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SUMMARY
In this paper, design, analysis and real-time trajectory tracking control of a 6-degree of freedom
revolute spherical-spherical type parallel manipulator, actuated by six hybrid stepper motors, has
been studied. Two different control approaches have been used to improve the trajectory tracking
performance of the designed manipulator. The first approach considered a single input-single
output (SISO) linear quadratic regulator (LQR) for trajectory tracking control of the manipulator.
Another controller type based on a nonlinear sliding mode controller method has been utilized
to take decoupled dynamic approximation model of the manipulator into account and to improve
tracking performance of the manipulator. Real-time experimental results for the two different control
techniques have been verified. Finally, according to the results, the nonlinear sliding mode controller
method has improved the tracking performance of the designed manipulator.

KEYWORDS: Parallel manipulator, kinematics analysis, dynamics analysis, hybrid stepper motor,
linear quadratic optimal regulator control, sliding mode control.

1. Introduction
Parallel manipulators with a closed-loop kinematic chain, generally exhibit advantages such as high
stiffness, speed, accuracy and large loading capacity when compared with serial manipulators.1,2

Due to these advantages, parallel manipulators have been used in wide areas, including flight
simulators,3 medical operations,4−7 machine tools,8−10 micro-motion11 and pick-and-place operations
in industry.12,13

Main mechanical characteristic of parallel manipulators is closed-loop kinematic structure, which
includes a moving platform that is connected to a fixed base via multiple limbs or legs and every limb
is controlled using one actuator individually. In general, parallel manipulators have more complicated
kinematics and dynamic analysis compared with conventional serial manipulators due to the closed-
loop kinematic structure and actuators working against each other.

It is possible to change the architecture of the manipulator according to the type of joints and
actuators used in the structure of parallel manipulators. In the area of 6-degrees-of-freedom (6-
DOF) parallel mechanisms, most of the researchers have particularly focused on the most popular
architecture, namely the 6-SPS (spherical, prismatic and spherical) Stewart parallel manipulator.
This type of manipulator has been generally actuated by hydraulic actuators.14,15 Another type of
6-DOF parallel mechanism architecture, known as 6-RSS (revolute, spherical, and spherical) parallel
manipulator, is introduced by Castaneda and Takeda.16 This type of parallel manipulators can also
be used for abovementioned applications.17−19 When 6-RSS parallel manipulator is compared to the
6-SPS ones, 6-RSS parallel manipulator is less studied by the researchers due to its complicated
non-linear dynamics model.
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A 6-RSS parallel manipulator is actuated by electrical motors, which are connected to input links
with revolute joints. Therefore, this architecture is called a motor-mechanism coupling system in the
literature.20−22 Due to the presence of the coupling characteristics, the dynamic model of the system
includes highly time-varying nonlinearities. In addition, the uncertainty of the motor-mechanism
coupling system parameters, such as un-modelled system dynamics and undesirable disturbance
effects, makes control of the system difficult.15 When the overall system is considered, it is very
crucial to design a controller with great efficiency to execute the system smoothly. In practice,
manipulators are controlled to track a desired trajectory that is planned in their workspace. In recent
years, various advanced control techniques have been performed and successfully implemented to
control 6-DOF SPS Stewart parallel manipulators accurately, such as proportional integral derivative
PID control,23,24 linear quadratic regulator (LQR) control,25 model-based control,26−29 H∞ adaptive
control,30−31 computed torque control,32 fuzzy control33 and sliding mode control (SMC).34−37

Among these control techniques, SMC is a variable structure and also an efficient robust control
method for nonlinear systems with unknown loads and un-modelled dynamics. A sliding mode
controller has been successfully implemented in many nonlinear systems for improving their
performance and robustness against disturbances and perturbations, reducing model order, simplifying
design and improving tracking performance as explained by38,39. Other characteristic features of SMC
are that a systematic approach provided by the sliding mode controller improves the ability of the
system to overcome the stability maintaining problem and also increases the performance of the
system for modelling imprecisions.40 Because of the characteristic feature of the SMC listed above,
many researchers used this technique to overcome control problem in their systems.

In this paper, unlike the most focused traditional 6-DOF SPS parallel manipulators in the scientific
literature, an SMC is performed for the first time on a designed and modelled 6-DOF-RSS parallel
manipulator for high-accuracy trajectory tracking control of the manipulator. Additionally, in order
to show the advantages of the SMC over other classical control techniques, the LQR control method
has been applied to the manipulator as a second control approach. In order to compare the two
control techniques, the velocity and position analyses of the manipulator have been realized initially
by using the geometrical method. In addition to this, two approaches have been considered to create
the dynamics model of the manipulator. The first approach is a linearized model based on a single
link approximation of the manipulator for implementation of linear quadratic regulator controller
design. The second approach is a decoupled dynamic model approximation of the manipulator for the
implementation of the sliding mode controller, which adapts itself to uncertainties in the model and
to nonlinearities generally associated with a parallel manipulation. The primary contribution of this
paper is the design, implementation and evaluation of an LQR and of SMC techniques for the motion
control of the 6-DOF RSS parallel manipulators. In order to execute the real-time performance of the
both controllers, experimental studies have been realized. It has been validated experimentally that
SMC is an efficient, robust control method for the manipulator including un-modelled dynamics.

