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We investigate the dewetting of a droplet on a smooth horizontal solid surface
for different slip lengths and equilibrium contact angles. Specifically, we solve
for the axisymmetric Stokes flow using the boundary element method with (i) the
Navier-slip boundary condition at the solid/liquid boundary and (ii) a time-independent
equilibrium contact angle at the contact line. When decreasing the rescaled slip length
b̃ with respect to the initial central height of the droplet, the typical non-sphericity of
a droplet first increases, reaches a maximum at a characteristic rescaled slip length
b̃m≈O(0.1–1) and then decreases. Regarding different equilibrium contact angles, two
universal rescalings are proposed to describe the behaviour of the non-sphericity for
rescaled slip lengths larger or smaller than b̃m. Around b̃m, the early time evolution
of the profiles at the rim can be described by similarity solutions. The results are
explained in terms of the structure of the flow field governed by different dissipation
channels: elongational flows for b̃ � b̃m, friction at the substrate for b̃ ≈ b̃m and
shear flows for b̃� b̃m. Following the changes between these dominant dissipation
mechanisms, our study indicates a crossover to the quasistatic regime when b̃ is many
orders of magnitude smaller than b̃m.

Key words: capillary flows, contact lines, interfacial flows (free surface)

1. Introduction
A classical problem of dynamic wetting is the spreading of a droplet when it is

placed in contact with a smooth and chemically homogeneous substrate (Chen 1988;
Bonn et al. 2009). For complete wetting, with a vanishing equilibrium contact angle,
the spreading process follows the well-known Tanner’s law (Voinov 1976; Tanner
1979) stating that the contact line radius R grows in time t as a power law R∼ t1/10.

† Email address for correspondence: tak.chan@physik.uni-saarland.de
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This asymptotically valid relation is derived with the assumption that the droplet
maintains a spherical-cap-shaped profile during spreading, except in the vicinity of
the moving contact line, where the interface is deformed strongly due to viscous
stresses. The general assumptions of a quasistatic macroscopic interface profile and
a quasisteady viscous flow in the region close to the contact line have been central
guidelines in studies of dynamic wetting problems (Bonn et al. 2009; Snoeijer &
Andreotti 2013; Sui, Ding & Spelt 2014). Examples include industrial applications
such as oil recovery (Sahimi 1993), immersion lithography (Winkels et al. 2011)
and coating (Weinstein & Ruschak 2004), as well as natural phenomena (Bonn et al.
2009) such as liquid droplets sliding on the surface of a leaf. The basis of these
assumptions lies in the wide separation of length scales between the extension of
the interface and a microscopic length to relax the singularity of infinite viscous
dissipation (Huh & Scriven 1971) at the contact line. As specifically discussed here,
this microscopic length scale may be the slip length, defined as the ratio between the
fluid velocity parallel to the substrate and the shear rate at the boundary. In cases
where a no-slip condition is assumed for the solid/liquid boundary, other microscopic
length scales in specific models have been proposed as reviewed in Bonn et al.
(2009), Snoeijer & Andreotti (2013) and Sui et al. (2014).

In the context of hydrodynamics, slippage refers to the phenomenon that fluids may
flow with non-zero velocity along a solid/liquid boundary. Although the microscopic
origin of slippage depends on the material parameters of solid/liquid pair under
consideration (Lauga, Brenner & Stone 2007), there have been extensive studies on
the measurement of the slip length due to the development of new experimental
techniques in recent years (Neto et al. 2005; Bocquet & Charlaix 2009; Guo et al.
2013). Interestingly, slip lengths as large as a few micrometres have been reported in
some studies using polymer melts (Reiter & Sharma 2001; Leger 2003; Fetzer et al.
2005, 2007; Bäumchen, Fetzer & Jacobs 2009; Haefner et al. 2015). These findings
raise fundamental questions on the description of the contact line motion and the
evolution of the interface profile, particularly in micrometric (Cuenca & Bodiguel
2013; Setu et al. 2015) or nanometric (Falk et al. 2010) systems, for which the
separation of length scales may not be fulfilled.

The opposite process of spreading (wetting), called dewetting, occurs when the
driving forces tend to decrease the contact area between the liquid and the solid (de
Gennes, Brochart-Wyart & Quéré 2003). Dewetting has been commonly studied in
the geometry of liquid films (Redon, Brochard-Wyart & Rondelez 1991; Snoeijer &
Eggers 2010; Rivetti et al. 2015). In these situations, due to the accumulation of
mass in the contact line region, a bump of liquid is naturally formed in a rim. In the
case of no slip or weak slip, namely the slip length is orders of magnitude smaller
than the height of the bump; the bump maintains a static shape with a growing size
(i.e. quasistatic), and the contact line moves at a constant speed (Redon et al. 1991;
Snoeijer & Eggers 2010). Recently, the dewetting of flat droplets on a solid surface
has been studied in detail (Edwards et al. 2016). In that study, the ratio between
the slip length (≈1 nm) and the central height of the droplets is approximately 10−5.
The dewetting process has been found to be similar to that of liquid films (Redon
et al. 1991; Snoeijer & Eggers 2010), except the final state is a single droplet. In this
weak-slip regime, the slip length effectively acts as a cutoff length for the contact line
singularity, and only has a weak effect (logarithmic dependence) on the dynamics.
A recent study on dewetting polymer microdroplets (McGraw et al. 2016), however,
showed that the transient droplet shape evolution, in the regime where the slip length
is comparable to or larger than the typical droplet size (i.e. b̃≈O(0.1–10)), is much
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richer than one expects under the assumptions of quasistatic profiles and dissipation
localized near the contact line. The transient droplet profiles are indeed found to be
non-spherical (i.e. non-quasistatic), and highly dependent on the precise value of the
slip length. One characteristic feature of the dewetting process is the development of
a transient ridge for relatively small slip lengths. The ridge was found to be more
pronounced when the slip length is smaller, and avoided for larger slip lengths due to
elongational flow inside the droplet. On the other hand, as discussed above, when the
slip length is many orders of magnitude smaller than the droplet size, one expects to
recover the typical quasistatic sequence of spherical-cap-shaped profiles.

