
Probability in the Engineering and Informational Sciences (2024), 38:3 503–538
doi:10.1017/S026996482300027X

RESEARCH ARTICLE

Game-theoretic policy computing and simulation for
blockchained buffering system via diffusion approximation
Wanyang Dai

Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
Corresponding author: Wanyang Dai; Email: nan5lu8@nju.edu.cn

Keywords: blockchained queueing buffer system; diffusion approximation; dynamic resource pricing; federated learning;
game-theoretic scheduling; Nash equilibrium policy

MSC: 60J70; 60H35; 60K30; 65C20; 68M20; 90B15; 90B22; 90B36; 91A15

Abstract
We study 2-stage game-theoretic problem oriented 3-stage service policy computing, convolutional neural network
(CNN) based algorithm design, and simulation for a blockchained buffering system with federated learning. More
precisely, based on the game-theoretic problem consisting of both “win-lose” and “win-win” 2-stage competitions,
we derive a 3-stage dynamical service policy via a saddle point to a zero-sum game problem and a Nash equilibrium
point to a non-zero-sum game problem. This policy is concerning users-selection, dynamic pricing, and online rate
resource allocation via stable digital currency for the system. The main focus is on the design and analysis of the joint
3-stage service policy for given queue/environment state dependent pricing and utility functions. The asymptotic
optimality and fairness of this dynamic service policy is justified by diffusion modeling with approximation theory.
A general CNN based policy computing algorithm flow chart along the line of the so-called big model framework
is presented. Simulation case studies are conducted for the system with three users, where only two of the three
users can be selected into the service by a zero-sum dual cost game competition policy at a time point. Then, the
selected two users get into service and share the system rate service resource through a non-zero-sum dual cost
game competition policy. Applications of our policy in the future blockchain based Internet (e.g., metaverse and
web3.0) and supply chain finance are also briefly illustrated.

1. Introduction

In this paper, we study a blockchained buffering system with federated learning as shown in Figure 1.
The main focus is of three folds: 2-stage game-theoretic problem oriented 3-stage service policy

computing of users-selection and rate scheduling/dynamic pricing, convolutional neural network (CNN)
based algorithm design, and simulation case studies. The game-theoretic problem consists of both zero-
sum and non-zero-sum 2-stage game competitions (representing “win-lose” and “win-win” 2-stage
competitions). Furthermore, the computed policy is proved to be asymptotically optimal and fair via
diffusion approximation. The asymptotic optimality means that the whole workload and total cost of
the system are asymptotically minimized. The asymptotic fairness means that no user can change his
personal policy unilaterally for profit. The computed 3-stage service policy as shown in Figure 2 is based
on a 2-stage game-theoretic problem whose solution is represented by a saddle point to a zero-sum game
problem and a Nash equilibrium point to a non-zero-sum game problem (see also the related concepts
in Dai [8, 9], Marchi [19], Nash [21], and Rosen [25]). Furthermore, in the 2-stage game problems,
each user has his own utility function in terms of price, queue length, and service rate. This utility
function is a generalization of the existing one in Dai [6, 8, 9], Ye and Yao [28], and references therein.
Examples of such a utility function can be the so-called proportionally fair allocation, minimal potential

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://orcid.org/0000-0001-5383-0292
mailto:nan5lu8@nju.edu.cn
http://creativecommons.org/licenses/by/4.0
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

504 W. Dai

Figure 1. A blockchained buffering system with federated learning, which consists of J users and V
pools.

delay allocation, and (V,U)-proportionally fair allocation (see e.g., Ye and Yao [28]), which are widely
used in internet protocols and communication systems.

In Figure 1, we present such a generalized service system consisting of V service pools and J buffer
queues corresponding to J-parallel users for two positive integer numbers V and J. A blockchain sys-
tem is added to this system for security and distributed data storage. A federated leaning center is also
added to this system for dynamic policy computing and online payment transaction via stable digital
currency. This blockchained buffering and federated learning system is a generalized platform of the
recent studies (see e.g., Ayaz et al. [2], Dai [8, 9, 11], Demertzis et al. [14], Qu et al. [22]), which
come up in different research areas such as metaverse, sixth generation of wireless communication (6G),
internet of vehicles (IoV), web3.0, etc. Due to the security consideration of the system, blockchains are
used to protect privacy among different users as shown in Figure 1. Moreover, the way developed in
Dai [8, 9] uses a single-dimensional aggregated total workload process of the system to dynamically
design general-dimensional decision parameter vector at each time point in the federated learning (FL)
center. Then, the FL center sends the computed parameters back to their corresponding individual ser-
vice pools, respectively, for local information upgrades and local model training. This idea to employ
the single-dimensional aggregated workload process in the design of Dai [8, 9] is motivated from the
state space collapse property (or more classically, the Little’s law) widely studied in queueing literature
(see e.g., Bramson [3] and Little [17]). The purpose to use this idea in the processing of a multiclass
queueing network environment is aimed to reduce the system’s dimension and to avoid the curse of
dimensionality. When state space collapse phenomenon happens in a queueing system, the multiple
class queueing processes will display a certain proportional relationship with the single-dimensional
aggregated workload process, which will significantly reduce the system computational complexity. In
the design of Dai [8, 9], the proportional relationship represented by the state space collapse prop-
erty is generalized to be represented by a solution to a game-theoretic problem. This solution can be
trained and computed in the FL center, which can be used as an online scheduling policy. Under certain
traffic flow and service discipline assumptions, this dynamic policy is proved to be asymptotically fair

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 505

Figure 2. A 3-stage processing flow chart of users-selection, dynamic pricing, and rate scheduling for
a multiple pool service system with J-users, where J is taken to be 3 for an illustration.

and optimal in certain sense (that will be elaborated later) through diffusion approximation under the
so-called diffusive scaling and the well-known heavy-traffic regime. When the game-theoretic problem
reduces to an optimization problem and without the blockchain security consideration, readers are also
referred to Dai [6], Ye and Yao [28] for related studies. Furthermore, the studies in Dai [8, 9] consider
a general multiple service pool system with a more general input flow process (i.e., a J-dimensional
triply stochastic renewal reward process (TSRRP)). In the meanwhile, the studies in Dai [6], Ye
and Yao [28] focus on the analysis when the input process is a conventional J-dimensional renewal
process.

The contribution of this research is of three folds. The first fold is to add the dynamic pricing capa-
bility to the study in Dai [9]. The second fold is to design a general CNN based policy computing
algorithm flow chart along the line of the so-called big model framework. The third fold is to provide
detailed simulation examples. However, the main focus of our current paper is on the design and analysis
of a joint 3-stage service policy extended from the previously mentioned 2-stage game-theoretic policy
concerning users-selection, dynamic pricing, and online rate resource allocation for given queue/envi-
ronment state dependent pricing and utility functions. The asymptotic optimality and fairness of this
designed 3-stage service policy is justified by applying the well-known heavy traffic approximation and
modeling technique together with our newly added dynamic pricing functionality. In the meanwhile, it
is also supported by our newly conducted simulation case studies with three users and through explicitly
constructing the solutions to their corresponding dual cost game competition problems. Note that, the
allocated rate to a user is corresponding to the service time for the user. Furthermore, the service for
the user includes four steps: user registration, security checking, dynamic policy computing, and online

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

506 W. Dai

payment transaction through stable digital currency as shown in Figure 1. Thus, the service time for the
user will be the summation of the processing times corresponding to the four service steps.

The design procedure is illustrated in Figure 2, where J (e.g., J = 3) users want to receive services
from the V service pools. However, only two of them can be selected to receive services at each time
point according to chosen state dependent pricing and utility functions. After the selected two users get
into services, they need to share the limited capacity from different service pools in a cooperative way.
The selection process is determined by a dynamic policy corresponding to a solution (called a saddle
point) to a zero-sum dual cost game competition problem at each particular time point. The sharing
process for the selected two users is to compete the system rate service resource and is determined by a
dynamic policy through a solution (called a Nash equilibrium point) to a non-zero-sum dual cost game
competition problem. Note that, as shown in Figure 2, the associated 2-stage game-theoretic problem
is a J × V-dimensional problem. In general, an explicit solution is not available. Thus, we design a
CNN based algorithm flow chart for general usage. However, to support our current designed policy,
we choose smaller J and V to conduct simulation case studies, which is presented in Sections 4–5.

The input data flows from different users to our system as indicated in Figure 1 are characterized
by a J-dimensional TSRRP that can be further approximated by a diffusion process with the target for
our effective simulation. Furthermore, the service rate capacity available for resource-competing users
at each pool is modeled as a randomly capacity region evolving with a finite state continuous Markov
chain (FS-CTMC). The arrived data flows can immediately get into service if the servers are available.
Otherwise, they will be stored in the queueing buffers waiting for service. Besides buffers, the decision
information after service for each user will be stored in a distributed data base called blockchain as
designed in Figure 1.

There are many reasons (e.g., security, decentralization, smart contract) for today’s FinTech sys-
tem and future Internet (e.g., metavers and web3.0) to choose blockchain as a key technology (see,
e.g., Buterin [4], Dai [8,9,11], Iansiti and Lakehani [16], Nakamoto [20], Rajan and Visser [23]).
Blockchain consisting of data blocks is an orderly distributed database with encryption and is frequently
referred to as a ledger. Each data block contains the proposed (or calculated) decision information with
customer’s private and public keys at a single time point with a time-stamp and a link to a previous
block. The management of a blockchain can be realized via various smart contracts in a decentralized
way. Traditionally, a smart contract within a blockchain can be considered as a digitalized regulation
rule with common sense. In this paper, we will make the rule dynamically evolving according to an
online decision-making policy, i.e., a solution to a dynamic game based competition problem.

More precisely, we will study the resource allocation and dynamic pricing of a joint saddle & Nash
equilibrium service policy for such a system. When users get into service either from buffers or from
outside of the system, the computation of their processing policy concerning resource allocation may
depend on long history data stored in the blockchain (e.g., represented by a conditional mean defined
process) and can be dynamically priced via stable digital currency. Each queue may be served at the
same time through multiple smart service pools while each pool may also serve multiple queues simul-
taneously by running intelligent policies. Note that, to reflect the dynamic evolving nature of real-world
systems and to realize the decentralized operation in a blockchain, the users to be selected at a time is
random, the number of pools to serve a specific queue is random, and the number of queues to be served
by a given pool is also random. The effectiveness of our proposed policy is in terms of revenue, profit,
cost, system delay, etc. We model them through some utility (or hash) functions in terms of the perfor-
mance measures of their internal data flow dynamics such as queue length and workload processes. To
demonstrate the usefulness of our policy, we derive a reflecting diffusion with regime-switching (RDRS)
model for the performance measures under our designed policy to offer services to different users in
a cost-effective, efficient, and fair way. Based on this RDRS model, our proposed policy is effectively
implemented with numerical simulations for some case studies of the system in Figures 1–2. Concerning
the numerical scheme through Monte Carlo simulation for a Brownian motion driven stochastic system,
readers are referred to Dai [10] and references therein for more details.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 507

Figure 3. A generalized supply chain with finance transactions via stable digital currencies. In this
figure, ATO means assemble to order, MTO means make to order, DD means digital dollar, DC/EP
means (China Central Bank) digital currency/electronic payment, CBDC means (European) Central
Bank digital currency, transmission control protocol means transmission control protocol, IoB means
Internet of Blockchains, Asym and sym mean asymmetry and symmetry, respectively.

Since dynamic resource pricing is our major concern, we give some discussions about the concept
of stable digital currency and its applications. More precisely, stable digital currency is a digital token
used in digital informational and data network systems. It can be traced back to the optimal pricing
of bits (or ports) in telecommunication managements and admission controls through token buffers in
communication networks around the mid and late 90s by Bell Labs’ researchers (see e.g., the related
discussions in Dai [6], Elwalid and Mitra [15]). Along this line, Nakomoto [20] extended the con-
cept of bit (or port) to the bitcoin in the year of 2008 and Buterin [4] further enhanced this concept
to Ethereum in the year of 2013. Note that, for both the bitcoin and the Ethereum, they are still not
real stable digital currencies. However, during this evolvement, Dai (see e.g., Maker [18]) made his
effort to endow the Ethereum with real value and invented DaiCoin. Since then, this concept and lawful
implementations are becoming more and more popular with the emergence of US digital dollar (DD),
(China Central Bank) digital currency/electronic payment (DC/EP), and (European) Central Bank dig-
ital currency (CBDC). The latest application of dynamic resource pricing can be found in a metaverse
system (see e.g., Dai [11]).

To show the importance of stable digital currency, an example based on a supply chain finance service
system is displayed in Figure 3. The business model presented in this example can be considered as a
generalized online digital payment system with service lead time involvements and consists of 4 typical
service stages to make goods eventually delivered to customers: raw material procurements, make to
order (MTO), assemble to order (ATO), and agent sales (see e.g., the upper-half of Figure 3 where agents
are further classified into two levels of suppliers). Usually, during the procurement and service stages,
the cash cannot be paid until the delivery of procured products. Thus, the bank notes, e-bill, receipt,
etc. through credit, mortgage, and the third party warrant as shown in the middle of Figure 3 are widely
used in real-world practice. To improve the efficiency and security of this type of payments, the stable

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

508 W. Dai

digital currency such as US DD, (China) DC/EP, and (European) CBDC as designed in Figure 3 is a
suitable choice. Furthermore, as shown in the upper-right corner of Figure 3, data information among
companies can be asymmetric or symmetric. Frequently, they are not exchangeable. Thus, our policy
can be integrated into this system to develop a smart online algorithm in terms of dynamic resource
pricing to solve this problem. From the lower-half design in Figure 3, we can see that our supply chain
system can be mapped into and interact with an information system through wireless 5G/6G network or
wireline IP network (and even future IoB). Then, many online payments and transactions with lawful
services can be handled as shown in the middle of Figure 3.

