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Abstract
The purpose is to define the range of feasible speeds for two walking motions for a particular planar biped robot,
which differ in the definition of their finite-time double support phases. For each speed, these two walking motions
are numerically obtained by using a parametric optimization algorithm, regarding a sthenic criterion. Results allow
us to define the range of allowable speeds for each walking. One result is that the first gait is less consuming in
energy for moderate to fast velocity with respect to the second one, while the second gait is more efficient for low
walking velocity.

1. Introduction

This paper explores the range of feasible speeds for a planar biped that adopts two walking motions,
which differ in the definition of their finite-time double support phases. The choice here of a planar
biped is due to the fact that for human’s walking gait, the main movements are executed in the sagittal
plane, see refs. [1, 2]. Frontal plane movements mainly serve to keep human laterally balanced. The
pelvis rotation has an important effect to limit the necessary energy to move the swing leg [3]. However,
our purpose being to study the energy effect of two finite-time support phases, we assume that the
results are little influenced by the pelvis rotation for the two gaits. The human walking is composed of
single support phases and double support phases. For one step, the duration of a double support phase
represents almost 24% of the time step [4]. Several papers are devoted to a borderline case where the step
of walking is composed of a single support phase and an instantaneous double support [5]. For example,
the relatively human-inspired ones, which have been tested with the biped robots Amber [6] and Rabbit
[7] or the walking motions defined through the linear inverted pendulum [8] or ref. [9], among others.

However, for a biped robot, the contribution of the finite-time double support phase is important
to change the velocity rate of the walking, to increase the domain of stability in order to reject some
disturbance occurring in single support, see refs. [10], and [11] where planar bipeds with pointed feet
are considered. Inserting a finite-time double support phase in a gait of a biped with feet implies to deal
with the behavior of the foot and the over actuation of the locomotor system, since a closed chain is
formed by the locomotor system and the ground. There is a actuation redundancy leading to an infinite
number of solutions for joint torques and the ground reaction wrench. Ju and Mansour, [12] proposed
a foot model with a curved planter surface to design a finite-time double support phase for the motion
of a biped in sagittal plane. Sharma and Stein, [13] incorporate the finite-time double support phases
and single support phases in walking of a biped with point feet to minimize muscle activation and arm
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reaction forces generated from the walker. The dynamics-based optimization of sagittal gait cycles of a
seven-link planar biped with feet by using the Pontryagin maximum principle is considered in ref. [14].
In there, one step is composed of a fully actuated single support phase and a finite-time double support
phase and the velocity of the swing foot at the landing on the ground is zero. Six periodic gaits are
presented in ref. [15]. The simplest periodic gait is composed of successive single support phases with a
flat foot contact on the ground, and the stance foot does not rotate. The support phases are separated by
instantaneous double support. The most complex periodic motion is composed of single support phases
and finite-time double support. For the finite-time double support phases, the front foot rotates around
its heel and the rear foot rotates around its toe. For this walking, with a finite-time double support phase
there is no impact of the swing foot landing on the ground, as well as for the walking gait defined in
ref. [10] for a biped with point foot and in ref. [16] where an impactless walking gait is carried out
with single support phases and finite-time double support phases for a seven-link planar biped with feet.
Nevertheless, it has been shown that the energy cost for the walking gait is smaller when the single
support phases are ended with impacts than when the velocity of the swing foot at the landing is null
[15]. An original design is proposed for the knee joints of a planar biped robot, based on a four-bar
linkage. A comparison of the performances with respect to a sthenic criterion is proposed between a
biped equipped with four-bar knees and the other with revolute joints for walking reference trajectories
composed of single phases, impact, and finite-time double support phases with rotation of both feet
[17]. The numerical results show that the performances with a four-bar linkage are worst for the smaller
velocities and better for the higher velocities. Tan et al.[18] proposed a finite-time double support phase
that begins when the swing foot strikes the ground and finishes with the support foot toe-off. The inverse
dynamic model is used to optimize a walking gait with the objective that the trunk remains upright. The
criterion is based on the altitude of the center of mass with respect to a reference. Simulation results show
that a two-level control strategy for simultaneous gait generation and stable control of planar walking of
the ATRIAS biped can reject initial condition disturbances, while generating stable and steady walking
motion [19].

Despite all these interesting studies on walking motions with finite-time double support phases, there
is a lack of knowledge about the role of the feet during the finite-time double support phase regarding
on the speed of the biped robot. Several questions on this issue are still open such as:

• Can one foot stay on the ground with a flat foot contact after its landing while the other rotates?
• Can both feet rotate simultaneously after the landing of the swing foot on its heel?
• What are the feasible speeds for walking with finite-time double support phase? Feasible speed means,

here, speed that satisfies the limits of the actuator and the unilateral constraints of the biped robot with
the ground.

• What is the best strategy at impact to satisfy the unilateral constraints on both feet for a feasible speed?

The goal of this paper is to see if we can draw on anthropomorphic features to improve the walking of
bipedal robots with rigid feet. Of course to design a human-like walking, there are many other interesting
questions such as a foot-roll design, [20] or the rotation of the foot during the single stance phase [15].
But we want to focus our attention on the effect of finite-time double support phases for walking. In
particular, the goal is to give a response to the four previous research questions for a set of periodic
walking motions in the sagittal plane, which are composed of impacts, single support phases, and finite-
time double support phases. The ground and the biped limbs are assumed rigid. These gaits are defined
with a parametric optimization by using a sthenic criterion and with nonlinear constraints. Even if for
human there are movements of bodies that take place in the frontal plane, we limit our numerical studies
in the sagittal plane because the magnitude of movements are much larger. As a consequence, the results
about the energy consumption that are obtained in the sagittal plane are usually confirmed by a study in
the 3D space, see, for example, ref. [17]. The planar biped model is defined with the physical parameters
of the experimental biped Hydroid [21]. Its inertial parameters are close to those of human. The step of
the first gait is composed of a single support phase, with support on flat foot, a flat-footed impact on the
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Figure 1. Walking motion 1. (a) End of the SS beginning of the DS. (b) DS. (c) End of the DS. (d) SS.

ground for the swing leg, and a finite-time double support phase, where the rear foot rotates around its
toe and the front foot is kept flat on the ground. With this first walking motion, it is possible to answer
“Yes” to the first question. The second walking motion design is similar to the first one, except that the
single support is ended by a heel impact and during the finite-time double support phase, the rear foot
rotates on its toe and the forward foot rotates on its heel. The finite-time double support of this gait
is ended with a toe impact on the ground of the forward foot. With this second walking motion, it is
possible to answer “Yes” to the second question. According to the experimental studies of Winter [4],
this second walking motion is closer to the human walking motion than the first one. Studying these two
walking motions, for various speed, will allow to answer the third and fourth questions. The algorithm
for defining optimal walking gait has been carefully studied and programmed to converge to physically
feasible solutions. When convergence was not achieved, it means that the bipedal robot could not achieve
the walking gait with the target speed.