In this article, we study the dewetting of a flat viscous droplet for a wide range of
slip lengths and various equilibrium contact angles employing the boundary element
method. We elucidate the transition between the quasistatic and non-quasistatic
evolutions of a dewetting droplet. The non-sphericity of the droplet increases when
the slip length is first decreased from the full-slip limit. Further decreasing the
slip length, we observe a new feature with respect to previous works (McGraw
et al. 2016): the non-sphericity reaches a maximum and then starts to decrease.
This behaviour is demonstrated for different equilibrium contact angles. We give
explanations for these results in terms of flow structures and the spreading of a
localized ridge.

2. Formulation
As an initial condition, we consider a spherical-cap-shaped droplet sitting on a plane

and smooth substrate with a contact angle θi, which is smaller than the equilibrium
contact angle θe. In order to minimize the surface energy, the droplet starts to retract
and approaches a spherical cap with the equilibrium contact angle. Because of the
homogeneous and planar substrate, the shape of the droplet remains axisymmetric
during its evolution. The droplet profile is described by the height, h(r, t), of the liquid
with respect to the substrate as a function of the radial distance from the central axis
r and time t. We further assume the liquid inside the droplet to be a highly viscous
and incompressible Newtonian liquid so that the flow obeys the Stokes equation,

η∇2u−∇p= 0, (2.1)

and the continuity equation which reads

∇ · u= 0, (2.2)

where u and p are the velocity field and the pressure field in the liquid, respectively,
and η is the dynamic viscosity of the liquid.

To solve for the flow fields and the evolution of the interface profile, one needs
to specify appropriate boundary conditions. First, the stress tensor σ in Cartesian
coordinates is given as

σij =−pδij + η

(
∂ui

∂xj
+
∂uj

∂xi

)
, (2.3)

and the stress f at the boundary reads

f = σ · n̂. (2.4)

Here n̂ is the unit vector normal to the boundary of the droplet pointing into the
enclosed fluid.
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Assuming the surrounding air flow is negligible, the tangential stress vanishes at the
liquid/air boundary. The normal stress f free

n ≡ f free
· n̂ at the free surface is balanced by

the surface tension, leading to the Young–Laplace law:

f free
n = 2γ κ, (2.5)

where γ denotes the interfacial tension and κ the mean curvature of the free surface,
which is defined as

κ =

∂2h
∂r2

2

(
1+

(
∂h
∂r

)2
)3/2 +

∂h
∂r

2r

(
1+

(
∂h
∂r

)2
)1/2 . (2.6)

Note that disjoining pressures are not considered in this model. The evolution of the
interface profile is given by the kinematic condition along the free interface, that is

∂h
∂t
= uz −

∂h
∂r

ur. (2.7)

At the solid/liquid boundary, the velocity normal to the wall vanishes. Regarding
the velocity component parallel to the wall uwall

t r̂, we impose a Navier-slip condition
which reads

uwall
t =

b
η

f wall
t , (2.8)

where r̂ is the unit vector in the radial direction, f wall
t ≡ f wall

· r̂ is the shear stress
at the wall and the slip length, b, is assumed to be a constant. To complete the
hydrodynamic problem, we impose the condition that the free surface touches the wall
with a finite contact angle. This angle is assumed to be the same as the equilibrium
contact angle θe, independent of the contact line velocity. Moreover, since the substrate
surface is smooth and chemically homogeneous, θe is also independent of the contact
line position.

2.1. Boundary element method (BEM)
The Stokes equation (2.1) and the continuity equation (2.2) can be formulated in the
form of the boundary integral equations; a method which has been used extensively to
study many interfacial flow problems (Pozrikidis 1992). In this approach the velocity
u(s0) at any point s0 can be written in terms of integrals involving the stress f and
the velocity on the boundary. For the axisymmetric Stokes flow problem we study in
this article, the boundary integral equations (Pozrikidis 1992) read

uα(s0)=−
A

4πη

∫
c

Ḡαβ(s0, s)fβ(s) dl(s)+
A

4π

∫
c

T̄ αβζ (s0, s)uβ(s)nζ (s) dl(s), (2.9)

where the subscripts α, β and ζ represent either the radial (r) or the vertical (z)
components in cylindrical coordinates, and c is the contour line (boundary) over
which the integration takes place. The repeated Greek indices conform to the Einstein
summation convention, that is they are summed over the radial and the vertical
components. For the expression of the tensor components Ḡαβ and T̄ αβζ , we refer
to § A.1. The value of A depends on the position s0:

A=
{

1/2 for s0 inside the liquid domain enclosed by the boundary,
1 for s0 on the closed boundary. (2.10)
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We note that Ḡαβ and T̄ αβζ are singular at s= s0; the integral over the singular point is
thus computed analytically by expanding the tensor components in series about s= s0
(Lee & Leal 1982; van Lengerich & Steen 2012).

The main advantage of the boundary element method is that the velocity field is
explicitly written in terms of the velocities and the stresses on the boundary. No
discretization of elements inside the droplet is required to solve for the flow fields. As
given by the boundary conditions, not all the velocities and stresses at the boundary
of the liquid domain are known. For example, the velocities at the free interface are
unknowns, yet the unknown quantities can be found by solving (2.9) for the case
that s0 lies on the boundary. For a numerical treatment of the problem, the contour
is discretized into small linear elements. The velocity and the stress are taken to
be constant within the same element. A system of linear equations is then obtained
from (2.9), and the unknown quantities can be computed. Note that the normal stress
for the numerical element of the liquid/air interface containing the contact line is
computed with the boundary condition of the imposed equilibrium contact angle θe.
Once the velocities at the free surface have been computed, one can determine the
profile evolution using the kinematic condition (2.7).