The remainder of this paper is organized as follows. In Section 2, we formulate our system model
for dynamic resource pricing via stable digital currency. In Section 3, we present our main theorem
based on a 3-stage (i.e., users-selection, dynamic pricing, and resource-competition scheduling) policy.
A corresponding general CNN based algorithm flow chart is also presented in this section. In Section 4,
we present two illustrative policy examples. In Section 5, we conduct simulation case studies to show
the effectiveness of our policy. In Section 6, we theoretically prove our main theorem. In Section 7, we
give the conclusion of this paper.

2. System model

In this section, we present our service model with dynamic resource pricing capability. It owns V number
of service pools associated with a set of positive integers V ≡ {1, . . . , V} and owns J number of queues
for J-parallel users corresponding to a set of positive integersJ ≡ {1, . . . , J}). Furthermore, we assume
that the buffer storage in each queue is nonnegative. Each pool owns Jv number of flexible parallel-
servers with v belonging to a positive integer set V . Let the prime denote the transpose of a vector
or a matrix. Then, associated with the queues, there is a J-dimensional arrival process A = {A(t) =

(A1(t), . . . , AJ (t))′, t ≥ 0} and it is called a data packet arrival process. In this situation, Aj (t) for each
j ∈ J , t ≥ 0, and some positive integer n ∈ {1, 2, . . .} is the number of data packets that arrive at the jth
queue during time interval (0, t]. In addition, in a real world service system such as a banking service
or a supply chain system, the associated input ethereum/cash flows and supply/demand processes can
be digitalized and mapped into the data packet based framework. The size of a data packet is a random
number Z ∈ {1, 2, . . .}. Our system is assumed under an external random environment driven by a
stationary FS-CTMC U = {U(t), t ∈ [0,∞)} with a finite state space K ≡ {1, . . . , K}, whose generator
matrix is given by G = (gil) with i, l ∈ K, and

gil =

{
−W(i) if i = l,
W(i)qil if i ≠ l,

(2.1)

where W(i) is the holding rate for the continuous time chain staying in a state i ∈ K and Q = (qil) is the
corresponding transition matrix of its embedded discrete-time Markov chain (see e.g., Resnick [24]).
Moreover, define gn for each nonnegative integer n ∈ {0, 1, . . .} by:

g0 ≡ 0, gn ≡ inf{t > gn−1 : U(t) ≠ U(t−)}. (2.2)

Note that, the external random environment may be caused by different factors (see e.g., the explanations
in Choudhury et al. [5], Dai [6], Wang and Moayeri [27]). Here, in our blockchained case, the FS-
CTMC U(·) may be considered as a history-data dependent system randomly evolving parameter for
a targeted stationary random variable U(∞), which can be generated by (or approximated through) a
conditional mean defined process, i.e.,

U(t) = E
[
U(∞)

���Ft

]
, (2.3)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 509

where {Ft , t ∈ [0,∞)} is a filtration generated by blockchain history information. For example, when
the blockchain database read and write (R/W) times are exponentially distributed, the martingale rep-
resentation theorem for a jump-diffusion process (see e.g., Applebaum [1]) can be applied to (2.3) to
generate the required FS-CTMC assumption. Then, we can model the arrival process Aj (·) for each
positive integer j ∈ J as a big data flow stream through a TSRRP as in Dai [8]. More precisely, the
process Aj (gn + ·) for each n ∈ {0, 1, . . .} is a counting process corresponding to a (conditional) delayed
renewal reward process with arrival rate _j (U(gn)) and mean reward mj (U(gn)) associated with finite
squared coefficients of variations U2

j (U(gn)) and Z2
j (U(gn)) during time interval [gn, gn+1).

Now, we let {uj (k), k = 1, 2, . . .} be the sequence of times between the arrivals of the (k − 1)th and
the kth reward batches of packets at the jth queue. The associated batch reward is given by wj (k) and
all the data packets arrived with it are indexed in certain successive order. Therefore, we can present
the renewal counting process corresponding to the inter-arrival time sequence {uj (k), k = 1, 2, . . .} for
each j ∈ J as follows,

Nj (t) = sup

{
n ≥ 0 :

n∑
k=1

uj (k) ≤ t

}
. (2.4)

Thus, we can restate the definition of an TSRRP Aj (·) quantitatively through the expression,

Aj (t) =
Nj (t)∑
k=1

wj (k). (2.5)

Each data packet will first get service in the system and then leave it. The service is managed by a
blockchain. In this blockchain, the service for a data packet is composed of two parts: security checking
and policy computation (or real data payload transmission). After completing the service, the security
information and the policy (or the transmission result) will be stored and copied to all the participating
partner nodes for storage and in the meanwhile to produce nonce values and private keys. Moreover,
we denote {vj (k), k = 1, 2, . . .} to be the sequence of successive arrived packet lengths at queue j,
which is assumed to be a sequence of strictly positive i.i.d. random variables with average packet length
1/`j ∈ (0,∞) and squared coefficient of variation V2

j ∈ (0,∞). In addition, we suppose that all the inter-
arrival and service time processes are mutually (conditionally) independent when the environmental
state is fixed. Associated with each j ∈ J and each nonnegative constant h, we employ Sj (·) to denote
the renewal counting process corresponding to {vj (k), k = 1, 2, . . .}. In other words,

Sj (h) = sup

{
n ≥ 0 :

n∑
k=1

vj (k) ≤ h

}
. (2.6)

Define Qj (t) to be the jth queue length with j ∈ J at each time t ∈ [0,∞) and Dj (t) to be the number of
packet departures from the jth queue in (0, t]. Therefore, the queueing dynamics governing the evolving
of the internal data flow in and out within our unified service platform can be modeled by:

Qj (t) = Qj (0) + Aj (t) − Dj (t), (2.7)

where each queue is assumed to have an infinite storage capacity to buffer data packets (jobs) arrived
from a given user.

Note that, in a DaiCoin and blockchain based mortgage system (see e.g., Maker [18]), Qj (t) is the
number of Ethereums available at time t. In this case, we need to dynamically determine how many Dais
should be loaned to customer j for each Ethereum at time t according to the value of Q(t). Similarly,
in a banking system, Qj (t) can be the number of loan demands waiting at time t. In this case, we need

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

510 W. Dai

to determine what is the loan interest rate at time t according to the value of Q(t). Furthermore, in
communication and cloud-computing based service systems, we need to price the bit service ratio at
time t according to the value of Q(t). In all, we need to dynamically price our service in a real-world
system according to the evolving of Q(t) with the evolution of time t. For convenience, we will use the
unified terminology “price Pj (t)” to denote the price (the number of Dais or interest ratio) associated
with Qj (t) and U(t) at time t. In economics, there are different pricing functions with respect to Q(t)
and U(t) (see e.g., Dai and Jiang [13]). Here, we assume that Pj (t) is a positive function in terms of
Qj (t) and U(t), i.e.,

Pj (t) = fj (Qj (t),U(t)). (2.8)

Note that, Pj (t) is a specific value at time t for given values of Qj (t) and U(t). In general, Pj (t) is a
random variable at time t since both Qj (t) and U(t) are random variables at time t. From the expression
of (2.8), we can see that the price also depends on the random environment movement (e.g., the season’s
movement). In addition, we suppose that fj (·, ·) in (2.8) is Lipschitz continuous with respect to Qj (t).
Then, we can introduce a utility (or a hash) function with respect to the valued queue length Pj (t)Qj (t)
for user j ∈ J at each service pool v ∈ V as follows,

Uvj (P(t)Q(t),Λ(t)) with P(t)Q(t) = (P1(t)Q1 (t), . . . , PJ (t)QJ (t)), (2.9)

where P(t) = (P1(t), . . . , PJ (t)) and Λ(t) = (Λ1(t), . . .ΛJ (t)). Moreover, Λj (t) for each t ∈ [0,∞]
and j ∈ J is the summation of all service rates allocated to the jth user at time t from all possible pools
and servers. Here, we remark that, Λj (t) may be given in a feedback control form and it depends on the
current price P(t), the current queue length Q(t), and the system state U(t) at a given time t. In other
words, we have that Λj (t) = Λj (P(t)Q(t),U(t)). Furthermore, we note that, the upper case Λj (t) used
here denotes service capacity allocation process. It is not directly related to the lower case _j as used in
(6.3) of Subsubsection 6.1.3, which denotes the nominal arrival rate for user j.

Now, we define W(t) and Wj (t) to be the (expected) total workload in the system at time t and the
one associated with user j at time t, to wit,

W (t) =
J∑

j=1
Wj (t), Wj (t) =

Qj (t)
`j

. (2.10)

In the following study, we will use W(t) and Q(t) as performance measures, f = (f1, . . . , fJ) in (2.8)
as pricing function, and {Uvj, j ∈ J , v ∈ V} in (2.9) as utility (or hash) functions. Based on these
measures and functions, we can propose a joint dynamical pricing and rate scheduling policy (P,Λ)
with users-selection at each time point for different service pools and servers to all the users. Under the
policy, the total workload W(t) and its corresponding total cost are minimized, where the total cost is
a summation of costs serving all users in certain sense. For an exact definition of the total cost, it is
given in (3.22) though the so-called dual-costs. Furthermore, we assume that the available resources
from different pools and servers can be flexibly allocated and shared between the system and users, i.e.,
the system operates under a concurrent resource occupancy service regime. Based on these facts, we
can define Tj (t) to be the cumulative amount of service given to the jth queue up to time t, i.e.,

Tj (t) =
∫ t

0
Λj (P(s)Q(s),U(s))ds. (2.11)

Hence, if we let Sj (t) be the total number of jobs (packets) that finishes service in the system by time t,
we know that Dj (t) = Sj (Tj (t)).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 511

Figure 4. In this simulation, the number of simulation iterative times is N = 6, 000, the simulation
time interval is [0, T] with T= 20, which is further divided into n = 5, 000 subintervals as explained in
Subsection 5. Other values of simulation parameters introduced in Definition 3.1 and Subsubsection 4
are as follows: initialprice1 = 2.25, initialprice2 = 1.5, initialprice3 = 2.25, upperboundprice1 = 4,
upperboundprice2 = 2, upperboundprice3 = 4, lowerboundprice1 = 0.49, lowerboundprice2 = 0.7,
lowerboundprice3 = 0.49, queuepolicylowerbound1 = 0, queuepolicylowerbound2 = 0, queuepolicy-
lowerbound3 = 0, _1 = 10/3, _2 = 5, _3 = 10/3, m1 = 3, m2 = 1, m3 = 3, `1 = 1/10, `2 = 1/20,
`3 = 1/10, U1 =

√
10/3, U2 =

√
20, U3 =

√
10/3, V1 =

√
10, V2 =

√
20, V3 =

√
10, Z1 = 1, Z2 =

√
2,

Z3 = 1, d1 = d2 = d3 = 1, 000, \1 = −1, \2 = −1.2, \3 = −1.

3. Main theorem

TSRRPs can effectively model big data arrival streams. However, it is difficult to directly conduct the
analysis of the associated physical queueing model in (2.7) or its related physical workload model in
(2.10) due to the non-Markovian characteristics of TSRRPs. Thus, in this paper, we will develop a
scheme by applying the well-known heavy traffic approximation and modeling technique to establish
the RDRS model corresponding to our newly designed game-competition based dynamic resource pric-
ing and scheduling policy by considering our queueing system under the asymptotic regime, where it
is heavily loaded (load balanced), i.e., under the so-called heavy traffic condition. Furthermore, we
will prove the correctness of RDRS modeling via diffusion approximation while we will also show the
effectiveness of the identified model for our newly proposed pricing and scheduling policy by presenting
simulation case studies. The corresponding simulation results are displayed in Figures 4–5 (as follows)
and Figure 11 and their interpretations are presented in Subsection 5.

3.1. RDRS model

In this subsection, we first present the basic idea of our main claim in terms of our RDRS modeling
under a smart contract policy. Second, for convenience, we introduce the definition of RDRS model.
More precisely, for each t ≥ 0 and j ∈ J , we introduce two sequences of diffusion-scaled processes:
Q̂r (·) and Ŵ r (·) by:

Q̂r
j (t) ≡

Qr
j (r2t)

r
, Ŵ r (t) ≡ W r (r2t)

r
, (3.1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

512 W. Dai

Figure 5. In this simulation, the number of simulation iterative times is N = 6, 000, the simula-
tion time interval is [0, T] with T= 20, which is further divided into n = 5, 000 subintervals as
explained in Subsection 5. Other values of simulation parameters introduced in Definition 3.1 and
Subsubsection 4 are as follows: initialprice1 = 1, initialprice2 = 1, initialprice3 = 1, upperbound-
price1 = 1, upperboundprice2 = 1, upperboundprice3 = 1, lowerboundprice1 = 1, lowerboundprice2
= 1, lowerboundprice3 = 1, queuepolicylowerbound1 = 0, queuepolicylowerbound2 = 0, queuepolicy-
lowerbound3 = 0, _1 = 10/3, _2 = 5, _3 = 10/3, m1 = 3, m2 = 1, m3 = 3, `1 = 1/10, `2 = 1/20,
`3 = 1/10, U1 =

√
10/3, U2 =

√
20, U3 =

√
10/3, V1 =

√
10, V2 =

√
20, V3 =

√
10, Z1 = 1, Z2 =

√
2,

Z3 = 1, d1 = d2 = d3 = 1, 000, \1 = −1, \2 = −1.2, \3 = −1.

where {r, r ∈ R} is supposed to be a strictly increasing sequence of positive real numbers and tends to
infinity. Then, our main claim can be presented as follows.