This paper is organized as follows. The designed system structure has been presented in Section 2.
Section 3 describes kinematic and dynamic analyses of the manipulator. Both linear quadratic optimal
regulator and nonlinear SMC strategies have been introduced in Section 4. The experimental results
have been presented in Section 5, followed by the concluding remarks in Section 6.

2. System Description
Figure 1 shows the designed 6-DOF RSS type parallel manipulator. The manipulator consists of a
fixed platform, a moving platform and six identical limbs connecting the moving platform to the fixed
platform. Each limb consists of an input link and a coupler link (passive link) that are connected
together with a spherical joint. Moreover, each input link has been coupled to the shaft of the hybrid
stepper motor with a revolute joint and each coupler link has been coupled to the moving platform
with a spherical joint. Using this structure, it is possible for the moving platform to move with 6
spatial DOF, effectively.18

3. Analysis and Mathematical Modelling of the Manipulator
A schematic diagram of the manipulator, offset angle distributions of the fixed and moving platforms
and vector representation of a single chain of the manipulator are depicted in Figs. 2–4.
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Fig. 1. 6-DOF RSS type manipulator.

Fig. 2. Schematic diagram of the manipulator.

Fig. 3. Offset angle distributions of the fixed platform (right) and the moving platform (left).

For the purpose of analysis, a fixed coordinate frame x, y, z is attached to the fixed platform and a
mobile coordinate frame x ′, y ′, z′ is attached to the moving platform. As shown in Figs. 2 and 3, the
points Oi and Bi (in this paper i = 1 · · · 6 ) have been symmetrically arranged on the circumference,
fixed and moving platforms with radii rb and rp, and offset angles λb and λp, respectively.

As shown in Fig. 4, the centre of the first spherical joints is denoted by Ai and the centre of the
second spherical joints is attached to the mobile platform by Bi . Each point Ai moves along a circular
trajectory referred to as track i whose centre has been denoted by Oi . In order to simplify the analysis,
the following assumption has been made: Each actuated revolute joint can rotate fully, without any
restriction. Corresponding parameters of the manipulator and the design parameters have been listed
in Table I.

3.1. Inverse kinematic problem of manipulator
In this study, a geometrical approach has been used for the kinematic analysis of the manipulator.
Geometrically, for each leg, the problem can be regarded as finding of the intersection point(s)
between a sphere of radius l2 at centre Bi and the circle track. Clearly, depending on the position of
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Fig. 4. Vector representation of a single chain of the RSS parallel mechanism.

Table I. Parameters of manipulator.

Notations Descriptions

p Position vector of the moving platform with respect to the fixed coordinate frame.
R Orientation matrix, which can be represented by Euler transformation with respect to

the fixed coordinate frame. The orientation matrix can be expressed in terms of the
direction cosines of x ′, y ′, z′ as follows:

R =
⎡
⎣cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ

sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ

−sφcψ sθsψ cθ

⎤
⎦

θi Actuator angle (ith input variable) is measured from x(i) axis to OiAi

[x(i), y(i), z(i)] Track frame axes with centre at point Oi .
Ri Orientation of track frame i with respect to the fixed coordinate frame. This matrix is

given as follows:

Ri =
⎡
⎣cos(θi) 0 sin(θi)

sin(θi) 0 −cos(θi)
0 1 1

⎤
⎦

[x(Ai ), y(Ai ), z(Ai )] Coupler link frame axes with centre at point Ai . The z(Ai ) axis is always parallel to
the track frame’s z(i) axis, and the x(Ai ) axis is always along line OiAi , pointing
away from Oi .

l1 Length of input links (magnitude of vector rOiAi
) (Design parameter → 82 mm)

l2 Length of coupler links (magnitude of vector rAiBi
) (Design parameter → 285 mm)

rb Radius of fixed platform (magnitude of vector rOOi
) (Design parameter → 250 mm)

rp Radius of moving platform (magnitude of vector rCBi
) (Design parameter →

145 mm)
λb Offset angles of the fixed base platform

(Design parameters → [0, 100, 120, 220, 240, 340] deg)
λp Offset angles of the moving platform

(Design parameters → [32,5 67,5 152,5 187,5 272,5 307,5] deg)
ml1 Mass of the input link

(Design parameter → 0.184 kg)
ml2 Mass of the coupler link

(Design parameter → 0.085 kg)
mp Mass of the moving platform

(Design parameter → 0.483 kg)
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point Bi , this problem may have an infinite number of real solutions, two solutions, a single one, or
none at all.