Initially, the droplet has a spherical-cap shape with a contact angle θi. Due to the
small molecular relaxation time scale at the contact line, the contact angle quickly
reaches the equilibrium contact angle θe microscopically (McGraw et al. 2016). To
approximate this initial microscopic contact angle in our numerical computations,
we assume that at t = 0, there is a kink in the interface profile at the contact
line position. The line connecting the first numerical marker point and the contact
line makes an angle θe with the substrate. Due to this kink, the magnitude of the
approximated interfacial curvature near the contact line is larger than that on the rest
of the interface, thus the Laplace pressure is unbalanced and the pressure gradient
initiates a flow. Hence, the contact line starts to move towards the centre. The kink
then quickly relaxes to a smooth shape due to surface tension. This type of initial
profile is a natural choice as it smoothly connects the boundary condition at the
contact line and the initial spherical-cap shape of the droplet. Note that our model
is not able to describe the physics happening in the very vicinity of the contact line
at earlier times. A different approach from hydrodynamics is required to solve that
specific problem, such as molecular dynamics simulations.

We non-dimensionalize the problem as follows: all lengths are rescaled by the initial
maximum height of the droplet h0 and all the times by the viscous capillary time scale
h0η/γ . All these dimensionless variables are denoted with a tilde. We are thus left
with three independent dimensionless parameters. In the following, we consider the
initial contact angle θi, the equilibrium contact angle θe and the rescaled slip length
b̃ ≡ b/h0 as the control parameters. For all our numerical computations, 300 marker
points are used to describe the interface profile of the droplet. The vertical separation
between two marker points is approximately 0.003. For smaller separations, the profile
evolution becomes unstable. We then set the smallest rescaled slip length to b̃= 0.023,
which is about ten times the marker separation. Hence for all our computations, the
rescaled slip length is varied in a range b̃ > 0.023. We also check the conservation
of volume in our numerics. The difference between the initial and the final volumes
of the droplets is less than 1 %. Further demonstrations of the numerical precision of
our BEM, and a comparison to analytical results, are shown in § A.2.

3. Results and discussion
In this section, we present the results of our numerical computations. In § 3.1,

we revisit the interfacial profile evolution as studied by McGraw et al. (2016).
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FIGURE 1. (Colour online) Evolution of the droplet profiles. The initial shape of the
droplet is a flat spherical cap with contact angle θi = 10◦. The final equilibrium droplet
has contact angle θe= 62◦. One of the profiles in each figure is plotted with a dashed line
to emphasize the difference between the transient shapes. (a) b̃= 0.46. The time interval
δt̃ between two neighbouring curves is 3.48. (b) b̃= 23.2 and δt̃= 1.28. Insets: the contact
line position R̃(t̃) as a function of time t̃.

We characterize and quantify the deviation of the transient droplet profiles from
a spherical cap. Then we investigate the temporal evolution of the non-sphericity
and how the non-sphericity depends on the slip length and the equilibrium contact
angle. The early time dynamics of the transient ridge is studied in § 3.2. In § 3.3 we
rationalize the behaviour of the non-sphericity in terms of the flow structure and the
spreading of the ridge.

3.1. Interfacial profile evolution and non-sphericity of the profiles
Here we briefly consider the droplet geometries studied in McGraw et al. (2016),
namely an initial spherical cap with θi = 10◦ and an equilibrium contact angle
θe = 62◦. As discussed in McGraw et al. (2016), the main feature of the profile
evolution is the appearance, or absence, of a transient ridge, defined as the fluid
region in between the contact line and the outermost inflection point of the droplet
profile (i.e. ∂2h̃/∂ r̃2

|r̃=r̃inf = 0). The ridge may develop to a global bump, characterized
by a maximum in the height profile at r̃ 6= 0. The properties of the global bump will
be discussed in § 3.4. We first look at two different rescaled slip lengths, b̃ = 0.46
and 23.2, which respectively demonstrate the formation or absence of a transient
ridge. The evolution of the free interface profiles h̃(r̃, t̃) is shown in figure 1(a) for
b̃= 0.46 and in figure 1(b) for b̃= 23.2. The main difference between the two cases
is that, for b̃ = 0.46, the profile around the centre does not change appreciably at
early times. The fluid accumulates in a rim as the contact line moves towards the
centre of the droplet and forms a transient ridge. In contrast, for b̃= 23.2, the height
of the interface profile at the centre of the droplet increases at early times due to
elongational flow (McGraw et al. 2016). No ridge is developed in this case.

The transient profiles of the droplets in both cases shown in figure 1 deviate
significantly from the shape of a spherical cap. To quantify the non-sphericity of
the droplet, we introduce an observable 1V in the following way. For each time
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FIGURE 2. (a) The non-sphericity, 1V/V , versus the rescaled contact line displacement
(R̃(0)− R̃(t̃))/(R̃(0)− R̃(∞)) for θe= 62◦ and for three different slip lengths. The maxima
are indicated by solid symbols. (b) The maximum of 1V/V shown in (a), 1Vm/V , as a
function of slip length b̃ for different equilibrium contact angles θe. For both (a) and (b),
the initial contact angle is θi = 10◦.

t̃, we determine the spherical cap of profile z̃ = S̃(r̃, t̃; ρ̃, S̃0) that best fits the
profile of the droplet; S̃ is given implicitly by ρ̃2

= r̃2
+ (S̃ − S̃0)

