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Abstract

Empirical studies (e.g. Jiang et al. (2015) and Mislove et al. (2007)) show that online
social networks have not only in- and out-degree distributions with Pareto-like tails, but
also a high proportion of reciprocal edges. A classical directed preferential attachment
(PA) model generates in- and out-degree distributions with power-law tails, but the the-
oretical properties of the reciprocity feature in this model have not yet been studied. We
derive asymptotic results on the number of reciprocal edges between two fixed nodes, as
well as the proportion of reciprocal edges in the entire PA network. We see that with cer-
tain choices of parameters, the proportion of reciprocal edges in a directed PA network
is close to 0, which differs from the empirical observation. This points out one potential
problem of fitting a classical PA model to a given network dataset with high reciprocity,
and indicates that alternative models need to be considered.
Keywords: Reciprocity; preferential attachment; in- and out-degrees
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1. Introduction

In social network analysis, reciprocal edges characterize communication between two users.
For instance, on Facebook, one user leaves messages on another user’s wall page, and a
response from the target user then creates a reciprocal edge. Reciprocity, which is classically
defined as the proportion of reciprocal edges (cf. [12, 21]), is one important network metric to
measure interactions among individual users. The directed network constructed from Facebook
wall posts [17] is one example of social networks with a large proportion of reciprocal edges.
The study on eight different types of networks in [7] shows that online social networks (e.g.
[3, 6, 9, 10, 17]) tend to have a higher proportion of reciprocal edges, compared to other types
of networks such as biological networks, communication networks, software call graphs, and
P2P networks.

Another widely observed feature of directed social networks is the scale-free property,
where both in- and out-degree distributions have Pareto-like tails. The directed preferential
attachment (PA) network model is appealing (cf. [2, 8]), since theoretically the directed PA
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mechanism generates a network with the scale-free property because nodes with large degrees
are likely to attract more edges than those with small degrees (cf. [14, 15, 18, 20]). However,
the asymptotic behavior of the proportion of reciprocal edges in a directed PA model has not
yet been explored in the literature. In this paper, we derive asymptotic results about (1) the
number of reciprocal edges between two fixed nodes; (2) the proportion of reciprocal edges in
a directed PA network, provided that the network has a large number of edges; and (3) the first
time a reciprocal edge appears between two distinct fixed nodes.

Our theoretical results suggest that for certain choices of model parameters, especially when
the proportion of edges added between two existing nodes is small, the proportion of reciprocal
edges in the entire graph is close to 0, even though the total number of reciprocal edges between
two fixed nodes may be of order O(na), a ∈ (0, 1). Such behavior flags potential problems for
fitting a directed PA model in practice. When fitting a directed PA model to a real network
with high reciprocity using existing methods developed in [18, 19], there is no guarantee that
the calibrated model will also have a high proportion of reciprocal edges. Such a discrepancy
indicates a poor fit of the PA model, since the fitted model fails to capture the important feature
of high reciprocity. In these cases, variants of the directed PA model need to be considered.
For instance, [4] provides several different ways to predict the reciprocal edges between two
given nodes, and one may incorporate those features to construct a refined network model that
is both scale-free and of high reciprocity.

The rest of the paper is organized as follows. Section 1.1 provides the notation and defi-
nitions necessary to specify a growing sequence of graphs that evolve according to PA. The
definitions use model parameters that control the growth of power law sequences. In Section 2,
we give the power law growth of the in- and out-degree sequences. This leads to the main
results of the paper, in Section 3:

1. For fixed nodes i, j, the number of reciprocal edges between i and j evolves as a power
law.

2. For specified subsets of the parameters, the proportion of reciprocal edges in the graph
goes to 0, showing that many real data sets with significant reciprocity do not follow
this model.

3. For fixed nodes i, j we provide information about the first time a reciprocal pair of edges
forms between i and j.

Section 4 contains a short discussion of theoretical results and future research directions,
and the appendix gives some lemmas and proofs.

1.1. Model setup

Here is the specification of the classical directed PA model. Initialize the model with the
graph G(0), which consists of one node, labeled node 1, and a self-loop. After n steps in
the construction, G(n) = (V(n), E(n)) is the graph with node set V(n) with V(0) = {1} and
|V(0)| = 1 and set of directed edges E(n) such that an ordered pair (i, j) ∈ E(n), i, j ∈ V(n),
represents a directed edge i �→ j. When n = 0, we have E(0) = {(1, 1)}. For later use, self-loops
are not counted for reciprocity.

Let
(
Din

v (n), Dout
v (n)

)
be the in- and out-degrees of node v ∈ V(n) with the convention that if

v /∈ V(n), Din
v (n) = 0 = Dout

v (n). From G(n) to G(n + 1), one of three scenarios happens:
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1. With probability α, we add a new edge (v, w), where w ∈ V(n), and v /∈ V(n) is a new
node. The existing node w is chosen with probability

Din
w (n) + δin∑

w∈V(n)

(
Din

w (n) + δin
) = Din

w (n) + δin

n + 1 + δin|V(n)| .

2. With probability β, a new edge (v, w) is added between two existing nodes v, w ∈ V(n),
where the starting node v and the ending node w are chosen independently with
probability

Din
w (n) + δin∑

w∈V(n)

(
Din

w (n) + δin
) Dout

v (n) + δout∑
v∈V(n)

(
Dout

v (n) + δout
)

= Din
w (n) + δin

n + 1 + δin|V(n)|
Dout

v (n) + δout

n + 1 + δout|V(n)| .

For brevity of notation, we set

Awv(n) := Din
w (n) + δin

n + 1 + δin|V(n)|
Dout

v (n) + δout

n + 1 + δout|V(n)| ; (1.1)

then the attachment probability in the β-scheme is βAwv(n).

3. With probability γ , we add a new edge (w, v), where w ∈ V(n), and v /∈ V(n) is a new
node. The existing node w is chosen with probability

Dout
w (n) + δout∑

w∈V(n)

(
Dout

w (n) + δout
) = Dout

w (n) + δout

n + 1 + δout|V(n)| .

