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Abstract

The bird-infecting acanthocephalan Polymorphus minutus has been suggested to comprise
different lineages or even cryptic species using different intermediate hosts. To clarify this
open question, we investigated Polymorphus cf. minutus cystacanths originating from amphi-
pod intermediate hosts from 27 sites in Germany and France. Parasites and hosts were iden-
tified using integrated datasets (COI and/or morphology for hosts and COI + ITS1-5.8S-ITS2
for parasites).

Mitochondrial and nuclear data (ITS1) strongly support the existence of three cryptic spe-
cies in Polymorphus cf. minutus (type 1-3). These three types reveal a high degree of inter-
mediate host specificity, with Polymorphus type 1 only encountered in Gammarus fossarum
type B, Polymorphus type 2 in Echinogammarus sp. and Echinogammarus berilloni, and
Polymorphus type 3 in Gammarus pulex and Gammarus roeselii. Our results point to a so
far neglected cryptic diversity of the genus Polymorphus in Central Europe. Furthermore,
Polymorphus type 2 is most likely a non-native parasite in Germany that co-invaded with
E. berilloni from the Mediterranean area. Potentially, type 3 originates from South-East
Europe and migrated to Germany by G. roeselii, where it might have captured G. pulex as
an intermediate host. Therefore, our findings can be seen in the context of ecological global-
ization in terms of the anthropogenic displacement of intermediate hosts and its impact on
the genetic divergence of the parasites.

Introduction

In the last years, cryptic parasite species were continuously discovered in various helminth
groups (Pérez-Ponce de León and Poulin, 2017). This can mainly be attributed to the appli-
cation of molecular techniques that often provide a higher taxonomic resolution than morpho-
logical characters. The same trend was also found within the Acanthocephala, with several
cryptic species discovered in various genera (e.g. Steinauer et al. 2007; Wayland et al. 2015).
Acanthocephalans have a complex life cycle, including at least one obligatory host change.
Arthropods, such as crustaceans or insects, serve as intermediate hosts whereas fish, birds,
mammals and amphibians are known as final hosts, where reproduction occurs in the intes-
tine. In some species, additional paratenic hosts can exist (Taraschewski, 2000; Kennedy, 2006;
Sures, 2014). Acanthocephalans belonging to the genus Polymorphus have an aquatic life cycle
with waterfowl as final hosts in most species. In their amphipod intermediate hosts, the para-
sites migrate into the haemocoel where they develop to the cystacanth stage. The final host gets
infected by ingesting the infected amphipod (Taraschewski, 2000; Kennedy, 2006). The life
cycles of some species of the Polymorphidae have not been fully understood to date and
molecular barcoding has been applied successfully to link parasite stages in the intermediate
and definitive hosts (Alcántar-Escalera et al. 2013).

The species Polymorphus minutus was originally described in Germany by Goeze (1782)
and later found in a wide variety of aquatic birds (e.g. Lühe, 1911). Since the elucidation of
the complete life cycle of P. minutus, various species of freshwater amphipods were identified
as intermediate hosts (Greef, 1864; Schmidt, 1985). An experimental transmission study with
P. minutus from the 1950s indicated that there is a possible differentiation in lineages or even
cryptic species displaying different intermediate host specificities (Hynes and Nicholas, 1958):
P. minutus cystacanths isolated from Gammarus duebeni, Gammarus pulex and Gammarus
lacustris were used to infect domestic ducks, respectively. The resulting eggs obtained from
the adult parasites were used to infect each of the three Gammarus spp. The results clearly
showed that the eggs were most infective for the same Gammarus species from which the
respective cystacanths originated. Despite these observations, it was commonly assumed that
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specimens of Polymorphus collected in Central Europe all belong
to a single species. Accordingly, no recent taxonomic studies were
published for this species. Furthermore, P. minutus has been fre-
quently used as a model organism in various fields throughout the
last decades, including studies about tegumental structure of
adults (Crompton and Lee, 1965) and acanthor-larvae (Albrecht
et al. 1997) or the relation of the parasite with its intermediate
and final hosts (Hynes and Nicholas, 1963; Itämies et al. 1980;
Bollache et al. 2001; Bauer et al. 2005; Haine et al. 2005; Médoc
et al. 2006; Tain et al. 2006; Jacquin et al. 2014). If the hypothesis
holds true that several cryptic species are subsumed in a presumed
‘P. minutus-complex’, this will have consequences for the conclu-
sions drawn from behavioural or structural studies, especially if
different intermediate host species were involved. Therefore, it is
particularly essential to resolve the taxonomy of Polymorphus
cf. minutus, also bearing in mind that this species can lead to
high mortalities in waterfowl populations and is recognized as
an economically significant pest in goose and duck farming
(Hynes and Nicholas, 1963; Itämies et al. 1980). However, the
morphological differentiation of Polymorphus species is difficult,
especially based on the cystacanth stage (Alcántar-Escalera et al.
2013). Furthermore, closely related parasite species might not
provide defined and easily visible morphological characters for
an unambiguous species diagnosis (Nadler and Pérez-Ponce de
Léon, 2011; Selbach et al. 2015). Therefore, we used molecular
data – mitochondrial cytochrome c oxidase subunit 1 (COI) frag-
ment and the nuclear internal transcribed spacer (ITS)1-5.8S-
ITS2 region – to identify and distinguish the Polymorphus-isolates
sampled from amphipod populations in Germany and France.
The aim was to assess the genetic diversity of what is considered
P. minutus and its linkage to different intermediate amphipod