This paper is outlined as follows. Section 2 gathers the definition of the two walking motions. Section
3 presents the biped modeling for each phase of the walking motions. Section 4 deals with the trajectory
planning. In Section 5, numerical results of the criterion evaluation as a function of the bipedal robot
speed are presented. Finally, Section 6 offers our conclusion and proposes several perspectives.

2. Studied gaits

In the following, two types of walking motions are studied. A lot of articles are devoted to the definition
of walking speeds with single support phases, instantaneous double supports [22], or with single support
phases, finite-time double support phases but without impact, [16]. In order to offer the reader a simple
and rigorous presentation, two walking more anthropomorphic motions with phases of simple support
and finite-time double support and impact will be compared.

• Gait 1: The periodic motion is composed of single support and finite-time double support phases. At
the end of the single support phase, see Fig. 1(a), there is a flat-footed impact on the ground. In double
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Figure 2. Walking gait 2. (a) End of the SS/beginning of the DS. (b) DS. (c) End of the DS. (d) SS.

support phase, the rear foot (foot 2) rotates on its toe, the other is flat on the ground, see Fig. 1(b). On
Fig. 1(c), the finite-time double support is ended when the rear foot (foot 2) takes off the ground with
the toe, the other foot stays flat on the ground. The single support takes place, see Fig. 1(d).

• Gait 2: The periodic motion is composed of single support and finite-time double support phases. At
the end of the single support phase, see Fig. 2(a), the impacting foot (now foot 1) touches the ground
with its heel. The rear foot (foot 2) keeps contact with the ground through its toe. In double support
phase both feet rotate, see Fig. 2(b). The finite-time double support ends when the front foot (foot 1)
impacts the ground with its toe and the rear foot (foot 2) takes off as shown in Fig. 2(c). Then the
single support takes place, see Fig. 2(d).

The gait 1 maximizes the walking stability since the support area in finite-time double support is
larger than the one of the gait 2. The gait 2 allows larger walking velocity than gait 1 since the distance
between foot can be increased while respecting the joint limits.

3. The biped modeling

3.1. The biped

Let us consider a seven-link planar biped robot with physical parameters obtained from those of the 3D
experimental biped Hydroid [21] and ref. [23]. A photography of the locomotor system of Hydroid is
shown in Fig. 3. The inertial parameters of Hydroid are inspired from the Hanavan model [24]. The
considered planar biped is shown in Fig. 4. Table I gathers its physical parameters. The parameters si,
i = 1, . . . , 5 define the position of the center of mass of the limbs and the trunk with respect to the hip
and knee joints. The parameters lf and Lf are the distances from the projection of the joint ankle on the
foot sole with the heel and the toe, respectively. Hf is the distance between the ankle joint and the sole.
Spx and Spy are the coordinates of the center of mass Gf of the foot with respect to the ankle joint. The
lengths of the shins, thighs, and the trunk are, respectively, l1, l2, and lt .
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Figure 3. Photography of the locomotor system of Hydroid.

Figure 4. Schematic of the planar biped robot. Absolute angular variables and joint torques (the angular
variables are counted positive counterclockwise).

3.2. Dynamic modeling: General case

Let us introduce the generalized vector q for the description of the considered biped as follows1:

q = [qf1 , qf2 , q1, q2, q3, q4, q5, x, y]�.

The generalized variables x and y are the Cartesian coordinates of the hip joint. The other generalized
variables are shown in Fig. 4. The vector q is chosen with nine components including x and y in order
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Table I. Physical parameters of the biped robot.

Mass (kg) Length (m) Moment of inertia Center of
(kg.m2) mass (m)

Foot mf = 0.7 Lf = 0.21 0.002 sfx = 0.01
lf = 0.07 sfy = 0.03
Hf = 0.07

Shin 2.2 l1 = 0.4 0.03 s1 = s4 = 0.17

Thigh 5.0 l2 = 0.4 0.07 s2 = s3 = 0.17

Trunk 29.0 lt = 0.4 0.8 s5 = 0.2

Figure 5. Details of the foot.

to be able to define a dynamic model that explicitly takes into account the unilateral constraints with
the ground. For the studied walking motions, the contact with the ground of the biped can be with the
whole sole, the heel, or the toe, see Figs. 1 and 2.

For any type of contact of the feet with the ground, the dimension of the robot given in Figs. 4 and 5
allows to write the condition to ensure a rigid contact between the feet and the ground based on geometric
relation. Here, no slipping of the stance foot is assumed. Thus, the hypothesis of rigid contact implies
zero velocity and zero acceleration of the foot relative to the ground.

By considering the virtual work principle, the matrix J�
i that allows to take into account the ground

reaction ri = [rix, riy,Mi]� in the dynamic model. This vector ri, defined in a frame (x0, y0, z0), see
Fig. 5, represents the wrench corresponding to the reaction force and moment from the ground acting
on foot i. If only one punctual contact between foot i and the ground is considered, the component of
moment in ri (for a frame attached to the foot) is zero, that is ri = [rix, riy]�.

Thus, the dynamic model of the biped robot is expressed as

D(q)q̈ + N(q, q̇) + Q(q) = B� + J�
1 (q)r1 + J�

2 (q)r2, (1)

with the constraint equations

Ji(q)q̈ + J̇i(q, q̇)q̇ = 0 for i = 1 to 2. (2)

Here, D ∈R
9×9 is the symmetric positive inertia matrix of the biped. Vector N ∈R

9×1 represents the
centrifugal and Coriolis effects, and Q ∈R

9×1 is the effect of gravity vector. B ∈R
9×6 is a constant

input mapping matrix composed of 1 and 0. � ∈R
6×1 is the vector of applied joint torques. J�

1 and
J�

2 are the 9 × 2 (or 9 × 3 with a flat foot contact) transposed Jacobian matrices converting the ground
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reaction wrench at feet 1 and 2 into torques applied at joints by considering a rigid contact. For the rigid
contact of the foot 1 with the ground, the corresponding equations, in position, velocity, and acceleration
are introduced in Appendix. In this appendix, Eqs. (A2) and (A4) describe a contact with the heel,
and the Jacobian matrix, denoted in this case J1 = Jh1 is given in Eq. (A3). Equations (A6) and (A8)
describe a contact with the toe, and the Jacobian matrix, denoted in this case J1 = Jt1 is given in Eq.
(A7). Equations (A10) and (A12) are written for a foot contact flat on the ground with no take-off
and no slipping of the whole sole, and the Jacobian matrix denoted in this case J1 = Jf 1 is given in
Eq. (A11).

Equations (1) and (2) allow to describe any contact of the feet with the ground. These equations are
usual in literature, however the case of finite-time double support is not often considered in detail. In
this paper, an analysis of this phase is carried out in Section 4.