We assume α + β + γ = 1, β ∈ [0, 1), and δin, δout > 0. Owing to the α- and γ -schemes,
|V(n)| − 1 follows a binomial distribution with size n and success probability α + γ = 1 − β,
so that |V(n)| a.s.−→ ∞ as n → ∞. For v ≥ 1, we define Sv to be the time when node v is
created, i.e.

Sv := inf
{
n ≥ 0 : |V(n)| = v

}
. (1.2)

Since we use the convention that Din
v (n) = 0 and Dout

v (n) = 0 if Sv > n, we have by (1.1) that
Avw(n) ∈ [0, 1] for all n.
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Let Fn be the σ -field generated by observing the network up to the creation of the nth new
edge. Suppose τ is a stopping time with respect to the filtration

(Fn
)

n≥0; then

Fτ = {F : F ∩ {τ = n} ∈Fn}.
By (1.2), we see that Sv is a stopping time with respect to

(Fn
)

n≥0. For n ≥ k ≥ 0, we have

{Sv + k = n} = {Sv = n − k} ∈Fn−k ⊂Fn,

so Sv + k, k ≥ 0, is a stopping time with respect to
(Fn
)

n≥0. Note that for v > n − k, {Sv =
n − k} = ∅ ∈Fn−k ⊂Fn. In what follows, we write E

Fn ( · ) := E
(·|Fn

)
.

2. Growth of the degree sequences Din
v (n), Dout

v (n)

The parameters controlling the behavior of the model are α, β, γ, δin, δout, and we now
define two new parameters which will serve as power-law exponents:

c1 = α + β

1 + δin(1 − β)
, c2 = β + γ

1 + δout(1 − β)
. (2.1)

From (2.1), 0 < c1 < α + β, 0 < c2 < β + γ , and 0 < c1 + c2 < 1 + β. In fact, we can
reparametrize the PA model using (α, β, γ, c1, c2), which leads to an estimation method for
model parameters alternative to unavailable maximum likelihood techniques; see [19] for
details.

The following proposition summarizes the power-law growth of
(
Din

v (n), Dout
v (n)

)
, which

is controlled by the parameters c1, c2. From these growth rates, we will derive the limiting
behavior of the number of reciprocal edges between two fixed nodes in Section 3.1.

Proposition 2.1. For v ≥ 1, there are random variables ξ in
v , ξout

v satisfying P
(
ξ in

v ∈ (0, ∞)
)=

1 = P
(
ξout

v ∈ (0, ∞)
)
, such that

Din
v (n)

nc1

a.s.−→ ξ in
v ,

Dout
v (n)

nc2

a.s.−→ ξout
v .

The proof of Proposition 2.1 is given in Appendix A.3, after the statement and proof of two
lemmas.

3. Reciprocity in the preferential attachment network

In this section, we focus on the asymptotic behavior of the number of reciprocal edges
between two fixed, distinct nodes i and j as well as that of the proportion of reciprocal edges in
the entire graph. We also consider the first time a reciprocal edge forms between two distinct
nodes.

To assess goodness of fit of the directed PA model to a particular dataset, it is useful to
evaluate statistics to see whether the empirical values match those from the fitted model. The
statistic we focus on here is reciprocity. If there is a significant discrepancy between the reci-
procity measure for the fitted theoretical PA model and that of the actual network data, then
we conclude that variants of the classical PA model should be considered.

Given a directed graph G = (V, E), let L(i,j) = L(i,j)(G) be the number of directed edges
(i, j) in the graph G, for i �= j. Then define the reciprocity coefficient, R = R(G), as

R = 2

|E|
∑

i,j∈V:i<j

min
{
L(i,j), L( j,i)

}
. (3.1)
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FIGURE 1. A graphical illustration of reciprocal edges with edge set E = {(1, 2), (1, 2), (1, 2),
(2, 1), (2, 1), (2, 3)} and V = {1, 2, 3}. If a pair of reciprocal edges are observed, we label them with
the same color. Here we have R6 = 4/6 = 0.667.

Note that a node pair can be counted more than once but self-loops are never counted. For
example, consider the graph given in Figure 1, where there are |E| = 6 edges and node set
V = {1, 2, 3}. We distinguish multiple edges between two nodes by different colors, and if a
pair of reciprocal edges are observed, we label the pair with the same color. The graph in
Figure 1 contains a pair of blue edges and a pair of red edges, thus giving R6 = 4/6 = 0.667.
In R, we can easily compute the reciprocity coefficient by applying the dyad_census()
function in the igraph package to the graph object, and its mut value outputs the total number
of unordered node pairs {i, j} with reciprocal connections (i, j) and (j, i), allowing multiplicity.

Consider a sequence of graphs
{
G(n) = (V(n), E(n)

)
, n ≥ 1

}
constructed following the PA

rule with parameters
(
α, β, γ, δin, δout

)
as outlined in Section 1.1. For two nodes i �= j ∈ V(n),

write L(i,j)(n) = L(i,j)(G(n)), and write the reciprocity coefficient for the PA network G(n) as
Rpa

n := R(G(n)). We emphasize that the definition in (3.1) excludes self-loops when counting
reciprocal edges. In Sections 3.1 and 3.2, we study the asymptotic behavior of L(i,j)(n) for fixed
i �= j, and Rpa

n in a PA network G(n), respectively.

3.1. Reciprocal edges between two fixed nodes

In a directed PA network, the total number of reciprocal edges between two fixed nodes i, j
is equal to

Li↔j(n) := 2 min
{
L(i,j)(n), L( j,i)(n)

}
.

We first study the limiting behavior of the number of edges between two fixed nodes i �= j,
L(i,j)(n), when n is large. The asymptotics of Li↔j(n) then follow from a continuous mapping
argument, and this leads in Section 3.2 to a study of the asymptotic behavior of RPA

n . The
asymptotic behavior of L(i,j)(n) also assists in the study, in Section 3.3, of the behavior of the
first time a reciprocal pair is formed between i and j.