hosts, thereby testing previous results from transmission experi-
ments which pointed to a so far neglected cryptic species diversity
(Hynes and Nicholas, 1958).

Materials and methods

Amphipod and parasite sampling

Gammarids infected with acanthocephalan cystacanths were
sampled by kick-sampling, using a net with a mesh size of
0.3 mm, between 2014 and 2016 at 27 sites in North-Rhine
Westphalia, Germany (smaller tributaries of Lippe, Emscher,
Ruhr and Rhine), Baden-Wuerttemberg and Rhineland-
Palatinate, Germany (tributaries of the Rhine), as well as Île-de-
France, France (Loing, tributary of Seine River) (see map in
Fig. 1). A list of all sites, sampling dates and the number of
sequenced host individuals and Polymorphus cystacanths, as
well as the geographic location, is given in Supplementary
Table S1.

Infected individuals were sorted at the site according to the
obvious red coloration of the cystacanths and stored in 95% etha-
nol. In the laboratory, amphipods were identified morphologically
(i.e. for. Gammarus roeselii and Echinogammarus sp.) according
to the taxonomic keys of Eggers and Martens (2001, 2004). Due
to morphological difficulties to identify species of the G. pulex
and G. fossarum cryptic species complexes, those were DNA bar-
coded. The material of the host was not retained in all cases (e.g.
when additional collection material was included which had been
collected before the study was designed), therefore, a genetic iden-
tification of hosts was not always possible (see Supplementary
Table S1).

Fig. 1. Map of sampling area. The map shows the major river catchments, the approximate location of the sampling sites with the amphipod and Polymorphus
types found. Sites 1–8: Lippe (Rhine), 9–16: Emscher (Rhine), 17–20: Ruhr (Rhine), 21–26: small tributaries of the Rhine, 27: Loing (Seine).
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PCR and sequencing

Cystacanths were dissected from gammarids and DNA extraction
of hosts was performed according to Grabner et al. (2015). DNA
from small pieces of the cystacanths was extracted with the same
protocol. The standard animal barcoding locus COI was amplified
for amphipods and acanthocephalans using the degenerated pri-
mer pair LCO1490-JJ (5′-CHA CWA AYC ATA AAG ATA
TYG G-3′) and HCO2198-JJ (5′-AWA CTT CVG GRT GVC
CAA ARA ATC A-3′) of Astrin and Stüben (2008). Each PCR
reaction mix (total volume of 12.5 µL) contained 1 µL template
DNA, 0.2 mM dNTPs, 1 × PCR buffer, 0.5 µM of each primer,
0.025 U µL−1 Hotmaster Taq-polymerase (5 PRIME GmbH,
Hamburg, Germany) and the rest water. PCR cycle conditions
were as follows: initial denaturation for 1 min at 94 °C, followed
by 36 cycles of 2 min at 94 °C (denaturation), 20 s at 50 °C
(annealing) and 30 s at 65 °C (elongation), and a final elongation
step for 5 min at 65 °C.

