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1. Introduction

Let K1, . . . , Kr be finite extensions of Q of degree at least 2, and let n1, . . . , nr > 2 denote

their respective degrees. For each 1 6 i 6 r , let {ω
(i)
1 , . . . , ω

(i)
ni } be a Z-basis for the ring

of integers of Ki , and denote by

NKi (x1, . . . , xni ) = NKi /Q(x1ω1+ · · ·+ xniωni )

the corresponding norm form, where NKi /Q is the field norm. One of the central

results from [1], stated as [1, Theorem 1.3], proves weak approximation for varieties

X ⊂ An1+···+nr+s
Q defined by the system of equations

0 6= NKi (x
(i)
1 , . . . , x (i)ni

) = fi (u1, . . . , us), (1 6 i 6 r), (1.1)

where s > 2 and f1, . . . , fr ∈ Z[u1, . . . , us] are pairwise non-proportional linear forms.

This weak approximation result is deduced from an asymptotic formula for the number

of (suitably restricted) integral points on X (see [1, Theorem 5.2]).

Our aim here is to develop refinements of both [1, Theorem 5.2] and the weak

approximation result that allow one to deduce the linear case of a conjecture due to

Harpaz and Wittenberg [8] (see [8, § 9] for details). Building on this linear case, they

establish the following very strong fibration theorem for the existence of rational points.

While working on this paper the author was supported by a postdoctoral fellowship from the Fondation
Sciences Mathématiques de Paris.
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108 L. Matthiesen

Theorem [8, Theorem 9.27]. Let X be a smooth, proper, irreducible variety over Q, and

let f : X → P1
Q be a dominant morphism, with rationally connected geometric generic

fibre. Suppose further that all non-split fibres lie over rational points of P1
Q. If Xc(Q) is

dense in Xc(AQ)Br(Xc) for every rational point c of a Hilbert subset of P1
Q, then X (Q) is

dense in X (AQ)Br(X).

The results we discuss here analyse instead of (1.1) the following system of equations:

0 6= NKi (x
(i)
1 , . . . , x (i)ni

) = fi (u1, . . . , us)µ( fi (u1, . . . , us))
2, (1 6 i 6 r), (1.2)

where µ denotes the Möbius function. Note that counting integral solutions to this system

is a question concerning the representation of square-free integers by norm forms.

The weak approximation type result relevant to [8] is the following.

Theorem 1.1. Let K1, . . . , Kr be finite extensions of Q of degree at least 2. Let f1, . . . , fr ∈

Z[u1, . . . , us] be pairwise non-proportional linear forms. Let S be a finite set of primes

that contains all primes p 6 C for some constant C only depending on f1, . . . , fr and

K1, . . . , Kr . Let u ∈ Zs be a vector such that fi (u) is non-zero and a local integral norm

from Ki at all places of S and also at the real place. Then there exists a vector u′ ∈ Zs

such that the following hold.

(1) u′ is arbitrarily close to u at the places of S.

(2) u′ belongs to any given open convex cone of Rs which contains u.

(3) fi (u′) is square free outside S in the sense that vp( fi (u′)) > 2 only if p ∈ S, and

fi (u′) is the norm of an integral element of Ki for all i .
Just as in the case of the weak approximation result from [1], this result is a corollary to

an asymptotic formula for the number of (suitably restricted) integral solutions to (1.2),

which we state as Theorem 1.3 below. The deduction of Theorem 1.1 from Theorem 1.3

will be carried out in § 2. In order to state Theorem 1.3, we proceed by introducing a

square-free representation function for any given norm form NK associated to a field

extension K/Q of degree n > 2.

Let {ω1, . . . , ωn} denote the basis with respect to which NK is defined. As in [1, § 2],

we let D+ ⊂ Rn denote a fundamental domain for the equivalence relation that identifies

two vectors x and y if and only if x1ω1+ · · ·+ xnωn and y1ω1+ · · ·+ ynωn are associated

by a unit of positive norm. Define the representation function R : Z→ Z>0 by setting

R(m) = 1m 6=0 · #{x ∈ Zn
∩D+ : NK (x) = m}, (1.3)

for any m ∈ Z. This is a special case of the representation functions considered in [1,

Definition 5.1]. Here, we will be interested in the following restrictions of R.

Definition 1.2. Let R be the function defined in (1.3), and let S be a finite set of primes.

Then we let R∗S : Z→ Z>0 denote the restriction of R to integers m that are square free

outside S. That is, we define

R∗S(m) = µ
2
(∏

p 6∈S

pvp(m)
)

R(m)

for m ∈ Z.
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The square-free representation function of a norm form 109

Remark. The representation function R is in general not multiplicative, not even away

from S. For this reason, inclusion–exclusion arguments cannot be carried out in a

straightforward way, and therefore the main results of this paper do not follow directly

from those in [1].

Finally, we define, as in [1, § 4], a local count of representations by setting

%(q, A) = {x ∈ (Z/qZ)n : NK (x) ≡ A (mod q)}

for any q ∈ N and A ∈ Z/qZ.

With this notation, the following result is the asymptotic result for R∗S that corresponds

to [1, Theorem 5.2].

Theorem 1.3. Let K1, . . . , Kr be finite extensions of Q of degree at least 2, and let

n1, . . . , nr denote their respective degrees. Let S1, . . . , Sr be finite sets of primes. For

each i ∈ {1, . . . , r}, let Ri be the representation function of a norm form associated to

Ki/Q, and let R∗i := R∗i Si
denote its restriction to integers that are square free outside Si .

Let K ⊂ [−1, 1]s be a convex body. Further, suppose that f1, . . . , fr ∈ Z[u1, . . . , us] are

pairwise non-proportional linear forms, and assume that | fi (K)| 6 1 for 1 6 i 6 r . Given

any modulus q ∈ N and a vector a ∈ (Z/qZ)s such that vp( fi (a)) < vp(q) for all p ∈ Si
and i ∈ {1, . . . , r}, we then have

∑
u∈Zs

∩TK
u≡a (mod q)

r∏
i=1

R∗i ( fi (u)) = β∞
∏

p

βp · T s
+ o(T s), (T →∞),

where

β∞ =
∑

ε∈{±}r

vol(K∩ f−1(Rε1 × · · ·×Rεr ))
r∏

i=1

κ
εi
i

with

κ
εi
i = vol{x ∈ D+i : 0 < εi NKi (x) 6 1} and f = ( f1, . . . , fr ) : Zs

→ Zr ,

and

βp = lim
m→∞

1
pms

∑
u∈(Z/pmZ)s

u≡a (mod pvp (q))

r∏
i=1

(
1− 1p 6∈Si

%i (p2, 0)
p2ni

)
%i (pm, fi (u))

pm(ni−1) ,

for each prime p. Furthermore, the product
∏

p βp is absolutely convergent.

Remark. In all of this work, R∗S could be replaced by the more general representation

function that arises from replacing R by a function R(X,M,b) as defined in [1,

Definition 5.1]. This would allow one to prove a weak approximation result that takes

not only the variables u from (1.2) into account, but also the variables xi . While working

with a general function R(X,M,b) requires essentially no additional work, we decided to

restrict ourselves here to the special case of (1.3) for reasons of notational simplicity.
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110 L. Matthiesen

The proof of [1, Theorem 5.2] uses the methods that were introduced in Green

and Tao [3], and as such the two main steps in the proof are the construction of

a family of pseudo-random majorants for a W -tricked version of the function R and

the proof that this new function is orthogonal to nilsequences. The pseudo-random

majorants constructed in [1] for the R-function are in fact pseudo-random majorants

for the W -tricked version of R∗S as well. Thus, the main step that is missing is to check

orthogonality with nilsequences.

We prove the convergence of the product of local factors in § 2. As all remaining parts

work exactly as in [1], our main focus here is to establish a non-correlation estimate

(Theorem 1.4 below) for R∗S that corresponds to [1, Proposition 6.3] with R replaced by

its square-free version. Both § 3 and § 4 contain technical lemmas needed in the proof of

Theorem 1.4 in § 5.

The statement of Theorem 1.4 requires a W -trick. In contrast to the case of R handled

in [1], there is a lot of flexibility in the choice of the W -trick here, as the exceptionally

large values of R, which were problematic before, occur at integers that are not square

free. Given any integer N > 0, let w(N ) = log log N , and set

W (N ) =
∏

p6w(N )

pα(p), (1.4)

where α(p) ∈ N is such that

pα(p)−1 < log N 6 pα(p).

Observe that α(p) > 1. Taking N sufficiently large allows us to assume that any given

finite set S of primes is contained in the set of primes less than w(N ), and moreover

that q|W (N ) for any given integer q. Given a representation function R∗S and any integer

T > 0, we define the following set of ‘unexceptional’ residues:

A (R∗S, N ) =

A mod W (N ) :
0 6 vp(A) 6 1 if p < w(N ), p 6∈ S
0 6 vp(A) < vp(W (N ))/3 if p ∈ S
%(W (N ), A) > 0

 . (1.5)

With the exception of integers that are divisible to a large order by some prime p from

S, the support of R∗S is contained in the set of numbers whose residues modulo W (N )
belong to A (R∗S, N ). Since S is finite, we can avoid the exceptional set by fixing the

S-part
∏

p∈S mvp(m) of integers m under consideration and taking N sufficiently large so

that vp(m) < vp(W (N ))/3.

With the W -trick in place, we are now ready to reveal the main result of this paper,

which states that the W -tricked version of R∗S is orthogonal to nilsequences.