3.1.1. Convergence of L(i,j)(n). Theorem 3.1 gives the main asymptotic results, but we start by
presenting a lemma on Aij(n) which is useful for the proof of Theorem 3.1.

Lemma 3.1. Recall the definition of Aij(n) in (1.1) and the notation in Proposition 2.1. For
fixed 1 ≤ i < j,

Aij(n)

nc1+c2−2
−→ 1(

1 + δin(1 − β)
)(

1 + δout(1 − β)
)ξ in

j ξout
i , almost surely (a.s.) and in L1.

(3.2)
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This further gives the following:

1. When c1 + c2 > 1, there exist constants Cij > 0 such that

c1 + c2 − 1

nc1+c2−1

Sj+n∑
k=Sj

Aij(k) −→ Cijξ
in
j ξout

i , a.s. and in L1. (3.3)

2. When c1 + c2 = 1, there exist constants C′
ij > 0 such that

1

log n

Sj+n∑
k=Sj

Aij(k) −→ C′
ijξ

in
j ξout

i , a.s. and in L1. (3.4)

3. When c1 + c2 < 1, there exist constants C′′
ij > 0 such that

1

nc1+c2−1

∞∑
k=n

Aij(k) −→ C′′
ijξ

in
j ξout

i , a.s. and in L1, (3.5)

which further implies
∑

k≥1 E(Aij(k)) < ∞ and
∑

k≥1 Aij(k) < ∞ a.s.

In addition, we have similar convergence results for Aji(n) by replacing Aij(n), ξ in
j , and ξout

i

with Aji(n), ξ in
i , and ξout

j , respectively.

Proof. By Lemma 2.1 as well as the fact that |V(n)|/n
a.s.−→ 1 − β, we have

Aij(n)

nc1+c2−2
=
(
Dout

i (n) + δout
)(

Din
j (n) + δin

)
nc1+c2

n2(
n + 1 + δin|V(n)|)(n + 1 + δout|V(n)|)

a.s.−→ 1(
1 + δin(1 − β)

)(
1 + δout(1 − β)

)ξ in
j ξout

i .

Note that once we show

sup
n≥1

E

[(
Aij(n)

nc1+c2−2

)2
]

< ∞, (3.6)

we have by [5, Theorem 4.6.2] that
{
Aij(n)/nc1+c2−2 : n ≥ 1

}
is uniformly integrable, which

gives the L1-convergence in (3.2).
To prove (3.6), we now use the Cauchy–Schwarz inequality to obtain

E

[(
Aij(n)

nc1+c2−2

)2
]

≤E

⎡⎣(Dout
i (n) + δout

)2(
Din

j (n) + δin
)2

n2
(

c1+c2

)
⎤⎦

≤ 1

n2
(

c1+c2

) (E [(Dout
i (n) + δout

)4]
E

[(
Din

i (n) + δin
)4])1/2

.
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Then by Lemma A.2 we have

sup
n≥1

E

[(
Aij(n)

nc1+c2−2

)2
]

≤ sup
n≥1

√
E

[(
Dout

i (n) + δout
)4]

n2c2
× sup

n≥1

√
E

[(
Din

j (n) + δin
)4]

n2c1
< ∞.

With (3.2) established, the results in (3.3)–(3.5) follow directly from Karamata’s theorem (cf.
[13, Theorem 2.1]).

The results for Aji(n) follow from similar reasoning. �
We now give the asymptotic behavior of L(i,j)(n) in a directed PA model.

Theorem 3.1. Consider two fixed nodes 1 ≤ i < j. We have the following:

(i) If c1 + c2 > 1, then there exists some random variable ξij, satisfying P
(
ξij ∈ (0, ∞)

)= 1,
such that as n → ∞,

L(i,j)(n)

nc1+c2−1
a.s.−→ ξij. (3.7)

So for large n, the number of (i, j) edges is of order nc1+c2−1.

(ii) If c1 + c2 = 1, then there exists some random variable ζij, satisfying P
(
ζij ∈ (0, ∞)

)= 1,
such that

L(i,j)(n)

log n
a.s.−→ ζij. (3.8)

So for large n, the number of (i, j) edges is of order log n.

(iii) If c1 + c2 < 1, then for any i < j, there is a last time for an (i, j) edge to form.
Furthermore, as n → ∞,

L(i,j)(n) ↑ L(i,j)(∞) < ∞, a.s., (3.9)

and L(i,j)(n) − L(i,j)(∞) = 0 a.s. for n large.

In addition, we obtain similar convergence results for L( j,i)(n) by replacing L(i,j)(n), L(i,j)(∞),
ξij, and ζij with L( j,i)(n), L( j,i)(∞), ξji, and ζji, respectively.

Proof. Set

k(i, j) = 1{

E(k)=E(k−1)∪{(i,j)}
};

i.e. 
k(i, j) = 1 if a directed edge (i, j) is created from G(k − 1) to G(k). For 1 ≤ i < j, notice
that

L(i,j)
(
Sj + n

)= Sj+n∑
k=1


k(i, j) =
n∑

k=0


Sj+k(i, j). (3.10)

For n ≥ 0,

E
FSj+n

(

Sj+n+1(i, j)

)= βAji
(
Sj + n

)
, (3.11)

and

E
FSj−1

(

Sj(i, j)

)= γ
Dout

i

(
Sj − 1

)+ δout

Sj + δout( j − 1)
. (3.12)
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When c1 + c2 ≥ 1, (3.3) and (3.4) suggest that
∑∞

k=0 Aji
(
Sj + k

)= ∞ a.s.; then we apply
[5, Theorem 4.5.5] to get

L(i,j)
(
Sj + n

)
γ

Dout
i

(
Sj−1
)
+δout

Sj+δout( j−1) +∑n−1
k=0 βAji

(
Sj + k

) a.s.−→ 1. (3.13)

Also, by a similar argument as in (3.3), we have that when c1 + c2 > 1, there exists some
constant C̃ij > 0 such that

1

nc1+c2−1

n−1∑
k=0

βAji
(
Sj + k

) a.s.−→ βC̃ijξ
out
i ξ in

j . (3.14)

Then combining (3.13) with (3.14) gives

L(i,j)
(
Sj + n

)
nc1+c2−1

a.s.−→ βC̃jξ
out
i ξ in

j . (3.15)

Analogous reasoning is also applicable to the case c1 + c2 = 1, where the scaling function
nc1+c2−1 is replaced with log n, according to (3.4).