2, where S̃0 is the
vertical shift of the sphere centre while ρ̃ is its radius of curvature. We introduce
1V as the total volume of the non-overlapped region between the droplet and the
corresponding spherical cap. The spherical cap is selected under the condition that
the total non-overlapped volume is minimized. More precisely, we define

1V =min
ρ̃,S̃0

(∫
∞

0
dr̃2πr̃|h̃(r̃, t̃)− S̃(r̃, t̃; ρ̃, S̃0)|

)
, (3.1)

under the constraint of identical total volumes:

V =
∫
∞

0
dr̃2πr̃h̃(r̃, t̃)=

∫
∞

0
dr̃2πr̃S̃(r̃, t̃; ρ̃, S̃0). (3.2)

Note that
h̃(r̃, t̃)= 0 for r̃> R̃(t̃),
S̃(r̃, t̃; ρ̃, S̃0)= 0 for r̃> R̃cap(t̃; ρ̃, S̃0),

}
(3.3)

where R̃(t̃) and R̃cap(t̃; ρ̃, S̃0) are the contact line radius of the droplet and the spherical
cap respectively.

In figure 2(a), 1V rescaled by the volume of the droplet is plotted as a function of
the contact line displacement R̃(0)− R̃(t̃) normalized by the total displacement R̃(0)−
R̃(∞) for b̃= 0.023, 0.20 and 23.2. For all three cases, 1V/V is zero at t̃= 0 and at
equilibrium because of the spherical-cap shape of the droplets. During the evolution,
the non-sphericity attains a maximum. This maximal non-sphericity, 1Vm/V , occurs
at smaller contact line displacements for smaller slip lengths.

A full investigation of 1Vm/V as a function of b̃ is shown in figure 2(b) for
various θe. We observe that this maximal non-sphericity of the droplet evolution
is non-monotonic with b̃ for all θe investigated. We note furthermore the presence
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FIGURE 3. After two different rescalings, the data in figure 2(b) collapse onto a single
function for two different regions, namely b̃ > b̃m as shown in (a) and for 0.023 < b̃ <
b̃m as shown in (c). (a) V1, defined as (1Vm/V − 1Vm(∞)/V)/Vd, versus k1b̃. (b) The
dependence of Vd and k1 on the equilibrium contact angle θe. (c) V2, defined as 1Vm/V
rescaled by 1Vm(b̃m)/V , versus (b̃/b̃m)

k2 . (d) b̃m and k2 as a function of θe.

of a well-defined maximum at a slip length that we denote by b̃m(θe). For b̃ > b̃m,
1Vm/V decreases with b̃ and asymptotically saturates to a finite 1Vm(∞)/V . For
b̃< b̃m, 1Vm/V decreases with decreasing b̃. As expected, the non-sphericity becomes
smaller as the equilibrium contact angle θe approaches the initial contact angle θi.

The similar features of 1Vm/V as a function of b̃ for different equilibrium contact
angles θe suggest possible collapse of the curves after certain rescalings. First, we shift
1Vm/V by 1Vm(∞)/V such that all the curves have the same reference level in the
full-slip limit. Then we rescale the shifted 1Vm/V by Vd≡1Vm(b̃m)/V −1Vm(∞)/V .
We hence introduce a rescaled quantity V1(b̃) as the following:

V1(b̃)≡
1Vm(b̃)−1Vm(∞)

1Vm(b̃m)−1Vm(∞)
. (3.4)

The maximum of V1 is unity for any equilibrium contact angles. When plotting V1

versus b̃ multiplied by a scaling factor k1(θe) in figure 3(a), we observe that the curves
for different θe collapse into a single function for b̃> b̃m. The dependence of Vd and
k1 on θe is shown in figure 3(b). Note that k1 is not unique. The effect of k1 is shifting
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FIGURE 4. (Colour online) (a) Rescaled contact line displacement (R̃0 − R̃(t̃))/(R̃0 − R̃∞)
as a function of t̃ in log–log scale for different b̃ and fixed θe = 62◦. The early time
data for intermediate slip lengths around b̃m can be described by a power law. A single
power law becomes less pronounced for large and small slip lengths away from b̃m.
(b–d) Rescaled profiles for θe = 62◦ in (b), θe = 40◦ in (c) and θe = 23◦ in (d); b̃= 0.46
in all cases.

the curve horizontally. Multiplying k1 by an arbitrary factor will still collapse all the
curves. Here we take k1 = 1 for θe = 17◦, which is the smallest equilibrium contact
angle considered here.

For 0.023< b̃< b̃m, a different rescaling is required to reach a collapse of the curves.
In figure 3(c), V2, defined as 1Vm/V rescaled by 1Vm(b̃m)/V , is plotted as a function
of (b̃/b̃m)

k2 ; a single curve is thus obtained for 0.023< b̃< b̃m. This rescaling suggests
a relation of the form V2/k2 ∼ log(b̃/b̃m). Such a logarithmic relation is reminiscent
of the weak-slip models for non-equilibrium droplets (de Gennes 1985; Cox 1986),
in which the contact line dynamics and the interface profile also depend on the slip
length logarithmically. The dependence of b̃m and k2 on θe is shown in figure 3(d). The
different rescalings for b̃< b̃m and b̃> b̃m indicate the existence of different regimes of
the droplet retraction dynamics. The details will be discussed in the following sections.

3.2. The transient ridge and early time dynamics
As the initial driving force is at the contact line, it is important to examine the growth
of the rim once the contact line has started to move. We first look at the motion of
the contact line. To resolve the contact line motion for early times, we investigate
the rescaled contact line displacement R(t̃)≡ (R̃(0)− R̃(t̃))/(R̃(0)− R̃(∞)). For given
θi = 10◦ and θe = 62◦, R(t̃) as a function of time is plotted in figure 4(a) in log–log
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scale for different b̃. For large b̃, the slope of the curves decreases with time. A power
law is observed for intermediate slip lengths in the vicinity of b̃m corresponding to the
maximal non-sphericity, 1Vm. We recall that b̃m= 0.21 for θe= 62◦. For example, for
b̃ = 0.46 and 0.12 < t̃ < 30, the relation, i.e. R ∼ t̃β , describes the data with β =

0.59. The power-law relation becomes less pronounced when decreasing b̃ for b̃< b̃m.
For b̃= 0.023, the curve is seen to bend upward with time. Similar features are also
observed for other equilibrium contact angles. The exponent β is found to be 0.57 for
θe = 40◦ and 0.54 for θe = 23◦, when b̃= 0.46.