For some of the acanthocephalans, the nuclear ITS1-5.8S-ITS2
loci were additionally investigated to validate COI results using a
newly developed Polymorphus-specific primer pair pmF (5′-CCT
CAC GGT AAT TCT ATC AG TC-3′) and pmR (5′-CGC AAT
CGT GTC ATC TCA GT-3′). The same PCR reaction mix volu-
mina were used, and the following PCR cycle conditions applied:
initial denaturation for 5 min at 94 °C, followed by 37 cycles of
40 s at 94 °C (denaturation), 35 s at 56 °C (annealing) and 35 s
at 68 °C (elongation), and a final elongation step for 5 min at
68 °C.

Prior to the sequencing of the COI and the nuclear fragment,
an ExoI/FastAP purification step was performed. For this pur-
pose, 9 µL of each PCR product was mixed with 1 µL FastAP
(1 U µL−1) and 0.5 µL ExoI (20 U µL−1), both from Thermo
Fisher Scientific (Schwerte, Germany). The PCR products were
enzymatically purified at 37 °C for 25 min and at 85 °C for
15 min. The PCR products were sequenced at GATC Biotech
AG (Köln, Germany) using the respective PCR primer pair.

Genetic analyses

Three separate alignments of the resulting host (COI) and para-
site sequences (COI and ITS1) were created in Geneious v.6.0.5
(Kearse et al. 2012) using the Muscle plug-in with three iterations.
Alignments were trimmed by first removing the primer sequences
and second using the GBLOCKS web server (http://molevol.
cmima.csic.es/castresana/Gblocks_server.html), thereby further
accounting for and automatically removing poorly aligned
flanking regions (e.g. resulting from ambiguities or missing
data). Final alignments had a length of 658 bp (COI hosts),
432 bp (COI parasites) and 311 bp (ncDNA loci), with the latter
encompassing the 3′-region of the ITS1 locus, the complete 5.8S
rRNA gene (162 nucleotides) and a minor fragment of the
5′-end of the ITS2 locus (25 nucleotides, excluded from
downstream analyses) as identified by comparison with the anno-
tated ITS1-5.8S-ITS2 P. minutus sequence available in NCBI
GenBank (AY532067).

The number of potential cryptic Polymorphus cf. minutus
species was calculated by the Automatic Barcode Gap Discovery
(ABGD) method (Puillandre et al. 2012). For this purpose, all
available COI sequences (excluding pseudogenes) with a length
>500 bp were retrieved from GenBank as on 08.08.2017 (n =
322). Sequences were aligned using the Muscle-plugin of
Geneious (three iterations) and trimmed to the 655 bp (for
acanthocephalans) and 658 bp (for gammarids) long Folmer-
fragment. The Polymorphidae COI alignment was combined
with the COI parasite alignment of this study. Identical
sequences were deleted using the web application ElimDupes

(https://hcv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.
html), resulting in 264 unique Polymorphidae sequences from
NCBI and 126 from this study. Because sequences had unequal
lengths, the COI consensus alignment (n = 390) was further
trimmed using the GBLOCKS web server to a total alignment
length of 423 bp. The ABGD method was performed on this align-
ment using the following final setting: Pmin 0.001; Pmax 0.1; Steps:
50; using a Kimura K80 model (ratio 1.5). A Neighbour-Joining
(NJ) tree was constructed for visualization of the ABGD clusters
using the Geneious Tree Builder (tree building method: NJ; genetic
distance model: Jukes–Cantor; 500 bootstrap replicates).

Amphipod hosts were identified by comparing the obtained
COI sequences with the Barcode of Life Datasystem reference
library (BOLD; Ratnasingham and Hebert, 2007).

Parasite COI sequences of length <450 bp were used for
identification purpose only and excluded from subsequent intra-
specific genetic diversity analyses. Haplotype networks were
calculated in PopArt (Leigh and Bryant, 2015) using the TCS
option (Clement et al. 2000). Haplotype and nucleotide COI
diversity were calculated in DnaSP v5 (Librado and Rozas,
2009). Intraspecific genetic distances were calculated with
MEGA6 (Tamura et al. 2013). The ITS1-5.8S alignment was
used for visual identification of nuclear alleles.