The sequence of 2-tuple scaled processes in (3.1) corresponding to a game-competition based
dynamic resource pricing and scheduling policy with users’ selection, which is designed in the sub-
sequent subsection, converges jointly in distribution. More precisely, under the heavy traffic condition
described in Section 6, we have that:

(Q̂r (·), Ŵ r (·)) ⇒ (Q̂(·), Ŵ (·)) along r ∈ R, (3.2)

where Ŵ (·) is presented by an RDRS model and Q̂(·) is an asymptotic queue policy process with
dynamic pricing globally over [0,∞) through a saddle point to zero-sum game-competition problem
and a Pareto minimal-dual-cost Nash equilibrium point to a non-zero-sum game-competition problem.

Definition 3.1. A u-dimensional stochastic process Ẑ (·) with u ∈ J is claimed as an RDRS with oblique
reflection if it can be uniquely represented as:{

Ẑ (t) = X̂ (t) +
∫ t
0 R(U(s), s)dŶ (s) ≥ 0,

dX̂ (t) = b(U(t), t)dt + fE (t)dĤE (t) + fS (t)dĤS (t).
(3.3)

Furthermore, b(U(t), t) = (b1(U(t), t), . . . , bu(U(t), t)′ is a u-dimensional vector, fE (t) and fS (t) are
u × J matrices, R(U(t), t) with t ∈ R+ is a u × u matrix, and (Ẑ (·), Ŷ (·)) is a coupled almost surely

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 513

continuous solution of (3.3) with the following properties for each j ∈ {1, . . . , u},

Ŷj (0) = 0;
Each component Ŷj (·) of Ŷ (·) = (Ŷ1(·), . . . , Ŷu(·))′ is non-decreasing;
Each component Ŷj (·) can increase only at a time t ∈ [0,∞) that Ẑj (t) = 0, i.e.,∫ ∞

0 Ẑj (t)dŶj (t) = 0.

In addition, a solution to the RDRS in (3.3) is called a strong solution if it is in the pathwise sense and
is called a weak solution if it is in the sense of distribution.

In terms of the well-posedness of an RDRS, readers are referred to a general discussion in Dai [7].
Furthermore, in Definition 3.1, the stochastic processes BE (·) and BS (·) are, respectively, two J-
dimensional standard Brownian motions, which are independent each other. For each state i ∈ K and
a time t ∈ [0,∞), the nominal arrival rate vector _(i), the mean reward vector m(i) , the nominal
throughput vector d(i), and a constant parameter vector \ (i) are given as follows,

_(i) = (_1(i), . . . ,_J (i))′,
m(i) = (m1(i), . . . , mJ (i))′,
d(i) = (d1(i), . . . , dJ (i))′ ,
\ (i) = (\1(i), . . . , \J (i))′.

(3.4)

The covariance matrices are given by:

ΓE (i) =

(
ΓE

kl (i)
)

J×J
≡ diag

(
_1(i)m2

1 (i)Z
2
1 (i) + _1(i)m2

1 (i)U
2
1 (i),

. . . ,_J (i)m2
J (i)Z2

J (i) + _J (i)m2
J (i)U2

J (i)
)
,

ΓS (i) =

(
ΓS

kl (i)
)

J×J
≡ diag

(
_1(i)m1(i)V2

1, . . . ,_J (i)mJ (i)V2
J
)
.

(3.5)

The Itô’s integrals with respect to the Brownian motions are defined as:

Ĥe(t) =

(
Ĥe

1 (t)
′, . . . , Ĥe

J (t)
) ′

with e ∈ {E, S},

Ĥe
j (t) =

∫ t
0

√
Γe

jj (U(s))dBe
j (s).

(3.6)

3.2. A 3-stage users-selection and dynamic pricing/rate scheduling policy

In this subsection, we design a 3-stage users-selection, dynamic pricing, and rate scheduling
policy through a 2-stage game-theoretic problem consisting of both zero-sum and non-zero-sum
game-competitions myopically at each time point for the purpose as stated in the introduction of the
paper.

3.2.1. General service capacity region

In our system, the jobs in the jth queue for each j ∈ J may be served at the same time by a random but at
most Vj (≤ V) number of service pools corresponding to selected utility (hash) functions at a particular
time point. With this simultaneous service mechanism, the total service rate for the jth queue at the time

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

514 W. Dai

point is the summation of the rates from all the pools possibly to serve the jth queue. More precisely,
we index these pools by a subset V (j) of the set V as follows,

V (j) ≡
{
v1j, . . . , vVj j

}
⊆ V , (3.7)

where, vlj with l ∈ {1, . . . , Vj} denotes the vljth pool in V (j). In the same way, a pool denoted by v ∈ V
can possibly serve at most Jv number of job classes represented by a subset J (v) of the set J , i.e.,

J (v) ≡
{

jv1, . . . , jvJv

}
⊆ J , (3.8)

where jvl with l ∈ {1, . . . , Jv} indexes the jvlth job class in J (v). To be more illustrative, let L be a J × V
constituent matrix such that:

Ljv =

{
1 if user j can be served by pool v,
0 otherwise.

Then, V (j) consists of all the non-zero components of the jth row of L while J (v) consists of all
the non-zero components of the vth column of L. Furthermore, in each pool v, there are Jv number of
flexible parallel-servers with rate allocation vector:

cv· (t) = (cjv1 (t), . . . , cjvJv (t))
′, (3.9)

where cjvl (t) with l ∈ {1, . . . , Jv} is the assigned service rate to the jvlth user at pool v and time t.
Similarly, corresponding to the l ∈ {1, . . . , Jv}, we will also denote the rate cjvl (t) by cvj (t) for an index
j ∈ J (v).

Note that, the vector in (3.9) takes values in a capacity region Rv (U(t)) driven by the FS-CTMC
U = {U(t), t ∈ [0,∞)}. For each given i ∈ K and v ∈ V , the set Rv (i) is a convex region containing
the origin and has Lv (> Jv) boundary pieces (see e.g., the upper-left graph in Figure 2). In this region,
every point is defined according to the associated users, i.e., x = (xjv1 , . . . , xjvJv). On the boundary of
Rv (i) for each i ∈ K, Jv of them are (Jv − 1)-dimensional linear facets along the coordinate axes. The
other ones denoted by Ov (i) are located in the interior of RJv

+ . It is called the capacity surface of Rv (i)
and it has Bv = Lv−Jv (> 0) linear or smooth curved facets hvk (cv· , i) on RJv

+ for k ∈ Uv ≡ {1, 2, . . . , Bv},
i.e.,

Rv (i) ≡
{
cv· ∈ RJv

+ : hvk (cv· , i) ≤ 0, k ∈ Uv

}
. (3.10)

Furthermore, if we define CUv (i) to be the sum capacity upper bound for Rv (i), the facet in the center
of Ov (i) is linear and is assumed to be a non-degenerate (Jv − 1)-dimensional region. More precisely,
it can be represented by

hvkUv (cv· , i) =
∑

j∈J (v)
cj − CUv (i), (3.11)

where kUv ∈ Uv is the index corresponding to CUv (i). In addition, we suppose that any one of the Jv
linear facets along the coordinate axes forms an (Jv−1)-user capacity region associated with a particular
group of Jv − 1 users if the queue corresponding to the other user is empty. In the same manner, we can
provide an interpretation for the (Jv − l)-user capacity region for each l ∈ {2, . . . , Jv − 1}.

Concerning the allocation of the service resources over the capacity regions to different users, we
adopt the so-called head of line service discipline. Equivalently, the service goes to the packet at the
head of the line for a serving queue where packets are stored in the order of their arrivals. The service

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 515

rates are determined by a utility (or hash) function of the environmental state, the price for each user,
and the number of packets in each of the queues. More precisely, for each state i ∈ K, a price vector
p = (p1, . . . , pJ), and a queue length vector q = (q1, . . . , qJ)′, we define Λ·j (pq, i) with j ∈ J to be the
rate vector (in qubits/ps) of serving the jth queue at all its possible service pools, i.e.,

Λ·j (pq, i) = cQ(pq)
·j (i) = (cQ(pq)

v1j (i), . . . , cQ(pq)
vVj j

(i)), (3.12)

where,

Q(pq) ≡ { j ∈ J , qj = 0}. (3.13)

Furthermore, let Λv· (pq, i) for each v ∈ V be the rate vector for all the users possibly served at service
pool v, i.e.,

Λv· (pq, i) = cQ(pq)
v· (i) = (cQ(pq)

jv1
(i), . . . , cQ(pq)

jvJv
(i)). (3.14)

Thus, cQ(pq)
vlj (i) = cQ(pq)

j (i) if the pool index vlj ∈ V (j) for an integer l ∈ {1, . . . , Vj} with j ∈ J while
the total rate used in (2.11) can be represented by:

Λj (P(s)Q(s),U(s)) =
∑

v∈V (j)
cQ(P(s)Q(s))

vj (U(s)). (3.15)

In the end, we impose the convention that an empty queue should not be served. Then, for each v ∈ V
and Q ⊆ J (e.g., a set as given by (3.13)), we can define:

cQjvl
(i) ≡

{
= 0 if jvl ∈ Q with l ∈ {1, . . . , Jv},
> 0 if jvl ∉ Q with l ∈ {1, . . . , Jv},

(3.16)

cQvj (i) ≡
Q
jvl

(i) for some j ∈ J (v) corresponding to each l ∈ {1, . . . , Jv}, (3.17)

Fv
Q(i) ≡

{
x ∈ Rv (i) : xjvl = 0 for all jvl ∈ Q with l ∈ {1, . . . , Jv}

}
. (3.18)

Therefore, for all Q such that ∅ $ Q ⊆ J (v) corresponding to each v ∈ V , if cQv· (i) is on the
boundaries of the capacity region Rv (i), we have the following observation that:{ ∑

j∈J (v) c∅vj (i) ≥ ∑
j∈J (v) cQvj (i),∑

j∈J (v)\Q c∅vj (i) ≤ ∑
j∈J (v)\Q cQvj (i),

(3.19)

where c∅v· (i) ∈ Ov (i) and ∅ denotes the empty set. Typical examples of our capacity region are referred
to the upper-left graph in Figure 2 for more details.

3.2.2. A dynamic pricing and scheduling policy with users-selection

For our purpose, we classify all the users into two types. More precisely, we first need to smartly choose
the users to be served. In other words, at each time point and for each pool v, we intelligently select a
set M(i, v) ≡ { jv1 (i), . . . , jvMv (i)} of users to get into services with jvl ∈ J and l ∈ {1, . . . , Mv} for a
given positive integer number Mv ≤ Jv. Among these chosen users, we need to conduct the dynamic
pricing while realize optimal and fair resource allocation. Therefore, we design a strategy by mixing a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

516 W. Dai

saddle point and a static Pareto maximal-utility Nash equilibrium policy myopically at each time point
t to a mixed zero-sum and non-zero-sum game problem for each state i ∈ K and a given valued queue
length vector pq = (p1q1, . . . , pJqJ)′. Here we note that p = (p1, . . . , pJ)′ is a given price vector and
q = (q1, . . . , qJ)′ is a given queue length vector such that pj = fj (qj, i) as in (2.8) for each j ∈ J and
i ∈ K. The saddle point corresponds the users’ selection while the Pareto optimality represents the
full utilization of resources in the whole game system and the Nash equilibrium represents the fairness
to all the chosen users. More exactly, in this game, there are J users (players) associated with the J
queues. Each of them has his own utility function Uvj (pjqj, cvj) with j ∈ J (v) and v ∈ V (j). This utility
function is a generalization of the existing one in Dai [6, 8, 9], Ye and Yao [28], and references therein.
Examples of such a utility function can be the so-called proportionally fair allocation, minimal potential
delay allocation, and (V,U)-proportionally fair allocation (see e.g., Ye and Yao [28]), which are widely
used in internet protocols and communication systems. Every chosen user selects a policy to maximize
his own utility function at each service pool v while the summation of all the users’ utility functions
and the summation of the utility functions associated with the chosen users are also maximized. To
wit, we can formulate a generalized users-selection, pricing, and resource-scheduling game problem by
extending the ones in Examples 4.1–4.3 as follows,

maxcv·∈Fv

Q (i) U00(pq, c) = U00 (pq, c∗(i)),
maxcv·∈Fv

Q (i) U0j (pq, c) = U0j (pq, c∗(i)), j ∈ M(i, v) ∩ (J (v) \Q(q)),
maxcv·∈Fv

Q (i) (−U0j (pq, c)) = −U0j (pq, c∗(i)), j ∈ (J (v) \Q(q)) \M(i, v))
(3.20)

while we have that:{
maxcv·∈Fv

Q (i) , j∈M(i,v) ⋂(J (v)\Q(q)) Uvj (pq, c) = Uvj (pq, c∗(i)),
maxcv·∈Fv

Q (i) , j∈ (J (v)\Q(q))\M(i,v) (−Uvj (pq, c)) = −Uvj (pq, c∗(i)).
(3.21)

Note that, the rate vector c in (3.20)-(3.21) is given by:

c = ((cj11 , . . . , cj1J1
), . . . , (cjV1 , . . . , cjVJV

)),

and the utility functions used in (3.20)-(3.21) are defined by:
U00(pq, c) =

∑
j∈J (v)\Q(q)

∑
v∈V (j) Uvj (pjqj, cvj),

U0j (pq, c) =
∑

v∈V (j) Uvj (pjqj, cvj) for each j ∈ J (v) \Q(q),
Uvj (pq, c) = Uvj (pjqj, cvj) for each j ∈ J (v) \Q(q) and v ∈ V (j).