According to geometrical relationships, the vector of r (i)
AiBi

relative to the (x(i), y(i), z(i)) coordinate
frame can be written as

r (i)
AiBi

= r (i)
OiBi

− r (i)
OiAi

. (1)

By squaring both sides of Eq. (1), one can obtain the main equation constituting the inverse kinematic
problem given by Eq. (2):

l2
2 = �2

i + l2
1 − 2

(
r (i)

OiBi

)T

r (i)
OiAi

(2)

where �i = r
(i)
OiBi

, r (i)
OiBi

= RT
i ( p + Rr ′

p − rOOi
).

Using r (i)
OiAi

= l1[ cosθi sinθi 0 ]T and components of r (i)
OiBi

(x(i)
Bi

, y
(i)
Bi

and z
(i)
Bi

), Eq. (2) can be
written as a function of input variable θi as follows:

x
(i)
Bi

cosθi + y
(i)
Bi

sinθi = �2
i + l2

1 − l2
2

2l1
≡ pi. (3)

In order to have a real solution to this equation, the following inequality should hold true:

x
(i)2

Bi
+ y

(i)2

Bi
− p2

i ≡ Гi ≥ 0. (4)

Unless p2
i = x

(i)2

Bi
+ y

(i)2

Bi
, there exist two real solutions for Eq. (3), determined uniquely from

sinθi = piy
(i)
Bi

+ x
(i)
Bi

δi

√
Гi

x
(i)2

Bi
+ y

(i)2

Bi

, cosθi = pix
(i)
Bi

− y
(i)
Bi

δi

√
Гi

x
(i)2

Bi
+ y

(i)2

Bi

(5)

where θi ∈ [−π, π] and δi = ±1 is the branch index. Hence, input variable θi is found using Eq. (6):

θi = atan2 (sinθi, cosθi) . (6)

3.2. Velocity Jacobian of the manipulator
Referring to Fig. 4, a closed-loop equation for the ith limb of the RSS parallel manipulator can be
written as follows:

p + rCBi
= rOOi

+ rOiAi
+ rAiBi

. (7)

Differentiating Eq. (7) with respect to time yields

V p + ωp × rCBi
= ωOiAi

× rOiAi
+ ωAiBi

× rAiBi
(8)

where V p and ωp are the linear and angular velocities of the moving platform, respectively; ωOiAi

and ωAiBi
are the angular velocities of the ith limb.

For this manipulator, the input vector is
−→̇
q = [θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6]T , and the output vector is−→̇

X = [Vx ′, Vy ′, Vz′, 	̇, θ̇ , ψ̇]T . All other joint rates are passive variables. To eliminate the passive
joint rate, multiplying the both sides of Eq. (8) by rAiBi

in dot product form results in the following
equation:

rAiBi
· V p + ωp · (

rCBi
× rAiBi

) = ωOiAi
· (

rOiAi
× rAiBi

)
. (9)
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Fig. 5. Single link model of manipulator.

After some algebraic operation, Eq. (9) has been arranged in the matrix form and Jx and Jq has
been obtained in the following form:

JxẊ = Jqq̇. (10)

Hence, the overall Jacobian matrix, defined as the coefficient matrix of any set of equations that relate
the velocity state of the moving platform to the actuated joint rates, can be rewritten as

q̇ = J Ẋ,
(
J = J−1

q Jx

)
. (11)

3.3. Dynamics of the manipulator
In order to investigate the effects of the manipulator dynamics and control techniques, two modelling
approaches have been developed without consideration of the friction of the passive joints. The
first approach is based on a single link approximation of the manipulator for the single input-
single output (SISO) modelling. This SISO model has been used for linear quadratic optimal control
implementation. Secondly, decoupled dynamic model approximation has been developed to obtain the
manipulator dynamical model. This modelling approach is preferable for nonlinear control techniques
such as a sliding mode controller to keep the nonlinear systems under control.