Results

Amphipod and parasite sampling

At each site, a variable number of one to 33 Polymorphus-infected
amphipods was available for genetic analyses, largely depending
on local prevalences (see Supplementary Table S1). Sequencing
of the intermediate hosts confirmed the morphological identifica-
tion, except cases when no amphipod samples were available for
molecular analyses. At sites 25 and 26, Echinogammarus speci-
mens were not identified to species level and are treated as
Echinogammarus sp. (either E. ischnus or E. trichiatus, the only
described Echinogammarus spp. in Germany besides E. berilloni
that can be identified easily). Polymorphus infections were
found in at least five amphipod species (Echinogammarus beril-
loni, Echinogammarus sp., Gammarus fossarum type B, G.
pulex, G. roeselii). At two locations, more than one
Polymorphus-infected amphipod species were present: site 5
(Lippe, G. roeselii and E. berilloni) and site 25 (Lauter,
Echinogammarus sp. and G. fossarum). Usually, intermediate
hosts were infected by a single cystacanth. However, two and
three Polymorphus individuals occurred in single intermediate
host specimens at four sites: site 4 (three cystacanths in E. beril-
loni), site 11 (three in G. fossarum), site 17 (2 × two in G. fos-
sarum) and site 20 (3 × two in G. fossarum). At five sites (sites
1, 2, 22, 25, 27), amphipod populations were additionally infected
by the acanthocephalan parasite Pomphorhynchus laevis (see
Supplementary Table S1 for details).

Interspecific genetic diversity of the parasite

All individual COI (n = 145), ITS1 (66) and 5.8S (66) parasite
sequences were deposited in the BOLD project ‘PACDE’ with
BOLD identifiers PACDE001-18 to PACDE178-18. Sequencing
of the parasite COI locus revealed the presence of three cryptic
Polymorphus lineages, as of now referred to as Polymorphus
type 1-3 (PspT1-3). Molecular species delimitation via ABGD
resulted in 30 clusters for the investigated COI sequences of the
full Polymorphidae dataset retrieved from GenBank, providing
further support for the three Polymorphus types (Fig. 2).
Among those, specimens of PspT3 demonstrated a maximum
sequence identity of 99% to the COI (GenBank accession no.

Parasitology 1423

https://doi.org/10.1017/S0031182018000173 Published online by Cambridge University Press

http://molevol.cmima.csic.es/castresana/Gblocks_server.html
http://molevol.cmima.csic.es/castresana/Gblocks_server.html
http://molevol.cmima.csic.es/castresana/Gblocks_server.html
https://hcv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html
https://hcv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html
https://hcv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html
https://doi.org/10.1017/S0031182018000173


EF467865.1) and ITS sequence (AY532067.1) of P. minutus avail-
able in GenBank, respectively (originating from G. pulex from
Dijon, France as published in García-Varela and Pérez-Ponce de
León, 2008 and García-Varela et al. 2005). PspT1 was most simi-
lar (99%) to JF803287.1 in GenBank (from G. fossarum in
Switzerland, published in Westram et al. 2011).

Based on the investigated COI locus, the three Polymorphus
types are genetically differentiated by at least 3.5% (PspT1/
PspT2), with a maximum interspecific distance of 10.9% between
specimens of PspT1 and PspT3 (Table 1). The pattern revealed by
the nuclear ITS1 marker is in full congruence with the three mito-
chondrial COI lineages observed: PspT1 and PspT2 both have one
specific ITS1 allele each, with only PspT3 possessing two but like-
wise specific ITS1 alleles, which are differentiated by one muta-
tion (Fig. 3). The 5.8S rDNA was completely identical for all
investigated specimens. For 35 specimens (8 × PspT1, 6 ×
PspT2, 21 × PspT3), we obtained both the mitochondrial COI
and the nuclear ITS1-5.8S fragment, linking the different datasets
(Supplementary Table S1 and Supplementary Fig. S1).

Intraspecific genetic diversity

Maximum values of intraspecific genetic distances vary from 1.4%
in PspT2 to 2.3% in PspT3 (Table 1). Nucleotide diversity for all
three Polymorphus types is moderate (π: 0.004–0.007), whereas
haplotype diversity is very high (hd: 0.80–0.92). The highest num-
ber of haplotypes is observed in PspT3 (H = 22), followed by
PspT2 (21) and PspT1 (12). The most frequently observed haplo-
types are centred within the haplotype networks, which show
characteristic star-like patterns (Fig. 4). Since the number of
investigated parasite specimens for each Polymorphus type were
inconsistent for the different localities, only specimen-based
haplotype diversity is depicted and no further site-specific ana-
lyses were performed (Supplementary Table S1).