Then, by extending the concepts of Nash equilibrium point, saddle point, and Pareto optimality in
Dai [8, 9], Marchi [19], Nash [21] and Rosen [25], we have the following definition concerning
a utility based 2-stage game-theoretic policy via a saddle point to a zero-sum game problem and a static
Pareto maximal-utility Nash equilibrium point to a non-zero-sum game problem myopically at each
particular time point.

Definition 3.2. For each state i ∈ K, a price vector p ∈ RJ
+, and a queue length vector q ∈ RJ

+ such that
(2.8) is satisfied, we call the rate vector:

c∗(i) ∈ FQ(q) (i) ≡ F1
Q(q) (i) × . . . × FV

Q(q) (i),

a utility based 2-stage game-theoretic policy if it is a solution to the game problem in (3.20)-(3.21), which
is obtained by firstly obtaining a saddle point to a zero-sum game problem and secondly obtaining a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 517

static Pareto maximal-utility Nash equilibrium point to a non-zero-sum game problem, such that, for
each j ∈ J (v) \Q(q) and any given c(i) ∈ FQ(q) (i), the following facts are true,

U00(pq, c∗(i)) ≥ U00(pq, c(i)),
Uvj (pq, c∗(i)) ≥ Uvj (q, c∗·−j (i)) if j ∈ M(i, v) ∩ (J (v) \Q(q)), v ∈ {0} ∪ V (j),
−Uvj (pq, c∗(i)) ≥ −Uvj (pq, c∗·−j (i)) if j ∈ (J (v) \Q(q)) \M(i, v), v ∈ {0} ∪ V (j),
c∗·−j (i) ≡ (c∗·1(i), . . . , c

∗
·j−1(i), c·j (i), c

∗
·j+1(i), . . . , c

∗
·J (i)).

3.3. Main theorem under the policy

Before stating our main theorem, we first introduce another concept of the so-called 2-stage dual-cost
game-theoretic policy via a saddle point to a zero-sum game problem and a minimal-dual-cost Pareto
Nash equilibrium point to a non-zero-sum game problem myopically at each given time point for a given
price parameter p ∈ RJ

+. Then, based on the 2-stage dual-cost game-theoretic policy, we can inversely
obtain the price vector and determine the target rate vector. To do so, we formulate a 2-stage minimal-
dual-cost game problem in (3.22), which is corresponding to the utility based one in (3.20)-(3.21). More
precisely, for a given i ∈ K, a price parameter p ∈ RJ

+, a rate vector c ∈ R(i) ≡ R1 (i) × . . . ×RV (i),
and a parameter w ≥ 0, the 2-stage minimal-dual-cost game problem can be presented as follows:

minq∈RJ

+
C00(pq, c),

minqj∈R+, j∈M(i,v) ⋂(C (c) ⋂J (v)) Cvj (pq, c),
minqj∈R+, j∈ (C (c) ⋂J (v))\M(i,v) (−Cvj (pq, c)),

(3.22)

subject to ∑
j∈M(i,v) ⋂C (c)

qj

`j
≥ w,

where, the cost function Cvj (pq, c) for each j ∈ J (v) and v ∈ {0} ∪ V (j) is defined by:

C00(pq, c) =

∑
j∈C (c) ⋂J (v)

∑
v∈V (j) Cj (pjqj, cvj),

C0j (pq, c) =
∑

v∈V (j) Cvj (pjqj, cvj),
Cvj (pq, c) = Cvj (pjqj, cvj) = 1

`j

∫ qj

0
mUvj (pju,cvj)

mcvj
du for j ∈ C (c) ∩ J (v), v ∈ V (j),

and C (c) is an index set associated with the non-zero rates and non-empty queues, i.e.,

C (c) ≡
{

j : c·j ≠ 0 componentwise with j ∈ J
}
.

In other words, if the environment is in state i ∈ K, we try to find a queue state q for a given c ∈ R(i),
a price parameter vector p ∈ RJ

+, and a given parameter w ≥ 0 such that the individual user’s dual-costs
and the total dual-cost over the system are all minimized at the same time while the (average) workload
meets or exceeds w. Then, we have the following definitions.

Definition 3.3. For each state i ∈ K, a price vector p ∈ RJ
+, and a rate vector c(i) ∈ R(i), a queue

length vector q∗ ∈ RJ
+ is called a dual-cost based 2-stage game-theoretic policy if it is a solution to

the game problem in (3.22), which is obtained by firstly obtaining a saddle point to a zero-sum game

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

518 W. Dai

problem and secondly obtaining a static Pareto minimal-dual cost Nash equilibrium point to a non-
zero-sum game problem, such that, for each j ∈ C (c), v ∈ {0} ∪ V , and any given q ∈ RJ

+ with qj = 0
when j ∈ J \ C (c), we have that:

C00(pq∗, c(i)) ≤ C00(pq, c(i)),
Cvj (pq∗, c(i)) ≤ Cvj (pq∗−j, c(i)) if j ∈ M(i, v) ∩ (C (c) ∩ J (v)),
−Cvj (pq∗, c(i)) ≤ −Cvj (pq∗−j, c(i)) if j ∈ (C (c) ∩ J (v)) \M(i, v),
q∗−j ≡ (q∗1, . . . , q∗j−1, qj, q∗j+1, . . . , q∗J).

(3.23)

Note that, once we obtain the queue policy point q∗ with respect to the given price vector p from
Definition 3.3, we can inversely deduce the corresponding price policy vector p in terms of q∗, i.e.,
p = g(q∗) as in (2.8). This relationship can be used to design iterative algorithms in our numerical
simulations. Furthermore, in Definition 3.3, we have used more strict concept of “Pareto optimal Nash
equilibrium point”, this concept can be relaxed to “Pareto optimal point” and the related theoretical
discussion keeps true. In certain cases and when it is necessary, we can shift the Pareto optimal point
to the Pareto optimal Nash equilibrium point by some mapping techniques.

Definition 3.4. Let Q̂r,(P,G) (·) and Ŵ r,(P,G) (·) be the diffusion-scaled queue length and workload pro-
cesses, respectively, under an arbitrarily feasible dynamic pricing and rate scheduling policy (P, G)
satisfying the Lipschitz condition in (2.8). A vector process Q̂(·) is called an asymptotic dual-cost based
2-stage game-theoretic policy globally over the whole time horizon if, for any t ≥ 0 and v ∈ {0} ∪V (j)
with j ∈ J , we have that:

lim inf
r→∞

C00(P(t)Q̂r,(P,G) (t), dj (U(t))) ≥ C00(P(t)Q̂(t), dj (U(t))). (3.24)

Furthermore, for each j ∈ M(U(t), v, t) ∩ (C (c) ∩ J (v)), we have that:

lim inf
r→∞

Cvj (P(t)Q̂r,(P,G)
−j (t), dj (U(t))) ≥ Cvj (P(t)Q̂(t), dj (U(t))). (3.25)

In addition, for each j ∈ (C (c) ∩ J (v)) \M(U(t), v, t), we have that:

lim inf
r→∞

(
−Cvj (P(t)Q̂r,(P,G)

−j (t), dj (U(t)))
)
≥ −Cvj (P(t)Q̂(t), dj (U(t))). (3.26)

Note that, in (3.25)-(3.26) and for each j ∈ J , we have that:

Q̂r,(P,G)
−j (t) = (Q̂1(t), . . . , Q̂j−1(t), Q̂r,(P,G)

j (t), Q̂j+1 (t), . . . , Q̂J (t)). (3.27)

Next, let q∗(w, p, d(i)) be a dual-cost based 2-stage game-theoretic policy corresponding to the game
problem in (3.22) in terms of each given number w ≥ 0, p ∈ RJ

+, and i ∈ K at a given time t. Furthermore,
let p(w, q∗, d(i)) denote its corresponding inverse price vector with respect to q∗ and construct price
policy vector:

p∗(w, q∗, d(i)) = f (p(w, q∗, d(i))), (3.28)

such that the Lipschitz condition in (2.8) is satisfied. Then, our main theorem can be presented as follows.

Theorem 3.5. For the game-competition based users-selection, dynamic pricing, and scheduling policy
determined by (3.20)-(3.22) and (3.28) with Qr (0) = 0 and conditions (6.3)-(6.8) (that will be detailed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 519

in Section 6), the convergence in (3.2) is true. Furthermore, the limit queue length Q̂(·) and the total
workload Ŵ (·) in (3.2) have the relationship:{

Q̂(t) = q∗(Ŵ (t), P̂(t), d(U(t))),
P̂(t) = p∗(Ŵ (t), Q̂(t), d(U(t))),

(3.29)

where P̂(·) the inverse price vector process defined through (3.28) and Ŵ (·) is a 1-dimensional RDRS
in strong sense with:

b(i, t) =
∑

j∈⋃v∈V M(i,v,t)
\j (i)
`j

,
fE (t) = fS (t) = (f̂1(t), . . . , f̂J (t)) ,

f̂j (t) =

{
1
`j

if j ∈ ⋃
v∈V M(i, v, t),

0 otherwise,
R(i, t) = 1

(3.30)

for t ∈ [0,∞) and some constant \j (i) for each j ∈ ⋃
v∈V M(i, v, t). In addition, there is a common

supporting probability space, under which and with probability one, the limit queue length Q̂(·) is an
asymptotic dual-cost based 2-stage game-theoretic policy globally over time interval [0,∞). Finally,
the limit workload Ŵ (·) is also asymptotic minimal in the sense that:

lim inf
r→∞

Ŵ r,(P,G) (t) ≥ Ŵ (t). (3.31)

The proof of Theorem 3.5 will be given in Section 6.

3.4. CNN-based algorithm flow chart

Based on the policy derived in Theorem 3.5, we can design a CNN based algorithm flow chart in
Figure 6.

More precisely, for a constant T ∈ [0,∞), we divide the interval [0, T] equally into n subintervals
{[ti, ti+1], i ∈ {0, 1, . . . , n − 1}} with t0 = 0, tn = T , and Δti = ti+1 − ti = T

n . Furthermore, let

ΔF (ti) ≡ F (ti) − F (ti−1), (3.32)

for each process F (·) ∈ {BE (·), BS (·), Ŵ (·), Ŷ (·)}. Then, we can develop an iterative procedure as
shown in Figure 6 to conduct RDRS model based simulation studies and to illustrate the efficiency of
our designed policy. In this algorithm, the main part is the policy computing concerning users-selection,
dynamic pricing via queueing strategy, and rate scheduling in the federated learning center at each time
ti+1 for given initial conditions at t0. As shown in Figure 2 and as mentioned in Introduction of this
paper, our game-theoretic problem is a J × V-dimensional problem. In general, an explicit solution is not
available. Thus, we need a numerical method as designed in Figure 6 to solve the 2 -stage game-theoretic
problem. The target is to get an associated saddle point to its corresponding zero-sum game problem
and a Nash equilibrium point to its non-zero-sum game problem. In real-world system, J and V may
take large numbers and our CNN algorithm exhibits big model behavior. Since our designed platform
is a cloud computing (or even the near future quantum-cloud computing) based one, this big model can
be effectively solved. However, to illustrate the usage of our designed algorithm and demonstrate the
efficiency of our designed policy, we choose smaller J and V to conduct simulation case studies, which
is presented in Sections 4–5.

Finally, note that the limit total workload Ŵ (ti+1) in Figure 6 can be replaced by the total workload
in a real-world system if the input load of the system is close to heavy traffic (that will be detailed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

520 W. Dai

Figure 6. CNN based algorithm flow chart.

in Section 6). Furthermore, for the CNN algorithm flow chart designed in Figure 6, there are actually
4 processing stages in the federated learning center. The 2-stage game-theoretic problem is divided
into 3 stages with an additional Stage II(b) to handle the dynamic pricing. The Stage III is directly
corresponding to the integral relationship between the utility functions and their dual cost functions
in (3.22).

4. Three illustrative policy examples

To be more illustrative and as a preparation of the following simulation case studies, we here present
a 2-stage dynamic pricing and rate scheduling example and a 3-stage users-selection, dynamic pricing,
and rate scheduling example based on a single-pool service system as shown in Figure 2. Hence, we
will omit the pool index v.