3.3.1. Single link dynamic model approximation. A schematic diagram of the single link model has
been shown in Fig. 5, where g is the acceleration due to gravity, ml1 is the mass of the input link, θi

is the angular displacement of the input link from the base of the manipulator and τi is the applied
torque by the actuator for the ith input link. It assumes that the mass of the moving platform, mp, has
been evenly divided between the six legs and concentrated at the end of the input link. Similarly, the
mass of each coupler link, ml2 , has been concentrated at the end of the input link. Equivalent mass
meq has been expressed in Eq. (12) for this approximation.

meq = ml2 + mp

6
. (12)

This model also assumes that each link can be modelled separately so that it neglects the influence of
the motion of the rest of the manipulator on the input link modelled. Both of these assumptions are
substantial, but these assumptions are made to obtain provide a dynamic model that will allow the
development of linear quadratic optimal control of the manipulator. The equation of the motion for
the simplified link model for the ith leg is found by summing the torques about the revolute joint and
by applying Euler’s equation of motion, which is given by

τi =
(

1

3
ml1 l

2
1 + meql

2
1 + Im

)
θ̈i + cd θ̇i + l1g

(
1

2
ml1 + meq

)
cos (θi) . (13)

3.3.2. Decoupled dynamic model approximation. The Newton Euler approach has been used to obtain
decoupled dynamic model of the manipulator. The dynamic model of the manipulator includes high
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Fig. 6. Schematic of the ith leg of the manipulator.

nonlinearity and calculation burden process. As shown in Fig. 6, this dynamic model has assumed
that the mass of each coupler link (ml2 ) has been divided and concentrated between the joints Ai and
Bi . This assumption can be made because the coupler links’ mass of the designed manipulator is
lighter than the rest of the manipulator mass and the coupler links do not play an effective role in the
manipulator dynamics.

After making the assumptions above, the equation of the motion is written by summing the
moments about the actuated joint (Oi ) for the ith leg:

∑
MOi

= IJ θ̈i + cd θ̇i + τ ∗
mp,i . (14)

Mathematical expressions of IJ and τ ∗
mp,i have been given by Eq. (15):

IJ = 1

3
ml1 l

2
1 + 1

2
ml2 l

2
1 + Im (15)

τ ∗
mp,i = (J T )−1KẌ

K =

⎡
⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 mrp

4 0 0
0 0 0 0 mrp

2 0
0 0 0 0 0 mrp

2

⎤
⎥⎥⎥⎥⎥⎦

where J is the Jacobian matrix, Ẍ is the acceleration of the moving platform and m is equal to
m = 3ml2 + mp.

Due to the actuator torques and the gravitational force, an expression for the resultant moment at
point Oi for all of the six legs is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
MJ1,0∑
MJ2,0

.

.

.∑
MJ6,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

τ1

τ2

.

.

.

τ6

⎤
⎥⎥⎥⎥⎥⎦

− 1

2
l1ml1g

⎡
⎢⎢⎢⎢⎢⎣

cos
(
θ1,0

)
cos

(
θ2,0

)
.

.

.

cos
(
θ6,0

)

⎤
⎥⎥⎥⎥⎥⎦

− 1

4
l1ml2g

⎡
⎢⎢⎢⎢⎢⎣

cos
(
θ1,0

)
cos

(
θ2,0

)
.

.

.

cos
(
θ6,0

)

⎤
⎥⎥⎥⎥⎥⎦

− (
J T

)−1
K

⎡
⎢⎢⎢⎢⎢⎣

0
0
g

0
0
0

⎤
⎥⎥⎥⎥⎥⎦

. (16)
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Substituting Eqs. (15) and (16) into Eq. (14) as written for six legs and solution of the actuator torques
can be obtained in the following form:

⎡
⎢⎢⎢⎢⎢⎣

τ1

τ2

.

.

.

τ6

⎤
⎥⎥⎥⎥⎥⎦

= 1

2
l1g

(
ml1 + 1

2
ml2

)
⎡
⎢⎢⎢⎢⎢⎣

cos
(
θ1,0

)
cos

(
θ2,0

)
.

.

.

cos
(
θ6,0

)

⎤
⎥⎥⎥⎥⎥⎦

+ (
J T

)−1
K

⎡
⎢⎢⎢⎢⎢⎣

0
0
g

0
0
0

⎤
⎥⎥⎥⎥⎥⎦

+ IJ

⎡
⎢⎢⎢⎢⎢⎣

θ̈1,0

θ̈2,0

.

.

.

θ̈6,0

⎤
⎥⎥⎥⎥⎥⎦

+ (
J T

)−1
KẌ+cd

⎡
⎢⎢⎢⎢⎢⎣

θ̇1,0

θ̇2,0

.

.

.

θ̇6,0

⎤
⎥⎥⎥⎥⎥⎦
.

(17)

Using the differential of the Jacobian given by Eq. (11), one can obtain the acceleration of the
moving platform (Ẍ) in terms of the manipulator joint angles. These relations have been given by
Eq. (18):

Ẍ = J−1

⎡
⎢⎢⎢⎢⎢⎣

θ̈1

θ̈2

.

.

.

θ̈6

⎤
⎥⎥⎥⎥⎥⎦

+ d

dt

(
J−1

)
⎡
⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2

.

.

.