Given these power-law relations for slip lengths around b̃m, it is instructive to
investigate whether the interface profiles near the contact line can be described by a
similarity solution. Assuming a similarity solution of the form h̃= t̃αf ((R̃(t̃)− r̃)/t̃α),
we found that the rescaled profiles in the rim region collapse best for values of
α = 0.64 for θe = 62◦, 0.59 for θe = 40◦ and 0.49 for θe = 23◦. The corresponding
rescaled profiles are shown in figure 4(b–d). Note that these exponents are slightly
different from the exponent β for the contact line. The exponent 0.49 for the case
of θe = 23◦, in which the interfacial slope is small, is close to the α = 1/2 scaling
predicted from the lubrication calculation for intermediate slip, namely when the
dissipation is dominated by the friction at the substrate (McGraw et al. 2016).

3.3. Physical explanation for the behaviour of the non-sphericity: flow structures
and the spreading of the ridge

In this section, we rationalize the non-monotonic behaviour of the non-sphericity in
terms of the flow structure and the spreading of the ridge.

We compute the velocity field inside the droplet using the boundary integral
equation (2.9) with A= 1/2. The flow fields inside the droplet when the contact line
position R̃ = 10.82 are shown in figure 5 for three different rescaled slip lengths
b̃= 0.023, 0.21 and 23.2, and with the same equilibrium contact angle θe = 62◦. For
b̃� b̃m, low friction at the substrate promotes an elongational flow which affects the
whole droplet in a very short time, see figure 5 for b̃= 23.2. Therefore, the central
height of the droplet increases even at early times due to the upward flow in the
centre. This prevents mass accumulation at the edge of the droplet. When decreasing
b̃, the elongational flow becomes less dominant. The flow is concentrated in the rim,
see figure 5 for b̃= 0.023 and 0.21. Mass is thus accumulated in the rim while the
contact line is moving towards the droplet centre. As a consequence, a pronounced
transient ridge is observed and the non-sphericity, 1Vm/V , becomes larger when
decreasing b̃ for b̃> b̃m.

For b̃ close to b̃m, the ridge profiles in the early times can be described by
similarity solutions as shown in § 3.2. For small equilibrium contact angles, the
similarity solutions can be obtained from the intermediate-slip lubrication model in
which the dissipation by the friction at the substrate becomes dominant (McGraw
et al. 2016).

When further decreasing b̃ from b̃m, the non-sphericity becomes less pronounced.
For those small b̃ cases, the flow is more confined to the contact line region and
presents a vertical parabolic profile associated with strong shear dissipation, see
figure 5 for b̃ = 0.023. In addition, similarity solutions cannot describe the early
ridge profiles anymore. The question of how much mass is accumulated at the ridge
depends on the contact line speed and how fast the mass is redistributed to the central
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FIGURE 5. (Colour online) The flow fields for three different rescaled slip lengths b̃ =
0.023, 0.21 and 23.2. The initial contact angle is θi = 10◦ and the equilibrium contact
angle is θe = 62◦. The contact line position is R̃= 10.82.

part of the droplet by shear flow. This type of mass redistribution can be observed
from the spreading of the ridge. One can imagine a situation when a contact line
is pinned from a certain moment, the accumulated mass then has enough time to
redistribute to the central part of the droplet and the development of a pronounced
global ridge is avoided. Along this line of reasoning, we can understand the decrease
of 1Vm/V with decreasing b̃. The characteristic speed of the contact line decreases
logarithmically with decreasing b̃ for small b̃ (McGraw et al. 2016), which means
that the disturbance at the contact line will have more time to spread for smaller b̃.
This result is demonstrated in figure 6(a,b) for the case of θe = 62◦. In figure 6(a),
several interface profiles are shown at the same contact line position for b̃ = 0.023
and 0.14. For both cases, the slip lengths are smaller than b̃m, so the shear dissipation
dominates over the elongational one. One clearly sees that the ridge spreads wider
for the smaller slip length, namely b̃= 0.023.

From the profiles of figure 6(a), we observe an outermost inflection point where
d2h̃/dr̃2

= 0. The position of the inflection point r̃inf (t̃) is used to characterize the
extent of the ridge. The displacement of this inflection point (R̃(0)− r̃inf (t̃)) normalized
by (R̃(0) − R̃(∞)) is plotted as a function of the rescaled contact line displacement
in figure 6(b). It is found that first, the inflection point moves faster than the contact
line for both cases, and second, for the same contact line position, the inflection point
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FIGURE 6. (a) Droplet profiles for b̃= 0.023 and 0.14. The profiles are compared when
they have the same contact line position. (b) The rescaled displacement of the inflection
point (R̃(0)− r̃inf (t̃))/(R̃(0)− R̃(∞)) versus the rescaled contact line displacement (R̃(0)−
R̃(t̃))/(R̃(0)− R̃(∞)).

displaces more for b̃= 0.023 compared to b̃= 0.14. This result shows again that mass
is redistributed over a wider extent for the smaller slip length, b̃= 0.023. Hence the
non-sphericity decreases with decreasing b̃. Although we are numerically limited to
the smallest b̃= 0.023, from the trends shown in figure 2(b), we expect that 1Vm/V
diminishes in the limit of vanishing b̃. Our study thus indicates a crossover from a
non-quasistatic regime to a quasistatic regime when b̃ is small.