Theorem 1.4. Let G/0 be a nilmanifold of dimension mG > 1, let G• be a filtration of G
of degree ` > 1, and let g ∈ poly(Z,G•) be a polynomial sequence. Suppose that G/0 has

a Q-rational Mal’cev basis X for some Q > 2, defining a metric dX on G/0. Suppose

that F : G/0→ [−1, 1] is a Lipschitz function. Let N and T = T (N ) be positive integer

parameters that satisfy N 1−ε
�ε T 6 N for all ε > 0. Then, for ε ∈ {±}, W = W (N ),

and A ∈ Z with A (mod W ) ∈ A (R∗S, N ) and 0 6 εA < W , we have the estimate
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The square-free representation function of a norm form 111∣∣∣∣WT ∑
0<εm6T/W

(
R∗S(W m+ A)− κε

%(W, A)
W n−1

∏
p>w(N )

(
1−

%(p2, 0)
p2n

))
F(g(|m|)0)

∣∣∣∣
�mG ,`,E QOmG ,`,E (1)

1+‖F‖Lip

(log log log N )E
%(W, A)

W n−1

∏
p>w(N )

(
1−

%(p2, 0)
p2n

)
,

for any E > 0 and provided that N is sufficiently large.

General remarks. We assume familiarity with [1] throughout this paper. The ideas and

proofs that we present in §§ 2 and 5 are very closely related to the material from [1]. The

main new observation is the fact that these ideas can be made to work in the case of the

square-free representation function by means of the new technical lemmas we prove in

§§ 3 and 4.

2. Local factors and the deduction of Theorem 1.1

The aim of this section is to deduce Theorem 1.1 from Theorem 1.3. This deduction

partially relies on the following proposition, which asymptotically evaluates the local

factors from Theorem 1.3. Note that this proposition implies the final part of Theorem

1.3, namely that the product of local factors is absolutely convergent.

Proposition 2.1. Let L = max16i6r {‖ fi‖, s, r, ni , |DKi |}, where ‖ fi‖ denotes the

maximum of the absolute values of the coefficients of fi . Then the local factors from

Theorem 1.3 satisfy both the following.

(1) βp = 1+ OL(p−2) whenever p - q.

(2) βp = OL ,q(1) at all primes p.

In particular, there is L ′ = OL(1) such that βp > 0 provided that p - q and p > L ′.

Proof. For every prime p, let

β ′p = lim
m→∞

1
pms

∑
u∈(Z/pmZ)s

u≡a (mod pvp (q))

r∏
i=1

%i (pm, fi (u))
pm(ni−1) .

Then

βp = β
′
p

r∏
i=1

(
1− 1p 6∈Si

%i (p2, 0)
p2ni

)
,

and β ′p is the local factor that appears in [1, Theorem 5.2], but with %i (pm, fi (u); pvp(q))

replaced by %i (pm, fi (u)). The proof of [1, Proposition 5.5] implies that β ′p = OL ,q(1) and

that β ′p = 1+ OL(p−2) whenever p - q. Indeed, the second part of [1, Proposition 5.5]

rests on the bound %i (pm, fi (u); pvp(q)) 6 %i (pm, fi (u)), and therefore includes a proof

of assertion (1); assertion (2) follows from a direct application of [1, Proposition 5.5]
with M = q, since %i (pm, fi (u); pvp(q)) = %i (pm, fi (u)) when p - q. Thus, it remains to
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show that

1−
%i (p2, 0)

p2ni
= 1+ O(p−2)

for all primes p and i ∈ {1, . . . , r}. By [1, Lemma 4.5], there is C > 0 such that

%i (p2, 0)
p2(ni−1) 6 C2ni ;

that is,
%i (p2, 0)

p2ni
6 C

2ni

p2 , (2.1)

for each 1 6 i 6 r .

We are now in a position to prove Theorem 1.1. The proof below is similar to that

given in [1, § 5.3], but is significantly easier, since we only consider weak approximation

in the variables u and not in the variables xi .

Proof of Theorem 1.1 assuming Theorem 1.3. First of all, we may assume that S
contains all primes p 6 L ′, where L ′ is given by Proposition 2.1 above. For 1 6 i 6 r , let

Ri be the representation function of some norm form NKi , and let R∗i be its restriction to

integers m that are square free outside S. Then it suffices to show that, given any ε > 0,

there exists a vector u′ ∈ Zs such that the following hold.

(1) |u′−u|p < ε for all p ∈ S.

(2) |tu′−u| < ε for some t > 0.

(3)
∏r

i=1 R∗i ( fi (u′)) > 0.

For every ε > 0 there is an integer Q composed of primes from S such that condition (1)

is implied by the congruence

u′ ≡ u (mod Q),

and such that vp(Q) > vp( fi (u)) for every p ∈ S. Further, let

K(u; ε) = {v ∈ Rs
: |u− v| < ε},

and note that, whenever T > 0 and u′ ∈ TK(u; ε), the second condition is satisfied. Thus

it is enough to show that

N (T ) =
∑

u′∈Zs
∩TK(u;ε′)

u′≡u (mod Q)

r∏
i=1

R∗i ( fi (u′)) > 0

for some value of T > 0. Theorem 1.3 implies that

N (T ) > T s vol(K(u, ε)∩ f−1(Rε1 × · · ·×Rεr ))κ
ε1
1 . . . κεrr

∏
p

βp + o(T s),

where εi = sign fi (u). Hence, the result follows by taking T sufficiently large, provided

that we can show that the product of local factors on the right-hand side is positive.
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To see this, first note that every factor κεi
i = vol{x ∈ D+i : 0 < εi NKi (x) 6 1} is positive,

since fi (u) 6= 0 is a local norm from Ki at the real place. Indeed, there is a vector xi ∈

Rni ∩D+i such that fi (u) = NKi (xi ), and, since εi = sign fi (u), we have

txi ∈ {x ∈ D+i : 0 < εi NKi (x) < 1}

for every sufficiently small t > 0. By continuity of NKi , the above set is open and has

positive volume, since it is non-empty.

Since fi (u) 6= 0 for all i ∈ {1, . . . , r}, the open set

K(u, ε)∩ f−1(Rε1 × · · ·×Rεr )

contains u, which again implies that vol(K(u, ε)∩ f−1(Rε1 × · · ·×Rεr )) > 0.

By Proposition 2.1, we have
∏

p 6∈S βp > 0, so it remains to check that βp > 0 whenever

p ∈ S. We proceed as in [1, § 5.3].

Let p be any element from S, and recall that for 1 6 i 6 r there is an integral element

ki ∈ Ki such that fi (u) = NKi⊗QQp/Qp (ki ). This implies that for every m > 0 there is a

vector xi ∈ Zni such that

fi (u) ≡ NKi (xi ) (mod pm),

and hence
r∏

i=1

%i (pm, fi (u)) > 1.

Choosing

m = 2
(

1+ vp(Q)+
r∑

i=1

vp( fi (u))+
r∑

i=1

vp(ni )

)
,

we apply [1, Lemma 3.4] with A = fi (u), G = NKi , and ` = 0 to deduce that

r∏
i=1

%i (pm′ , fi (ũ))
pm′(ni−1) =

r∏
i=1

%i (pm, fi (u))
pm(ni−1) >

r∏
i=1

1
pm(ni−1)

whenever m′ > m and ũ ∈ (Z/pm′Z)s is such that ũ ≡ u (mod pm). For any given m′ > m,

there are p(m
′
−m)s admissible choices for ũ. Note that m > vp(Q). Thus,

βp > lim
m′→∞

1
pm′s

∑
ũ∈(Z/pm′Z)s

ũ≡u (mod pm′ )

r∏
i=1

%i (pm′ , fi (ũ))
pm′(ni−1) >

1
pm(n1+···+nr+s−r) > 0,

which completes the proof.

3. R∗S in arithmetic progressions

This section contains two lemmas about the mean value of R∗S in arithmetic progressions.

These will be required in the proof of Theorem 1.4 in § 5.

Lemma 3.1. Let S be a finite set of primes, and let R∗S be the corresponding restriction of

the representation function. Let N and q be positive integers such that p|q for every prime

p < w(N ) and such that vp(q) 6= 1 for all p 6∈ S. Suppose further that A ∈ {1, . . . , q} is
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an integer such that 0 6 vp(A) 6 1 whenever p|q and p 6∈ S. Let ε ∈ {±}, and let κε be

the constant that appears in [1, Lemma 6.1]. Then, provided that N is sufficiently large,∑
0<εm6x

m≡A (mod q)

R∗S(m) = κ
εx
%(q, A)

qn

∏
p-q

(
1−

%(p2, 0)
p2n

)
+ O(qx1− 1

20n ). (3.1)

Proof. We shall deduce this result from [1, Lemma 6.1], which states that∑
0<εm6x

m≡A′ (mod q ′)

R(m) =
%(q ′, A′)

q ′n
κεx + O(q ′x1−1/n), (3.2)

for any positive integer q ′, any A′ ∈ Z, and ε ∈ {±}. Since

R∗S(m) =
∑
d2
|m

gcd(d,q)=1

µ(d)R(m)

for m ≡ A (mod q), we have∑
0<εm6x

m≡A (mod q)

R∗S(m) =
∑

d6x1/2

gcd(d,q)=1

µ(d)
∑

0<εm6x
m≡A (mod q)
m≡0 (mod d2)

R(m). (3.3)

If d is sufficiently small, then the inner sum may be evaluated by means of (3.2). Invoking

the Chinese remainder theorem, it follows that∑
d<x1/10n

gcd(d,q)=1

µ(d)
∑

0<εm6x
m≡A (mod q)
m≡0 (mod d2)

R(m)

=

∑
d6x1/10n

gcd(d,q)=1

(
µ(d)

%(d2, 0)
d2n

%(q, A)
qn κεx + O(d2qx1− 1

n )

)

=

∑
d6x1/10n

gcd(d,q)=1

µ(d)
%(d2, 0)

d2n
%(q, A)

qn κεx + O(qx1− 1
n+

3
10n ). (3.4)

We aim to extend the summation in d to all positive integers that are co-prime to q. By

multiplicativity of % we deduce from (2.1) that

µ2(d)
%(d2, 0)

d2n 6
(C2n)ω(d)

d2 �C,n,ε d−2+ε (3.5)

for any ε > 0. Since ∑
d>x1/10n

d−2+ε
� x

1
10n (−2+ε+1)

� x−
1

20n
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for ε sufficiently small, (3.4) is seen to equal

κεx
%(q, A)

qn

( ∑
d>1

gcd(d,q)=1

µ(d)
%(d2, 0)

d2n + O(x−
1

20n )

)
+ O(qx1− 1

n+
3

10n )

= κεx
%(q, A)

qn

∏
p-q

(
1−

%(p2, 0)
p2n

)
+ O(x1− 1

20n )+ O(qx1− 1
n+

3
10n ), (3.6)

where we made use of the trivial bound %(q, A)� qn .