Intermediate host specificity

The three Polymorphus types are widely distributed and demon-
strate a high level of intermediate host specificity (Fig. 1).

Fig. 2. Molecular Species Delimitation. COI Neighbour-Joining tree for visualization of molecular species delimitation results. Black circles represent clusters pro-
posed by the ABGD method. White asterisks within the circles indicate a 100% bootstrap support for the respective cluster. Further bootstrap supports are provided
at the branches.

1424 Maike Zittel et al.

https://doi.org/10.1017/S0031182018000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182018000173


PspT1 was exclusively found in G. fossarum type B (10 sites).
PspT2 was only found in Echinogammarus sp./E. berilloni
(eight sites). PspT3 was restricted to G. pulex (six sites) and G.
roeselii (five sites). At sites where two Polymorphus types were
co-occurring, each of the two types was found only in a single
intermediate host species: site 5 (Klostermersch, PspT2 in E. ber-
illoni and PspT3 in G. roeselii) and site 25 (Lauter, PspT1 in G.
fossarum and PspT2 in Echinogammarus sp.).

Discussion

In the present study, we investigated the genetic diversity of the
acanthocephalan endoparasite P. minutus (Goeze, 1782). Three
cryptic species were detected (Polymorphus type 1–3; PspT1-3),
which are congruently supported by mitochondrial (COI) and
nuclear (ITS1) data. Our results further indicate that all three
potential species are specific for their intermediate amphipod
host genus or species.

Cryptic species are a common phenomenon among the
Acanthocephala (Wayland, 2010; Pérez-Ponce de León and
Poulin, 2017). Even for our target organism, P. minutus, there
have been indications of different intermediate host specificities
(Hynes and Nicholas, 1958) that might be attributable to cryptic
Polymorphus species. Recent results also indicate morphological
differences between isolates of P. minutus (Zittel and
Taraschewski, unpublished results); therefore the PspT1-3 might
turn out to be pseudo-cryptic. However, until now, P. minutus
was considered the only species of its genus in Central Europe fre-
quently parasitizing amphipod intermediate hosts that are com-
monly used for ecotoxicological (summarized in Sures et al.
2017) and behavioral studies (see, e.g., Helluy, 2013 and refer-
ences therein). In the light of our results of three cryptic and
potentially intermediate-host specific Polymorphus cf. minutus
lineages, the comparison of findings between studies based on dif-
ferent intermediate host–parasite systems has to be treated with
caution. However, the most frequently investigated amphipods
studied for the influence of parasite infections – G. roeselii and

G. pulex (e.g. Bauer et al. 2005; Médoc et al. 2006; Lagrue et al.
2013) – host the same parasite species (i.e. PspT3) and previous
results are thus likely to be comparable.

For the study of parasite–host specificity, the correct identifica-
tion of the host is crucial. Yet, morphological differentiation of G.
pulex and G. fossarum specimens is particularly challenging, espe-
cially when no fully mature, adult individuals are available
(Karaman and Pinkster, 1977). Additionally, Chen et al. (2015)
have previously shown that infected individuals are often smaller
and therefore more difficult to identify. Adding even more com-
plexity, G. fossarum as well as G. pulex morphospecies are both
known to comprise a high degree of cryptic lineages/species,
sometimes showing even different ecological requirements
(Lagrue et al. 2014; Weiss et al. 2014; Grabner et al. 2015;
Eisenring et al. 2016). DNA barcoding of intermediate hosts
and parasites may help to circumvent potential future misinter-
pretations based on misidentified host–parasite relationships, as
both ‘cryptic dimensions’ have to be correctly assessed.

Nearly one-third of all infected intermediate host specimens
detected in this study belonged to G. fossarum type B, being
solely infected by PspT1, indicating a specific parasite–host rela-
tionship. This assumption is supported by a previous study on
Polymorphus infections of Gammarus spp. populations in
Switzerland (Westram et al. 2011). In the latter study, a total of
58 populations have been investigated with 13 populations
being infected by Polymorphus cf. minutus. Comparing the depos-
ited ITS1 sequence from Westram et al. (2011) to our data, we can
identify the Swiss Polymorphus lineage as PspT1 (with 99%
sequence identity to JF803287). Only a single specimen of G. fos-
sarum type A, but to the large majority G. fossarum type B were
infected by PspT1, although eight G. pulex populations were
investigated in the same study, of which two occurred in sympatry
with PspT1-infected G. fossarum type B populations (see supple-
mentary material of Westram et al. 2011). The consistent finding
of the same intermediate host–parasite relationship (i.e. PspT1
exclusively infecting G. fossarum type B) for another geographical
region further strengthens the assumption of intermediate host