3.3. Impact model

In biped walking, an impact usually occurs when the swing foot touches the ground. For gait 2, an
impact may also occur when the rear leg toe touches the ground. Let T be the instant of the impact. An
absolutely inelastic impact is assumed, so that the foot does not slip. Given these conditions, the ground
reactions at the instant of an impact can be considered as impulsive forces and defined by Dirac delta
functions. Impact equations can be obtained through the integration of the equation of motion (1) for the
infinitesimal time from T− to T+. The vector of actuated torques and the Coriolis and gravity vectors
have finite values. Thus, they do not affect the impact equations. Consequently the impact equations can
be written in the following matrix form:

D(q(T ))(q̇+ − q̇−) = J�
I1(q(T ))i1 + J�

I2(q(T ))i2. (3)

Here, q(T ) denotes the generalized coordinates of the biped at instant t = T , (these generalized coor-
dinates does not change at the instant of the impact), q̇− and q̇+ are, respectively, the velocity vectors
just before and just after an inelastic impact. JI1 and JI2 characterize the contact of legs 1 and 2 with the
ground during the impact, i1 and i2 are the wrenches corresponding to the impulsive forces and moments
from the ground reaction acting on feet 1 and 2 , respectively.

For the studied gaits, a finite-time double support phase is desired, thus for the first impact (Figs. 1(a)
and (b)) one does not want the 1 foot to remain flat on the ground. Extensive simulations have shown that
take-offs of the rear point foot can be avoided only if the landing velocity of the swing foot is zero [10]
and therefore, there is no impact either. This solution has a high torque cost. Thus, in the following, it is
assumed that only the toe of the rear foot remains on the ground after the impact. First, let us consider
the walking motion 1. The swing foot hits the ground with a flat foot contact as shown in Fig. 1(a). In
this case, the impact model is as follows:

D(q(T ))(q̇+ − q̇−) = J�
f 1(q(T ))

⎡
⎣ i1x

i1y
iM1

⎤
⎦ + J�

t2(q(T ))
[

i2x
i2y

]

[
Jf 1(q(T ))
Jt2(q(T ))

]
q̇+ = 05×1,

(4)

where the use of matrices Jf 1 and Jt2 denotes that after impact the foot 1 has a foot flat contact with the
ground and the foot 2 has a contact with the toe.

Let us consider now the walking motion 2. For one step, there are two impacts. The first impact
occurs at the end of the single support phase when the swing foot heel impacts the ground, as shown in
Fig. 2(a). This impact is described by the next equation:

https://doi.org/10.1017/S0263574721000631 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000631


384 Mathieu Hobon et al.

D(q(T ))(q̇+ − q̇−) = J�
h1(q(T ))

[
i1x
i1y

]
+ J�

t2(q(T ))
[

i2x
i2y

]
[

Jh1(q(T ))
Jt2(q(T ))

]
q̇+ = 04×1,

(5)

where the use of matrices Jh1 and Jt2 denotes that after impact the foot 1 has a heel contact with the
ground and the foot 2 has a toe contact with the ground. During the double support phase, the foot 2
rotates on its toe while the front foot rotates on its heel. The second impact occurs at the end of the
double support phase, when the toe of the front foot reaches the ground and a flat-footed impact with
the ground occurs while the rear foot takes off (see Fig. 2(c)). This second impact is described by the
next equation:

D(q(T ))(q̇+ − q̇−) = J�
f 1(q(T ))

⎡
⎣ i1x

i1y
iM1

⎤
⎦

Jf 1(q(T ))q̇+ = 03×1.

(6)

For each impact, when the velocity vector q̇− just before the impact is known, the resolution of the
systems (4), (5), or (6) gives the velocity vector q̇+ just after the impact and the impulsive reaction
efforts i1 and i2.

4. Gait optimization for the periodic walking

In this section, we present the algorithm for defining optimal walking trajectories. Each step of this
algorithm has been carefully defined in order to minimize one sthenic criterion and to take into account
all the physical and technological constraints that make walking possible. This is the core of our work.

To deal with a minimum energy walking, the Pontryagin’s principle can be used. This principle is
used by Rostami and Besonnet [16] to design impactless walking motions for a seven-link planar biped
robot with feet. However, the calculations are complex, the resulting equations are highly sensitive to the
initial conditions, and this method generates bang–bang control laws [25]. Direct collocation method is
an alternative to define walking motions. The principle of this method is to approach the solution of an
ordinary differential equation or a partial differential equation for a finite set of points[13, 18, 26, 27, 28],
and ref. [29]. The parametrization of the problem and the conversion of it into an algebraic optimiza-
tion problem is another efficient alternative. Torques, Cartesian coordinates, or joint coordinates can be
chosen to define the optimization parameters. Discrete values for the torques are used as optimization
variables in ref. [30]. However, a numerical integration of the direct dynamic model is necessary to
find the reference trajectory in velocity and position. To overcome this difficulty, the authors in refs.
[31, 32], and [33] propose, respectively, polynomial functions and truncated Fourier series to approxi-
mate the temporal evolution of the joints, then torques are found through the algebraic solution of the
inverse dynamic model. Cartesian coordinates are also convenient as optimization parameters [34], but
this choice requires the use of inverse geometric model and for a given posture of the biped singularities
can appear.

In this paper, a parametric optimization method is used and the evolution of a set of independent joint
variables are expressed as polynomial functions of time. The coefficients of these polynomial functions
define a set of desired initial, final, and intermediate positions and velocities. From the polynomial
functions, we can calculate their first and second time derivatives. By using the inverse dynamic model,
we can deduce the joint torques. A criterion based on the joint torques is minimized to define cyclic
walking motions by considering optimization variables among the set coefficients of the polynomial
functions.
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4.1. Principle

The generalized coordinates of the biped are given by vector q. However, these generalized coordinates
are not independent due to the equation describing the contact with the ground. The locomotor system
forms a geometrical closed loop with the ground. Thus, it is not possible to choose all these generalized
coordinates arbitrarily. Among the set of generalized coordinates, several coordinates can be defined as
function of time. The evolution of the other variables are then deduced based on geometrical relations
that take into account the contact with the ground. The number of constraints varies with the phases of
the motion (single support and finite-time double support).

Between two successive phases, the position and velocity of the biped must be continuous or the
discontinuity must satisfy the impact Eqs. (4), (5), or (6). The set of parameters P specifying the cubic
spline functions are determined by taking into account the transition conditions between the following
phases.

The motion studied is assumed to be periodic and with the same behavior on support on legs 1 and
2. This periodic motion is designed with only one step. As consequence, the initial configuration at
the beginning of the current step has to be deduced from the final configuration of the same step with a
swapping role of the legs. Thus, assuming that the leg 1 is the stance leg in single support, an exchange
of the number of the joints is carried out using a matrix A as follows:

q+ = Aq−, (7)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

that is the initial configuration of the robot after the change of stance leg is the final configuration of the
robot before the change of stance leg.