In order to bound the tail of the summation in d from (3.3), we consider a

fixed square-free integer d with gcd(d, q) = 1, and let d = p1 . . . pk be its prime

factorization. As shown in [1, Lemma 8.1], the representation function R may be

uniformly bounded above by a multiplicative function of constant average order. More

precisely, we have R(m)� rK (|m|) for all m 6= 0, where rK is the multiplicative function

describing the Dirichlet coefficients of the Dedekind zeta function of K ; i.e., ζK (s) =∑
n rK (n)n−s . Invoking two basic properties of rK , namely that rK (m)� τ(m)n and that∑
m6x rK (m)� x (cf. [1, (2.8) and (2.10)]), we deduce that∑

m≡A (mod q)
m≡0 (mod d2)

0<εm6x

R(m)�
∑

(b1,...,bk )∈Nk
0

rK (d2 pb1
1 . . . pbk

k )
∑

0<m6x/(d2 p
b1
1 ...p

bk
k )

rK (m)

�

∑
(b1,...,bk )∈Nk

0

p
b1
1 ...p

bk
k 6x

τ(d2 pb1
1 . . . pbk

k )
n x

d2 pb1
1 . . . pbk

k

� x
k∏

i=1

∑
bi>2

τ(pbi
i )

n

pbi
i

� x
k∏

i=1

∑
bi>2

(2n

pi

)bi
� x

k∏
i=1

22n+1

pi 2 � x
τ(d2)n+1

d2 .

Thus, for any C0 > 2, we have∣∣∣∣ ∑
x1/C06d6x1/2

gcd(d,q)=1

µ(d)
∑

m≡A (mod q)
m≡0 (mod d2)

0<εm6x

R(m)
∣∣∣∣ 6 ∑

x1/C06d6x1/2

gcd(d,q)=1
µ2(d)=1

∑
m≡A (mod q)
m≡0 (mod d2)

0<εm6x

R(m)

� x
∑

x1/C06d6x1/2

gcd(d,q)=1

τ(d2)n+1

d2

�ε x
∑

x1/C06d6x1/2

gcd(d,q)=1

d−2+ε

�ε x1− 1−ε
C0 . (3.7)

Combining this estimate for C0 = 10n with (3.4) and (3.6) completes the proof.
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Our next aim is to establish the ‘major arc estimate’ that is required in order to deduce

Theorem 1.4 from a non-correlation estimate that only involves sufficiently equidistributed

polynomial nilsequences. The following lemma corresponds to [1, Lemma 6.2], and

it shows that the W -tricked version of R∗S has constant average values on certain

subprogressions. Recall the definition of A (R∗S, N ) from (1.5).

Lemma 3.2 (Major arc estimate). Let ε ∈ {±}, and let N > 0 be an integer. Suppose that

A ∈ A (R∗S, N ), and let q0 be a w(N )-smooth number. Let x, x ′ ∈ Z>0 be parameters that

satisfy x � x ′. Then

W (N )
x

∑
m≡A (mod W )

0<εm6x

R∗S(m) =
W (N )q0

x ′
∑

m≡A+Wq1 (mod Wq0)
0<εm6x ′

R∗S(m)+ O(q2
0 W (N )2x−

1
20n )

for any q1 ∈ Z.

Proof. We shall employ the lifting result [1, Lemma 3.4], which in our context states the

following. Let m > 1, A′ 6= 0, and assume that

vp(A′)+ vp(n) <
m
2
.

Then we have
%(pm, A′)

pm(n−1) =
%(pm+1, A′+ kpm)

p(m+1)(n−1) , (3.8)

uniformly for k ∈ Z/pZ.

Since the definition of A (R∗S, N ) guarantees that all of the above assumptions are

satisfied, we deduce that

%(W, A)
W n−1 =

%(Wq0, A+Wq1)

(Wq0)n−1 . (3.9)

The lemma now follows from an application of Lemma 3.1 to each of the two sums over

R∗S from the statement, combined with an application of identity (3.9).

4. Polynomial subsequences of multiparameter nilsequences

In this section we recall some of the background on equidistribution of multiparameter

polynomial nilsequences and prove several technical results that analyse to what extent

equidistribution properties are preserved when passing to certain subsequences or families

of subsequences.

Throughout what follows, [x] denotes the set of integers {1, . . . , bxc}. We shall be

working with the quantitative notion of equidistribution that was introduced by Green

and Tao in [4, Definition 8.5].

Definition 4.1 (Quantitative equidistribution). Let G/0 be a nilmanifold equipped with

Haar measure, and let δ > 0. A finite sequence

(g(n)0)n∈[N1]×···×[Nt ]
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taking values in G/0 is called δ-equidistributed if∣∣∣∣∣∣ 1
|N1| . . . |Nt |

∑
n∈[N1]×···×[Nt ]

F(g(n)0)−
∫

G/0
F

∣∣∣∣∣∣ 6 δ‖F‖Lip

for all Lipschitz functions F : G/0→ C. It is said to be totally δ-equidistributed if,

moreover, ∣∣∣∣∣∣ 1
|P1| . . . |Pt |

∑
n∈P1×···×Pt

F(g(n)0)−
∫

G/0
F

∣∣∣∣∣∣ 6 δ‖F‖Lip

for all Lipschitz functions F : G/0→ C, and for all collections of arithmetic progressions

Pi ⊂ {1, . . . , Ni } of length |Pi | > δNi for 1 6 i 6 t .

The most relevant measures in the analysis of quantitative equidistribution of

polynomial sequences are the smoothness norms. These, too, were introduced in [4];

see also [6].

Definition 4.2 (Smoothness norms). Let f : Zt
→ R/Z be a polynomial of degree d, and

suppose that

f (n1, . . . , nt ) =
∑

(i1,...,it )∈Zt
>0

i1+···+it6d

βi1,...,it n
i1
1 . . . n

it
t .

Then

‖ f ‖C∞∗ [N1]×···×[Nt ] := sup
(i1,...,it )6=0

N i1
1 . . . N it

t ‖βi1,...,it ‖.

Finally, recall that a continuous additive homomorphism η : G → R/Z is called a

horizontal character if it annihilates 0. The equidistribution properties of multiparameter

nilsequences can be analysed through horizontal characters on G/0 via a theorem of

Green and Tao [4, Theorem 8.6], which we state below. See [6] for a proof.

Theorem 4.3 [4, 6]. Let 0 < δ < 1/2, and let m, t, d, N1, . . . , Nt > 1 be positive integers.

Suppose that G/0 is an m-dimensional nilmanifold equipped with a 1
δ
-rational Mal’cev

basis X adapted to some filtration G• of degree `, and that g ∈ poly(Zt ,G•). Then either

(g(n)0)n∈[N1]×···×[Nt ] is δ-equidistributed, or else there is some horizontal character η with

0 < |η| � δ−O`,m,t (1) such that

‖η ◦ g‖C∞∗ [N1]×···×[Nt ] � δ−O`,m,t (1).

In the case of polynomial nilsequences, the quantitative notions of equidistribution and

total equidistribution are equivalent, with polynomial dependence in the equidistribution

parameter. The following lemma handles the non-trivial direction of this equivalence.

Lemma 4.4. Suppose that δ : N→ (0, 1/2) is such that δ(x)−T
�T x for T > 0. Let

m, `, t, and N be positive integers, and suppose that G/0 is an m-dimensional nilmanifold
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equipped with a 1
δ(N ) -rational Mal’cev basis X adapted to some filtration G• of degree `.

Then there is a constant 1 6 C �`,m 1 such that the following holds.

Let E > C, and let g ∈ poly(Zt ,G•). Suppose that the finite sequence (g(n)0)n∈[N ]t
is δ(N )E -equidistributed. Then (g(n)0)n∈[N ]t is totally δ(N )E/C -equidistributed, provided

that N is sufficiently large.

Proof. This is a rather straightforward generalization of the computation carried out in

the proof of [11, Lemma 6.2].

We note aside that the factorization theorem for nilsequences [4, Theorem 1.19] will

allow us to assume that E is sufficiently large for the condition E > C of the above lemma

to be satisfied in all instances when we make use of it.

The multiparameter nilsequences that will be most relevant to the proof of Theorem 1.4

are those that arise as the composition g ◦ P of a polynomial P ∈ Z[X1, . . . , X t ] and a

one-parameter nilsequence g.

Lemma 4.5. Suppose that δ : N→ (0, 1/2) is a function that satisfies δ(x)−T
�T x for all

T > 0. Let m, `, t, and N be positive integers, and suppose that G/0 is an m-dimensional

nilmanifold equipped with a 1
δ(N ) -rational Mal’cev basis X adapted to some filtration G•

of degree `. Let P ∈ Z[X1, . . . , X t ] be a homogeneous polynomial of degree t, fixed once

and for all, and let all implied constants be allowed to depend on the coefficients of P in

any way. Then there is a constant 1 6 C �t,` 1 such that the following holds.

Let E > C, and let g ∈ poly(Zt ,G•). Suppose that (g(n)0)n6N is totally δ(N )E -

equidistributed. Then

(g(P(n1, . . . , nt )0))(n1,...,nt )∈[N 1/t ]×···×[N 1/t ]

is totally δ(N )E/C -equidistributed whenever N is sufficiently large.