Table 1. Genetic distances, nucleotide and haplotype diversity based on the COI fragment of the Polymorphus types

PspT1 (%) PspT2 (%) PspT3 (%) n S π H Hd

PspT1 0.0–1.9 48 21 0.00435 (S.D.: 0.00067) 21 0.836 (S.D.: 0.051)

PspT2 3.5–5.1 0.0–1.4 52 13 0.00364 (S.D.: 0.00041) 12 0.801 (S.D.: 0.041)

PspT3 8.3–10.9 8.6–10.6 0.0–2.3 46 29 0.00737 (S.D.: 0.00076) 22 0.919 (S.D.: 0.026)

Fig. 3. Nuclear ITS1 alleles. Indication of nuclear ITS1 alleles for the three Polymorphus sp. types. Base pair differences are highlighted in black. Polymorphus sp.
types 1 and 2 possess one ITS1 allele each, whereas Polymorphus sp. type 3 demonstrates two, distinguished by one mutation. The 5.8S rDNA was completely
identical for all investigated specimens. Figure elements are partly used from Geneious v.6.0.5 (Kearse et al. 2012).
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specificity of PspT1. In the present study, PspT2 was detected
exclusively in Echinogammarus spp. both from Seine and Rhine
tributaries, which suggests that this is at least a genus-specific
parasite–host association. PspT3 also seems to be less restricted
to a single host species, as it was found in both G. pulex and G.
roeselii, which is in accordance with the hypothesis of Kennedy

(2006) that certain acanthocephalan species evolve with multiple
intermediate host species.

Besides the results presented here, previous studies provide
further evidence for the potential intermediate host specificity
of the different Polymorphus types. Jacquin et al. (2014) detected
Polymorphus sp. infections in E. berilloni, but not in the

Fig. 4. COI haplotype networks for the three Polymorphus sp. types are indicated. The size of the circles is proportional to the frequency of the respective haplotype
encountered in each of the three datasets. Grey dots represent hypothetical haplotypes not sampled within this study. Lines between (hypothetical) haplotypes
indicate one mutational step. Spatial data for all haplotypes are given (NRW: North Rhine-Westphalia; BW: Baden-Württemberg; F: France). For PspT3, the distri-
bution of the individual haplotypes in the two hosts, G. pulex (Gp) and G. roeselii (Gr) is indicated. The arrow points to a Polymorphus sp. cystacanth in its amphipod
intermediate host.
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co-occurring G. pulex. In a study conducted in Ireland,
Polymorphus sp. was detected in native G. duebeni celticus (in
2/70 and 9/65 specimens, respectively), but not in co-occurring
non-native G. tigrinus (43 investigated specimens) and G. pulex
(30 specimens) from the same sites (Dunn and Dick, 1998), tak-
ing into account that the number of specimens might have been
too low to detect low prevalence infections.

Besides the amphipod species mentioned above, Polymorphus
infections have also been observed in Echinogammarus stammeri
(Dezfuli and Giari, 1999), Echinogammarus tibaldii (Dezfuli
et al. 2008), Gammarus lacustris (Hynes and Nicholas, 1958),
Gammarus oceanicus, Gammarus salinus and Gammarus zadda-
chi (Lehtonen and Hario, 1996) in different European countries.
This diversity of intermediate hosts suggests that even more spe-
cies within the Polymorphus cf. minutus complex might exist than
those discovered in the present study.

The reason for intermediate host specificity in acanthocepha-
lans might be seen in the adaptation to the invertebrate host
immune response. For example, Hynes and Nicholas (1958)
found large numbers of dead larvae of P. minutus at the outer sur-
face of the gut of experimentally infected amphipods when eggs of
parasites were used that originated from cystacanths isolated from
another amphipod species. This is in line with findings for other
acanthocephalans showing that the migration of the parasite
through the gut wall of the intermediate host in the early phase
of infection is most crucial for survival (Taraschewski, 2000).