The set of optimization variables P minimizing a sthenic criterion are searched using a nonlinear
optimization method. This algorithm is based on the calculation at each iteration of the gradient vec-
tor with respect to the optimization variables P, taking into account of nonlinear constraints. Physical
conditions such as conditions of no slipping of the stance feet on the ground, of no unexpected contact
with the ground of the transfer leg, and physical limits on the actuators define the nonlinear constraints
in this optimization process.

4.1.1. The criterion
A lot of criteria can be used to produce an optimal trajectory. The cost transport (COT) to evaluate the
biped gaits is a common and good option [35]. However, to deal with a smoother mathematical function,
the sthenic criterion based on the squared torques is chosen to obtain optimal trajectories. As for a motor,
its maximum delivered torque is strongly connected to its weight the physical meaning of this sthenic
criterion is also interesting:

CW = 1
d

(∫ T

0
���dt

)
= 1

d

(∫ TSS

0
���dt +

∫ TSS+TDS

TSS

���dt
)

, (8)

where T , TSS , and TDS are, respectively, the durations of the step, the single support phase, and the finite-
time double support phase. Several motions with different velocities will be defined. When the walking
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speed v is fixed, the step length d and TDS are optimization variables. The step duration T is directly
given through the relation T = d/v. Thus, we can deduce TSS as follows:

TSS = d
v

− TDS . (9)

4.1.2. Parametric functions: Cubic spline
Cubic spline functions [36] are used to define the trajectories θi(t) of each independent angular variable
during a phase of the walking motion,

θi(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕi,1(t) if t1 ≤ t ≤ t2
ϕi,2(t) if t2 ≤ t ≤ t3

.

.

.
ϕi,n−1(t) if tn−1 ≤ t ≤ tn.

i = 1, 2, ..., nj (10)

Here, n is the number of selected knots and nj is the number of angular variables. ϕi,1(t), ..., ϕi,n−1(t) are
polynomials of third order such that:

ϕi,k(t) =
3∑

j=0

aj
i,k(t − tk)j , for t ∈ [tk , tk+1], k = 1, ..., n − 1

where the coefficients aj
i,k are calculated such that the trajectory, velocity, and acceleration are continuous

between t1 and tn. The cubic spline functions are uniquely defined by specifying an initial angular posi-
tion θi(0), an initial angular velocity θ̇i(0) (both at t = t1 = 0), a final angular position θi(T ), and a final
velocity θ̇i(T ) (both at t = tn = T ), with T being the duration of the phase and n − 2 intermediate angular
positions (n − 2 because let us recall that in finite-time double support and single support phases, the
two Cartesian positions can be deduced from the knowledge of the angular positions). Consequently, the
temporal joint evolution will be defined by a limited number of optimization parameters ((n + 2) × nj).
When functions θi(t) are chosen, the joint velocities and accelerations can be deduced through time
derivation of the polynomial function θi(t).

The number of parameters increases with the number of knots n but the order of the polynomial
functions, the cubic spline functions does not increase. These cubic polynomials are sufficient to ensure
the continuity of the second derivatives at nodes.

4.2. Description of the gait in the different phases

4.2.1. The single support phase
The biped has a foot contact flat on the ground, see Fig. 1(d) or Fig. 2(d). It means there are three
unilateral constraints of contact in the stance foot with the ground. Thus, there are only 9 − 3 = 6 inde-
pendent generalized variables among the set of components of vector q. Let us assume without loss of
generality that the biped is in single support on foot 1. Then qf1 , q̇f1 , and q̈f1 are null. We can choose as
independent coordinates: � = [θ1, θ2, θ3, θ4, θ5, θ6]�=[qf2 , q1, q2, q3, q4, q5]�. The duration of the sin-
gle support phase is TSS = T − TDS . The cubic spline functions θi(t), i = 1, ..., 6 are defined with three
selected knots, n = 3 for this phase. Thus, for each joint, we need to define five parameters of position
and velocity to design the trajectories. If the single support phase is ended by a flat-footed impact of the
swing leg, only four independent variables are necessary to define the final configuration of the robot.
For the choice of these four independent variables we use the distance d between the front heel and the
rear toe, see Fig. 6, the position coordinates of the hip x, y, and the inclination of the torso q5. If the
single phase is ended by a heel impact of the swing leg, five independent generalized coordinates are
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(a)

(b)

Figure 6. Ground reactions in double support phase and the center of mass of the biped. (a) DS of gait
1. (b) DS of gait 2.

necessary to define the final configuration of the robot. The angle of the front foot has to be added.
The final velocity of the joints at the single support phase is described with six variables for both
cases.

4.2.2. The finite-time double support phases
For gait 1, leg 1 has a flat foot contact and foot 2 rotates on its toe, as shown in Fig. 1(a). Then, there
are five unilateral constraints of contact with the ground. There are nine generalized variables and five
constraint equations. Thus, during the double support phase, the biped’s configuration can be described
with only four independent coordinates. Let us choose the orientation qf2 of foot 2, the orientation angles
of leg 1 q1, q2, and the inclination angle of the torso q5: � = [θ1, θ2, θ3, θ4]� = [qf2 , q1, q2, q5]�.

For gait 2, leg 1 rotates around its heel and foot 2 rotates on its toe, as shown in Fig. 2(a). Then there
are four unilateral constraints of contact with the ground. There are nine generalized variables and four
constraint equations. Thus, during the double support, phase the biped’s configuration can be described
with only five independent coordinates. Let us choose: � = [θ1, θ2, θ3, θ4, θ5]� = [qf1 , qf2 , q1, q2, q5]�.

Let TDS be the duration of the double support phase. Only limited evolution of the joints exists during
the double support phase. Thus, the cubic spline functions θi(t), are defined with two selected knots for
gait 1 and three for gait 2. We can remark that the distance between feet d is constant during this phase,
thus the number of independent parameters to describe the robot configuration is reduced as it was
shown.
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Table II. Number of optimization variables for the walking gait 1.

Description Optimization variables Number of
parameters

Final configuration
of single support xh(TSS), yh(TSS), q5(TSS) 3

Final configuration
of double support q1(TDS), q2(TDS), q5(TDS), qf 2(TDS) 4

Intermediate
configuration qf 2(k TSS

nSS−1 ), q1(k TSS
nSS−1 ), q2(k TSS

nSS−1 ), q3(k TSS
nSS−1 ), 6 (nSS-2)

of single support q4(k TSS
nSS−1 ), q5(k TSS

nSS−1 ), k = 1, ..., nSS-2

Intermediate
configuration qf 2(k TDS

nDS−1 ), q1(k TDS
nDS−1 ), q2(k TDS

nDS−1 ), q5(k TDS
nDS−1 ) 4 (nDS-2)

of double support k = 1, ..., nDS − 2

Final velocities
of single support q̇f 2(TSS), q̇1(TSS), q̇2(TSS), q̇3(TSS), q̇4(TSS), q̇5(TSS) 6

Final velocities
of double support q̇f 2(TDS), q̇1(TDS), q̇2(TDS), q̇5(TDS) 4

Step length d 1

Duration
of double support TDS 1

Total 4nDS + 6nSS − 1

4.2.3. Continuity of the generalized coordinates between phases
The studied gaits are periodic, and the different phases are connected via impact model with a jump of
velocities or continuity between the generalized coordinates, thus the initial configuration and velocity
of each phase can be deduced based on the final configuration and velocity of the previous phase. The
number of optimization variables can thus be reduced and are summarized in the Tables II and III. For
the periodic walking motions 1 and 2, the number of knots for the single and double supports phases have
been chosen in order to have similar number of optimization variables. For gait 1, we choose nSS = 4 and
nDS = 2 that gives 31 optimization variables, and for gait 2, we choose nSS = 3 and nDS = 3 that gives
32 optimization variables. TDS and d are also optimization variables. Taking into account Eq. (9), the
duration of the single support phase TSS can be deduced.