Proof. In order to apply Lemma 4.4 and Theorem 4.3 to the sequence (g(P(n)))n∈Zt , we

require first of all a filtration G ′• with respect to which (g(P(n)))n∈Zt is a polynomial

sequence. It follows from [4, Lemma 6.7] that g has a representation of the form g(n) =
a P1(n)

1 . . . a Pk (n)
k , where a1, . . . , ak ∈ G, and where P1, . . . , Pk ∈ Z[X ] are polynomials of

degree at most `. Thus, g(P(n)) = a P1◦P(n)
1 . . . a Pk◦P(n)

k , where each polynomial Pi ◦ P has

degree at most `′ = ` ·max16i6k(deg Pi ). Define a filtration G ′• by setting G ′j = Gd j/`′e
for 0 6 j 6 `′`. Then it is immediate (cf. the discussion following [4, Lemma 6.7])

that (a Pi◦P(n)
i )n∈Zt belongs to poly(G ′•,Zt ) for each 1 6 i 6 k. By Leibman’s theorem [9]

(see [4] for a different proof), the set poly(G ′•,Zt ) forms a group. Thus it follows that

(g(P(n)))n∈Zt ∈ poly(Zt ,G ′•).
Finally, observe that the given Mal’cev basis X is a Mal’cev basis adapted to G ′• as

well. Indeed, part (ii) of [4, Definition 2.1] follows immediately from the corresponding

statement for G•, since {G ′i : 0 6 i 6 s} ⊆ {Gi : 0 6 i 6 s}.
We are now in the position to start with the proof of the lemma. Suppose that B > 1

and that

(g(P(n1, . . . , nt )0))(n1,...,nt )∈[N 1/t ]t
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fails to be totally δ(N )B-equidistributed. Then, by Lemma 4.4, there is a constant 1 6
C1 �`,m 1 such that the above sequence also fails to be δ(N )C1 B-equidistributed. Thus,

Theorem 4.3 implies that there is a non-trivial horizontal character η : G/0→ C of

modulus |η| � δ(N )−O`,m,t (B) such that

‖η ◦ g ◦ P‖C∞∗ [N 1/t ]t � δ(N )−O`,m,t (B).

Writing

P(n) j
=

∑
i1,...,it>0

i1+···+it=t j

γ
( j)
i1,...,it

ni1
1 . . . n

it
t (1 6 j 6 `),

then all coefficients γ
( j)
i1,...,it

are bounded. If, further,

η ◦ g(n) =
∑̀
i= j

β j n j ,

then

‖η ◦ g ◦ P‖C∞∗ [N 1/t ]t = sup
16 j6`

i1+···+it=t j

N j
‖β jγ

( j)
i1,...,it

‖ � δ(N )−O`,m,t (B). (4.1)

Let γ be the least common multiple of all non-zero coefficients γ
( j)
i1,...,it

, and observe that

γ �`,m,t 1. Since δ(x)−T
�T x , we have

‖β jγ
( j)
i1,...,it

‖ � δ(N )−O`,t,m (B)N− j
= o`,t,m(1)

whenever i1+ · · ·+ it = t j and 1 6 j 6 `. Hence, given any A > 0 and provided that N
is sufficiently large with respect to `, m, t and A, then ‖A′β jγ

( j)
i1,...,it

‖ = A′‖β jγ
( j)
i1,...,it

‖ for

any positive real A′ 6 A. In particular, we may assume that ‖β jγ ‖ �`,t,m ‖β jγ
( j)
i1,...,it

‖

whenever γ
( j)
i1,...,it

is non-zero. Since for every j ∈ {1, . . . , `} at least one of the coefficients

γ
( j)
i1,...,it

of P j is non-zero, the above and (4.1) imply that

‖γ η ◦ g‖C∞∗ [N ] = sup
16 j6`

N j
‖β jγ ‖ � δ−O`,m,t (B),

provided that N is sufficiently large. Since γ η is a non-trivial horizontal character of

modulus |γ η| � δ−O`,m,t (B), we deduce that (cf. [10, Propositions 14.2 and 14.3]) there is

a constant C2 �`,m,t 1 such that (g(n)0)n6N fails to be totally δ(N )C2 B-equidistributed.

Choosing C = max(1,C2), the result follows for every E > C by setting B = E/C .

Indeed, when E = C B > C2 B, then the above conclusion that (g(n)0)n6N fails to be

totally δ(N )C2 B-equidistributed contradicts the assumption that this sequence is totally

δ(N )E -equidistributed.

Our next aim is to extend the above lemma in a way that allows us to replace the

homogeneous polynomial P by an inhomogeneous polynomial of the form

x 7→
P(Wqx+ y)− A′

Wq
,

where W = W (N ) is given by (1.4), where q ∈ N, where y ∈ Zt is such that 0 6 yi < Wq
for 1 6 i 6 t , and where A′ ∈ Z is such that P(y) ≡ A′ (mod Wq) and |A′| < Wq.
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Lemma 4.6. Let N be a positive integer, and suppose that T = T (N ) satisfies N 1−ε
�ε

T 6 N for all ε > 0. Let δ : N→ (0, 1/2) be a function that satisfies δ(x)−1
�ε xε for all

ε > 0. Let m, ` and t be positive integers, and suppose that G/0 is an m-dimensional

nilmanifold equipped with a 1
δ(N ) -rational Mal’cev basis X adapted to some filtration G•

of degree `. Let g ∈ poly(Z,G•) be any polynomial sequence, and let P ∈ Z[X1, . . . , X t ] be

a fixed homogeneous polynomial of degree t. All implied constants are allowed to depend

on the coefficients of P in any way. Suppose that S : N→ N satisfies S(x)�ε xε for all

ε > 0.

Then there is a constant 1 6 C �m,`,t 1 such that the following holds. Let E > C,

and suppose that for every w(N )-smooth integer q̃ 6 S(N ) the sequence (g(q̃n)0)n6T/q̃
is totally δ(N )E -equidistributed. Further, let q > 0 be a w(N )-smooth integer that

satisfies the bound (Wq)t`
2
6 S(N ), where W = W (N ). Then, provided that N and T

are sufficiently large, (
g
(

P(Wqx+ y)− A′

Wq

)
0

)
x∈
[(

T
(Wq)t−1

)1/t]t

is a totally δ(N )E/C -equidistributed sequence for every choice of y ∈ Zt such that 0 6 yi <

Wq for 1 6 i 6 t, and for A′ ∈ Z such that P(y) ≡ A′ (mod Wq) and |A′| < Wq.

Proof. Let us write

g̃(x) = g
(

P(Wqx+ y)− A′

Wq

)
.

As in the previous proof, there is a refinement G ′• of the filtration G• such that the new

filtration is adapted to the basis X , and its degree is of order O`,t (1), and such that

(g̃(x)0)x∈Zt ∈ poly(G ′•,Zt ).

Let B > 1, and suppose that (
g̃(x)0

)
x∈
[(

T
(Wq)t−1

)1/t]t

fails to be totally δ(N )B-equidistributed. Then, as in the proof of the previous lemma,

Lemma 4.4 and Theorem 4.3 imply that there is a non-trivial horizontal character η :

G/0→ C such that |η| � δ(N )−O`,m,t (B) and

‖η ◦ g̃‖
C∞∗
[(

T
(Wq)t−1

)1/t]t � δ−Om,`,t (B).

Suppose that

P(n) j
=

∑
i1,...,it>0

i1+···+it=t j

γ
( j)
i1,...,it

ni1
1 . . . n

it
t , (1 6 j 6 `),

and note that for each j at least one of the coefficients γ
( j)
i1,...,it

is non-zero. Furthermore,

suppose that

η ◦ g(n) =
∑̀
j=0

β j n j ,

where β j 6= 0 for at least one value j > 0.
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We proceed by analysing the coefficients of the polynomial map x 7→ η ◦ g̃(x) = η ◦
g( P(Wqx+y)−A′

Wq ). To begin with, observe that

P(Wqx+ y)− A′

Wq
= (Wq)t−1 P(x)+ P ′(x),

for some polynomial P ′ of degree t − 1 with coefficients of order O((Wq)t−1). Inserting

this information into the above expression for η ◦ g, we obtain

η ◦ g
(

P(Wqx+ y)− A′

Wq

)
=

∑̀
j=0

β j
∑

i1,...,it>0
i1+···+it=t j

(Wq)(t−1) jγ
( j)
i1,...,it

x i1
1 . . . x

it
t

+

∑̀
j=0

β j
∑

i1,...,it>0
i1+···+it6t j−1

c( j)
i1,...,it

x i1
1 . . . x

it
t ,

where |c( j)
i1,...,it

| � (Wq)(t−1) j . If η ◦ g̃ has the representation

η ◦ g̃(x) =
∑

i1,...,it>0
i1+···+it6t`

αi1,...,it x
i1
1 . . . x

it
t ,

then

sup
i1+···+it6t`

(
T

(Wq)t−1

) i1+···+it
t
‖αi1,...,it ‖ � δ−O`,m,t (B),

or, in other words,

‖αi1,...,it ‖ � δ−O`,m,t (B)(Wq)(i1+···+it )
t−1

t T−(i1+···+it )/t (4.2)

holds uniformly for all admissible tuples (i1, . . . , it ). Since W (N )q �ε T ε and δ−1(x)�ε

xε, we in fact have the following ‘graded’ bounds in terms of the value j = (i1+ · · ·+ it )/t :

‖αi1,...,it ‖ �ε T−
i1+···+it

t +ε+o(1). (4.3)

Let γ be, as before, the least common multiple of non-zero coefficients γ
( j)
i1,...,it

. We aim to

deduce from (4.2) and (4.3) similar bounds with a graded decay depending on j for the

coefficients β j . While it seems difficult to achieve this directly for the quantities ‖β j‖, we

will obtain such bounds for certain related quantities ‖β j q j‖, 1 6 j 6 `, where each q j
is a w(N )-smooth integer that is small compared to S(N ); it will, in fact, take the form

q j := (Wq)(t−1)(`+(`−1)+···+ j)γ 1+`− j .