4.1. The first example

The first example is corresponding to a 2-user case as shown in Figure 7, which can be used to model the
DaiCoin based digital payment system with two types of Ethereums (corresponding to two DaiCoins) as
in Maker [18]. It can also be used to model a MIMO wireless communication channel (i.e., a single base
station equipped with two antennas) shared by two-users or a quantum computer with two eigenmodes
(see e.g., Dai [9, 12]). In this case, we are interested in the problem about how to price the two users
and conduct the computing rate (i.e., power) resource allocation cooperatively inside a service system.
More precisely, we take V = 1 with J = 2 and assume that the state space of the FS-CTMC U(t) defined
in Subsection 2 consists only of a single state (i.e., U(t) ≡ 1 for all t ∈ [0,∞)). In a MIMO wireless
environment, this case is associated with the so-called pseudo static channels. Then, the capacity region
denoted by R is supposed to be a non-degenerate convex one confined by five boundary lines including
the two ones on x-axis and y-axis as shown in Figure 7. The capacity upper bound of the region satisfies
c1 + c2 = 2, 000. This region is corresponding to a degenerate fixed MIMO wireless channel of the
generally randomized one in Dai [6]. For each price vector p = (p1, p2) ∈ R2

+ = [0,∞) × [0,∞)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 521

Figure 7. A 2-stage processing flow chart of dynamic pricing and rate scheduling for a single pool
service system with 2-users.

corresponding to the process P(t) in (2.8) and the queue length vector q = (q1, q2) ∈ R2
+ = [0,∞) ×

[0,∞) corresponding to the process Q(t) defined in (2.7) at a particular time point, we take the utility
functions in terms of rate vector c = (c1, c2) ∈ R for user 1 and user 2, respectively, by:

U1(pq, c) = U1(p1q1, c1) = p1q1 ln(c1), U2(pq, c) = U2(p2q2, c2) = − (p2q2)2

c2
2

, (4.1)

where ln(·) is the logarithm function with the base e. Note that, the utility functions U1 and U2 in (4.1)
are called proportionally fair and minimal potential delay allocations, respectively, which are widely
used in communication systems Furthermore, in a (quantum) blockchain system, these utility functions
can be considered as generalized hash functions to replace the currently used random number generators
to generate partial nonce values and private keys, i.e., ((p1, p2), (q1, q2), (c1, c2)).

Example 4.1. For the upper graph case in Figure 7 and by the utility functions in (4.1), we can propose
a 2-stage pricing and rate-scheduling policy at each time point t ∈ [0,∞) by a Pareto maximal-utility
Nash equilibrium point to the following non-zero-sum game problem:

max
c∈R

Uj (pq, c) for each j ∈ {0, 1, 2} and a fixed pq ∈ R2
+, (4.2)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

522 W. Dai

Figure 8. A 3-stage processing flow chart of users-selection, dynamic pricing, and rate scheduling for
a single pool service system with 3-users.

where U0(pq, c) = U1(pq, c) + U2(pq, c). To wit, if c∗ = (c∗1, c∗2) is a solution to the game problem in
(4.2), we have that:

U0(pq, c∗) ≥ U0 (pq, c),
U1(pq, c∗) ≥ U1 (pq, c∗−1) with c∗−1 = (c1, c∗2),
U2(pq, c∗) ≥ U2 (pq, c∗−2) with c∗−2 = (c∗1, c2).

(4.3)

Furthermore, it follows from the inequalities in (4.3) that, if a game player’s (i.e., a user’s) rate service
policy is unilaterally changed, his utility cannot be improved.

Remark 4.2. Due to the non-degenerate assumption imposed in (3.10)-(3.11), the strictly positive outer
normal vector Z to the facet Ov with v= 1 at the point d∗v exists, which is as shown in Figure 7. Hence,
the so-called complete resource pooling condition (CRP) as introduced in Subsubsection 6.1.2 holds.
In this case, a so-called fixed point defined as a Pareto minimal Nash equilibrium point to a dual-cost
non-zero-sum game problem can be explicitly constructed, which is presented in (5.5). Interested readers
are also referred to Dai [8], Ye and Yao [28] for more related discussions.

4.2. The second example

The second example is by adding Stage 0 for users’ selection in Figure 8. Comparing with the first case
with J = 2, we here consider a 3-user case (i.e., J = 3) and add one more user selection layer. At each time
point, we choose two of the three users for service according to a zero-sum game competition policy.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 523

When any two users i, j ∈ {1, 2, 3} with i≠ j are selected, they will be served based on a non-zero-
sum game competition policy. The capacity upper bound of the corresponding capacity region satisfies
ci + cj = 2, 000 as in the first 2-user case. Furthermore, suppose that, at a particular time point, there is
a price vector p = (p1, p2, p3) ∈ R3

+ corresponding to the process P(t) in (2.8) and a queue length vector
q = (q1, q2, q3) ∈ R3

+ corresponding to the process Q(t) defined in (2.7). Then, for each (ci, cj) ∈ R,
the corresponding utility functions are taken as in (4.1) if i, j ∈ {1, 2}. However, if i= 3 or j = 3, the
corresponding utility function is taken to be the following one,

U3(pq, c) = U3(p3q3, c3) = p3q3 ln(c3). (4.4)

Example 4.3. For the second case corresponding to both the upper and lower graphs in Figure 8 and
by the utility functions in (4.1) and (4.4), we can design a 3-stage users-selection, pricing and rate-
scheduling policy myopically at each time point t ∈ [0,∞), which involves two steps as follows. First,
we choose two users for service by a saddle point policy via the solution to the zero-sum game problem,

max
c∈R

U0(pq, c), max
c∈R

U0j (pq, c), max
c∈R

(
−U0j1 (pq, c)

)
, max

c∈R

(
−U0j2 (pq, c)

)
, (4.5)

for each j ∈ {1, 2, 3}, j1 ∈ {1, 2, 3} \ { j}, j2 ∈ {1, 2, 3} \ { j, j1}, and a fixed pq ∈ R3
+, where,

U0(pq, c) = U1(pq, c) + U2(pq, c) + U3(pq, c),
U01(pq, c) = U1(pq, c) + U2(pq, c),
U02(pq, c) = U1(pq, c) + U3(pq, c),
U03(pq, c) = U2(pq, c) + U3(pq, c).

(4.6)

In other words, if c∗ = (c∗1, c∗2, c∗3) is a solution to the game problem in (4.5), and if

c∗−j =

(cj, c∗j1 , c

∗
j2) if j = 1,

(c∗j1 , cj, c∗j2) if j = 2,
(c∗j1 , c

∗
j2 , cj) if j = 3,

then, for a fixed pq ∈ R3
+, we have that:

U0(pq, c∗) ≥ U0(pq, c),
U0j (pq, c∗) ≥ U0j (pq, c∗−j),
−U0j1 (pq, c∗) ≥ −U0j1 (pq, c∗−j1),
−U0j2 (pq, c∗) ≥ −U0j2 (pq, c∗−j2).

(4.7)

Second, when two users corresponding to the summation U0j = Uk+Ul for an index j ∈ {1, 2, 3} with
two associated indices k, l ∈ {1, 2, 3} as in one of (4.6) are selected, we can propose a 2-stage pricing
and rate-scheduling policy at each time point by a Pareto maximal-utility Nash equilibrium point to the
non-zero-sum game problem for a fixed pq ∈ R3

+,

max
c∈R

U0j (pq, c), max
c∈R

Uk (pq, c), max
c∈R

Ul (pq, c). (4.8)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

524 W. Dai

Figure 9. A 3-stage processing flow chart of users-selection, dynamic pricing, and rate scheduling for
a service system with 2-pools and 3-users.

To wit, if c∗ = (c∗k , c
∗
l) is a solution to the game problem in (4.8), we have that:

U0j (pq, c∗) ≥ U0j (pq, c),
Uk (pq, c∗) ≥ U1(pq, c∗−k) with c∗−k = (ck , c∗l),
Ul (pq, c∗) ≥ Ul (pq, c∗−l) with c∗−l = (c∗k , cl).

(4.9)

4.3. The third example

The third example is corresponding to a case with 2 pools (i.e., V = 2) as shown in Figure 9.
In reality, this system is corresponding to a MIMO wireless communication system with two base

stations. Each of the base station is equipped with a single antenna. However, the two base stations can
cooperated each other to form a transmission channel with a capacity region as shown in Figure 9. The
rest of the illustration is similar to the one for the second example. Hence, we omit it here.

5. Simulation case studies via RDRS models

In this section, we conduct simulation case studies for Examples 4.1–4.3 presented in Section 4. The
simulation for the third example with 2-pools in Section 4 is similar to the one for Example 4.3. Hence,
we omit it here. The main point of these simulation studies is to illustrate our policies proposed in
the two examples outperform several policies in certain ways. These policies used for the purpose of
comparisons include an existing constant pricing policy, an existing 2D-Queue policy, a newly designed
randomly users’ selection stochastic pooling policy, and an arbitrarily selected dynamic pricing policy.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 525

As mentioned in Section 4, Examples 4.1–4.3 are corresponding to a single-pool system with two-users
and three-users, respectively. Thus, we will omit all the related pool index v. In an associated real-world
system, the parameter vectors p and q in (4.2) (or (4.5)) are the randomly evolving pricing process P(t)
in (2.8) and the queue length process Q(t) in (2.7). Hence, it is our concern of this section about how
to employ the RDRS performance model in Definition 3.1 to evaluate the usefulness of our proposed
myopic users-selection, dynamic pricing, and scheduling policies globally over the whole time horizon
[0,∞) for Examples 4.1–4.3. To interpret our numerical simulation implementations, we first identify
the corresponding dual-cost functions {Cj (q, c) as defined in (3.22) with j ∈ {1, 2, 3} for the associated
Uj (q, c) given in (4.1) and (4.4). More precisely,

C1(p1q1, c1) = 1

`1

∫ q1
0

mU1 (p1u,c1)
mc1

du =
(p1q1)2

2`1c1
,

C2(p2q2, c2) = 1
`2

∫ q2
0

mU2 (p2u,c2)
mc2

du =
2(p2q2)3

3`2c3
2

,

C3(p3q3, c3) = 1
`3

∫ q3
0

mU3 (p3u,c3)
mc3

du =
(p3q3)2

2`3c3
,

(5.1)

where 1/`j for all j ∈ {1, 2, 3} are average quantum packet lengths associated with the three users as
explained just before (2.6).

5.1. The simulation for example 4.1

Based on the first two dual-cost functions in (5.1), we can formulate a corresponding 2-stage minimal
dual-cost non-zero-sum game problem for a price parameter p ∈ R2

+ as follows,

min
q∈R2

+

Cj (pq, c) subject to
q1

`1
+ q2

`2
≥ w, (5.2)

for a fixed constant w> 0, a fixed c ∈ R, and all j ∈ {0, 1, 2} with C0 (pq, c) = C1(pq, c) + C2(pq, c).
Since Cj (pjqj, cj) for each j ∈ {1, 2} is strictly increasing with respect to pjqj (or simply qj), a Pareto
minimal dual-cost Nash equilibrium point to the problem in (5.2) must be located on the line where the
equality of the constraint inequality is true (i.e., q1/`1 + q2/`2 = w). Thus, we know that:

qj = `j

(
w −

q2−j+1

`2−j+1

)
with j ∈ {1, 2}. (5.3)

Hence, it follows from (5.3) that:

f̄ (q1) ≡
2∑

j=1
Cj (pjqj, cj) =

p2
1q2

1
2`1c1

+
2p3

2`
2
2

3c3
2

(
w − q1

`1

)3
. (5.4)

Then, by solving the equation mf̄ (q1)
mq1

= 0, we can get the minimal value of the function f̄ (q1) for each
p ∈ R2

+. More precisely, the unique Pareto minimal point q∗(p, w) = (q∗1, q∗2) (p, w) to the problem in
(5.2) can be explicitly given by:

q∗1(p, w) ≡ ḡ1(p, w) = 1
2

(
2w
`1

+ p2
1c3

2
2p3

2c1`
2
2

)
`2

1 −
√

1
4

(
2w
`1

+ p2
1c3

2
2p3

2c1`
2
2

)2
`4

1 − `2
1w2,

q∗2(p, w) ≡ ḡ2(p, q∗1(p, w), w) = `2

(
w − q∗1 (p,w)

`1

)
.

(5.5)

From the green curve in the upper-left graph of Figure 10 where p1 = p2 = 1 and w = 10, 000, we
can see that this point is close to the one corresponding to q1 = 0 and we can consider it as a Pareto

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

526 W. Dai

Figure 10. Pareto optimal Nash equilibrium policies with dynamic pricing, where, the Price1/10,000
in the lower-right graph means that Price1 is divided by 10,000.

minimal Nash equilibrium point near boundary. Another Nash equilibrium point is the intersection point
of the red and blue curves in the left graph of Figure 10. Obviously, this point is not a minimal total cost
point. However, we can use some transformation technique to shift the minimal point to this one and to
design a more fairly balanced decision policy. Nevertheless, for the purpose of this research in finding
the Pareto utility-maximization Nash equilibrium policy, we use the point in (5.5) as our decision policy.
In this case, for the price parameter p ∈ R2

+, we have:

C0(pq∗, c) ≤ C0 (pq, c),
C1(pq∗, c) ≤ C1 (pq∗−1, c) with q∗−1 = (q1, q∗2),
C2(pq∗, c) ≤ C2 (pq∗−2, c) with q∗−2 = (q∗1, q2).

