + 1)ν(ε)i

)(
1 + c

∑
ε∈E

n∏
i=1

(h−εi
i + 1)ν(ε)i

)

=
(

1 + c
∑
ε∈E

n∏
i=1

(hεi
i + 1)ĥ4

i

)(
1 + c

∑
ε∈E

n∏
i=1

(h−εi
i + 1)ĥ−4

i

)

=
(

1 + cK̂4
∑
ε∈E

n∏
i=1

(hεi
i + 1)

)(
1 + cK̂4

∑
ε∈E

n∏
i=1

(h−εi
i + 1)

)

= 1 + cK̂4

( ∑
ε∈E

n∏
i=1

(hεi
i + 1) +

∑
ε∈E

n∏
i=1

(h−εi
i + 1)

)

= 1 + cK̂4T̂ + cK̂4

(
T̂ +

∑
ε∈En

n∏
i=1

(hεi
i + 1)

)

= 1 + c(K̂2 + K̂) = (1 + cK̂2)(1 + cK̂).

When multiplying out, we used (K̂4)2 = 0. Note that the first three lines of the calculation
show that u2 = 1. �

We shall see that the effort was worthwhile. Recall the definition of T (G) and T (G2)
from the preceding section.

Corollary 5.2. We have Vη(FG)2 ∩ T (G2) = 〈1〉.

Proof. Suppose that there is x ∈ Vη(FG) such that 1 �= x2 ∈ T (G2). Then x is of order
4 and x2 = x−1xη ∈W (FG). We can write

x2 =
∏
S∈S

(1 + cSĤ2
S)

for some subset S of P ′ and non-zero coefficients cS in F [A2 ×D2]. By Lemma 5.1,

wx2 =
∏
S∈S

(1 + cSĤS) ∈ L(FG)

for some w ∈W (FG). Then wx2 = 1 by Lemma 4.2. But the 1 + cSĤS are multiplica-
tively independent, so we have reached a contradiction. �

Corollary 5.3. We have Vη(FG)2 ∩ V (F [A×D])T (G2) = A2.

Proof. Set K = H1 × · · · ×Hs, so H = K ×A and G/K ∼= A×D. Under the natu-
ral map FG→ F [G/K], the group T (G2) maps to 1, while V (F [A×D]) embeds, and
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Vη(FG)2 is mapped into Vη(F [G/K])2, which is A2K/K by Lemma 4.5. It follows that

Vη(FG)2 ∩ V (F [A×D])T (G2) = Vη(FG)2 ∩A2T (G2).

Since A2 ⊆ Vη(FG)2, we have

Vη(FG)2 ∩A2 T (G2) = A2(Vη(FG)2 ∩ T (G2)).

Application of Corollary 5.3 completes the proof. �

6. Proof of the theorem

We finally prove the theorem given in the introduction. The Frobenius endomorphism ϕ
gives rise to an exact sequence

1 −→ ΩV (FG) −→ V (FG)
ϕ−→ V (FG2) −→ 1.

Certainly ϕ commutes with η, so we have an induced exact sequence

1 −→ ΩVη(FG) −→ Vη(FG)
ϕ−→ Vη(FG)2 −→ 1.

The kernel ΩVη(FG), as well as its order, is known; see Lemma 4.4(i), where the order
of HQ, with Q = W (FG) × ΩV (FD) × T (G), is also given. If we can show that for the
image

log |Vη(FG)2| = log |ΩH| + 1
2 (|G2| − |ΩH2||D2|) (6.1)

holds, we are done by Lemma 4.4(v). Now Vη(FG)2 ⊆ Vη(FG2), and by induction on the
order of G, we can assume that Vη(FG2) is described by the theorem. That is,

Vη(FG2) = H2(W (FG2) × ΩV (F [A2 ×D2]) × T (G2)).

We can write ΩV (F [A2 ×D2]) = A2 ×M for some subgroup M . Then we have
Vη(FG)2 ∩MT (G2) = 1 by Corollary 5.3, so

Vη(FG)2 → Vη(FG2)/MT (G2)

is injective. Since H2W (FG2) = H2W (FG)2 ⊆ Vη(FG)2 by Lemma 3.1, it follows that

|Vη(FG)2| ≤ |Vη(FG2)/MT (G2)| ≤ |H2W (FG2)| ≤ |Vη(FG)2|.
Hence

|Vη(FG)2| = |H2W (FG2)| = |W (FG2)||H2|/|H2 ∩W (FG2)|.
By part (iii) of Lemma 4.4, applied to the group G2, we have H2 ∩W (FG2) = H4. So

|Vη(FG)2| = |W (FG2)||H2|/|H4| = |W (FG2)||ΩH|.
Finally, by Lemma 3.1(i),

log |W (FG2)| = 1
2 (|G2| − |ΩH2||D2|).

Thus (6.1) holds and the theorem is proved.
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7. V. Bovdi and L. G. Kovács, Unitary units in modular group algebras, Manuscripta
Math. 84(1) (1994), 57–72.

8. A. A. Bovdi and A. A. Sakach, The unitary subgroup of the multiplicative group of
the modular group algebra of a finite abelian p-group, Mat. Zametki 45(6) (1989), 23–29,
110.

9. V. Bovdi and M. Salim, On the unit group of a commutative ring, Acta Sci. Math.
(Szeged) 80(3–4) (2014), 434–445.
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