Note that

αi1,...,it = βd(Wq)(t−1)`γ
(`)
i1,...,it

whenever i1+ · · ·+ it = t`. By (4.2), this immediately yields

‖β`(Wq)(t−1)`γ ‖ � δ−O`,m,t (1)(Wq)(t−1)`T−`.
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More generally, we have

αi1,...,it = β j (Wq)(t−1) jγ
( j)
i1,...,it

+

∑
k> j

βkc(k)i1,...,it

when i1+ · · ·+ it = t j . Multiplying through by q j+1, this identity allows us to employ a

downwards-inductive argument, taking advantage of the graded decay bounds that can

be assumed inductively for ‖βkqk‖ with k > j . Indeed, by applying (4.2) to αi1,...,it , and

the induction hypotheses to βkqk for k > j , we deduce that

‖β j q j‖ � δ−O`,m,t (B)q j T− j .

It follows that

sup
16 j6`

(T/q`) j
‖q j
` β j‖ � δ−O`,m,t (B).

If N and T are sufficiently large, then Lemma 4.4 and Theorem 4.3 imply that there

is C1 �`,m,t 1 such that g(q`n)n6T/q` fails to be totally δ(N )C1 B-equidistributed. Setting

C = max(C1, 1), the result follows for every E > C by choosing B = E/C . Indeed, if

E = BC > BC1, and if g satisfies all hypotheses from the statement, then, in particular,

g(q`n)n6T/q` is totally δ(N )E -equidistributed. This is a contradiction, and it shows that(
g̃(x)0

)
x∈
[(

T
(Wq)t−1

)1/t]t

is in fact totally δ(N )E/C -equidistributed.

The next lemma is in spirit closely related to the previous one. It shows that the

assumptions that the previous lemma makes on the polynomial sequence g imply that

these assumptions, with a slightly different constant E , are also met by any sequence of

the form g ◦ L for certain linear polynomials L. This result will allow us to replace g by

g ◦ L in the conclusion of Lemma 4.6, and thus to easily deal with a necessary restriction

to subprogressions in § 5. We note aside that this result generalizes to higher-degree

polynomials.

Lemma 4.7. Let N and T be positive integers, and suppose that T = T (N ) satisfies

N 1−ε
�ε T 6 N for all ε > 0. Let δ : N→ (0, 1/2) be a function that satisfies δ(x)−1

�ε

xε for all ε > 0. Let mG and ` be positive integers, and suppose that G/0 is an
mG-dimensional nilmanifold equipped with a 1

δ(N ) -rational Mal’cev basis X adapted to

some filtration G• of degree `. Let g ∈ poly(Z,G•) be any polynomial sequence, and let

S : N→ N be a function such that S(x)�ε xε for all ε > 0.

Then there is a constant 1 6 C �mG ,` 1 such that the following holds. Let E > C, and

suppose that for every w(N )-smooth integer q̃ 6 S(N ) the sequence (g(q̃n)0)n6N/q̃ is

totally δ(N )E -equidistributed. Let L(m) = am+ b be a linear polynomial with 0 6 b < a
and a w(N )-smooth leading constant a, and let q be a w(N )-smooth integer such that

qa 6 S(N )1/`
`+1

. Then the finite sequence

(g(aqm+ b))0)m6T/(aq)

is totally δ(N )E/C -equidistributed.
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Proof. Assuming that all conditions of [10, Proposition 15.4] are satisfied, this result,

applied with P = L, will guarantee the existence of a w(N )-smooth integer q̃ and a

constant C = OmG ,`(1) such that for every 0 6 r < q̃ the sequence

(g(aq(q̃m+ r)+ b))0)m6T/(aqq̃)

is totally δ(N )E/C -equidistributed. This, however, implies that the sequence

(g(aqm+ b))0)m6T/(aq)

itself is totally δ(N )E/C -equidistributed, which will prove the lemma.

It remains to check that all conditions are satisfied. The integer q̃ produced by [10,

Proposition 15.4] comes from an application of [10, Proposition 15.2]. The proof of the

latter proposition reveals that we can take q̃ = (aq)C
′

for some positive integer C ′ =
O`(1). It is moreover possible to read of an explicit upper bound of the form C ′ 6
``+1; cf. the lines before [10, equation (15.4)] where t is introduced, and note that C ′

corresponds to the quantity td. In order for the proof of [10, Proposition 15.4] including its

application of [10, Proposition 15.2] to work in the setting of the current lemma, it suffices

to know that for every w(N )-smooth integer q ′ 6 (aq)C
′

the sequence (g(q ′m)0)m6T/q ′

is totally δ(N )E -equidistributed. This, however, is guaranteed by the assumption that

aq 6 S(N )1/`
`+1

.

The following lemma will be used to carry out an inclusion–exclusion argument that

allows us to reduce estimates involving R∗S to estimates involving R.

Lemma 4.8. Let N and T be positive integers, and suppose that T = T (N ) satisfies

N 1−ε
�ε T 6 N for all ε > 0. Suppose that δ : N→ (0, 1/2) satisfies

δ(x)−1
� (logw(x))C

for some positive constant C. Let m, `, and t be positive integers, and suppose that G/0
is an m-dimensional nilmanifold equipped with a 1

δ(N ) -rational Mal’cev basis X that is

adapted to some filtration G• of degree `. Further, let g ∈ poly(Zt ,G•) be a polynomial

sequence. Given any integer d > 1, let xd ∈ {0, . . . , d2
}
t be a fixed vector.

Then there are constants C0 > 2t and E0 > 1, both of order Om,`,t (1), such that,

provided that N �m,`,t 1 is sufficiently large, the following holds for every E > E0.

Suppose that (g(n)0)n∈[T 1/t ]t is totally δ(N )E -equidistributed. Then, for every integer

K such that 1 < K < T 1/C0 , all but o(δ(N ) K
logw(N ) ) of the sequences

(g(d2n+ xd)0)n∈[T 1/t d−2]t

for d ∈ {n ∈ [K , 2K ) : gcd(n,W (N )) = 1} are totally δ(N )E/E0-equidistributed.

Proof. Let W = W (N ), and recall that
∏

p<w(N )(1− p−1) � 1
logw(N ) . Let us write

gd(x) = g(d2x+ xd).

Let B > 1, and suppose B = E/E0, with E0 to be defined at the end of the proof. Suppose

further that there is some K , 1 < K < N 1/C0 , such that � δ(N ) K
logw(N ) of the integers
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d ∈ [K , 2K ) with gcd(d,W (N )) = 1 are exceptional. In each of these cases, Lemma 4.4

and Theorem 4.3 imply that there is a non-trivial horizontal character ηd : G/0→ C of

modulus |ηd | � δ(N )−Om,`,t (B) such that

‖ηd ◦ gd‖C∞∗ [T 1/t d−2]t � δ(N )−Om,`,t (B). (4.4)

By the pigeonhole principle, we find some η such that ηd = η for at least

� δ(N )Om,`,t (B) K
logw(N )

of the exceptional values of d. Suppose that η ◦ g has the representation

η ◦ g(x) =
∑

i1,...,it>0
i1+···+it6`

βi1,...,it x
i1
1 . . . x

it
t .

Writing

η ◦ gd(x) = η ◦ g(d2x+ xd) =
∑

i1,...,it>0
i1+···+it6`

α
(d)
i1,...,it

x i1
1 . . . x

it
t ,

the bound (4.4) translates to

sup
(i1,...,it )6=0

(
T 1/t

d2

)i1+···+it

‖α
(d)
i1,...,it

‖ � δ−Om,`,t (B). (4.5)

Note that every coefficient α
(d)
i1,...,it

can be expressed in terms of coefficients β j1,..., jt as

follows:

α
(d)
i1,...,it

= d2(i1+···+it )βi1,...,it +

∑
j1+···+ jt>i1+···+it

ci,jβ j1,..., jt ,

with i = (i1, . . . , it ), j = ( j1, . . . , jt ) and integral coefficients ci,j of order O(d2(i1+···+it )).

As in the proof of Lemma 4.6, these identities allow us to deduce downward-inductively

information on the coefficients β j1,..., jt from (4.5).

If i1+ · · ·+ it = `, then we immediately have

‖βi1,...,it d
2`
‖ � δ(N )−Om,`,t (B)d2`T−`/t .

In general, we obtain

‖βi1,...,it d
2(`+(`−1)+···+(i1+···+it ))‖ � δ(N )−Om,`,t (B)d2(`+(`−1)+···+(i1+···+it ))T−(i1+···+it )/t .

Thus,

‖βi1,...,it d
k
‖ � δ(N )−Om,`,t (B)dk T−(i1+···+it )/t ,

for k = `2. The above bound holds for � δ(N )Om,`,t (B) K
logw(N ) � δ(N )Om,`,t (B)K values of

d ∈ [K , 2K ). Employing the Waring-type result given in [5, Lemma 3.3], we deduce that

there are at least �` δ(N )O`,t,m (B)K k positive integers n 6 10k K k such that

‖βi1,...,it n‖ � δ(N )−Om,`,t (B)K k T−(i1+···+it )/t .
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Setting C0 = 4tk, so that K k
� T 1/2t , we deduce from the strong recurrence lemma

recorded in [5, Lemma 3.4] that for each βi1,...,it there is a non-zero integer

qi1,...,it � δ(N )−Om,`,t (B)

such that

‖qi1,...,itβi1,...,it ‖ � δ(N )−Om,`,t (B)T−(i1+···+it )/t .