4.3. The optimal torque

When the motion of the biped is defined with the cubic functions as function of time (10), their first, and
their second time derivatives can be calculated. The contact equation allows to define the vector q of
generalized coordinates and its derivatives q̇ and q̈. Then the dynamic model (1) can be used to deduce
the torque and the criterion can be evaluated. In the case of double support phase, due to actuation
redundancy, many torques produce the same motion. A local optimal problem can be stated to choose
the specific torques in double support as a function of the ground reaction. To define this calculation,
we develop an explicit relation between the torque vector � and the wrench vector r2. Then we detail
both cases, double support phases and single support phases and show the associated constraints.
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Table III. Number of optimization variables for the walking gait 2.

Description Optimization variables Number of
parameters

Final configuration
of single support xh(TSS), yh(TSS), q5(TSS), qf 2(TSS) 4

Final configuration
of double support q1(TDS), q2(TDS), q5(TDS), qf 2(TDS) 4

Intermediate
configuration qf 2(k TSS

nSS−1 ), q1(k TSS
nSS−1 ), q2(k TSS

nSS−1 ), q3(k TSS
nSS−1 ), 6 (nSS-2)

of single support q4(k TSS
nSS−1 ), q5(k TSS

nSS−1 ), k = 1, ..., nSS − 2

Intermediate
configuration qf 1(k TDS

nDS−1 ), qf 2(k TDS
nDS−1 ), q1(k TDS

nDS−1 ), q2(k TDS
nDS−1 ), 5 (nDS-2)

of double support q5(k TDS
nDS−1 ), k = 1, ..., nDS − 2

Final velocities
of single support q̇f 2(TSS), q̇1(TSS), q̇2(TSS), q̇3(TSS), q̇4(TSS), q̇5(TSS) 6

Final velocities
of double support q̇f 1(TDS), q̇f 2(TDS), q̇1(TDS), q̇2(TDS), q̇5(TDS) 5

Step length d 1

Duration
of double support TDS 1

Total 5nDS + 6nSS − 1

4.3.1. Explicit relation between the torque vector � and the ground reaction in foot 2 r2
In finite-time double support phase, the locomotion system of the biped moves as a closed kinematic
loop. This locomotion system is over-actuated. This situation requires an optimization process in order
to manage the actuation redundancy and to find a solution that minimizes the criterion (8). This opti-
mization process is based on an explicit relation between the torque vector � and the effort vector r2.
From the dynamic model (1), we can write both using the following equations:

B⊥(Dq̈ + N + Q) = B⊥(J�
1 r1 + J�

2 r2) (11)

and

B+(Dq̈ + N + Q) = � + B+(J�
1 r1 + J�

2 r2). (12)

Here, B⊥(3 × 9) and B+(6 × 9) are the orthogonal complement matrix and the pseudo-inverse matrix
of B, respectively, that is, B⊥B = 03×6, B+B = I6×6.
These Eqs. (11) and (12) will be used in the next subsection to manage the over actuation of the biped
in finite-time double support and thus to manage an optimization of the torques in finite-time double
support phase.

4.3.2. Optimal torques during the finite-time double support phase for gait 1
Let us first consider the gait 1, through the resultant wrench of the ground reaction, which is composed
of two components for each force applied on both feet and one component for the moment vector on the
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flat foot. The front leg has a flat foot contact (see Fig. 6(a)), thus the resultant wrench reaction of the
ground acting in some point of this front foot is defined by r1 = [r1x r1y Mz]�.

Let us consider the global equilibrium in translation and rotation of the biped, see Fig. 6(a). Let δg
be the dynamic momentum of the biped with respect to its center of mass defined by the Cartesian
coordinates (xg, yg). We have five unknown variables, Mz, r1x, r2x, r1y, and r2y for three equations only:⎧⎪⎨

⎪⎩
yg(r1x + r2x) + (xg − d)r2y + (xg + l)r1y +Mz = δg

r1x + r2x = mẍg

r1y + r2y − mg = mÿg.
(13)

Consequently, among r1x, r2x, r1y, r2y, and Mz two variables can be chosen as optimization variables.
For a given sum r1x + r2x, there are an infinity of solutions for r1y, r2y, and Mz that satisfy the first and
third equations of (13). Let r2x and r2y be the optimization variables. From (11) r1 is such as

r1 = (B⊥J�
1 )−1B⊥(Dq̈ + N + Q − J�

2 r2), (14)

assuming that B⊥J�
1 is invertible as it has been tested in all our numerical tests.

Substituting r1 with its expression (14) in (12) the torque vector is such as

� = B+(I9×9 − J�
1 (B⊥J�

1 )−1B⊥)(Dq̈ + N + Q)−
B+(I9×9 − J�

1 (B⊥J�
1 )−1B⊥)J�

2 r2. (15)

From Eq. (15), let us identify a linear relation, which emphasizes the effect of the optimization variable
r2 on the actuated torque �:

� = M − Kr2, (16)

Here, the size of the matrices M, K is, respectively, (6 × 1), and (6 × 2) and:

M = B+(I9×9 − J�
1 (B⊥J�

1 )−1B⊥)(Dq̈ + N + Q),
K = B+(I9×9 − J�

1 (B⊥J�
1 )−1B⊥)J�

2 .

For a given motion we can locally choose the solution that minimizes the criterion (8),

min
r2x , r2y

���. (17)

By using the relation (16) the expression of ��� can be written as

��� = (M − Kr2)�(M − Kr2)
= M�M − 2r�

2 K�M + r�
2 K�Kr2. (18)

We have numerically checked that matrix K�K is definite positive, thus the criterion ��� as function
of vector r2 is strictly convex and has a minimum. The solution r2 opt which minimizes ��� can be
calculated by writing that the derivative of ��� with respect to r2 is equal to zero.

∂

∂r2
(���) = 0 ⇒ r2 opt = (K�K)−1K�M

= K+M.
(19)

The solution r2 opt = [r2x opt r2y opt]� found with (19), minimizes ��� without constraints.