Next, consider the case c1 + c2 < 1. By the corollary in [11, Chapter IV.6, p. 151], we
have a.s. {∑

k≥Sj


k+1(i, j) < ∞
}

=
{∑

k≥Sj

E
Fk
(

k+1(i, j)

)
< ∞

}

=
{∑

k≥Sj

βAji(k) < ∞
}

.

Using a similar argument as in Lemma 3.1(3), we have
∑

k≥Sj
Aji(k) < ∞ a.s., thus giving a.s.∑

k≥Sj


k+1(i, j) < ∞.

Hence, with probability 1, there is a finite number of (i, j) edges that can be formed, and there
exists a last time for an (i, j) edge to form. �

Note that by the definition of Li↔j(n), applying continuous mapping gives the asymptotic
results for Li↔j(n), which also depends on the value of c1 + c2:

(1) If c1 + c2 > 1, then there exists some random variable ξ ij, satisfying P
(
ξ ij ∈ (0, ∞)

)=
1, such that as n → ∞,

Li↔j(n)

nc1+c2−1
a.s.−→ ξ ij.

So for large n, the number of reciprocal edges between i and j is of order nc1+c2−1.

(2) If c1 + c2 = 1, then there exists some random variable ζ ij, satisfying P
(
ζ ij ∈ (0, ∞)

)=
1, such that

Li↔j(n)

log n
a.s.−→ ζ ij.

So for large n, the number of reciprocal edges between i and j is of order log n.
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(3) If c1 + c2 < 1, then a.s.

Li↔j(n) ↑ Li↔j(∞) < ∞.

Now consider a special case with γ = 0 and δin = δout = δ > 0; then

c1 + c2 < 1 ⇔ α >
1

1 + δ
.

From Theorem 3.1, we see that when the probability of generating a new node in a PA net-
work at each step is too high, the node set grows strongly and it is difficult to form reciprocal
edges. Then the number of reciprocal edges between two nodes is finite a.s. If β = 0, then for
δin, δout > 0, we always have c1 + c2 < 1, indicating that the number of edges between two
fixed nodes is finite a.s. when no edge is added between two existing nodes.

3.2. Reciprocity in the entire graph

Here we consider the proportion of reciprocal edges in the entire PA network, Rpa
n , and the

next theorem specifies the asymptotic behavior of Rn for 0 < c1 + c2 < 5/3.

Theorem 3.2. Suppose Rpa
n is as defined in (3.1). Then for 0 < c1 + c2 < 5/3, we have

Rpa
n

p−→ 0, n → ∞.

When c1 + c2 < 5/3, the reciprocity coefficient Rpa
n is likely to be small, provided that the

number of edges in the PA network is large. In particular, when c1 + c2 ≤ 1, i.e. in the second

and third cases in Theorem 3.1, we have Rpa
n

p−→ 0.

Proof. It suffices to show that E
(
Rpa

n
)→ 0 for 0 < c1 + c2 < 5/3, as n → ∞. Recall that


k(i, j) = 1{
E(k)=E(k−1)∪{(i,j)}

},
so that 
k(i, j)1{( j,i)∈E(k−1)} indicates the event that from G(k − 1) to G(k), an edge (i, j) is
created when (j, i) already exists in G(k − 1). By the definition of Rpa

n , we have

Rpa
n ≤ 2

n + 1

n∑
j=1

∑
i<j

n∑
k=Sj


k(i, j)1{( j,i)∈E(k−1)}

+ 2

n + 1

n∑
j=1

∑
i<j

n∑
k=Sj


k(i, j)1{(i,j)∈E(k−1)}

= 2

n + 1

n∑
j=1

∑
i<j

n∑
k=Sj+1


k(i, j)1{( j,i)∈E(k−1)}

+ 2

n + 1

n∑
j=1

∑
i<j

n∑
k=Sj+1


k(i, j)1{(i,j)∈E(k−1)}

=: Q1(n) + Q2(n).
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For Q1(n), we have

E(Q1(n)) = 2

n + 1

n∑
j=1

∑
i<j

E

⎛⎝ n∑
k=Sj+1


k(i, j)1{( j,i)∈E(k−1)}

⎞⎠
= 2

n + 1

n∑
j=1

∑
i<j

E

⎛⎝ n∑
k=Sj+1

E
Fk−1 (
k(i, j)) 1{( j,i)∈E(k−1)}

⎞⎠
= 2

n + 1

n∑
j=1

∑
i<j

E

⎛⎝ n∑
k=Sj+1

βAji(k − 1)1{( j,i)∈E(k−1)}

⎞⎠ . (3.16)

Since Sj ≥ j − 1 for j ≥ 2, (3.16) implies

E(Q1(n)) ≤ 2

n + 1

n∑
j=2

j−1∑
i=1

n∑
k=j

E

(
Aji(k − 1)1{

( j,i)∈E(k−1),k≥Sj+1
}) . (3.17)

By the Cauchy–Schwarz inequality, we have

E

(
Aji(k − 1)1{

( j,i)∈E(k−1),k≥Sj+1
})

≤
[
E

(
A2

ji(k − 1)
)]1/2 [

P
(
( j, i) ∈ E(k − 1), k ≥ Sj + 1

)]1/2

≤
[
E

(
A2

ji(k − 1)
)]1/2

⎡⎣k−1∑
l=j

P
(
E(l) = E(l − 1) ∪ {( j, i)}, l ≥ Sj + 1

)⎤⎦1/2

≤
[
E

(
A2

ji(k − 1)
)]1/2

⎡⎣k−1∑
l=j

E
(
Aij(l)

)+ αE

(
Din

i

(
Sj − 1

)+ δin

Sj + δin( j − 1)

)⎤⎦1/2

. (3.18)

When c1 + c2 > 1, Lemma A.2 and (A.11) together imply that there exist constants M1, M2,
M3 > 0 such that for i < j ≤ k ≤ n,

E

(
A2

ji(k − 1)
)

≤ M1
k2
(

c1+c2−2
)

i2c2 j2c1
, E

(
Din

i

(
Sj − 1

)+ δin

Sj + δin( j − 1)

)
≤ M3

jc1−1

ic1
,

and that for j ≤ l ≤ k − 1,

E
(
Aij(l)

)≤ M2
lc1+c2−2

ic1 jc2
.