3.4. Characteristic of the global bump
In this section we discuss the properties of the global bump, which reflects a global
feature of the droplet profile. Understanding of this feature might be useful for droplet
manipulations in micro- and nanofluidics. One can characterize the size of the global
bump by measuring the difference between the maximum height of the profile and the
central height of the droplet, which we refer to as the global-bump height. Like the
non-sphericity 1Vm/V , the global-bump height attains a maximum value, denoted as
hb, throughout the profile evolution. A typical behaviour of hb as a function of slip
length b̃ is shown in figure 7(a) for θ = 62◦. The behaviours of 1Vm/V and hb are
similar. The maximum bump height hb is a non-monotonic function of the slip length
and the maximum of hb occurs at almost the same b̃ as for 1Vm/V . This indicates
that the behaviour of both quantities have the same physical origin, namely the change
of the flow structure when varying the slip length as discussed in § 3.3. For b̃ larger
than the point of the maximum, we define the slip length at which hb goes to zero
as b̃≡ b̃∗, which equals to 2.81 for the case of θe= 62◦. No transient global bump is
observed for b̃> b̃∗.

Accessing more values of the equilibrium contact angle, we find an additional
transition when b̃ is further decreased from b̃∗. For example, for θe= 34.5◦, b̃∗= 0.79,
we observe a transition from ‘with global bump’ to ‘without global bump’ at a certain
b̃, which is denoted as b̃∗L here, and equals 0.050 in this case. This result means a
transient global bump exists only when b̃∗L < b̃< b̃∗. This interesting behaviour can be
observed clearly in figure 7(b) where the bump height hb is plotted as a function of b̃.
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FIGURE 7. (Colour online) The global-bump height hb versus b̃ for θi = 10◦. The
equilibrium contact angle is θe= 62◦ in (a), θe= 34.5◦ or 36.2◦ in (b). (c) Phase diagram
showing the with-global-bump region and the without-global-bump region. The vertical
dashed line indicates the initial contact angle θi= 10◦. The horizontal dashed line indicates
the smallest b̃ we have computed for, which is 0.023. Circles are b∗ as a function of θe.
Squares are b̃∗L as a function of θe. (d) Zoom on the region where b̃∗L is computed. Note
that b̃ (y-axis) is in log scale.

To summarize the results, a phase diagram is plotted in figure 7(c,d) that indicates
whether a global transient bump can be observed or not, for the specific case of
θi = 10◦. When θe is close to θi, namely θe < 32.1◦, no global bump appears for any
value of b̃. In these cases, a ridge is observed at the early stage for small slip lengths.
However, a global bump (with a profile maximum not at r̃= 0) does not form because
the initial and the final droplet shapes are too similar. In figure 7(d), one can observe
the ‘with-global-bump’ region starts from θe = 32.1◦. Although the second transition
is not observed for θe > 36.2◦ due to numerical limitations, we expect the bump to
diminish in magnitude also for very small slip lengths in this case; the decrease of hb

in figure 7(a) for small b̃ supports this argument. Nevertheless, the slip length below
which the global bump disappears is expected to be extremely small if the difference
between the initial contact angle and the equilibrium contact angle is large. A recent
study has demonstrated that a pronounced global bump exists in the dewetting of
very flat droplets (h0/R(0) ≈ 0.02–0.1) even though the slip length is very small
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(b̃≈ 10−5) (Edwards et al. 2016). In such cases, the transient global bump itself can
be treated as quasistatic, as is the case in dewetting rims of thin liquid films (Redon
et al. 1991; Snoeijer & Eggers 2010; Rivetti et al. 2015).

4. Conclusion

In this article, we study numerically the dewetting of a droplet, with an initial
contact angle smaller than the equilibrium contact angle, using the boundary element
method for axisymmetric Stokes flow. We impose the Navier-slip boundary condition
at the solid/liquid boundary, and a time-independent equilibrium contact angle at
the contact line position. The profile evolution is computed for a wide range of
slip lengths (2.3 × 10−2 < b̃ < 104) and various equilibrium contact angles. For all
our computations, the transient droplet profiles are found to deviate significantly
from a spherical cap. We find that when decreasing the slip length, the typical
non-sphericity first increases, reaches a maximum at a characteristic slip length b̃m,
and then decreases. This non-monotonic behaviour is found for all of the equilibrium
contact angles investigated in this study, from 17◦ 6 θe 6 69◦.

The dependence of the non-sphericity on the slip length for different equilibrium
contact angles can be described by two universal relations, one for b̃ > b̃m and
the other one for 0.023 < b̃ < b̃m. This result indicates the existence of different
flow structures depending on the value of b̃. For b̃ � b̃m, the flow is dominated
by elongational flow. For b̃ . b̃m, the elongational flow becomes less important and
the flow is confined in the rim at the beginning of the dewetting. Around b̃m, the
dissipation is dominated by the friction at the substrate as shown by the similarity
solutions for the rim profile evolution at early times. When b̃ < b̃m, shear flow
becomes more important. We rationalize the decrease of the non-sphericity with
decreasing b̃ in terms of the spreading of the ridge and the contact line velocity. For
smaller slip lengths, the accumulated mass due the movement of the contact line is
redistributed to a wider extent, thus the droplet profile is closer to a spherical cap.