Remark: For r2 opt the constraints of no take-off and no slipping in double support can be satisfied or not.
At this stage of the optimization algorithm, we can search a solution r2 to satisfy the defined constraints.
But another way, that we choose, is to reject the obtained global solution with the global optimization
and the SQP optimization algorithm when a constraints is not satisfied.
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4.3.3. Optimal torques during the double support phase for gait 2
For gait 2, the problem is similar but presents some differences. Let us consider the global equilibrium
in translation and rotation of the biped (20), as shown in Fig. 6(b). The resultant reaction of the ground
acting in the pivot point that represents the heel of the front foot 1 is defined by r1 = [r1x r1y]�. Force
r2 = [r2x r2y]� is the ground reaction acting in the toe of the rear foot 2, δg is the dynamic momentum
of the biped with respect to its center of mass. We have four unknown variables, r1x, r2x, r1y, and r2y for
three equations only. ⎧⎪⎨

⎪⎩
yg(r1x + r2x) + (xg − d)r2y + xgr1y = δg

r1x + r2x = mẍg

r1y + r2y − mg = mÿg.

(20)

For a given reference trajectory of the center of mass defined along with xg, ẋg, and ẍg, mẍg is known,
and then the sum r1x + r2x through the second equation of (20). Consequently, r1y and r2y are the unique
solution of the first and second equations of (20). But there are an infinity of solutions for r1x or r2x that
satisfy the first and second equations of (20). Let r2x be defined as an optimization variable to minimize
locally the criterion (8). Using (11) we can write:

B⊥(Dq̈ + N + Q)

= B⊥
(

J�
1

[
r1x
r1y

]
+ J�

2

[
r2x
r2y

])
,

= B⊥
(

J�
1

[
r1x
r1y

]
+ J�

21r2x + J�
22r2y

)
,

= B⊥
(

J′�
1

[
r1
r2y

]
+ J21r2x

)
,

(21)

with J′�
1 = [

J�
1 J�

22
]

and r1 = [r1x r2x]�.
Assuming that B⊥J′�

1 is invertible (we observed that B⊥J′�
1 also is numerically invertible) we have:[

r1
r2y

]
= (B⊥J′�

1 )−1B�(Dq̈ + N + Q − J�
21r2x). (22)

From (12) we also can write:

B+(Dq̈ + N + Q) = � + B+
(

J′�
1

[
r1
r2y

]
+ J21r2x

)
. (23)

Combining (22) with (23) we obtain:

� = B+(I9×9 − J′�
1 (B⊥J′�

1 )−1B⊥)(Dq̈ + N + Q)

−B+(I9×9 − J′�
1 (B⊥J′�

1 )−1B⊥)J�
21r2x.

(24)

From Eq. (24) let us identify the linear form in r2x for �:

� = M1 − K1r2x. (25)

Here, the size of the matrices M1, K1 is (6 × 1) and:

M1 = B+(I9×9 − J′�
1 (B⊥J′�

1 )−1B⊥)(Dq̈ + N + Q),

K1 = B+(I9×9 − J′�
1 (B⊥J′�

1 )−1B⊥)J�
21.
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By using the same methodology that for the gait 1 with similar expressions to (18) and (19) the optimal
solution is

∂

∂r2x
(���) = 0

⇒ r2x opt = K+
1 M1.

(26)

Remarks:

• As the scalar term K�
1 K1 is strictly positive, ��� as function of r2x has a minimum.

• Similarly to gait 1 if r2x opt does not satisfy the constraints of no take-off and no slipping, the SQP
optimization algorithm will reject the obtained solution in the global optimization.

4.4. Parametric optimization problem

By parameterizing the joint motion in terms of cubic spline functions, the optimization problem is
reduced to a constrained parametric optimization problem of the form:

Minimize CW (P)
subject to gj(P) ≤ 0 for j = 1, 2, · · · , l (27)

where P is the set of optimization variables. CW (P), which is the sthenic criterion (8), is minimized
with l inequality constraints gj(P) ≤ 0 to satisfy. The vector gj(P) ≤ 0 regroups the unilateral constraints
of contact with ground reactions, the geometrical constraints and motor limits. The criterion and these
constraints are given in the following sections.

4.4.1. The single support phase
The biped has a flat foot contact on the ground, as shown in Fig. 1(c). The resultant wrench of the ground
reaction is composed of two components for the force and one component for the moment. In the second
foot the resultant wrench of the ground reaction is null (assuming that the stance foot is foot 1, r2 = 0).

The dynamic model (1) becomes:

Dq̈ + N + Q = B� + J�
1 r1. (28)

By knowing q, q̇, q̈, which satisfy (2), this matrix equation has a unique solution for the torque vector
� and the ground reaction effort r1.

4.4.2. The constraints
Two types of constraints are used to obtain a realistic gait.

• The contact constraints, which ensure a valid walking.
The first constraint ensures the stance leg does not take off or slide on the ground. The vertical com-
ponent of the ground reaction of the foot must be positive. Furthermore, the ground reaction force is
inside a friction cone, defined with the coefficient of friction μf :⎧⎪⎨

⎪⎩
−rjy < 0
( − μf rjy − rjx) ≤ 0
( − μf rjy + rjx) ≤ 0,

(29)

j = 1 and/or 2. rjx and rjy are the normal and tangential components of the reaction force. Moreover,
we can introduce a constraint on the ground reaction at the impact:⎧⎪⎨

⎪⎩
−ijy < 0
( − μf ijy − ijx) ≤ 0
( − μf ijy + ijx) ≤ 0,

(30)
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Table IV. Actuator limits in torques and velocities.

Hip joint Knee joint Ankle joint

Maximum torque (N.m) 30 10 20
Maximum velocity (rad/s) 6 10 20
Maximum power (W) 180 100 300

j = 1 and/or 2. We choose an arbitrary numerical value for the friction coefficient μf equals to 0.7.
To ensure the non-rotation of the stance flat foot we introduce a constraint on the ZMP during contact
phase and at the instant of the impact:

−lf ≤ lZMP ≤ Lf − lf . (31)

lZMP represents the distance between the ZMP and the projection of the ankle joint on the ground, see
Fig. 5.

Just after the impact, the velocity of the taking-off foot should be directed upward. As a consequence,
the positivity of the vertical component of the velocities for the heel and the toes is added to the set of
constraints.

The next constraint allows to ensure the nonpenetration of the swinging foot in the ground. Defining
the altitude of the toe and the heel of the foot 2 from expressions in Appendix we obtain inequality
constraints as follows:

y − l2 cos q3 − l1 cos q4 + (Lf − lf ) sin qf 2 − Hf cos qf 2 � 0,
and

y − l2 cos q3 − l1 cos q4 − lf sin qf 2 − Hf cos qf 2 � 0.
(32)

• The geometrical constraints and actuator limits to ensure a technological realistic gait:
For the joint variables of the knee, we limit the domain of desired solutions such as the knee counter-
flexion is avoided. Moreover, Table IV gathers the motor limits in torque, velocity, and power for the
joints of the hips, knees, and the ankles. These maximum values, are those of the locomotor system
of the hydroid robot, which the power supply fluid is hydraulic. They are used for the two gaits and
for each velocity of the optimal walking.