θ̇6

⎤
⎥⎥⎥⎥⎥⎦

. (18)

Substituting Eq. (18) into Eq. (17), the general dynamic model of the manipulator has been given
by Eq (19):

τ = M (q) q̈ + C (q, q̇) q̇ + G (q) , (19)

where the state q = [θ1, θ2 . . . θ6]T is a vector with six actuator angles, M(q) is the mass matrix,
C(q, q̇) is the Coriolis and centrifugal force, G(q) is the gravitational force and τ is the actuator
torques and mathematical expressions for these terms have been given by Eq (20):

M (q) = IJ I + (
J T

)−1
KJ−1

C (q, q̇) = cd I + (
J T

)−1
K

d

dt

(
J−1

)
G (q) = 1

2
l1g

(
ml1 + 1

2
ml2

) [
cos (θ1) . . . cos (θ6)

]T (
J T

)−1
K

[
0 0 g 0 0 0

]T

τ = [
τ1 . . . τ6

]T
.

(20)

3.4. Actuator dynamics
The designed parallel manipulator is actuated by the hybrid stepper motor. The hybrid stepping
motor is an AC two-phase synchronous motor with two phases A and B in quadrature for low-speed
applications. However, unlike the conventional AC motors, the hybrid stepping motor does not have
a clear equivalent circuit for time domain equation analysis. However, using the permanence-based
method, one can obtain the equivalent magnetic circuit of the hybrid stepping motor, from which the
basic voltage equations can be deduced. Thus, the motor can be represented by the following electric
equations:41

ua = Ria + L
d

dt
ia − Kmωsin (Nθ )

ub = Rib + L d
dt

ib − Kmωcos (Nθ )
(21)

where ia and ib are the currents of the phases A and B, ua and ub are the phase voltages, R

is the phase resistance (1.5 �), L is the phase inductance (6.5 mH), Km is the torque constant
(0.000455 Nm · s/rad) and N is the step number of the rotor and is equal to 50. ω is the angular
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velocity and θ is the mechanical rotor position. It is clear that θ and ω coincide with the angular
position and velocity of the input link ([ q q̇ ]T ).

The output torque of the motor, which is determined by the control current, can be expressed as
follows:

τmotor = Km {−ia sin (Nθ ) + ib cos (Nθ )} − Jm

dω

dt
− Kvω

ω = dθ

dt

(22)

where Kv is the coefficient of viscous friction (0.178 V · s/rad)), Jm is the rotary inertia of the rotor
(17.65 × 10−5 kg · m2). Applying the Park transformation to (21) and (22), the model of the HSM in
the rotating frame (d − q) becomes

Ud = Rid + L
d

dt
id − Lpωiq

Uq = Rid + L
d

dt
iq − Lpωid + Kmω

τmotor = Kmiq − Jm

dω

dt
− Kvω.

(23)

According to the output torque of the motor and the manipulator, the motor-mechanism model is
formulated from Eqs. (23) and (19) as follows:

M (q) q̈ + C (q, q̇) q̇ + G (q) = Kmiq − Jmq̈ − Kvq̇. (24)

Rewriting the above equation yields

(M (q) + Jm)q̈ + (C (q, q̇) + Kv) q̇ + G (q) = Kmiq. (25)

For simplicity, Eq. (25) could be rewritten as

M (q) q̈ + N (q, q̇) = Kmiq = τ (t) (26)

where the N(q, q̇) vector is N(q, q̇) = (C(q, q̇) + Kv)q̇ + G(q).

4. Controller Design
In this study, two different control techniques have been used for trajectory tracking control of the
parallel manipulator. The first one is the SISO-based linear quadratic optimal control implementation
using the single link model. The second one is SMC for the decoupled dynamic model approximation
of the manipulator.

4.1. Linear quadratic optimal control implementation
In this section, the linear optimal control algorithm has been developed with the single link
approximation of the manipulator model. For this purpose, this model has been linearized about
an operating point. An operating point of the nonlinear system Eq. (13) is x∗ = [q∗ q̇∗]T when
u = τ ∗. The linearization of Eq. (13) has been given by

�̇x = A�x + Bu = f
(
�̇x, �u

)
y = C�x + Du = h (�x, u)

(27)
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where

�x = x − x∗, u = u − u∗.

A =
[
df

dx

]
x∗,u∗

=

⎡
⎢⎢⎣

∂f1

∂x1

(
x∗, u∗) ∂f1

∂x2

(
x∗, u∗)

∂f1

∂x1

(
x∗, u∗) ∂f1

∂x2

(
x∗, u∗)

⎤
⎥⎥⎦ , B =

[
df

du

]
x∗,u∗

=

⎡
⎢⎢⎢⎣

∂f1

∂u

(
x∗, u∗)

∂f1

∂u

(
x∗, u∗)

⎤
⎥⎥⎥⎦

C =
[
dh

dx

]
x∗,u∗

=
[

∂h

∂x1

(
x∗, u∗) ∂h

∂x2

(
x∗, u∗) ]

, D =
[
dh

du

]
x∗,u∗

The optimal control theory is concerned with operating a dynamical system at minimum cost.
Linear quadratic regulator is one of the optimal control strategies and this regulation method provides
a systematic way of computing the state feedback control gain matrix.