Although our numerical computations are limited to the smallest b̃= 0.023 we can
access, the trend of the non-sphericity for b̃ < b̃m implies that the transient droplet
profile will be close to a spherical-cap shape when b̃ is very small, consistent with
the expectation from the quasistatic approach. However, for a large difference between
the initial and the equilibrium contact angles, the slip length below which the global
bump disappears can be extremely small. In that case, the evolution of the global
bump itself can be treated as quasistatic for small slip lengths. Our study thus brings a
first prediction on the connection between the quasistatic and non-quasistatic regimes
of droplet dewetting.
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Appendix A

A.1. Expressions of Ḡαβ and T̄αβζ
For the axisymmetric Stokes flow problem we study in this article, the boundary
integral equation is quoted in (2.9). Here, we provide the standard expressions of the
tensors Ḡαβ and T̄ αβζ . Note that different symbols are used for these tensors in the
book of Pozrikidis (1992). First, we introduce a function Imn, which is defined as

Imn ≡
4km

(4rr0)m/2

∫ π/2

0

(2 cos2 w− 1)n

(1− k2 cos2 w)m/2
dw. (A 1)

k is given as

k≡
(

4rr0

z2
d + (r+ r0)2

)1/2

, (A 2)

and zd ≡ z− z0. Here (r, z) and (r0, z0) are the coordinates of s and s0 respectively.
For Ḡαβ ,

Ḡzz = r(I10 + z2
dI30), (A 3)

Ḡzr = rzd(sI30 − r0I31), (A 4)

Ḡrz = rzd(rI31 − r0I30), (A 5)

Ḡrr = r[I11 + (r2
+ r2

0)I31 − rr0(I30 + I32)]. (A 6)

For T̄ αβζ ,

T̄ zzz =−6rz3
dI50, (A 7)

T̄ zzr = T̄ zrz =−6rz2
d(rI50 − r0I51), (A 8)

T̄ zrr =−6rzd(r2
0I52 + r2I50 − 2rr0I51), (A 9)

T̄ rzz =−6rz2
d(rI51 − r0I50), (A 10)

T̄ rzr = T̄ rrz =−6rzd[(r2
+ r2

0)I51 − rr0(I50 + I52)], (A 11)

T̄ rrr =−6r[r3I51 − r2r0(I50 + 2I52)+ rr2
0(I53 + 2I51)− r3

0I52]. (A 12)

The tensors Ḡαβ and T̄ αβζ have singular points at s = s0 and s = 0. Around these
points, the boundary integral equation (2.9) is performed analytically by expanding
Ḡαβ and T̄ αβζ in series (van Lengerich & Steen 2012).

A.2. Validation of the numerical method
A.2.1. Number of marker points

The number of marker points M for the liquid/air interface used in the computations
presented in this paper is M = 300. The convergence has been checked, see figure 8.
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FIGURE 8. (Colour online) The contact line position R̃ as a function of time t̃ for
θe = 62◦ and b̃= 0.023.

The maximum difference between the curves for M = 300 and for M = 400 is
0.4 %, we thus conclude that M = 300 is sufficient to describe accurately the droplet
evolution.

A.2.2. Relaxation of a free droplet
To validate our BEM, we consider the relaxation of a viscous ellipsoidal droplet of

viscosity η surrounded by a inviscid fluid. The droplet is axisymmetric and the profile
is described by h(r, t). For small deformations, the profile maintains a shape of ellipse
with the major axis denoted by a(t) and the minor axis denoted by b(t), namely

r2

a(t)2
+

h(r, t)2

b(t)2
= 1, (A 13)

for 06 r6a(t). We define D(t)≡ (a(t)−b(t))/(a(t)+b(t)). Applying Stokes equations,
it has been proved analytically that D(t) rescaled by the initial value D0 = D(t = 0)
follows asymptotically the relation (Taylor 1934; Guido & Villone 1999)

D(t)
D0
= exp(−40t/38). (A 14)

Here t is the time rescaled by R0η/γ , where R0 is the radius of the droplet (of
spherical shape) at t→∞.

To validate our BEM, we compare our computation with the above analytical
formula (A 14). For our computation, we take the rescaled slip length b̃ = 10 000
and the equilibrium contact angle θe = 90◦. As an initial condition, we consider
a(t = 0)= 1.1 and b(t = 0)= 1. Figures 9(a) and 9(b) show the droplet profiles and
the time series of a(t) and b(t) respectively. In figure 9(c), the variable D(t)/D0

computed by BEM is shown to agree well with the analytical result of (A 14) with
no free fitting parameter.
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FIGURE 9. (Colour online) (a) The initial droplet profile and a profile close to a sphere
at t = 4. (b) Time series of a(t) and b(t) computed by BEM. (c) The variable D(t)/D0
computed by BEM and (A 14).

REFERENCES

BÄUMCHEN, O., FETZER, R. & JACOBS, K. 2009 Reduced interfacial entanglement density affects
the boundary conditions of polymer flow. Phys. Rev. Lett. 103, 247801.

BOCQUET, L. & CHARLAIX, E. 2009 Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39,
1073–1095.

BONN, D., EGGERS, J., INDEKEU, J., MEUNIER, J. & ROLLEY, E. 2009 Wetting and spreading. Rev.
Mod. Phys. 81, 739.

CHEN, J.-D. 1988 Experiments on a spreading drop and its contact angle on a solid. J. Colloid
Interface Sci. 122, 60–72.

COX, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow.
J. Fluid Mech. 168, 169–194.

CUENCA, A. & BODIGUEL, H. 2013 Submicron flow of polymer solutions: slippage reduction due
to confinement. Phys. Rev. Lett. 110, 108304.

EDWARDS, A. M. J., LEDESMA-AGUILAR, R., NEWTON, M. I., BROWN, C. V. & MCHALE, G.
2016 Not spreading in reverse: the dewetting of a liquid film into a single drop. Sci. Adv. 2
(September), 1–11.

FALK, K., SEDLMEIER, F., JOLY, L., NETZ, R. R. & BOCQUET, L. 2010 Molecular origin of fast
water transport in carbon nanotube membranes: superlubricity versus curvature dependent
friction. Nano Lett. 10 (10), 4067–4073.