Let q be the least common multiple of all the qi1,...,it . Then qη is a non-trivial horizontal

character of modulus |qη| � δ(N )−Om,`,t (B) with the property that

‖qη ◦ g‖C∞∗ [T 1/t ]t � δ(N )−Om,`,t (B).

Recall that B = E/E0. Choosing E0 sufficiently large with respect to m, `, and t ,
we deduce from Theorem 4.3 and Lemma 4.4 that (g(n)0)n∈[T 1/t ]t fails to be totally

δ(N )E -equidistributed, which is a contradiction.

The final lemma of this section states the following. Given a multiparameter sequence,

then we obtain a natural collection of one-parameter sequences by fixing all but one of

the parameters. The lemma shows that if the multiparameter sequence is equidistributed

then so are almost all of the one-parameter sequences from this collection.

Lemma 4.9. Let m, t, `, N , and T be positive integers. Suppose that N 1−ε
�ε T 6 N for

all ε > 0, and let δ : N→ (0, 1/2) be such that δ(x)−1
�ε xε for all ε > 0. Let G/0

be an m-dimensional nilmanifold together with a 1
δ(N ) -rational Mal’cev basis adapted to

some filtration G• of degree `. Suppose that g ∈ poly(Zt ,G•). Any fixed choice of integers

a1, . . . , at−1 gives rise to an element ga1,...,at−1 of poly(Z,G•) by setting ga1,...,at−1(n) =
g(a1, . . . , at−1, n). Then there is a constant 1 6 C �m,t,` 1 such that the following holds

for all E > C, provided that T is sufficiently large.

If (g(n)0)n∈[T 1/t ]t is δ(N )E -equidistributed, then

(ga1,...,at−1(n)0)n6T 1/t

is totally δE/C (N )-equidistributed for all but o(δ(N )Om,t,`(E/C)T
t−1

t ) choices of

1 6 a1, . . . , at−1 6 T 1/t .

Proof. Let B > 1 denote the ratio B = E/C , with C to be determined at the end of

the proof. Suppose there are � δ(N )Om,t,`(B)T (t−1)/t tuples (a1, . . . , at−1) ∈ [1, T 1/t
]
t−1

for which (ga1,...,at−1(n)0)n6T 1/t fails to be totally δ(N )B-equidistributed.

Applying Lemma 4.4 and Theorem 4.3, we find non-trivial horizontal characters

ηa1,...,at−1 of modulus � δ(N )−Om,t,`(B) such that

‖ηa1,...,at−1 ◦ ga1,...,at−1‖C∞∗ [T 1/t ] � δ(N )−Om,`,t (B). (4.6)

By the pigeonhole principle, there is some character η such that η = ηa1,...,at−1 for at

least � δ(N )Om,`,t (B)T (t−1)/t of the exceptional tuples (a1, . . . , at−1). We continue to only
consider this subset of exceptional (t − 1)-tuples.
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Suppose that

η ◦ g(n) =
∑

i1,...,it

γi1,...,it n
i1
1 . . . n

it
t .

Then

η ◦ ga1,...,at−1(n) =
∑̀
j=1

n j
∑

i1+···+it
6`t− j

ai1
1 . . . a

it−1
t−1γi1,...,it−1, j ,

and, for any of the exceptional tuples from above, (4.6) translates to

sup
16 j6`

T j/t
∥∥∥∥ ∑

i1+···+it
6`t− j

ai1
1 . . . a

it−1
t−1γi1,...,it−1, j

∥∥∥∥� δ(N )−Om,t,`(B). (4.7)

Each of the coefficients of η ◦ ga1,...,at−1(n) can be regarded as a polynomial in t − 1
variables that is evaluated at the point (a1, . . . , at−1). These polynomials take the form

Pj (n1, . . . , nt−1) =
∑

i1+···+it
6`t− j

ni1
1 . . . n

it−1
t−1γi1,...,it−1, j .

The bounds (4.7) show that to each of these polynomials [6, Proposition 2.2] applies with

ε = δ(N )−Om,t,`(B)T− j/t . Thus there is Q j � δ(N )−Om,t,`(B) such that

‖Q j Pj‖C∞∗ [T 1/t ]t−1 = sup
16i1+···+it−16`t− j

T (i1+···+it−1)/t
‖Q jγi1,...,it−1, j‖ � δ(N )−Om,t,`(B)T− j/t ,

and hence

sup
16i1+···+it−16`t− j

T (i1+···+it−1+ j)/t
‖Q jγi1,...,it−1, j‖ � δ(N )−Om,t,`(B).

Since δ(x)−1
�ε xε and hence ‖Q jγi1,...,it−1, j‖ = o(1), we can introduce a factor

Q1 . . . Q`/Q j into the latter expression and deduce that

sup
16i1+···+it6`t

T (i1+···+it )/t
‖Q1 . . . Q`γi1,...,it ‖ � δ(N )−Om,t,`(B),

provided that T and N are sufficiently large. For B = E/C with C > 1 sufficiently large
depending only on m, t , and `, the latter bound implies in view of Theorem 4.3 that

(g(n)0)n∈[T 1/t ]t fails to be δ(N )E -equidistributed. This contradicts our assumptions, and

completes the proof.

5. Proof of Theorem 1.4

The general strategy for proving results like Theorem 1.4 is to deduce them from the

special case in which the nilsequence involved is equidistributed. This strategy was

introduced in [5, § 2]. The transition from the equidistributed statement to the general

one is achieved through an application of the factorization theorem for nilsequences

[4, Theorem 1.19], or a consequence thereof. For technical reasons we require a
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factorization result of the form given in [12, Theorem 3], which is a slight generalization of

[10, Proposition 16.4] and arises by iterative application of [4, Theorem 1.19]. Combining

this factorization theorem with the major arc estimate given in Lemma 3.2, we will deduce

Theorem 1.4 from the following adaptation of [1, Proposition 6.4] to the square-free

version of R.

Proposition 5.1. Let N and T = T (N ) be positive integers such that N 1−ε
�ε T 6 N for

all ε > 0. Let ε ∈ {±}, and let W = W (N ). Let S be a finite set of primes, all bounded

by w(N ), and let A be an integer such that A (mod W ) ∈ A (R∗S, N ) and 0 6 εA < W .

Suppose that δ : Z→ (0, 1/2) satisfies δ−1(x) � (logw(x))C for some positive constant C.

Assume that (G/0, dX ) is an mG-dimensional nilmanifold with a filtration G• of degree

` adapted to a 1
δ(N ) -rational Mal’cev basis. Let g ∈ poly(Z,G•). Let S : N→ N be such

that S(x)�ε xε for all ε > 0. Finally, let E > 0, and suppose that for every w(N )-smooth

number q̃ 6 S(N ) the finite sequence (g(q̃m)0)0<m6T/q̃ is totally δ(N )E -equidistributed

in G/0.

Then the following holds. There exists a constant E0 > 1, only depending on mG , ` and

n := [K : Q], such that, for every Lipschitz function F : G/0→ [−1, 1] of mean value∫
G/0 F = 0, for every w(N )-smooth number q > 0 such that (Wq)n`

2
6 S(N ), and for

every 0 6 b < q, we have∣∣∣∣ 1
T

∑
0<εm6T

R∗S(W (qm+ b)+ A)F(g(|m|)0)
∣∣∣∣

�mG ,`,n δ(N )
E/E0(1+‖F‖Lip)

%(W, A)
W n−1

∏
p>w(N )

(
1−

%(p2, 0)
p2

)
as N →∞.

Proof of Theorem 1.4 assuming Proposition 5.1. We follow the strategy from [5, § 2]. To

prove Theorem 1.4 we may restrict attention to the case where Q 6 log log log N , as the

statement is trivially true otherwise. This allows us to apply [12, Theorem 3] with the

following parameters (distinguished by a tilde from already existing ones):

Ñ = N , T̃ = T/W (N ), k̃ = w(N ) = log log N , Q̃0 = log k̃, R̃ = W (N ),

and, finally, B̃ = E and Ẽ > 2n`2``+1. Observe that W (N )� (log N )C1 log log N . Hence,

R̃ satisfies the required condition that R̃(N )t �t N for all t > 0 as N →∞. By [12,

Theorem 3], we therefore obtain an integer Q′ such that

log log log N 6 Q′ � (log log log N )OmG ,`,E (1),

and a partition P of the set {1, . . . , T̃ } into� W O`,mG ,n,E (1) disjoint subprogressions, each

of some w(N )-common difference q(P)� W O`,mG ,n,E (1) and length T
Wq(P) + O(1). Along

each progression P = {a < n < b : n ≡ r (mod q)} from P, the polynomial sequence g
has a factorization

g(qm+ r) = εP (m)g′P (m)γP (m),

with the following properties.
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(1) εP : Z→ G is (Q′, T
Wq )-smooth1.

(2) g′P : Z→ G ′ takes values in G ′, and for each w(N )-smooth number q̃ < (qqγP W )Ẽ

the finite sequence (g′P (q̃m)0′)m6T/(Wqq̃) is totally Q′−E -equidistributed in G ′0/0.

(3) γP : Z→ G is a product γP (m) = γ1(m) . . . γt (m) of length at most mG of Q-rational

sequences γi . It gives rise to a periodic sequence (γP (m)0)m∈Z with w(N )-smooth

period qγP 6 Q′.