The optimal regulation problem is to determine the gain matrix K optimal control vector uk =
−K xk, so as to minimize the cost function given by Eq. (28):

JCost = 1

2

M∑
k=1

[
xT

k Qxk + uT
k Ruk

]
(28)

where Q and R are the positive definite real symmetric weighting matrices that are chosen by the
designer. These matrices are design parameters and they define the relationship between regulation
performance and control efforts.

In order to minimize cost function, Eq. (28) gives the state feedback control law in the following
form:

uk (t) = −R−1 BT P xk (t) (29)

where P is the positive-definite matrix. The solution of the Riccati equation given by

AP + P A − P B R−1 B P + Q = 0. (30)

4.2. Sliding mode control design
In the SMC system, joint space trajectories are forced to reach a sliding manifold in finite time that
is called the reachability phase and these trajectories are forced to stay on the manifold for all future
time in the sliding phase.42

The tracking control problem in joint space is to drive the joint position q to the desired position
qd . Tracking error q̃;

q̃ = q − qdes. (31)

The sliding surface is determined by the following equation:

s = ˙̃q − λq̃ (32)

where λ = diag[λ1, λ2, . . . , λ6] is a weighting parameter.
The controller design can be translated in terms of finding a control law for the input vector τ that

verifies individual sliding conditions of the form

1

2

d

dt
si

2 ≤ −ηi |si | (ηi > 0). (33)

Satisfying Eq. (33) makes the surface an invariant set. Furthermore, it also implies that disturbances
or dynamic uncertainties can be tolerated while still keeping the surface an invariant set. The best
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Fig. 7. Block diagram of the sliding mode control implementation.

approximation τ̂ of an equivalent control law that would achieve ṡ = 0 is thus

τ̂ = M̂q̈ + N̂ − As (34)

where M̂ and N̂ are the estimations of M and N , A = diag[a1, . . . a6] is also a diagonal positive
definite constant matrix. In order to satisfy sliding condition defined in Eq. (33) despite uncertainty
on the dynamics, the term τ̂ could be added to discontinuous across the surface. Hence, the control
input becomes

τ = τ̂ − Fsgn (s) . (35)

Substituting Eq. (35) into Eq. (26) leads to

Mṡ + (N + A) s = � f − Fsgn (s) (36)

where � f is the estimation error with the definition � f = (M̂ − N)q̈ + (N̂ − N) and the estimation
error is assumed to be bounded by some known F:

|f |bound ≤ F. (37)

To prove convergence to the sliding mode, s must converge to zero in finite time. For this purpose,
the Lyapunov method could be used to obtain a control law that provides stability of the system.

Choosing a Lyapunov function

V = 1

2
sT Ms. (38)

Since M is the symmetric and positive definite, for �= 0 V > 0. And differentiating Eq. (38) and
using Eq. (36), it can be proved that

V̇ = sT [− (N + A) s + � f − Fsgn (s) + Ns] =
∑n

i=1
si [� f i − Fisgn (si )] − sT As ≤ 0.

(39)
Using Eq. (37) for si > 0 and si < 0 conditions, Eq. (39) provides an exponentially stable system.
In practice, the control law given in Eq. (35) may be resulted in oscillations in high-frequency

switching, called chattering. To reduce the control-chattering activity, the high-frequency switching
function sgn can be approximated to a smooth bounded saturation function sat.

Figure 7 shows the SMC implementation block diagram of the manipulator that demonstrates the
input is the required trajectory of the manipulator in terms of the translation and orientation motions.
The controller uses the inverse kinematic equations (5) and (6) to convert the desired position and
orientation of the manipulator into the required actuator angles, which are then fed in as the set-points
for the six local controllers. The controller then applies the necessary control action to the hybrid
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stepper motor drivers, which in turn allows the correct rotations to each input link, achieving the
correct angles.

5. Experimental Results
The block diagram of the 6-DOF parallel manipulator control system is shown in Fig. 8. The controller
has been implemented using SIMULINK 2014 from MathWorks running on a personal computer
with Intel Core i7-4790 3.6 GHz processor. The experiments have been realized using the QPIDe
data acquisition device from Quanser that is ideal for rapid control prototyping and delivers superior
real-time performance. The QPIDe has 8 analogue inputs/outputs, 56 digital inputs/outputs, 8 user
programmable PWM outputs and 8 encoder inputs. The instantaneous HSM motor angles have been
measured through the QPIDe encoder inputs using 4x quadrature and the angular velocities have
been calculated by the direct backward differentiation method, from the motor angles measured. The
resolution of each encoder is 4096 counts per revolution, which yields a resolution of 0.022◦ for the
angular position measurement using 4x quadrature. The modes of the hybrid stepper motor drivers
have been set to 1/25600. The control commands, which are the desired torques, have been calculated
by SIMULINK program according to the control law, and then these commands have been converted
into PWM signals for the hybrid stepper motor drives, the task of which is to drive the PWM phase
current signals to generate desired torques.