(5.6)

Then, associated with a given queue length based Pareto minimal Nash equilibrium point in (5.5),
we can obtain the relationship between prices p1 and p2 as follows,

p2
1(q1, w)

p3
2(q1, w)

≡ ^(q1, w) =
(
2c1`

2
2

c3
2

) (
`2

1w2 + q2
1

`2
1q1

− 2w
`1

)
. (5.7)

From (5.7), we can see that there are different choices of dynamic pricing policies corresponding to
Pareto minimal Nash equilibrium point q∗(p, w) in (5.5). For the current study, we take

{
p1 (q1, w) = ^2(q1, w),
p2 (q1, w) = ^(q1, w),

(5.8)

whose dynamic evolutions with the queue length q1 are shown in the upper-right graph of Figure 10.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 527

Figure 11. In this simulation, the number of simulation iterative times is N = 6, 000, the simulation
time interval is [0, T] with T= 200, which is further divided into n = 5, 000 subintervals as explained in
Subsection 5. Other values of simulation parameters introduced in Definition 3.1 and Subsubsection 4
are as follows: initialprice1 = 9, initialprice2 = 3, lowerboundprice1 = 0.64, lowerboundprice2 = 0.8,
_1 = 10/3, _2 = 5, m1 = 3, m2 = 1, `1 = 1/10, `2 = 1/20, U1 =

√
10/3, U2 =

√
20, V1 =

√
10,

V2 =
√

20, Z1 = 1, Z2 =
√

2, d1 = d2 = 1, 000, c2
1 = c1

2 = 1, 500, \1 = −1, \2 = −1.2.

Next, by Theorem 3.5, we know that the coefficients of the 1-dimensional RDRS under our dynamic
pricing and game-based scheduling policy for the physical workload process Ŵ can be denoted by:

b̂ = \1/`1 + \2/`2, f̂E = f̂S = (1/`1, 1/`2) , R̂ = 1,

f̂ =

√(∑2
j=1 f̂

E
j

√
ΓE

jj

)2
+

(∑2
j=1 f̂

S
j

√
ΓS

jj

)2
.

(5.9)

Then, based on Ŵ , we can get the dynamic queueing policy by (5.5) and its associated dynamic pricing
policy through (5.8):

Q̂(t) = q∗(P̂(t), Ŵ (t)), P̂(t) = P̂(Q̂1 (t), Ŵ (t)). (5.10)

After determining the initial prices P̂(0) = (initialprice1, initialprice2), we suppose that
P̂(t) has the lower bound price protection functionality, i.e., P̂(t) ∈ [lowerboundprice1,∞) ×
[lowerboundprice2,∞). Corresponding to (5.8), this truncated price process still owns the Lipschitz
continuity as imposed in (2.8). Then, by combining the policy in (5.10) with the simulation algorithms
for RDRSs we can illustrate our policy in (5.10) is cost-effective in comparing with a constant pricing
policy, a 2D-Queue policy and an arbitrarily selected dynamic pricing policy. These simulation compar-
isons are presented in Figure 11 with different parameters. The number N of simulation iterative times
for these comparisons is 6,000 and the simulation time interval is [0, T] with T = 200, which is further
divided into n = 5, 000 subintervals. The first graph on the left-column in Figure 11 is the mean total
cost difference (MTCD) at each time point ti with i ∈ {0, 1, . . . , 5, 000} between our current dynamic

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

528 W. Dai

pricing policy in (5.10) and the constant pricing policy with P1(t) = P2(t) = 1 for all t ∈ [0,∞), i.e.,

MTCD(ti) =
1
N

N∑
j=1

(
C0(P̂(lj, ti)Q̂(lj, ti), d) − C0(P(lj, ti)Q(lj, ti), d))

)
, (5.11)

where lj denotes the jth sample path and the Q(lj, ti) in (5.11) is the queue length corresponding to
the constant pricing policy at each time point ti. The second graph on the left-column in Figure 11 is
the MTCD between our newly designed dynamic pricing policy in (5.10) and a 2D-Queue policy used
as an alternative comparison policy in Dai [8]. For this 2D-Queue policy, the constant pricing with
P1(t) = P2(t) = 1 is employed and the associated Q(t) is presented as a two-dimensional RDRS model
as in Dai [8]. The third graph on the left-column in Figure 11 is the MTCD between our current dynamic
pricing policy in (5.10) and an arbitrarily selected dynamic pricing policy given by:

P1(t) = lowerboundprice1 + 20

0.05+
√

Q1 (t)
,

P2(t) = lowerboundprice2 + 30
0.1+

√
Q2 (t)

(5.12)

with the associated queue policy Q(t) = Q̂(t). The first and second graphs on the right-column in
Figure 11 display the dynamics of Q̂(t) for both users. The third graph on the right-column in Figure 11
shows the price evolutions corresponding to two users. From the first graph in Figure 11, we can see
that the cost is relatively large if the initial prices are relatively high. All of the other comparisons in
Figure 11 show the cost-effectiveness of our policy in (5.10).

5.2. The simulation for example 4.3

Based on the three dual-cost functions in (5.1), we can first select any two of the three users for service
by formulating the following minimal dual-cost zero-sum game problem for a price parameter p ∈ R3

+,
a constant w> 0, and a fixed c ∈ R,

minq∈R3

+
C0(pq, c),

minq∈R3
+

C0j (pq, c) subject to q1/`1 + q2/`2 ≥ w,
minq∈R3

+

(
−C0j1 (pq, c)

)
subject to q1/`1 + q3/`3 ≥ w,

minq∈R3
+

(
−C0j2 (pq, c)

)
subject to q2/`2 + q3/`3 ≥ w,

(5.13)

where j ∈ {1, 2, 3}, j1 ∈ {1, 2, 3} \ { j}, and j2 ∈ {1, 2, 3} \ { j, j1}, and

C0(pq, c) = C1(p1q1, c1) + C2(p2q2, c2) + C3(p3q3, c3),
C01(pq, c) = C1(p1q1, c1) + C2(p2q2, c2),
C02(pq, c) = C1(p1q1, c1) + C3(p3q3, c3),
C03(pq, c) = C2(p2q2, c2) + C3(p3q3, c3).

(5.14)

In other words, if q∗ = (q∗1, q∗2, q∗3) is a solution to the game problem in (5.13), and if,

q∗−j =

(qj, q∗j1 , q

∗
j2) if j = 1,

(q∗j1 , qj, q∗j2) if j = 2,
(q∗j1 , q

∗
j2 , qj) if j = 3,

(5.15)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 529

then, for any two fixed p, c ∈ R3
+, we have that:

C0(pq∗, c) ≤ C0(pq, c),
C0j (pq∗, c) ≤ C0j (pq∗−j, c),
−C0j1 (pq∗, c) ≤ −C0j1 (pq∗−j1 , c),
−C0j2 (pq∗, c) ≤ −C0j2 (pq∗−j2 , c).

(5.16)

Furthermore, when two users corresponding to the summation C0j = Ck+Cl for an index j ∈ {1, 2, 3}
with two associated indices k, l ∈ {1, 2, 3} as in one of (5.13) are selected, we can propose a 2-stage
pricing and queueing policy at each time point by a Pareto minimal dual cost Nash equilibrium point to
the non-zero-sum game problem for two fixed p, c ∈ R3

+,

min
q∈R3

+

C0j (pq, c), min
q∈R3

+

Ck (pq, c), min
q∈R3

+

Cl (pq, c). (5.17)

To wit, if q∗ = (q∗k , q
∗
l) is a solution to the game problem corresponding to the two users, we have

that:
C0j (pq∗, c) ≥ C0j (pq, c),
Ck (pq∗, c) ≥ C1(pq∗−k , c) with q∗−k = (qk , q∗l),
Cl (pq∗, c) ≥ Cl (pq∗−l, c) with q∗−l = (q∗k , ql).

(5.18)

Thus, for the price parameter p ∈ R3
+ and each w ≥ 0, it follows from (5.13)-(5.16) and (5.17)-(5.18)

that our queueing policy (q∗1(p, w), q∗2(p, w), q∗3(p, w)) can be designed by:

{
q∗1 (p, w) = ḡ1(p1, p2, w),
q∗2 (p, w) = ḡ2(p1, p2, q∗1, w),

if C01(pq∗, c) ≤ min {C02(pq∗, c), C03(pq∗, c)} ,{
q∗1 (p, w) = ĝ1(p1, p3, w),
q∗3 (p, w) = ĝ3(p1, p3, q∗1, w),

if C02(pq∗, c) ≤ min {C01(pq∗, c), C03(pq∗, c)} ,{
q∗2 (p, w) = ḡ2(p3, p2, q∗3, w),
q∗3 (p, w) = ḡ1(p3, p2, w),

if C03(pq∗, c) ≤ min {C01(pq∗, c), C02(pq∗, c)} ,

(5.19)

where the function ḡ1 is given in (5.5) and ĝ1 is calculated in a similar way as follows,
ĝ1 (p1, p3, w) =

(p2
3`3w)/(`1c3)

(p2
1/`1c1)+(p2

3`3/`2
1c3)

,

ĝ3 (p1, p3, q1, w) = `3 (w − (q1/`1)) .
(5.20)

The intersection point of ĝ1 and ĝ3 in terms of q1 is a Pareto optimal Nash equilibrium point as shown
in the lower-left graph of Figure 10. Furthermore, based on (5.19)-(5.20), we can inversely determine
our pricing policy p = (p1, p2, p3) as follows,

{
p1(q∗1, w) = ^2(q∗1, w),
p2(q∗1, w) = ^(q∗1, w)

if C01(pq∗, c) ≤ min {C02(pq∗, c), C03(pq∗, c)} ,{
p1(q∗1, w) = s(q∗1) ˆ̂(q

∗
1, w),

p3(q∗1, w) = s(q∗1)
√
ˆ̂(q∗1, w)

if C02(pq∗, c) ≤ min {C01(pq∗, c), C03(pq∗, c)} ,{
p2(q∗3, w) = ^(q∗3, w),
p3(q∗3, w) = ^2(q∗3, w)

if C03(pq∗, c) ≤ min {C01(pq∗, c), C02(pq∗, c)} ,

(5.21)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

530 W. Dai

where, ^ is defined in (5.7) and ˆ̂ can be calculated in the same way as follows,

ˆ̂(q∗1, w) = `3c1

q∗1c3

(
w −

q∗1
`1

)
. (5.22)

Furthermore, s(q∗1) in (5.21) is a Non-negative function in terms of q∗1 and it is taken to be the unity in
the drawing of dynamic pricing evolving in the lower-graph of Figure 10 with w = 10, 000.

To show the cost-effectiveness of our queueing policy in (5.19) with its associated pricing policy in
(5.21), we present an arbitrarily selected stochastic pooling policy for the purpose of comparisons as
follows,

{
q∗1(p, w) = ḡ1(p1, p2, w),
q∗2(p, w) = ḡ2(p1, p2, q∗1, w)

if u ∈
[
0, 1

3

)
,{

q∗1(p, w) = ĝ1(p1, p3, w),
q∗3(p, w) = ĝ3(p1, p3, q∗1, w)

if u ∈
[1

3 , 2
3

)
,{

q∗2(p, w) = ḡ2(p3, p2, q∗3, w),
q∗3(p, w) = ḡ1(p3, p2, w)

if u ∈
[2

3 , 1
]

,

(5.23)

where u is a uniformly distributed random number.
After determining the initial price vector P̂(0) = (initialprice1, initialprice2, initialprice3), we

suppose that P̂(t) has the lower bound price protection and the upper bound constraint functionali-
ties, i.e., P̂(t) ∈ [lowerboundprice1, upperboundprice1) × [lowerboundprice2, upperboundprice2) ×
[lowerboundprice3, upperboundprice3). Corresponding to (5.21), this truncated price process still own
the Lipschitz continuity as imposed in (2.8). Then, by the similar explanations used for (5.11), we can
conduct the corresponding simulation comparisons for this example as shown in Figures 4–5. The cost
value evolution based on our queueing policy in (5.19) with its associated pricing policy in (5.21) is
shown in the first graph of the left-column in each of Figures 4–5. Its MTCD in (5.11) compared with the
arbitrarily selected stochastic pooling policy in (5.23) is displayed in the first graph of the right-column
in each of Figures 4–5. The cost value evolution based on our queueing policy in (5.19) with constant
pricing (i.e., p1 = p2 = p3) is shown in the second graph of the left-column in each of Figures 4–5. In
this constant pricing case, its MTCD in (5.11) compared with the arbitrarily selected stochastic pooling
policy in (5.23) is displayed in the second graph of the right-column in each of Figures 4–5. The MTCD
based on our queueing policy in (5.19) with its associated pricing policy in (5.21) and with the constant
pricing policy is shown in the third graph of the left-column in each of Figures 4–5. The price evolutions
for the three users are shown in the third graph of the right-column in each of Figures 4–5. In the special
case with parameters as shown in Figure 5, the three price evolutions are the same. Furthermore, the
MTCD between our dynamic pricing policy in (5.21) and the constant pricing policy is the number 0
as shown in the third graph of the left-column in Figure 5.