Any progression P ∈P as above can be split into qγP 6 Q′ subprogressions on which

γP is constant. Next, we split each of these subprogressions into pieces of diameter

between Q′−c∗E T/W and 2Q′−c∗E T/W for a small parameter c∗ ∈ (0, 1) which will be

determined later. Let P∗ denote the collection of the resulting bounded diameter pieces

of all progressions P ∈P, and note that each P ′ ∈P∗ is of the form

P ′ =
{

qqγm+ r ′ :
δ1T

Wqqγ
< m 6

δ2T
Wqqγ

}
, (5.1)

for a w(T )-smooth period q as before, for some 0 6 r ′ < qqγ , and for δ1, δ2 ∈ [0, 1] such

that Q′−c∗E 6 δ2− δ1 6 2Q′−c∗E and either δ1 = 0 or δ1 > Q′−c∗E . For each progression

P ′ ∈P∗, let sP ′ denote its smallest element. If F : G/0→ C is a Lipschitz function,

then the right invariance of the metric dX , defined in [4, Definition 2.2], implies for any

m,m′ that belong to the same element of P∗ that

|F(ε(m)g′(m)γ (m)0)− F(ε(m′)g′(m)γ (m)0)|

6 ‖F‖Lip dX (ε(m)g′(m)γ (m), ε(m′)g′(m)γ (m))

= ‖F‖Lip dX (ε(m), ε(m′))

6 ‖F‖Lip |m−m′|Q′W/T

� ‖F‖Lip Q′1−c∗E

if ε, γ , and g′ satisfy the respective conditions (1)–(3) above. This estimate allows one

to fix for any P ′ ∈P∗ the contribution of ε. To see this, suppose that P ′ arises from the

progression P ∈P, and define

µR∗ := κ
ε %(W, A)

W n−1

∏
p>w(N )

(
1−

%(p2, 0)
p2n

)
.

By combining the previous estimate with Lemmas 3.1 and 3.2, we deduce that∑
m∈P ′

(R∗S(W m+ A)−µR∗)F(g(m)0)

=

∑
m∈P ′

(R∗S(W m+ A)−µR∗)F(εP (sP ′)g′P (m)γP (m)0)

+ O
(
‖F‖Lip Q′1−c∗E(µR∗#P ′+W Ol,mG ,n,E (1)T 1− 1

20n
))
.

In view of Theorem 1.4, the error term above is still acceptable when summed over all

P ′ ∈P∗, which allows us to exclude it from further observation.

1The notion of smoothness was defined in [4, Definition 1.18]. A sequence (ε(n))n∈Z is said to be
(M, N )-smooth if both dX (ε(n), idG) 6 N and dX (ε(n), ε(n− 1)) 6 M/N hold for all 1 6 n 6 N .
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The remaining sequence m 7→ F(ε(sP ′)g′(m)γ (sP ′)0) can be reinterpreted as an

equidistributed nilsequence, as is shown in [5, Claim in § 2]. Indeed, setting

HP ′ := γP (sP ′)
−1G ′γP (sP ′),

(HP ′)• := γP (sP ′)
−1G ′•γP (sP ′),

3P ′ := 0 ∩ HP ′ ,

gP ′(m) := γP (sP ′)
−1g′P (m)γP (sP ′)

and

FP ′ : HP ′/3P ′ → [−1, 1], FP ′(x3P ′) := F(εP (sP ′)γP (sP ′)x0),
the Claim guarantees the existence of a Mal’cev basis for HP ′/3P ′ adapted to the

filtration (HP ′)• that is Q′O(1)-rational in terms of the basis X . This basis induces a

metric on HP ′/3P ′ with respect to which we have on the one hand that ‖FP ′‖Lip 6 Q′O(1)

and on the other hand that each of the sequences (gP ′(q̃m))m6T/(Wq(P)q̃) for w(N )-smooth

q̃ < (q(P)qγP W )2n`2``+1
is totally Q′−cE+O(1)-equidistributed for some c > 0 depending

only on mG and d.

We aim to apply Proposition 5.1 making use of the equidistribution properties of gP ′ .

To prepare this application, first note that Lemma 4.7 implies that every sequence

gP ′,r (m) := gP ′(qγP m+ r), (0 6 r < qγP ),

has the property that for every w(N )-smooth integer q̃ < (q(P)qγP W )2n`2
/qγP the

sequence (gP ′,r (q̃m))m6T/(Wq(P)qγP q̃) is totally Q′−c′E+O(1)-equidistributed for some c′ >

0 depending only on mG and d. Thus, we may set SP ′(N ) := (q(P)qγP W )n`
2

for any

P ′ ⊂ P ∈P. This quantity will play the role of S(N ) from Proposition 5.1. It will, in

particular, allow us to take q = q(P)qγP in the application below.

Next, we need to ensure that the mean value of the Lipschitz function Proposition 5.1

will be applied with vanishes. In this regard, note that Lemma 3.1 implies that∑
m∈P ′

(R∗S(W m+ A)−µR∗)� q(P)qγ W (T/W )1−
1

20n �ε T 1− 1
20n+ε.

This allows us to replace FP ′ by (FP ′ −
∫

HP ′/3P ′
FP ′), since∑

m∈P ′
(R∗S(W m+ A)−µR∗)F(εP (m P ′)g′P (m)γP (m)0)

=

∑
δ1T

Wqqγ
<m6

δ2T
Wqqγ

(R∗S(W (q(P)qγm+ r ′)+ A)−µR∗)

(
FP ′(gP ′,r (m)3P ′)−

∫
HP ′/3P ′

FP ′

)

+ Oε
(
T 1− 1

20n+ε
)
.

Here, we made use of the notation from (5.1). Note that the error term is negligible even

when summed over all P ′ ∈P∗, and it can be ignored.

We are now ready to apply Proposition 5.1 for each P ′ ∈P∗ to the sum on the left-hand

side above with δ(N ) = (log log log N )−1 and with δ(N )E replaced by Q′−c′E+O(1). Since

Proposition 5.1 cannot be applied to the short progression P ′ directly, we apply it once

with T replaced by δ2T/(Wqqγ ) and once with T replaced by δ1T/(Wqqγ ). Resulting
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from this double counting, we pick up a factor of O(Q′c
∗E ) along each progression P

from the original decomposition P. In total, we obtain∑
P∈P

∑
P ′∈P∗
P ′⊂P

∑
n∈P ′

(R∗S(W m+ A)−µR∗)

(
FP ′(g′(m)3P ′)−

∫
HP ′/3P ′

FP ′

)

�mG ,`,n

∑
P∈P

Q′c
∗E #P

 Q′−cE/E0+O(1)
(1+‖F‖Lip)

%(W, A)
W n−1

∏
p>w(T )

(
1−

%(p2, 0)
p2

)

�mG ,`,n
T
W

Q′c
∗E−cE/E0+O(1)

(1+‖F‖Lip)
%(W, A)

W n−1

∏
p>w(T )

(
1−

%(p2, 0)
p2

)
.

Choosing c∗ < c/(2E0) and recalling that Q′ > log log log N , this implies the result.

Proof of Proposition 5.1. We observe first of all that (2.1) implies that∏
p>w(N )

(
1−

%(p2, 0)
p2

)
� 1,

provided that N is sufficiently large, so that the last factor in the bound can be ignored.

Our aim is to deduce this proposition from the proof of [1, Proposition 6.4] by using

the decomposition R∗S(m) =
∑

d2|m,(d,W )=1 µ(d)R(m), valid for all m with m (mod W ) ∈

A (R∗S, N ), together with Lemmas 4.6, 4.8 and 4.9. Indeed, the decomposition yields

1
T

∑
0<εm6T

R∗S(W (qm+ b)+ A)F(g(|m|)0)

=

∑
d6N 1/2

gcd(d,W )=1

µ(d)
T

∑
0<εm6T

W (qm+b)+A≡0 (mod d2)

R(W (qm+ b)+ A)F(g(|m|)0)

=

∑
d6N 1/2

gcd(d,W )=1

µ(d)
T

∑
0<εm6B

m≡A+W b (mod Wq)
m≡0 (mod d2)

R(m)F
(

g
(

m− A−W b
εWq

)
0

)
, (5.2)

where B := Wq(T + b)+ A � WqT . For fixed d, the inner sum will be estimated using

the strategy from [1, Proposition 6.4]. Due to the additional restriction m ≡ 0 (mod d2)

that appears here, we need to work with subsequences of the nilsequence that mattered

in [1, Proposition 6.4]. The results from § 4 provide the necessary information on

equidistribution properties of the new sequences as d varies. Since all these results require

d to be sufficiently small, we begin by restricting the summation in d.

The estimate (3.7) allows us to remove large values of d from consideration. In

particular, it shows that the summation can be truncated at d 6 N 1/C0 for any fixed

C0 > 2 at the expense of an error term of order O(T−1(WqT )1−1/O(C0)). Since Wq �ε T ε,
this error is o(1). In order to obtain a direct sum over F , we aim to move the appearance of

the R-function in (5.2) from the argument of the summation to the summation condition.
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For this purpose, let

Y = {y ∈ (Z/WqZ)n : NK (y) ≡ A+W b (mod Wq)},

so that #Y = %(Wq, A+W b). Given y ∈ Y and d with gcd(d,W ) = 1, we further set

Xy,d = {x̃d ∈ (Z/d2Z)n : NK (Wq x̃d + y) ≡ 0 (mod d2)},

so that #Xy,d = %(d2, 0). Recall that

R(m) = 1m 6=0 · #{x ∈ Zn
∩D+ : NK (x) = m}.

Thus (5.2) becomes

∑
d6N 1/C0

gcd(d,W )=1

µ(d)
T ′′

∑
y∈Y

∑
x̃d∈Xy,d

∑
x∈Zn

Wq(d2x+x̃d )+y
∈B1/nX(1)

F
(

g
(

NK (Wq(d2x+ x̃d)+ y)− A−W b
εWq

)
0

)

+ o(1), (5.3)

where X(1) = {x ∈ D+ : 0 < ε NK (x) 6 1} is a compact set.

As in [1], we proceed with the analysis of the inner sum over x by fixing the first

n− 1 coordinates of x. Since X(1) is compact, we have X(1) ⊂ (−α, α)n for some positive

constant α = O(1), which allows us to restrict the ranges of the first n− 1 coordinates we

consider: letting π : Rn
→ Rn−1 denote the projection onto the coordinate plane {xn = 0},

it thus suffices to consider the set {x : π(x) = a}, where a runs over all points in

Zn−1
∩

(
B1/n(−α, α)n−1

−Wqπ(x̃d)− y
Wqd2

)
.