Therefore, when c1 + c2 > 1, we have

E

(
Aji(k − 1)1{

( j,i)∈E(k−1),k≥Sj+1
})

≤√M1
kc1+c2−2

ic2 jc1

(
M2

c1 + c2 − 1

kc1+c2−1

ic1 jc2
+ αM3jc1−1/ic1

)1/2

,
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and since kc1+c2−1/
(
ic1 jc2

)≥ jc1−1/ic1 for k ≥ j, there exists some constant M > 0 such that

E

(
Aji(k − 1)1{

( j,i)∈E(k−1),k≥Sj+1
})≤ M

k
3
2 (c1+c2)− 5

2

ic1/2+c2 jc1+c2/2
. (3.19)

Then (3.17) leads to

E(Q1(n)) ≤ 2M

n + 1

n∑
j=2

j−1∑
i=1

n∑
k=j

k
3
2 (c1+c2)− 5

2

ic1/2+c2 jc1+c2/2

≤ 2M

3/2(c1 + c2 − 1)
n

3
2 (c1+c2)− 5

2

n∑
j=2

j−1∑
i=1

i−(c1/2+c2)j−(c1+c2/2).

If c1/2 + c2 > 1, c1 + c2/2 > 1, and c1 + c2 < 5/3, then

E(Q1(n)) ≤ 2M

3/2(c1 + c2 − 1)
n

3
2 (c1+c2)− 5

2

∞∑
i=1

i−(c1/2+c2)
∞∑

j=2

j−(c1+c2/2) → 0.

If c1/2 + c2 < 1, c1 + c2/2 < 1, then

E(Q1(n)) ≤ 2M

3/2(c1 + c2 − 1)
n

3
2 (c1+c2)− 5

2
n2−3/2(c1+c2)

(1 − c1/2 − c2)(1 − c1 − c2/2)

= 2Mn−1/2

3/2(c1 + c2 − 1)(1 − c1/2 − c2)(1 − c1 − c2/2)
→ 0.

If c1/2 + c2 < 1, c1 + c2/2 > 1, and c1 + c2 < 5/3, then

E(Q1(n)) ≤ 2M

3/2(c1 + c2 − 1)
n

3
2 (c1+c2)− 5

2
1

1 − (c1/2 + c2)

n∑
j=2

j1−(c1/2+c2)j−1

≤ 2Mnc1+c2/2−3/2

3/2(c1 + c2 − 1)(1 − (c1/2 + c2))2
→ 0,

as c1 + c2/2 < 1 + 1/2 = 3/2. Similarly, E(Q1(n)) → 0, when c1/2 + c2 > 1, c1 + c2/2 < 1,
and c1 + c2 < 5/3. The proof machinery also applies to the case where either c1/2 + c2 = 1
or c1 + c2/2 = 1, and c1 + c2 < 5/3, which gives the conclusion that for 1 < c1 + c2 < 5/3,
E(Q1(n)) → 0. Following the same reasoning, we have E(Q2(n)) → 0, for 1 < c1 + c2 < 5/3,

thus implying Rpa
n

p−→ 0 for 1 < c1 + c2 < 5/3.
When c1 + c2 = 1, we revise the bound in (3.19) to get the following: for some constant

M̃ > 0,

E

(
Aji(k − 1)1{

( j,i)∈E(k−1), k≥Sj+1
})≤ M̃

k−1( log k)1/2

ic1/2+c2 jc1+c2/2
.

Then we have

E(Q1(n)) ≤ 2M̃

n
( log n)3/2

n∑
j=2

j−1∑
i=1

i−(c1/2+c2)j−(c1+c2/2) ≤ 4M̃
( log n)3/2

n1/2
→ 0.
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Meanwhile, for some constant M̃′ > 0, we have

E(Q2(n)) ≤ 2M̃′

n
( log n)3/2

n∑
j=2

j−1∑
i=1

i−(c2/2+c1)j−(c2+c1/2) ≤ 4M̃′ ( log n)3/2

n1/2
→ 0.

Hence, we have Rpa
n

p−→ 0 when c1 + c2 = 1.
When c1 + c2 < 1, the bound in (3.18) implies that there exists some constant M̄ > 0 such

that

E

(
Aji(k − 1)1{

( j,i)∈E(k−1),k≥Sj+1
})≤ M̄

kc1+c2−2

ic2 jc1

(
jc1+c2−1

ic1 jc2

)1/2

= M̄
kc1+c2−2

ic1/2+c2 jc1/2+1/2
, (3.20)

which gives

E(Q1(n)) ≤ 4M̄

(1 − c1 − c2)(1 − c1/2 − c2)
n−1/2 → 0.

Similar reasoning also gives E(Q2(n)) → 0 when c1 + c2 < 1, thus giving E
(
Rpa

n
)→ 0 and

completing the proof of the theorem. �
Remark 3.1. (i) From the definition of c1 and c2 in (2.1), if β ≤ 2/3, then c1 + c2 < 1 + β ≤
5/3. Theorem 3.2 suggests that if the proportion of edges added between two existing nodes
is less than 2/3 and n is sufficiently large, the corresponding PA network will have Rpa

n close
to 0.