6. Justification of RDRS modeling

In this section, we theoretically prove the correctness of our RDRS modeling presented in Theorem 3.5.
To be convenient for readers, we first outline the proof for Theorem 3.5, which is a technical generaliza-
tion of the corresponding proofs in existing discussions in Dai [8, 9]. The major breakthrough in this
generalization is to incorporate the dynamic pricing functions in (2.8)-(2.9) in terms of both the queue
length Qj (t) with j ∈ {1, . . . , J} and the random environment U(t) into the proof. In Dai [8], we prove a
corresponding theorem for a generic game platform where the game-theoretic oriented resource schedul-
ing policy is a solely “win-win” fairly sharing non-zero-sum game oriented one, which is designed
for multiple resources-sharing and fairly competing users. The studied platform in Dai [8] consists
of multiple intelligent (quantum) cloud-computing pools and parallel-queues. The arrival data streams

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 531

associated with all the users are modeled by TSRRPs. Every user in the system can be served at the same
time by multiple service pools and in the meantime every service pool consisting of parallel-servers can
also provide services to multi-users simultaneously. The associated RDRS performance model is estab-
lished under the “win-win” fairly resources-sharing scheduling policy via diffusion approximation. The
study in Dai [8] is extended to the case for a “win-lose & win-win” 2-stage zero-sum and non-zero-sum
mixed game-theoretic scheduling policy based platform in Dai [9]. However, the study in Dai [9] is
still a 2-stage resources-competition and resources-sharing oriented one, which does not consider the
dynamic pricing issue. Therefore, in the discussions of the following two subsections for proving our
current Theorem 3.5, we incorporate the dynamic pricing functions in (2.8)-(2.9) into consideration,
which is along the line of the corresponding proof in Dai [9].

6.1. The required conditions

In this subsection, we present the required conditions in proving our RDRS modeling.

6.1.1. Conditions on utility functions

The utility functions can be either simply taken as the well-known proportionally fair and minimal
potential delay allocations as used in (4.1) for Example 5 or generally taken such that the existence
of a utility based 2-stage game-theoretic policy corresponding to the game problem in (3.20)-(3.21) is
guaranteed. More precisely, for each given p ∈ RJ

+, we can assume that Uvj (pjqj, cvj) for each j ∈ J (v)
and v ∈ V (j) is defined on RJ

+. It is second-order differentiable and satisfies:

Uvj (0, cvj) = 0,
Uvj (pjqj, cvj) = Φvj (pjqj)Ψv (cvj) is strictly increasing/concave in cvj for pjqj > 0,
Ψv (ajcvj) = Ψv (aj)Ψv (cvj) or Ψv (ajcvj) = Ψv (aj) + Ψv (cvj) for constant aj ≥ 0,
mUvj (pjqj ,cvj)

mcvj
is strictly increasing in pjqj ≥ 0,

mUvj (0,cvj)
mcvj

= 0 and limqj→∞
mUvj (pjqj ,cvj)

mcvj
= +∞ for each cvj > 0.

(6.1)

Furthermore, we suppose that {Uvj (pjqj, cvj), j ∈ J (v), v ∈ V (j)} satisfies the radial homogeneity
condition at each given time point t ∈ [0,∞). In other words, for any scalar a> 0, each q> 0, i ∈ K,
v ∈ V , and each jl ∈ M(i, v, t) with l ∈ {1, . . . , Mv}, its Pareto maximal utility Nash equilibrium point
for the game has the radial homogeneity:

cvjl (apq, i) = cvjl (pq, i). (6.2)

6.1.2. Complete resource pooling condition

Complete resource pooling (CRP) condition is commonly used in queueing network scheduling liter-
ature (see e.g., Stolyar [26], Ye and Yao [28]). Roughly speaking, under this condition, the network
service resources can completely be shared in certain way by all allowed users. There are different (but
essentially equivalent) ways to describe CRP condition (see e.g., Stolyar [26], Ye and Yao [28]). Here,
we adopt the way in Stolyar [26] to present our CRP condition. More precisely, let R̄v (i) for i ∈ K and
v ∈ V denote the boundary of Rv (i) in (3.10). Moreover, let R̄∗

v (i) for i ∈ K and v ∈ V denote the outer
(“north-east”) boundary of R̄v (i). Then, we have the following concepts.

A vector d∗v (i) with i ∈ K and v ∈ V is said to satisfy resource pooling (RP) condition if d∗v (i) ∈ R̄∗
v (i)

and the outer normal vector Z to R̄v (i) at d∗v (i) is unique (up to a scaling). In other words, the RP
condition holds if d∗v (i) lies in the (relative) interior of one of curved facets of R̄∗

v (i). Furthermore,
d∗v (i) is said to satisfy the CRP condition if it satisfies the RP condition and all components of the
corresponding normal vector Z are strictly positive.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

532 W. Dai

6.1.3. Heavy traffic condition

In addition, we introduce a sequence of independent Markov processes indexed by r ∈ R, i.e., {Ur (·), r ∈
R}. These systems all have the same basic structure as presented in the last section except the arrival
rates _r

jl (i) and the holding time rates Wr (i) for all i ∈ K, which may vary with r ∈ R. Here, we suppose
that they satisfy the heavy traffic condition:

r
(
_r

jl (i) − _jl (i)
)

mjl (i) → \jl (i) as r → ∞, Wr (i) = W(i)
r2 , (6.3)

where, \jl (i) ∈ R is some constant for each i ∈ K. Moreover, we suppose that the nominal arrival rate
_jl (i) is given by:

_jl (i)mjl (i) ≡ `jl djl (i), (6.4)

and djl (i) in (6.4) for jl ∈ M(i, v, t) with l ∈ {1, . . . , Mv} is the nominal throughput determined by:

djl (i) =
∑

v∈V (jl)
dvjl (i) and dvjl (i) = avjl d̄vjl (i), (6.5)

with dv· (i) ∈ Ov (i) that is corresponding to the dimension Mv. In addition, av· and d̄v· (i) are a Jv-
dimensional constant vector and a reference service rate vector, respectively, at service pool v, satisfying:

∑
jl∈M(i,v,t) ⋂J (v)

ajl = Jv, ajl ≥ 0 are constants for all jl ∈ M(i, v, t) ∩ J (v), (6.6)

∑
jl∈M(i,v,t)∩J (v)

d̄vjl (i) = CUv (i) and d̄vj1 (i) = d̄vjl (i) for all jl ∈ M(i, v, t) ∩ J (v). (6.7)

Remark 6.1. By (3.11), d̄v· (i) for each i ∈ K and v ∈ V (jl) can indeed be selected, which satisfy
the second condition in (6.7). Thus, the CRP condition is true. Hence, the nominal throughput d(i) in
(6.4) can be determined. One simple example that satisfies these conditions is to take avjl = 1 for all
jl ∈ M(i, v, t) ∩ J (v) and v ∈ V (jl). Thus, the conditions in (6.4)-(6.7) mean that the system manager
wishes to maximally and fairly allocate capacity to all users. Moreover, the design parameters _jl (i) for
all jl ∈ M(i, v, t) ∩ J and each i ∈ K can be determined by (6.4).

Next, we assume that the inter-arrival time associated with the kth arriving job batch to the system
indexed by r ∈ R is given by:

ur
jl (k, i) =

ûjl (k)
_r

jl (i)
for each jl ∈ M(i, v, t) ∩ J , k ∈ {1, 2, . . .}, i ∈ K, (6.8)

where the ûjl (k) does not depend on r and i. Moreover, it has mean one and finite squared coefficient of
variation U2

jl . In addition, the number of packets, wjl (k), and the packet length vjl (k) are assumed not to
change with r. Thus, it follows from the heavy traffic condition in (6.3) for the rth environmental state
process Ur (·) with r ∈ R that Ur (r2·) and U(·) equal to each other in distribution since they own the
same generator matrix (see e.g., the definition in pages 384–388 of Resnick [24]). Therefore, under the
sense of distribution, all of the systems indexed by r ∈ R in (3.1) has the same random environment
over any time interval [0, t].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 533

6.2. Proof of Theorem 3.5

First, it follows from the second condition in (6.3) that the processes Ur (r2·) for each r ∈ R and U(·)
are equal in distribution. Hence, without loss of generality, we can assume that:

Ur (r2t) = U(t) for each r ∈ R and t ∈ [0,∞). (6.9)

Thus, for each j ∈ J , r ∈ R and by the radial homogeneity of Λ(pq, i) of the policy in (6.2), we can
define the fluid and diffusion scaled processes as follows,

Er
j (·) ≡ Ar

j (r2·), (6.10)

T̄ r
j (·) ≡

∫ ·

0
Λj

(
P̄r (s)Q̄r (s),U(s), s

)
ds =

1
r2 T r

j (r2·), (6.11)

Q̄r
j (t) ≡ 1

r2 Qr
j (r2t), (6.12)

P̄r
j (t) = fj (Q̄r

j (t),U(t)), (6.13)

Ēr
j (t) ≡ 1

r2 Er
j (t), (6.14)

S̄r
j (t) ≡ 1

r2 Sr
j (r2t). (6.15)

Then, it follows from (2.7), (6.9), the assumptions among arrival and service processes that

Q̂r
j (·) =

1
r

Er
j (·) −

1
r

Sr
j (T̄ r

j (·)). (6.16)

Furthermore, for each j ∈ J , let

Êr (·) = (Êr
1(·), . . . , Ê

r
J (·))′ with Êr

j (·) =
1
r

(
Ar

j (r2·) − r2_̄r
j (·)

)
, (6.17)

Ŝr (·) = (Ŝr
1(·), . . . , Ŝ

r
J (·))′ with Ŝr

j (·) =
1
r

(
Sj (r2·) − `jr2·

)
, (6.18)

where

_̄r
j (·) ≡

∫ ·

0
mj (U(s), s)_r

j (U(s), s)ds =
1
r2

∫ r2 ·

0
mj (Ur (s), r2s)_r

j (Ur (s), r2s)ds. (6.19)

For convenience, we define

_̄r (·) =
(
_̄r

1(·), . . . , _̄
r
J (·)

) ′
. (6.20)

In addition, we let Q̄r (·), Ēr (·), S̄r (·), and T̄ r (·) be the associated vector processes. Then, for the
processes in (6.10)-(6.16), we define the corresponding fluid limit related processes,

Q̄j (t) = Q̄j (0) + _̄j (t, Zt (·)) − `jT̄j (t) for each j ∈ J , (6.21)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

534 W. Dai

where Zt (·) denotes a process depending on the external environment, i.e.,

_̄(t) =
(
_̄1(t), . . . , _̄J (t)

) ′ , _̄j (t) ≡
∫ t

0
mj_j (U(s), s)ds. (6.22)

Furthermore, we have that

T̄j (t) =

∫ t

0
Λ̄j (P̄(s)Q̄(s),U(s), s)ds, (6.23)

P̄(t) = f (Q̄(t),U(t)), (6.24)

where for each i ∈ K and t ∈ [0,∞), we have that,

Λ̄j (pq, i, t) =

Λj (pq, i, t) if qj > 0, j ∈ ⋃

v∈V M(i, v, t),
dj (i, t) if qj > 0, j *

⋃
v∈V M(i, v, t),

dj (i, t) if qj = 0.
(6.25)

Then, we have the following lemma concerning the weak convergence to a stochastic fluid limit
process under our game-competition based dynamic pricing and scheduling strategy.

Lemma 6.2. Assume that the initial queue length Q̄r (0) ⇒ Q̄(0) along r ∈ R. Then, the joint con-
vergence in distribution along a subsequence of R is true under our game-competition based dynamic
pricing and scheduling strategy in (3.20) and (3.28) with the conditions required by Theorem 3.5,(

Ēr (·), S̄r (·), T̄ r (·), Q̄r (·)
)
⇒

(
Ē(·), S̄(·), T̄ (·), Q̄(·)

)
. (6.26)

In addition, if Q̄(0) = 0, the convergence is true along the whole R and the limit satisfies:

Ē(·) = _̄(·), S̄(·) = `(·), T̄ (·) = c̄(·), Q̄(·) = 0, (6.27)

where _̄(·) is defined in (6.22), `(·) ≡ (`1, . . . , `J)′·, and c̄(·) is defined by:

c̄(t) = (c̄1 (t), . . . , c̄J (t))′ and c̄j (t) ≡
∫ t

0
dj (U(s), s)ds for each j ∈ J . (6.28)

Proof. First, by the proof of Lemma 1 in Dai [6] and the implicit function theorem, we can show that
the pricing function f constructed through (3.22), (3.20), and (3.28) can be assumed to be Lipschitz
continuous. Then, by extending the proof of Lemma 3 in Dai [6] and under the conditions in (6.1)-(6.2)
and the just illustrated Lipschitz continuity for f, we know that, if Λ(pq, i) ∈ FQ(i) for each i ∈ K is
a given utility based 2-stage game-theoretic policy corresponding to the game problem in (3.20) and
{plql, l ∈ R} is a sequence of valued queue lengths, which satisfies plql → pq ∈ RJ

+ as l → ∞. Then,
for each j ∈ J \Q(q) and v ∈ V (j), we have that:

Λvj (plql, i) → Λvj (pq, i) as l → ∞. (6.29)

Second, due to the proof of Lemma 7 in Dai [6], we only need to prove that a weak fluid limit on the
RHS of (6.26) satisfies (6.28). In doing so, we suppose that the weak fluid limit on the RHS of (6.26)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 535

corresponds to a subsequence of the RHS of (6.26), which is indexed by rl ∈ R with l ∈ {1, 2, . . .}.
Furthermore, it follows from (6.11), (2.11), and the discussion in the proof of Lemma 7 of Dai [6]
that the fluid limit process on the right-hand side of (6.26) is uniformly Lipschitz continuous almost
surely. Thus, our discussion can focus on a fixed sample path and each regular point t > 0 over an
interval (gn−1, gn) with n ∈ {1, 2, . . .} for T̄j with j ∈ J . More precisely, it follows from (6.21) that Q̄ is
differential at t and satisfies:

dQ̄j (t)
dt

= mj_j (U(t), t) − `j
dT̄j (t)

dt
(6.30)

for each j ∈ J . If Q̄j (t) = 0 for some j ∈ J , then it follows from Q̄j (·) ≥ 0 that

dQ̄j (t)
dt

= 0 which implies that
dT̄j (t)

dt
=

mj_j (U(t), t)
`j

= dj (U(t), t). (6.31)