It is clear that, in the high-frequency reference signal, higher motor output torque is required
due to the system dynamics. The maximum output torque capacity of the motors in the designed
manipulator system is limited and cannot compensate the output high torques of system dynamics
when high speed or high acceleration is needed. Because of this reason, the frequencies of the
given reference trajectories in the experiments have been adjusted to low frequencies by taking into
consideration of the system load (i.e., load and no load).

For the experimental studies, the LQR controller parameters are K = [80 27.5 × 10−3] and the
proposed nonlinear controller parameters have been designed as λ = 18 η = 0.1 and F = 1.6. To
verify effectiveness of the SMC algorithm with respect to the LQR control, the following experiments
have been carried out in two cases.

In the first case, manipulator has been operated with no load, i.e., an external load has not been
placed on the moving platform. For the given reference translational trajectories (xd = 0.03 sin( π

10 t)
[m], yd = 0.03 sin( π

10 t) [m]), the results of the position tracking error for the input links with no load
have been shown in Fig. 9.

The positioning error of the moving platform can be estimated by obtaining some insight from the
input link error shown in Fig. 9. In this case, the position error of the moving platform is not directly
measured, but the position error due to the joint error of the input links can be estimated using the
Jacobian matrix:43

xerror = J−1qerror . (40)

Using Eq. (40), estimated position error of the moving platform with respect to the proposed
controllers has been shown in Fig. 10.

For the given reference orientation trajectories (φd = 5 sin( π
10 t) [deg] around x coordinate and

θd = 5 sin( π
10 t) [deg] around y coordinate), the results of the position tracking error for the input

links with no load have been shown in Fig. 11.
Using Eq. (40), the estimated orientation error of the moving platform with respect to the proposed

controllers has been shown in Fig. 12.
As shown in Figs. 9 and 11, performance of angular displacement error of the input links for the

given translational and orientation reference trajectories with no load are improved by using SMC
than the LQR method. The same situation occurs for the estimated position and orientation error of
the moving platform as shown in Figs. 10 and 12. Additionally, in order to show the efficiency of
the SMC, maximum, minimum estimated error and mean square value (MSE) have been calculated
with respect to the estimated position and orientation values and outcomes are tabulated in Table II
for both trajectories. As illustrated in Table II, the estimated error for maximum and minimum values
of x and y position is seen to be less in the SMC method. Same situations can be seen in estimated
orientation error and also MSE outcomes.
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Fig. 8. Block diagram of the 6-DOF parallel manipulator control system.

Fig. 9. The error of angular displacement of the input links with no load for the reference translational trajectories
(xd = 0.03 sin( π

10 t) [m], yd = 0.03 sin( π
10 t) [m] ). (a) With LQR controller. (b) With sliding mode controller.
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Fig. 10. The estimated position error of the moving platform with no load for the reference translational
trajectories (xd = 0.03 sin( π

10 t) [m], yd = 0.03 sin( π
10 t) [m] ). (a) With LQR controller. (b) With sliding mode

controller.

In the second case, manipulator has been operated with a load, i.e., an external load of 0.2 kg

has been placed on the moving platform. In this case, to compensate the motor output torques, the
frequencies of the given reference trajectories for experiments have been adjusted slightly lower than
the case I with no load. In the performed experimental studies with considered load, the reference
signal frequency has been determined as maximum 1/30 Hz.

For the given reference translational trajectories (xd = 0.03 sin( π
15 t) [m], yd = 0.03 sin( π

15 t) [m]),
the results of the position tracking error for the input links with a load have been shown in Fig. 13.

Using Eq. (40), the estimated position error of the moving platform with respect to the proposed
controllers has been shown in Fig. 14.

For the given reference orientation trajectories (φd = 5 sin( π
15 t) [deg] around x coordinate and

θd = 5 sin( π
15 t) [deg] around y coordinate), the results of the position tracking error for the input

links with a load have been shown in Fig. 15.
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Fig. 11. The error of angular displacement of the input links with no load for the reference orientation trajectories
(φd = 5 sin( π

10 t) [deg] , θd = 5 sin( π
10 t) [deg] ). (a) With LQR controller. (b) With sliding mode controller.

Fig. 12. The estimated orientation error of the moving platform with no load for the reference orientation
trajectories (φd = 5 sin( π

10 t) [deg] , θd = 5 sin( π
10 t) [deg] ). (a) With LQR controller. (b) With sliding mode

controller.
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Table II. Performance summary for case I.