(ii) Note also that

1{
Ni↔j

0 ≤n
} ≤

n∑
k=1


k(i, j)1{( j,i)∈E(k−1)} +
n∑

k=1


k( j, i)1{(i,j)∈E(k−1)}.

Hence, when c1 + 2c2 < 1, applying the bound in (3.20) gives the following: for fixed i, there
exists some constant M̃ > 0 such that

lim
n→∞ E

⎛⎝ ∑
j∈V(n)

1{
Ni↔j

0 ≤n
}⎞⎠≤ M̃i−(c1/2+c2)

∞∑
j=1

jc1/2+c2−3/2 < ∞.

This indicates that when c1 + 2c2 < 1, a fixed node i can form a reciprocal pair of edges only
with finitely many nodes.

3.2.1. Simulation for c1 + c2 ≥ 5/3. Theorem 3.2 does not explain the asymptotic behavior of
Rpa

n for c1 + c2 ∈ [5/3, 1 + β), provided that β ∈ (2/3, 1). For comparison, we choose three
sets of parameters,

θ1 = (α, β, γ, δin, δout) = (0.1, 0.8, 0.1, 2, 1),

θ2 = (0.1, 0.8, 0.1, .4, .4), and θ3 = (0.05, 0.9, 0.05, 1, 1),
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0.1

0.2

0.05

R
n

0.3

0.0

0.066

0.212

2

1

3

θi

FIGURE 2. Box plots of Rpa
n for directed PA models simulated using θ i, i = 1, 2, 3. The red dots represent

the averaged empirical Rpa
n for each θ i, i = 1, 2, 3.

such that the values of c1 + c2 are equal to 1.393 < 5/3, 1.667 = 5/3, and 1.727 > 5/3, respec-
tively. For each θ i, i = 1, 2, 3, we simulate 1000 replications of the directed PA network with
105 edges, and compute the value of Rpa

n for each replication.
The numerical results are summarized as box plots in Figure 2. For each box plot, we use a

dark red dot to mark the corresponding averaged empirical Rpa
n . Under θ1, all 1000 empirical

Rpa
n values are close to 0, with a maximum of 0.090 and a minimum of 0.021. The empirical Rpa

n

values under θ2 and θ3 are more variable, but both have higher mean than in the θ1 case. This
simulation experiment confirms that the asymptotic behavior of Rpa

n in a directed PA model
depends on the value of c1 + c2. Meanwhile, when c1 + c2 ≥ 5/3, the value of Rpa

n may not
necessarily concentrate around a specific value, but may vary over a certain range.

3.3. The first time when a reciprocal pair forms

Theorem 3.1 gives results about the first time when a reciprocal pair forms between nodes
i �= j. The c1 + c2 ≥ 1 scenario is discussed in Corollary 3.1, while the c1 + c2 < 1 case is
analyzed in Proposition 3.1.

Corollary 3.1. Let Ni↔j
0 be the first time when a reciprocal pair of edges i ↔ j is formed

between nodes i �= j; i.e.

Ni↔j
0 := inf

{
n ≥ 0 : (i, j) ∈ E(n), and ( j, i) ∈ E(n)

}
, (3.21)

with the convention that inf ∅ = ∞. If 1 ≤ i < j are fixed, and c1, c2 are as given in (2.1) and
satisfy c1 + c2 ≥ 1, then Ni↔j

0 < ∞ a.s.
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Proof. We will show that for c1 + c2 ≥ 1, limn→∞ P

(
Ni↔j

0 >Sj + n
)

= P

(
Ni↔j

0 = ∞
)

= 0.

Note that when c1 + c2 ≥ 1, (3.15) indicates that L(i,j)
(
Sj + n

) a.s.−→ ∞, and similarly,

L( j,i)
(
Sj + n

) a.s.−→ ∞. Therefore,

P

(
Ni↔j

0 > Sj + n
)

≤ P
(
(i, j) /∈ E

(
Sj + n

))+ P
(
( j, i) /∈ E

(
Sj + n

))
= P
(
L(i,j)

(
Sj + n

)= 0
)+ P

(
L( j,i)

(
Sj + n

)= 0
)→ 0,

as n → ∞. �
When c1 + c2 < 1, if we have E

(
L(i,j)(∞)

)
< 1, then

P
(
L(i,j)(∞) < 1

)
> 0,

which implies P
(
L(i,j)(∞) = 0

)
> 0, and P

(
Ni↔j

0 = ∞
)

> 0. Note that

E
(
L(i,j)(∞)

)= γE

(
Dout

i

(
Sj − 1

)+ δout

Sj + δout( j − 1)

)
+ β

∞∑
k=0

E
(
Aji
(
Sj + k

))
,

and by (A.11), there exist some constants K1, K2 > 0 such that for n ≥ i ≥ 1,

E

((
Din

i (n)
)2)≤ K1(n/i)2c1, E

((
Dout

i (n)
)2)≤ K2(n/i)2c2 .

Then applying the Cauchy–Schwarz inequality gives that for n ≥ j > i ≥ 1,

E
(
Aji(n)

)≤
⎡⎣E
⎛⎝( Din

i (n) + δin

n + 1 + δin|V(n)|

)2
⎞⎠⎤⎦1/2 ⎡⎣E

⎛⎝( Dout
j (n) + δout

n + 1 + δout|V(n)|

)2
⎞⎠⎤⎦1/2

≤ 1

n2

[
E

((
Din

i (n) + δin

)2
)
E

((
Dout

j (n) + δout

)2
)]1/2

≤ (K1K2)1/2 nc1+c2−2

ic1 jc2
=: K′ nc1+c2−2

ic1 jc2
.