If Q̄j (t) > 0 for the j ∈ J , there is a finite interval (a, b) ∈ [0,∞) containing t in it such that
Q̄j (s) > 0 for all s ∈ (a, b) and hence we can take sufficiently small X > 0 such that Q̄j (t + s) > 0 with
s ∈ (0, X). Furthermore, by (2.8), Pj (t + s) > 0. Now, let rl with l ∈ R be the subsequence R and let
Xl ∈ (0, X] be a sequence such that Xl → 0 as l → ∞ while Λj determined by a same group of users
over (0, Xl]. Then, it follows from (6.11) that:���� 1

Xl

(
T̄ rl

j (t + Xl) − T̄ rl
j (t)

)
− Λj (P̄(t)Q̄(t),U(t), t)

���� (6.32)

≤ 1
Xl

∫ Xl

0

���Λj (P̄rl (t + s)Q̄rl (t + s),U(t + s), t + s)

−Λj (P̄(t + s)Q̄(t + s),U(t + s), t + s)
���ds

+ 1
Xl

∫ Xl

0

��Λj (P̄(t + s)Q̄(t + s),U(t + s), t + s) − Λj (P̄(t)Q̄(t),U(t), t)
�� ds

→ 0 as l → ∞,

where, the last claim in (6.32) follows from the Lebesgue dominated convergence theorem, the
right-continuity of U(·), the Lipschitz continuity of Q̄(·), and the fact in (6.29). Since t is a regular
point of T̄ , it follows from (6.32) that:

dT̄j (t)
dt

=
dT̄j (t+)

dt
= Λ̄j (Q̄(t),U(t), t) for each j ∈ J , (6.33)

which implies that the claims in (6.23)-(6.25) are true.
Along the line of the proofs for Lemma 4.2 in Dai [8], Lemma 4.1 in Dai [9], and Lemma 7 in

Dai [6], it suffices to prove the claim that Q̄(·) = 0 in (6.27) holds for the purpose of our current paper.
In fact, for each i ∈ K and l ∈ {1, . . . , Mv}, we define

k(pq, i) ≡
∑
v∈V

kv (pq, i) =
∑
v∈V

∑
jl∈M(i,v) ⋂J (v)

Cvjl (pjl qjl , dvjl (i)). (6.34)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

536 W. Dai

Then, at each regular time t ≥ 0 of Q̄(t) over time interval (gn−1, gn) with a given n ∈ {1, 2, . . .}, we
have that:

dk(P̄(t)Q̄(t),U(t))
dt

(6.35)

=
∑
v∈V

∑
jl∈M(i,v,t) ⋂J (v)

(
dvjl (U(t), t) − Λvjl (P̄(t)Q̄(t),U(t), t)

)
mUvj (P̄(t)Q̄jl (t), dvjl (U(t), t))

mdvjl (U(t), t)
I{P̄jl (t)Q̄jl (t)>0}

≤ 0.

Note that, the second equality in (6.35) follows from the concavity of the utility functions and the fact
that Λvj (P̄(t)Q̄(t),U(t), t) is the Pareto maximal Nash equilibrium policy to the utility-maximal game
problem in (3.20) when the system is in a particular state. Thus, for any given n ∈ {0, 1, 2, . . .} and each
t ∈ [gn, gn+1),

0 ≤ k(P̄(t)Q̄(t),U(t)) (6.36)
≤ k(P̄(gn)Q̄(gn),U(gn))

=
∑
v∈V

∑
jl∈M(i,v,gn)

⋂
J (v)

1
`jl

∫ Q̄jl (gn)

0

mUvjl (P̄(gn)u, dvjl (U(gn)))
mCvjl

du

=
∑
v∈V

(
dkv (d̄vj1 (U(gn)))

dcvj1

) (
dkv (d̄vj1 (U(gn−1)))

dcvj1

)−1
kv (P̄(gn)Q̄(gn),U(gn−1))

. . .

≤
∑
v∈V

(
dkv (d̄vj1 (U(gn)))

dcvj1

) (
dkv (d̄vj1 (U(g0)))

dcvj1

)−1
kv (P̄(0)Q̄(0),U(0))

≤ ^k(P̄(0)Q̄(0),U(0)),

where ^ is a positive constant, i.e.,

^ = max
v∈V

max
i,j∈K

(
dkv (d̄vj1 (i))

dcvj1

) (
dkv (d̄vj1 (j))

dcvj1

)−1
.

Then, by the fact in (6.36), we know that Q̄(t) = 0 for all t ≥ 0. Therefore, we complete the proof of
the lemma. �

In the end, by considering a specific state i ∈ K and by the index way as used in the proof of
Lemma 6.2, we can extend the proofs for Lemma 4.3 to Lemma 4.5 in Dai [8] to the current setting.
Then, by using the results in these lemmas to the proof for Theorem 1 in [6], we can reach a proof for
Theorem 3.5 of this paper. �

7. Conclusion

In this paper, we study 2-stage game-theoretic problem oriented 3-stage service policy computing, CNN
based algorithm design, and simulation for a blockchained buffering system with federated learning.
More precisely, based on the game-theoretic problem consisting of both “win-lose” and “win-win”
2-stage competitions, we derive a 3-stage dynamical service policy via a saddle point to a zero-sum

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

Probability in the Engineering and Informational Sciences 537

game problem and a Nash equilibrium point to a non-zero-sum game problem. This policy is concern-
ing users-selection, dynamic pricing, and online rate resource allocation via stable digital currency for
the system. The main focus is on the design and analysis of the joint 3-stage service policy for given
queue/environment state dependent pricing and utility functions. The asymptotic optimality and fair-
ness of this dynamic service policy is justified by diffusion modeling with approximation theory. A
general CNN based policy computing algorithm flow chart along the line of the so-called big model
framework is presented. Simulation case studies are conducted for the system with three users, where
only two of the three users can be selected into the service by a zero-sum dual cost game competition
policy at a time point. Then, the selected two users get into service and share the system rate service
resource through a non-zero-sum dual cost game competition policy. Applications of our policy in the
future blockchain based Internet (e.g., metaverse and web3.0) and supply chain finance are also briefly
illustrated.

Acknowledgments. The project is funded by National Natural Science Foundation of China with Grant No. 11771006.

Competing interests. The author declares that he has no conflict of interest.

References
[1] Applebaum, D. (2005). Lévy Processes and Stochastic Calculus. Cambridge: Cambridge University Press.
[2] Ayaz, F., Sheng, Z., Tian, D., & Guan, Y.L. (2022). A blockchain based federated learning for message dissemination in

vehivular networks. IEEE Transactions on Vehicular Technology 71(2): 1927–1940.
[3] Bramson, M. (1998). State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing

Systems 30(1-2): 89–148.
[4] Buterin, V. (2013). Ethereum: a next-generation smart contract and decentralized application platform. http://ethereum.org/

ethereum.html.
[5] Choudhury, G.L., Mandelbaum, A., Reiman, M.I., & Whitt, W. (1997). Fluid and diffusion limits for queues in slowly

changing environment. Stochastic Models 13(1): 121–146.
[6] Dai, W. (2013). Optimal rate scheduling via utility-maximization for J-user MIMO Markov fading wireless channels with

cooperation. Operations Research 61(6): 1450–1462.
[7] Dai, W. (2018). A unified system of FB-SDEs with Levy jumps and double completely-S skew reflections. Communications

in Mathematical Sciences 16(3): 659–704.
[8] Dai, W. (2018). Platform modelling and scheduling game with multiple intelligent cloud-computing pools for big data.

Mathematical and Computer Modelling of Dynamical Systems 24(5): 506–552.
[9] Dai, W. (2019). Quantum-computing with AI & blockchain: modelling, fault tolerance and capacity scheduling.

Mathematical and Computer Modeling of Dynamical Systems 25(6): 523–559.
[10] Dai, W. (2022). Convolutional neural network based simulation and analysis for backward stochastic partial differential

equations. Computers and Mathematics With Applications 119: 21–58.
[11] Dai, W. (2022). Optimality policy computing for blockchain based smart contracts via federated learning. Operational

Research 22: 5817–5844.
[12] Dai, W. (2023). n-qubit operations on sphere and queueing scaling limits for programmable quantum computer. Quantum

Information Processing 22(122): 1–42.
[13] Dai, W. & Jiang, Q. (2007). Stochastic optimal control of ATO systems with batch arrivals via diffusion approximation.

Probability in the Engineering and Informational Sciences 21(3): 477–495.
[14] Demertzis, K., Iliadis, L., Pimenidis, E., Tziritas, N., Koziri, M., & Kikiras, P. (2021). Blockchained adaptive federated auto

MetaLearning BigData and DevOps CyberSecurity architecture in Industry 4.0. In Proceedings of the 22nd Engineering
Applications of Neural Networks Conference: Halkidiki, Greece. pp. 345–363.

[15] Elwalid, A.I. & Mitra, D. (1991). Analysis and design of rate-based congestion control of high speed networks, I: Stochastic
fluid models, access regulation. Queueing Systems 9(1-2): 29–64.

[16] Iansiti, M. & Lakehani, K.R. (January–February 2017). The truth about Blockchain. Harvard Business Review.
[17] Little, J. (1961). A proof of the queueing formula: L = λW . Operations Research 9(3): 383–387.
[18] Maker. (2019). Looking ahead: how to upgrade to multi-collateral Dai from single-collateral Dai. https://blog.makerdao.

com/looking-ahead-how-to-upgrade-to-multi-collateral-dai.
[19] Marchi, E. (1967). On the concept of saddle point in zero-sum two-person generalized games. Zeitschrift fur

Wahrscheinlichkeitstheorie und Verwandte Gebiete 9: 26–35.
[20] Nakamoto, S. (2008). A peer-to-peer electronic cash system. metzdowd.com.
[21] Nash, J.F. (1950). Equilibrium Points in N-person Games. Proceedings of the National Academy of Sciences 36(1): 48–49.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

http://ethereum.org/ethereum.html
http://ethereum.org/ethereum.html
https://blog.makerdao.com/looking-ahead-how-to-upgrade-to-multi-collateral-dai
https://blog.makerdao.com/looking-ahead-how-to-upgrade-to-multi-collateral-dai
metzdowd.com
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

538 W. Dai

[22] Qu, Y., Pokhrel, S.R., Garg, S., Gao, L., & Xiang, Y. (2021). A blockchain federated learning framework for cognitive
computing in Industrial 4.0 networks. IEEE Transactions on Industrial Informatics 17(4): 1964–2973.

[23] Rajan, D. & Visser, M. (2018). Quantum Blockchain using entanglement in time. https://arxiv.org/abs/1804.05979.
[24] Resnick, S.I. (1992). Adventures in Stochastic Processes. Boston: Birkhäuser.
[25] Rosen, J.R. (1965). Existence and uniqueness of equilibrium points for concave N-person games. Econometrics 33(3):

520–534.
[26] Stolyar, A.L. (2004). MaxWeight scheduling in a generalized switch: state space collapse and workload minimization in

heavy traffic. The Annals of Applied Probability 14(1): 1–53.
[27] Wang, H.S. & Moayeri, N. (1995). Finite-state Markov channel – a useful model for radio communication channels. IEEE

Transactions on Vehicular Technology 44(1): 163–171.
[28] Ye, H. & Yao, D.D. (2008). Heavy traffic optimality of a stochastic network under utility-maximizing resource control.

Operations Research 56(2): 453–470.

Cite this article: Dai W. (2024). Game-theoretic policy computing and simulation for blockchained buffering system via diffusion approximation.
Probability in the Engineering and Informational Sciences 38(3): 503–538. https://doi.org/10.1017/S026996482300027X

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026996482300027X
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 06 Feb 2025 at 17:26:58, subject to the Cambridge Core terms of use, available at

https://arxiv.org/abs/1804.05979
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026996482300027X
https://www.cambridge.org/core

	Game-theoretic policy computing and simulation for blockchained buffering system via diffusion approximation
	1. Introduction
	2. System model
	3. Main theorem
	3.1. RDRS model
	3.2. A 3-stage users-selection and dynamic pricing/rate scheduling policy
	3.2.1. General service capacity region
	3.2.2. A dynamic pricing and scheduling policy with users-selection

	3.3. Main theorem under the policy
	3.4. CNN-based algorithm flow chart

	4. Three illustrative policy examples
	4.1. The first example
	4.2. The second example
	4.3. The third example

	5. Simulation case studies via RDRS models
	5.1. The simulation for example 4.1
	5.2. The simulation for example 4.3

	6. Justification of RDRS modeling
	6.1. The required conditions
	6.1.1. Conditions on utility functions
	6.1.2. Complete resource pooling condition
	6.1.3. Heavy traffic condition

	6.2. Proof of Theorem 3.5

	7. Conclusion
	Acknowledgments
	References