Assuming that T is sufficiently large, the latter set can, in fact, be replaced by

Zd = Zn−1
∩

B1/n

Wqd2 (−2α, 2α)n−1. (5.4)

Returning to (5.3), we consider the argument of g. Since the coefficient of Xn
n in

NK (X1, . . . , Xn) is non-zero, we obtain an integral polynomial of degree n and leading

coefficient εNK/Q(ωn)d2n(Wq)n−1 when fixing all but the nth variable in

NK (Wq(d2x+ x̃d)+ y)− A−W b
εWq

.

If π(x) = a, we let Pa;y;d(x) denote this polynomial.

Our next step is to show that most of the sequences g(Pa;y;d(x)0)|x |�B1/n/Wqd2 are

equidistributed. The assumptions on g and Lemma 4.6 imply that the sequence(
g
(

NK (Wqx+ y)− A−W b
εWq

)
0

)
x∈[B1/n/(Wq)]n
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is totally δ(N )E/C ′-equidistributed for some 1 6 C ′ �mG ,`,n 1, provided that E > C ′.
Applying Lemma 4.8 to this sequence, we thus deduce that there is 1 6 C ′′ �mG ,`,n 1
such that the sequence(

g
(

NK (Wq(d2x+ x̃d)+ y)− A−W b
εWq

)
0

)
x∈[B1/n/(Wqd2)]n

is totally δ(N )E/C ′′-equidistributed for all but o(δ(N )OmG ,`,n(E/C ′′)K ) integers d such that

d ∈ [K , 2K ) and gcd(d,W ) = 1, and for all integers K ∈ (1, N 1/C0), provided that E > C ′′.
Finally, for all unexceptional values of d, Lemma 4.9 implies that there is 1 6 C ′′′ �mG ,`,n
1 such that, provided that E > C ′′′, the sequence(

g
(
P(a1,...,an−1);y;d(x)

)
0
)

x6B1/n/(Wqd2)

is totally δ(N )E/C ′′′-equidistributed for all but o(δ(N )OmG ,`,n(E/C ′′′)( B1/n

Wqd2 )
n−1) integer

tuples (a1, . . . , an−1) with 1 6 a1, . . . , an−1 6 B1/n/(Wqd2).

Before we exploit these equidistribution properties, we aim to bound the contribution

of exceptional values of d and a. Using the fact that ‖F‖∞ � 1, the contribution of

exceptional values for d to the main term of (5.3) may trivially be bounded by

1
T

#Y

log N
C0 log 2∑
k=0

∑
d∼2k

gcd(d,W )=1
d exceptional

%(d2, 0)
∑

a∈Zd

B1/n

Wqd2

�
1
T
%(Wq, A+W b)

log N
C0 log 2∑
k=0

∑
d∼2k

gcd(d,W )=1
d exceptional

%(d2, 0)
T Wq

(Wqd2)n
.

In view of (3.9), the above is further bounded by

�
%(W, A)

W n−1

log N
C0 log 2∑
k=0

∑
d∼2k

gcd(d,W )=1
d exceptional

%(d2, 0)
d2

�
%(W, A)

W n−1

log N
C0 log 2∑
k=0

δ(N )OmG ,`,n(E/C ′′)(21− 1
2 )−k

�
%(W, A)

W n−1 δ(N )OmG ,`,n(E/C ′′),

where we employed (3.5) with ε = 1
2 .
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Recall the definition of Zd from (5.4). Then the contribution from exceptional values

of a may be bounded in a similar manner:

1
T

#Y
∑

d6N 1/C0
gcd(d,W )=1

%(d2, 0)
∑

a∈Zd
a exceptional

B1/n

Wqd2

�
1
T
%(Wq, A+W b)

∑
d6N 1/C0

gcd(d,W )=1

%(d2, 0)δ(N )OmG ,`,n(E/C ′′′) T qW
(Wqd2)n

� δ(N )OmG ,`,n(E/C ′′′) %(W, A)
W n−1

log N
C0 log 2∑
k=0

∑
d6N 1/C0

gcd(d,W )=1

%(d2, 0)
d2

� δ(N )OmG ,`,n(E/C ′′′) %(W, A)
W n−1 .

In the case of unexceptional values of d and a1, . . . , an−1, we can finally proceed

in exactly the same way as in the proof of [1, Proposition 6.4]. First of all, we recall from [1]

how the lines {x ∈ R : π(x) = (a1, . . . , an−1)} intersect the domain X(1) ⊂ (−α, α)n : let

a′ = (a′1, . . . , a′n−1), with |a′| < α, and consider the line `a′ : (−α, α)→ Rn given by

`a′(x) = (a′, x). For ε > 0, let ∂εX(1) ⊂ Rn denote the set of points at distance at most ε

to the boundary of the closure of X(1). We note that the set

{x ∈ (−α, α) : `a′(x) ∈ X(1) \ ∂0X(1)}

is the union of disjoint open intervals. By removing all intervals of length at most ε, we

obtain a collection of at most 2αε−1
� ε−1 open intervals I1(a′), . . . , Ik(a′)(a′) ∈ (−α, α)

such that any x ∈ (−α, α) satisfies the implication

`a′(x) ∈ X(1) \ ∂εX(1) H⇒ x ∈ I j (a′) for some j ∈ {1, . . . , k(a′)}.

We will choose a suitable value of ε at the end of the proof.

Observe that any interval (z0, z1) ⊂ (−α, α) can be expressed as a difference of intervals

in (−α, α) that have length at least 2α/3. Indeed, z0 and z1 partition (−α, α) into three

(possibly empty) intervals, at least one of which has length at least 2α/3. Thus, one of

the three representations

(z0, z1) = (−α, z1) \ (−α, z0] = (z0, α) \ [z1, α)

has the required property. For each a′ and j ∈ {1, . . . , k(a′)}, we let I j (a′) = J (1)j (a′) \
J (2)j (a′) be such a decomposition, where J (2)j (a′) is possibly empty.

Given any a ∈ Zn−1, we let a′ denote from now on the specific vector

a′ = B−1/n(Wqd2a+π(Wq x̃d + y)).
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With this notation, the main term of (5.3) equals

∑
d6N 1/C0

gcd(d,W )=1

µ(d)
T

∑
y∈Y

∑
x̃d∈Xy,d

∑
a∈Zn−1

|a′|<α

×

k(a)∑
j=1

∑
x∈Z

{
1B−1/n(Wq(d2x+x̃d )+y)∈J (1)j (a′)− 1B−1/n(Wq(d2x+x̃d )+y)∈J (2)j (a′)

}
F(g(Pa,y(x))0)

+ O
( ∑

d6N 1/C0
gcd(d,W )=1

µ(d)
T ′′

∑
y∈Y

∑
x̃d∈Xy,d

#{x ∈ Zn
: B−1/n(Wq(d2x+ x̃d)+ y) ∈ ∂εX(1)}

)
.

(5.5)

Here, the error term accounts for all points in the B1/nε-neighbourhood of the boundary

of B1/nX(1) that were excluded through the choice of intervals I j (a). Observe that we

made use of the fact that ‖F‖∞ 6 1. Since X(1) is (n− 1)-Lipschitz parameterizable, we

have vol(∂εX(1)) � ε. Together with applications of (3.9) and (3.5), this shows that the

error term is bounded by

1
T

∑
d:gcd(d,W )=1

#Y %(d2, 0)
εB

(Wqd2)n
� ε

B
T Wq

%(Wq, A+W b)
(Wq)n−1

∑
d

%(d2, 0)
d2n

� ε
%(W, A)

W n−1 .

Note that the set {
x ∈ Z :

Wq(d2x + x̃d,n)+ yn

B1/n ∈ J (1)j (a′)
}

is a discrete interval of length

#
{

x ∈ Z :
Wq(d2x + x̃d,n)+ yn

B1/n ∈ J (1)j (a′)
}
�

B1/n

Wqd2 .

Thus, the total δ(N )E/C ′′′-equidistribution property of (g(Pa;y;d(x))0)x6B1/n/(Wqd2)

implies that

∣∣∣∣ ∑
x∈Z:

B−1/n(Wq(d2x+x̃d,n)+yn)

∈J (1)j (a′)

F(g(Pa;y;d(x))0)
∣∣∣∣� δ(N )E/C ′′′ B1/n

Wqd2 ‖F‖Lip.

https://doi.org/10.1017/S1474748015000389 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000389


The square-free representation function of a norm form 135

The same holds for J (1)j (a′) replaced by any non-empty J (2)j (a′). Hence (5.5) is bounded

by

� T−1
∑

d6N 1/C0

#Y
%(d2, 0)

d2

(
B1/n

Wq

)n−1

ε−1 B1/n(Wq)−1δ(N )E/C ′′′
‖F‖Lip

+ (ε+ δ(N )OmG ,`,n(E/C ′′)
+ δ(N )OmG ,`,n(E/C ′′′))

%(W, A)
W n−1

� T−1#Y
B

(Wq)n
ε−1δ(N )E/C ′′′

‖F‖Lip

+ (ε+ δ(N )OmG ,`,n(E/C ′′)
+ δ(N )OmG ,`,n(E/C ′′′))

%(W, A)
W n−1

�
%(W, A)

W n−1

(
ε−1δ(N )E/C ′′′

‖F‖Lip+ ε+ δ(N )OmG ,`,n(E/C ′′)
+ δ(N )OmG ,`,n(E/C ′′′)

)
,

where we applied the bound (3.5), the fact that #Y = %(Wq, A+W b), and the lifting

property (3.9). Choosing ε = δ(N )E/2C ′′′ and E0 = C ′′′ completes the proof.
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