A block diagram that summarize the parametric optimization algorithm proposed in this paper to
define the two gaits is described in Fig 7.

5. Optimal walking: simulation results

The problem of parametric minimization with constraints to obtain the optimal walking is numerically
solved, using the SQP method see refs. [37] and [38] with the fmincon function of Matlab ®. Figure 8
shows the cost criterion as function of the walking velocity of the biped for both gaits. The choice of the
initial conditions for the optimization process is very important. The described curves are the results of
several iterative optimization tests, by adapting the initial conditions for the current velocity from the
previous velocity, starting from the lower or the higher allowable speed. For the gait 1, a cyclic motion
has been found for walking velocity between 0.22 m/s and 1 m/s. The criterion has a minimum around
0.36 m/s. The energy increases quasi linearly for higher walking velocities. For gait 2, the optimization
algorithm does not converge outside the velocity interval [0.5 m/s, 0.94 m/s]. However, walking veloci-
ties faster than 0.55 m/s have values of the cost criterion lower than those obtained with the gait 1. In the
sense of speed walking, a synchronized rotation of both feet during the double support phase is more
efficient than a flat foot contact on ground and a rotation around the toe of the other foot. We observed
with numerical results that for both gaits with the impact model (3) at the end of the single support the
velocity of the landing foot is small. This is in agreement with the numerical analyze made by Miossec
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Figure 7. Block diagram of the parametric optimization for defining the two gaits.

and Aoustin [39]. The reason is that, it is very difficult to include a finite-time double support after a
discontinuity of the velocity of the landing foot and simultaneously to satisfy the unilateral constraints
of friction and no take-off with an absolutely inelastic impact model.

Figure 8 shows the ranges of feasible speeds for both gaits 1 and 2. Outside the speed ranges, the
actuators can no longer provide enough power to perform the operation or the optimization algorithm
cannot find a solution, which satisfies the unilateral constraints of the biped robot with the ground. The
speed range is larger for the gait 1 than for the gait 2. However, for the common domain of both gaits,
the sthenic criterion is weaker for the 2 gait, especially around the comfort speed of a healthy adult
human, that is almost equal to 4.4 km/h ± 0.8, [40]. This fact leads us to believe that gait 2 is more
anthropomorphic than gait 1. Parametric optimization by definition provides a minimal solution of a
criterion that is not an optimal solution in the Pontryagin sense. In reality for each speed, with another
criterion, another strategy for choosing the initial value of the optimized variables, different written of
the constraints, it may be possible to find a different robot motion. However, the multiple numerical tests
that led us to these results, proved that the following general trend is true regardless of the trajectory
calculation method: Gait 1 is better at low speed and worse at high speed than gait 2. From Fig. 8, we
choose the velocity 0.9 m/s (3.24 km/h) to detail the walking for both gaits. This is not far from the
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Figure 8. Cost criterion as function of the walking velocity for gait 1 (green) and gait 2 (red).
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Figure 9. Stick diagram of the gait 1.

comfort velocity. Figures 9 and 10 describe a stick diagram for one step of the walking motion with
gaits 1 and 2, respectively.

Figure 11 presents the orientation variables of the feet for gait 1. We can observe the flat foot contact
of the stance foot on the ground. The value of the orientation of its sole is null with respect to the ground.
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Figure 10. Stick diagram of the gait 2.
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Figure 11. Profile of the foot orientations with respect to the ground for the gait 1.

Figure 12 shows the profile of the torques and, the discontinuities of the torques, allows us to discern the
impact at t = 0, and the transition between the double support phase and the single support phase, which
occurs at 0.12 s. The profile of the torques show a discontinuity at the impact (t = 0) because there is a
jump of velocities, which is coherent with the definition of the gait 1. During the double support phase,
the rear foot rotates around its toe until 0.12 s and after it becomes the swing foot.
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Figure 12. Profile of the torques for the gait 1.
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Figure 13. Profile of the foot orientations with respect to the ground for the gait 2.

Figure 13 presents the orientation variables of the feet for gait 2. We can explicitly see the end of the
finite-time double support phase. The front foot rotates around its heel until 0.04 s when the orientation
of its sole is null. The orientation value of the rear foot is almost zero during the double support phase;
however, the numerical results prove that there is a small rotation of this foot around its toe. After
the impact of the front feet, the rear foot becomes the swing foot and its rotation increases. Figure 14
shows the profile of the torques and, at the discontinuities of the torques, the transition between phases.
Similarly to gait 1, the profile of the torques show a discontinuity at the impacts because there is a jump
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Figure 14. Profile of the torques for the gait 2.

of velocities, that is also coherent with the definition of this gait 2. The time duration of the double
support phase, which is an optimization variable, for the gait 2 is smaller than for the gait 1. It could be
a reason why the consumption of energy is less for the gait 2 than for the gait 1 because the motion of
the swing leg is quasi ballistic [41].

6. Conclusion

This paper deals with the design of optimal periodic walking motions with finite-time double support
phases and single support phases for a planar biped through a parametric optimization. The three orig-
inal main results of this numerical study are the following. First, with the algebraic model of impact,
the fact to accept a rotation of the rear foot on its toe, which was the previous stance foot in single sup-
port, allows to get a valid noninstantaneous double support phase. That means this model satisfies the
unilateral constraints that is the vertical component of the impulsive ground reaction is positive for the
two feet and the tangential force is in the friction cone. It is true for all the calculated walking motions
for a landing of the swing foot on its heel or with flat foot contact. Second, the range of allowable
speeds is greater for the finite-time double support phase where the swing foot is landing with a flat
foot contact on the ground than for the finite double support phase that allows a synchronized rotation
of both feet. For both kinds of finite-time double support phases, beyond the upper and lower limits in
speeds, the optimization algorithm cannot find any optimal solution, which satisfies the unilateral con-
straints. Third, the gait 1, which has a flat foot contact in finite-time double support phase, is optimal
for the low velocities. The gait 2, which allows a rotation of both feet, is optimal for high biped speeds.
This last result is coherent with the observations of the biomechanical data from several researchers in
biomechanics [42].

The developed tools here could be useful in the design of a prothesis or an exoskeleton for reha-
bilitation, specially to tune the assistance for the locomotor system. Walking motion designed for
healthy people can be defined as a reference motion to track for handicapped people by tuning the
assistance of the prothesis or the exoskeleton during the gait. Preliminary results can be found in
ref. [43].
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Note
1 Sign � means transposed vector or transposed matrix in this paper.
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Appendix

A.1. The Equations of Contact with the Ground for the Biped in Position, Velocity, and Acceleration

Equations for legs 1 and 2 are similar with different joint variables. For a sake of clarity we consider
leg 1 only.