FETZER, R., JACOBS, K., MÜNCH, A., WAGNER, B. & WITELSKI, T. P. 2005 New slip regimes
and the shape of dewtting thin liquid films. Phys. Rev. Lett. 95, 127801.

FETZER, R., MÜNCH, A., WAGNER, B., RAUSCHER, M. & JACOBS, K. 2007 Quantifying
hydrodynamic slip: a comprehensive analysis of dewetting profiles. Langmuir 23, 10559–10566.

DE GENNES, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827.
DE GENNES, P.-G., BROCHART-WYART, F. & QUÉRÉ, D. 2003 Capillarity and Wetting Phenomena:

Drops, Bubbles, Pearls, Waves. Springer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.515


288 T. S. Chan, J. D. McGraw, T. Salez, R. Seemann and M. Brinkmann

GUIDO, S. & VILLONE, M. 1999 Measurement of interfacial tension by drop retraction analysis.
J. Colloid Interface Sci. 209, 247–250.

GUO, S., GAO, M., XIONG, X.-M., WANG, Y.-J., WANG, X.-P., SHENG, P. & TONG, P. 2013 Direct
measurement of friction of a fluctuating contact line. Phys. Rev. Lett. 111, 026101.

HAEFNER, S., BENZAQUEN, M., BÄUMCHEN, O., SALEZ, T., PETERS, R., MCGRAW, J. D., JACOBS,
K., RAPHAËL, E. & DALNOKI-VERESS, K. 2015 Influence of slip on the Plateau–Rayleigh
instability on a fibre. Nat. Commun. 6 (May), 7409.

HUH, C. & SCRIVEN, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid
contact line. J. Colloid Interface Sci. 35, 85–101.

LAUGA, E., BRENNER, M. P. & STONE, H. A. 2007 Microfluidics: the no-slip boundary condition.
In Springer Handbook of Experimental Fluid Mechnaics (ed. C. Tropea, J. F. Foss &
A. Yarin), pp. 1219–1240. Springer.

LEE, S. H. & LEAL, L. G. 1982 The motion of a sphere in the presence of a deformable interface. II.
A numerical study of the translation of a sphere normal to an interface. J. Colloid Interface
Sci. 87 (1), 81–106.

LEGER, L. 2003 Friction mechanisms and interfacial slip at fluid–solid interfaces. J. Phys.: Condens.
Matter 15, S19.

VAN LENGERICH, H. B. & STEEN, P. H. 2012 Energy dissipation and the contact-line region of a
spreading bridge. J. Fluid Mech. 703, 111–141.

MCGRAW, J. D., CHAN, T. S., MAURER, S., SALEZ, T., BENZAQUEN, M., RAPHAËL, E.,
BRINKMANN, M. & JACOBS, K. 2016 Slip-mediated dewetting of polymer microdroplets.
Proc. Natl Acad. Sci. USA 113 (5), 1168–1173.

NETO, C., EVANS, D. R., BONACCURSO, E., BUTT, H.-J. & CRAIG, V. S. J. 2005 Boundary slip
in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859.

POZRIKIDIS, C. 1992 Boundary Integral and Singularity Methods for Linearized Flow. Cambridge
University Press.

REDON, C., BROCHARD-WYART, F. & RONDELEZ, F. 1991 Dynamics of dewetting. Phys. Rev. Lett.
66, 715–718.

REITER, G. & SHARMA, A. 2001 Auto-optimization of dewetting rates by rim instabilities in slipping
polymer films. Phys. Rev. Lett. 87 (16), 166103.

RIVETTI, M., SALEZ, T., BENZAQUEN, M., RAPHAËL, E. & BÄUMCHEN, O. 2015 Universal contact-
line dynamics at the nanoscale. Soft Matt. 11 (48), 9247–9253.

SAHIMI, M. 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular
automata, and simulated annealing. Rev. Mod. Phys. 65, 1393.

SETU, S. A., DULLENS, R. P. A., HERNÁNDEZ-MACHADO, A., PAGONABARRAGA, I., AARTS,
D. G. A. L. & LEDESMA-AGUILAR, R. 2015 Superconfinement tailors fluid flow at microscales.
Nat. Commun. 6, 7297.

SNOEIJER, J. H. & ANDREOTTI, B. 2013 Moving contact lines: scales, regimes, and dynamical
transitions. Annu. Rev. Fluid Mech. 45, 269.

SNOEIJER, J. H. & EGGERS, J. 2010 Asymptotics of the dewetting rim. Phys. Rev. E 82, 056314.
SUI, Y., DING, H. & SPELT, P. D. M. 2014 Numerical simulations of flows with moving contact

lines. Annu. Rev. Fluid Mech. 46, 97–119.
TANNER, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl.

Phys. 12, 1473–1478.
TAYLOR, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A

146, 501.
VOINOV, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714–721; (English translation).
WEINSTEIN, S. J. & RUSCHAK, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 29–53.
WINKELS, K. G., PETERS, I. R., EVANGELISTA, F., RIEPEN, M., DAERR, A., LIMAT, L. &

SNOEIJER, J. H. 2011 Receding contact lines: from sliding drops to immersion lithography.
Eur. Phys. J. Special Topics 192, 195.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

51
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.515

	Morphological evolution of microscopic dewetting droplets with slip
	Introduction
	Formulation
	Boundary element method (BEM)

	Results and discussion
	Interfacial profile evolution and non-sphericity of the profiles
	The transient ridge and early time dynamics
	Physical explanation for the behaviour of the non-sphericity: flow structures and the spreading of the ridge
	Characteristic of the global bump

	Conclusion
	Acknowledgements
	Appendix A 
	Expressions of Gαβ and Tαβζ
	Validation of the numerical method
	Number of marker points
	Relaxation of a free droplet


	References