Translational reference trajectories xd = 0.03 sin( π
10 t) [m],

yd = 0.03 sin( π
10 t) [m] with no load

Sliding mode control LQR control

Max. X Position Error (m) 0.0016 0.002
Max. Y Position Error (m) 0.0016 0.002
Min. X Position Error (mr) −0.0016 −0.0021
Min. Y Position Error (m) −0.0018 −0.0022
X Position MSE Value 1.29670E–06 1.96060E–06
Y Position MSE Value 1.30870E–06 1.99350E–06

Orientation reference trajectories of φd = 5 sin( π
10 t) [deg] around x

coordinate and θd = 5 sin( π
10 t) [deg] around y coordinate with no load

Sliding mode control LQR control

Max. φ orientation error (deg) 0.2814 0.3856
Max. θ orientation error (deg) 0.2939 0.3914
Min. φ orientation error (deg) −0.2747 −0.373
Min. θ orientation error (deg) −0.2601 −0.3628
φ orientation MSE value 6.5327E–04 0.0013
θ orientation MSE value 6.4479E–04 0.0012

Table III. Performance summary for case II.

Translational reference trajectories xd = 0.03 sin( π
15 t) [m],

yd = 0.03 sin( π
15 t) [m] with a load

Sliding mode control LQR control

Max. X position error (m) 6.7364E–04 0.0017
Max. Y position error (m) 6.6493E–04 0.0017
Min. X position error (m) −6.3295E-04 −0.0016
Min. Y position error (m) −6.5496E-04 −0.0016
X position MSE value 2.2321E–07 1.2924E–06
Y position MSE value 2.1853E–07 1.2789E–06

Orientation reference trajectories of φd = 5 sin( π
15 t) [deg] around x

coordinate and θ d = 5sin( π
15 t) [deg] around y coordinate with a load

Sliding mode control LQR control

Max. φ orientation error (deg) 0.0513 0.1889
Max. θ orientation error (deg) 0.0570 0.2035
Min. φ orientation error (deg) −0.0482 −0.1822
Min. θ orientation error (deg) −0.0503 −0.1815
φ orientation MSE value 2.0966E–05 2.9709E–04
θ orientation MSE value 2.6284E–05 3.3151E–04

Using Eq. (40), the estimated orientation error of the moving platform with respect to the proposed
controllers has been shown in Fig. 16.

As shown in Figs 13–16 and Table III, performance of angular displacement error of the input
links for the given reference trajectories with an external load is improved by using the SMC than
using LQR method. In addition to these outcomes, the results of the case II are better than the results
of the case I because of decreasing the frequency of the reference signal trajectories. In the second
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Fig. 13. The error of angular displacement of the input links with a load for the reference translational trajectories
(xd = 0.03 sin( π

15 t) [m], yd = 0.03 sin( π
15 t) [m] ). (a) With LQR controller. (b) With sliding mode controller.

Fig. 14. The estimated position error of the moving platform with a load for the reference translational trajectories
(xd = 0.03 sin( π

15 t) [m], yd = 0.03 sin( π
15 t) [m]). (a) With LQR controller. (b) With sliding mode controller.
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Fig. 15. The error of angular displacement of the input links with a load for the reference orientation trajectories
(φd = 5 sin( π

15 t) [deg], θd = 5 sin( π
15 t) [deg] ). (a) With LQR controller. (b) With sliding mode controller.

Fig. 16. The estimated orientation error of the moving platform with a load for the reference orientation
trajectories (φd = 5 sin( π

15 t) [deg], θd = 5 sin( π
15 t) [deg] ). (a) With LQR controller. (b) With sliding mode

controller.
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case, the SMC has been performed more effectively than the LQR control, because of its efficient,
robust control characteristic for unknown loads and un-modelled dynamics.

6. Conclusions
In this paper, a 6-DOF 6-RSS parallel manipulator has been designed. Tracking control of the
manipulator based on a linear quadratic optimal regulator and the nonlinear sliding mode controller
for given different trajectories has been developed and validated through experimental results. First,
the architecture of the designed manipulator has been introduced and then mathematical modelling
of the manipulator has been analysed. In order to investigate the effects of the manipulator dynamics
and control techniques, two modelling approaches have been developed. The first approach is based
on the SISO modelling and the second approach is the decoupled dynamic model approximation.
Both dynamic modelling techniques have been combined with hybrid stepper motor dynamics. Then,
in order to investigate the effects of different control approaches on the improvement of the tracking
performance of the manipulator, linear quadratic optimal regulator and nonlinear SMC approaches
have been utilized. Finally, it has been validated experimentally that SMC is an efficient, robust control
method for the manipulator including un-modelled dynamics.
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