Therefore, we have

∞∑
k=0

E
(
Aji
(
Sj + k

))≤ K′
∞∑
k=j

kc1+c2−2

ic1 jc2
≤ K′

1 − c1 − c2
i−c1 jc1−1,

which gives

E
(
L(i,j)(∞)

)≤ γ + βK′

1 − c1 − c2
i−c1 jc1−1. (3.22)

Since c1 − 1 < 0, for j sufficiently large we have E
(
L(i,j)(∞)

)
< 1, thus giving P

(
Ni↔j

0 = ∞
)

> 0. In other words, when c1 + c2 < 1, it is possible to have zero pairs of reciprocal edges
between two fixed nodes i, j, if j is created at a late stage of network evolution.
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Equation (3.22) also suggests that for arbitrarily chosen i, j, E
(
L(i,j)(∞)

)
< 1 if β is small

enough. Hence, if few edges are created between existing nodes, it is possible for two fixed
nodes never to form a reciprocal pair of edges. In particular, when β = 0, there is no reciprocal

pair of edges, i.e. P
(

Ni↔j
0 = ∞

)
= 1, for all fixed i, j.

The following proposition assumes c1 + c2 < 1 and gives the asymptotic behavior of

supj≥nε P

(
Ni↔j

0 ≤ n
)

.

Proposition 3.1. If c1 + c2 < 1, then for fixed i ≥ 1, ε > 0, as n → ∞,

sup
j≥nε

P

(
Ni↔j

0 ≤ n
)

→ 0.

Proof. Applying the union bound to P

(
Ni↔j

0 ≤ Sj + n
)

gives

P

(
Ni↔j

0 ≤ Sj + n
)

≤
n∑

k=1

P
(
E
(
Sj + k

)= E(Sj + k − 1) ∪ {(i, j)})
+

n∑
k=1

P
(
E
(
Sj + k

)= E(Sj + k − 1) ∪ {( j, i)})
=E

(
n−1∑
k=0

βAji(Sj + k)

)
+E

(
n−1∑
k=0

βAij(Sj + k)

)

≤E

⎛⎝ ∞∑
k=j

βAji(k)

⎞⎠+E

⎛⎝ ∞∑
k=j

βAij(k)

⎞⎠ .

By (3.5), we see that for ε > 0,

sup
j≥nε

E

⎛⎝ ∞∑
k=j

Aji(k)

⎞⎠→ 0, sup
j≥nε

E

⎛⎝ ∞∑
k=j

Aij(k)

⎞⎠→ 0,

as n → ∞, which gives

sup
j≥nε

P

(
Ni↔j

0 ≤ n
)

≤ sup
j≥nε

P

(
Ni↔j

0 ≤ Sj + n
)

→ 0. �

4. Discussion

Suppose that we are given a scale-free network with a large proportion of reciprocal edges,
e.g. Facebook wall posts [17], Twitter [6], Google+ [9], or Flickr [3, 10]. In fitting a directed
PA model to such a dataset using inference methods developed in [18, 19], there is no guar-
antee that the calibrated model also has a large Rpa

n . In fact, estimated values of ĉ1 and ĉ2
do not necessarily satisfy ĉ1 + ĉ2 ≥ 5/3. If we have ĉ1 + ĉ2 < 5/3 in the calibrated model,
then by Theorem 3.2, the corresponding Rpa

n is close to 0, which differs from the feature of
high reciprocity in the given dataset. This flags modeling error and suggests the consideration
of alternative models or variants of the classical PA network. For instance, once a directed
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edge (i, j) is created following the PA rule, we may add a reciprocal edge (j, i) with proba-
bility ρ ∈ (0, 1). The study in [4] also provides other features that can be employed to predict
reciprocal edges; we will defer the analysis of these variants of directed PA models to future
research.

Appendix A. Lemmas and proofs needed in Section 2

In this section, we state and prove two lemmas needed for the proof of Proposition 2.1,
which is also given.

A.1. Statement and proof of Lemma A.1.

Lemma A.1. For some integer p ≥ 1, k ≥ 0, and v ≥ 1, we have the following:

(i) For p = 1,

E
FSv+k

(
Din

v (Sv + k + 1) + δin

)
=
(

Din
v (Sv + k) + δin

) (
1 + α + β

Sv + k + 1 + δin|V(Sv + k)|
)

. (A.1)

(ii) For an integer p ≥ 2,

E
FSv+k

((
Din

v (Sv + k + 1) + δin
)p)

=
(

Din
v (Sv + k) + δin

)p
(

1 + p
α + β

Sv + k + 1 + δin|V(Sv + k)|
)

+ α + β

Sv + k + 1 + δin|V(Sv + k)|
p∑

r=2

(
p
r

) (
Din

v (Sv + k) + δin

)p−r+1
. (A.2)

Proof. Note that the right-hand sides of (A.1) and (A.2) are both FSv+k-measurable. We
prove the results for p ≥ 2, and the case p = 1 follows by a similar argument. Let F ∈FSv+k;
then ∫

F
E
FSv+k

((
Din

v (Sv + k + 1) + δin

)p)
dP

=
∫

F

(
Din

v (Sv + k + 1) + δin

)p
dP

=
∑
l≥k

∫
F∩{Sv+k=l}

(
Din

v (l + 1) + δin

)p
dP,

and since Din
v (l + 1) = Din

v (l) + 1{Node v is chosen at step l+1} =: Din
v (l) + 
v(l + 1), this equals

=
∑
l≥k

∫
F∩{Sv+k=l}

(
Din

v (l) + δin + 
v(l + 1)
)p

dP

=
∑
l≥k

∫
F∩{Sv+k=l}

((
Din

v (l) + δin

)p +
p∑

r=1

(
p
2

) (
Din

v (l) + δin

)p−r

v(l + 1)

)
dP. (A.3)
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Since F ∩ {Sv + k = l} ∈Fl, the quantity in (A.3) is equal to

∑
l≥k

∫
F∩{Sv+k=l}

(
Din

v (l) + δin

)p
dP

+
∑
l≥k

∫
F∩{Sv+k=l}

p
(

Din
v (l) + δin

)p−1
E
Fl
(

v(l + 1)

)
dP

+
p∑

r=2

∑
l≥k

∫
F∩{Sv+k=l}

(
p
r

) (
Din

v (l) + δin

)p−r
E
Fl
(

v(l + 1)

)
dP.