• Contact with the heel

x + l2 sin q2 + l1 sin q1 − lf cos qf 1 + Hf sin qf 1 = const,

y − l2 cos q2 − l1 cos q1 − lf sin qf 1 − Hf cos qf 1 = 0.
(A1)

The first time derivative of (A1) is

ẋ + l2q̇2 cos q2 + l1q̇1 cos q1 + lf q̇f 1 sin qf 1+
Hf q̇f 1 cos qf 1 = 0,

ẏ + l2q̇2 sin q2 + l1q̇1 sin q1 − lf q̇f 1 cos qf 1+
Hf q̇f 1 sin qf 1 = 0.

(A2)

In compact form (A2) becomes: Jh1q̇ = 0 with

Jh1 =
[

lf sin qf 1 + Hf cos qf 1 0 l1 cos q1 l2 cos q2 0 0 0 1 0
−lf cos qf 1 + Hf sin qf 1 0 l1 sin q1 l2 sin q2 0 0 0 0 1

]
. (A3)
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The second time derivative of (A1) is

ẍ + l2q̈2 cos q2 + l1q̈1 cos q1 + lf q̈f 1 sin qf 1+
Hf q̈f 1 cos qf 1 − l2q̇2

2 sin q2 − l1q̇2
1 sin q1+

lf q̇2
f 1 cos qf 1 − Hf q̇2

f 1 sin qf 1 = 0,

ÿ + l2q̈2 sin q2 + l1q̈1 sin q1 − lf q̈f 1 cos qf 1+
Hf q̈f 1 sin qf 1 + l2q̇2

2 cos q2 + l1q̇2
1 cos q1+

lf q̇2
f 1 sin qf 1 + Hf q̇2

f 1 cos qf 1 = 0.

(A4)

In compact form (A4) becomes: Jh1q̈ + J̇h1q̇ = 0.

• Contact with the toe

x + l2 sin q2 + l1 sin q1 + (Lf − lf ) cos qf 1 + Hf sin qf 1 = const,

y − l2 cos q2 − l1 cos q1 + (Lf − lf ) sin qf 1 − Hf cos qf 1 = 0.
(A5)

The first time derivative of (A5) is

ẋ + l2q̇2 cos q2 + l1q̇1 cos q1 − (Lf − lf )q̇f 1 sin qf 1+
Hf q̇f 1 cos qf 1 = 0,

ẏ + l2q̇2 sin q2 + l1q̇1 sin q1 + (Lf − lf )q̇f 1 cos qf 1+
Hf q̇f 1 sin qf 1 = 0.

(A6)

In compact form (A6) becomes: Jt1q̇ = 0 with

Jt1 =

⎡
⎢⎢⎣

−(Lf − lf ) sin qf 1+
Hf cos qf 1 0 l1 cos q1 l2 cos q2 0 0 0 1 0

(Lf − lf ) cos qf 1+
Hf sin qf 1 0 l1 sin q1 l2 sin q2 0 0 0 0 1

⎤
⎥⎥⎦ . (A7)

The second time derivative of (A5) is

ẍ + l2q̈2 cos q2 + l1q̈1 cos q1 − (Lf − lf )q̈f 1 sin qf 1+
Hf q̈f 1 cos qf 1 − l2q̇2

2 sin q2 − l1q̇2
1 sin q1−

(Lf − lf )q̇2
f 1 cos qf 1 − Hf q̇2

f 1 sin qf 1 = 0,

ÿ + l2q̈2 sin q2 + l1q̈1 sin q1 + (Lf − lf )q̈f 1 cos qf 1+
Hf q̈f 1 sin qf 1 + l2q̇2

2 cos q2 + l1q̇2
1 cos q1−

(Lf − lf )q̇2
f 1 sin qf 1 + Hf q̇2

f 1 cos qf 1 = 0.

(A8)

In compact form (A8) becomes: Jt1q̈ + J̇t1q̇ = 0.
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• Flat foot contact
x + l2 sin q2 + l1 sin q1 + Hf sin qf 1 = const,

y − l2 cos q2 − l1 cos q1 − Hf cos qf 1 = 0.

qf 1 = 0

(A9)

The first time derivative of (A9) is
ẋ + l2q̇2 cos q2 + l1q̇1 cos q1 + Hf q̇f 1 cos qf 1 = 0

ẏ + l2q̇2 sin q2 + l1q̇1 sin q1 + Hf q̇f 1 sin qf 1 = 0.

q̇f 1 = 0

(A10)

In compact form (A10) becomes: Jf 1q̇ = 0

Jf 1 =
⎡
⎢⎣

Hf cos qf 1 0 l1 cos q1 l2 cos q2 0 0 0 1 0
Hf sin qf 1 0 l1 sin q1 l2 sin q2 0 0 0 0 1

1 0 0 0 0 0 0 0 0

⎤
⎥⎦ . (A11)

The second time derivative of (A9) is
ẍ + l2q̈2 cos q2 + l1q̈1 cos q1 + Hf q̈f 1 cos qf 1−
l2q̇2

2 sin q2 − l1q̇2
1 sin q1 − Hf q̇2

f 1 sin qf 1 = 0,

ÿ + l2q̈2 sin q2 + l1q̈1 sin q1 + Hf q̈f 1 sin qf 1+
l2q̇2

2 cos q2 + l1q̇2
1 cos q1 + Hf q̇2

f 1 cos qf 1 = 0.

q̈f 1 = 0

(A12)

In compact form (A12) becomes: Jf 1q̈ + J̇f 1q̇ = 0.

A.2. Expression of Matrix K

• K(1, 1) = Hf cosqf 2 − (Lf − lf )sinqf 2 + l2(cosq3 − cosq2) + l1(cosq4 − cosq1).
• K(2, 1) = Hf cosqf 2 − (Lf − lf )sinqf 2 + l2(cosq3 − cosq2) + l1cosq4.
• K(3, 1) = Hf cosqf 2 − (Lf − lf )sinf 2 + l2cosq3 + l1cosq4.
• K(4, 1) = −Hf cosqf 2 + (Lf − lf )sinqf 2 − l2cosq3 − l1cos(q4.
• K(5, 1) = −Hf cosqf 2 + (Lf − lf )sinqf 2 − l1cosq3.
• K(6, 1) = −Hf cosqf 2 + (Lf − lf )sinqf 2.
• K(1, 2) = Hf sinqf 2 + (Lf − lf )cosqf 2 + l2(sinq3 − sin q2) + l1(sinq4 − sinq1).
• K(2, 2) = Hf sinqf 2 + (Lf − lf )cosqf 2 + l2(sinq3 − sinq2) + l1sinq4.
• K(3, 2) = Hf sinqf 2 + (Lf − lf )cosqf 2 + l2sinq3 + l1sinq4.
• K(4, 2) = −Hf sinqf 2 − (Lf − lf )cosf 2 − l2sinq3 − l1sinq4.
• K(5, 2) = −Hf sinqf 2 − (Lf − lf )cosqf2 − l1sinq4.
• K(6, 2) = −Hf sinqf 2 − (Lf − lf )cosqf 2.
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