Based on our data, we can only speculate on the specificity of
the three Polymorphus sp. types for their definitive hosts.
Numerous bird species were listed as hosts for P. minutus (e.g.
Lühe, 1911), while anatid ducks and goose are probably the
most common definitive hosts. Furthermore, there are some
reports of Polymorphus spp. from water-related rodents such as
water shrews or muskrats (summarized in Platt, 1978). The ques-
tion, if the three Polymorphus types identified in the present study
show some sort of definitive host specificity is highly relevant for
the understanding of the biology of this genus. Either each of the
respective Polymorphus-types will develop only in a specific
definitive host species (due to species-specific strategies overcom-
ing the hosts immune systems), or if they colonize the same
definitive host individual, some mechanism of reproductive isola-
tion must exist (e.g. by preferring different sections of the host
gut, or by showing different seasonality patterns). Due to a lack
of Polymorphus-specimens from definitive hosts, we can only
speculate here. Also, we are not able to trace back which
Polymorphus type actually refers to P. minutus (Goeze, 1782), ini-
tially described as Echinorhynchus minutus, potentially from
Melanitta fusca and Turdus merula (pages 164 & 165 in Goeze,
1782) in Germany. It is questionable if this will ever be possible
due to the lack of morphological characters given in these early
studies (Smales, 2014).

The present study also provides evidence for at least one non-
native acanthocephalan in Germany: PspT2 was detected only in
Echinogammarus, most of which were E. berilloni. This amphipod
is an established, non-native species in Germany that originated
from the Mediterranean region (France and Spain) and that was
recorded for the first time in Germany in 1924 (Tittizer et al.
2000). As PspT2 was not found in native amphipods, it seems
likely that E. berilloni introduced this Polymorphus type to
Central Europe. Also, PspT3 might be a non-native parasite
that was brought to Central Europe a few hundred years ago by
the invasion of G. roeselii from the Balkan region (Grabowski
et al. 2017). If this scenario is true, PspT3 must have colonized
G. pulex as an additional host species. Nevertheless, it seems
more likely that G. pulex is the native host for PspT3 and G. roe-
selii was colonized later, given that PspT3: (a) occurs in an indi-
genous amphipod species (G. pulex) and (b) is the genetically

most diverse parasite lineage in our dataset (in terms of nucleo-
tide and haplotype diversity), not pointing to any severe decline
in genetic diversity due to potential historical bottleneck events
during invasion processes. Recently, evidence for another non-
native acanthocephalan in the Rhine system was presented
(Hohenadler et al. 2017). In the case reported by the latter
authors, the fish infecting acanthocephalan Pomphorhynchus lae-
vis was most likely introduced by invasive goby species that can be
used as paratenic hosts for this parasite. In addition, the eoa-
canthocephalan Paratenuisentis ambiguus is also a non-native
species (Taraschewski et al. 1987), originating from North
America where it was described from Gammarus tigrinus as an
intermediate host and the American eel as the definitive host.
Interestingly, following the transplantation of G. tigrinus into
the rivers Weser and Werra in the late 1950s, this acanthocepha-
lan started to migrate into different rivers and accepted the
European eel as a new definitive host, where it reached high pre-
valences and intensities (Sures and Streit, 2001). In contrast to its
final host switch, P. ambiguus was never described from other
gammarid species than G. tigrinus, which also suggests a clear
intermediate host specificity. Taken together, these examples
show that recent species introductions are common for acantho-
cephalans, but the mechanisms of invasion vary.

In conclusion, we provide consistent support for the existence of
at least three cryptic parasite species within Polymorphus cf. minu-
tus, which very likely demonstrate a high degree of host specificity
for their amphipod intermediate hosts. The immunological adapta-
tion of the acanthocephalan to the intermediate host and the bio-
chemical alterations caused by the parasite (Taraschewski, 2000;
Helluy, 2013) might be a possible driver of this diversification.
To correctly assess (intermediate) host–parasite relationships in
the future, the application of routine DNA barcoding is highly
encouraged (but see Pérez-Ponce de León and Nadler, 2010;
Alcántar-Escalera et al. 2013). According to our results, we also
suggest reviewing the taxonomy of Polymorphus spp. in Europe
including adult stages to further clarify, whether the three
Polymorphus types identified in the present study are valid species
also differing in definitive host specificity and morphology.
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