Note also that EFl
(

v(l + 1)

)= (α + β)
(

Din
v (l) + δin

)
/
(
l + 1 + δin|V(l)|), so we have

∫
F
E
FSv+k

((
Din

v (Sv + k + 1) + δin

)p)
dP

=
∫

F

(
Din

v (Sv + k) + δin

)p
(

1 + p
α + β

Sv + k + 1 + δin|V(Sv + k)|
)

dP

+
∫

F

α + β

Sv + k + 1 + δin|V(Sv + k)|
p∑

r=2

(
p
r

) (
Din

v (Sv + k) + δin

)p−r+1
dP. �

A.2. Statement and proof of Lemma A.2.

Next, we study properties of E
[(

Din
v (Sv + k)

)p] and E
[(

Dout
v (Sv + k)

)p], k ≥ 1, which are
needed for deriving the theorems in Section 3 as well as for the proof of Proposition 2.1.

Lemma A.2. For v ∈ V(n) and p ≥ 1, we have

sup
k≥1

E
[(

Din
v (k)

)p]
kc1p

< ∞, sup
k≥1

E
[(

Dout
v (k)

)p]
kc2p

< ∞.

Proof. For p = 1, we see from (A.1) that

E

(
Din

v (Sv + k + 1) + δin

)
=E

((
Din

v (Sv + k) + δin

) (
1 + α + β

Sv + k + 1 + δin|V(Sv + k)|
))

;

since Sv ≥ 0 and |V(Sv + k)| ≥ |V(k)|, this is

≤E

((
Din

v (Sv + k) + δin

) (
1 + α + β

k + 1 + δin|V(k)|
))

,

≤E

(
Din

v (Sv + k) + δin

) (
1 + c1

k

)
+E

⎛⎝(Din
v (Sv + k) + δin

) (α + β)δin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

(k + δin|V(k)|)(1 + δin(1 − β)
)
k

⎞⎠ ,

https://doi.org/10.1017/apr.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.52


Reciprocity in preferential attachment 735

and as α + β ≤ 1, this is

≤E

(
Din

v (Sv + k) + δin

) (
1 + c1

k

)
+E

⎛⎝(Din
v (Sv + k) + δin

) δin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

(k + δin|V(k)|)(1 + δin(1 − β)
)
k

⎞⎠
=: H(1)

v (k) + H(2)
v (k). (A.4)

Since
∣∣V(k)

∣∣− 1 follows a binomial distribution with size k ≥ 1 and success probability 1 − β,
by applying the Chernoff bound we obtain

P

(∣∣∣∣∣V(k)
∣∣− (1 − β)k

∣∣∣≥ 1 +√12(1 − β)k log k
)

≤ 2

k4
, (A.5)

and rewrite the term H(2)
v (k) in (A.4) as

H(2)
v (k)

=E

⎛⎝(Din
v (Sv + k) + δin

) δin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

(k + δin|V(k)|)(1 + δin(1 − β)
)
k

×1{∣∣∣|V(k)|−(1−β)k

∣∣∣≤1+√
12(1−β)k log k

}
⎞⎠

+E

⎛⎝(Din
v (Sv + k) + δin

) δin

∣∣∣|V(k)| − (1 − β)k
∣∣∣(

k + δin|V(k)|)(1 + δin(1 − β)
)
k

×1{∣∣∣|V(k)|−(1−β)k

∣∣∣>1+√
12(1−β)k log k

}
⎞⎠ .

Since Din
v (Sv + k) ≤ k + 1 and

∣∣∣|V(k)| − (1 − β)k
∣∣∣≤ k + 1, the foregoing term is bounded by

E

(
Din

v (Sv + k) + δin

) δin
(
1 + √

12(1 − β)k log k
)

k2
+ δin

(
k + 1 + δin

)
(k + 1)(

1 + δin(1 − β)
)
k2

2

k4

≤E

(
Din

v (Sv + k) + δin

) δin
(
1 + √

12k log k
)

k2
+ 2δin

(
k + 1 + δin

)
(k + 1)

k6
. (A.6)

Combining the bound in (A.6) with (A.4) gives

E

(
Din

v (Sv + k + 1) + δin

)
≤E

(
Din

v (Sv + k) + δin

) (
1 + c1

k

)
+E

⎛⎝(Din
v (Sv + k) + δin

) δin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

(k + δin|V(k)|)(1 + δin(1 − β)
)
k

⎞⎠
≤E

(
Din

v (Sv + k) + δin

) (
1 + c1

k
+ δin

(
1 + √

12k log k
)

k2

)

+ 2δin
(
k + 1 + δin

)
(k + 1)

k6
.
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Recursively applying the inequality above k times, we have

E

(
Din

v (Sv + k + 1) + δin

)
≤E

(
Din

v (Sv + k) + δin

) (
1 + c1

k
+ δin

(
1 + √

12k log k
)

k2

)

+ 2δin
(
k + 1 + δin

)
(k + 1)

k6

≤ . . . ≤E
(
Din

v (Sv) + δin
) k∏

l=1

(
1 + c1

l
+ δin

(
1 + √

12l log l
)

l2

)

+ 2δin

k∑
l=1

(
l + 1 + δin

)
(l + 1)

l6

k∏
s=l+1

(
1 + c1

s
+ δin

(
1 + √

12s log s
)

s2

)
. (A.7)

Here, E
(
Din

v (Sv) + δin
)= αδin + γ (1 + δin), depending on whether the α- or the γ -scenario

occurs. Note that there exists a constant M > 0 such that

k∏
l=1

(
1 + c1

l
+ δin

(
1 + √

12l log l
)

l2

)
≤ exp

{
k∑

l=1

(
c1

l
+ δin

(
1 + √

12l log l
)

l2

)}
≤ Mkc1, (A.8)

and it follows from (A.7) that

sup
k≥1

E
[
Din

v (Sv + k)
]

kc1
≤ sup

k≥1

E
[
Din

v (Sv + k) + δin
]

kc1
< ∞.

For p ≥ 2, suppose

sup
k≥1

E

[(
Din

v (Sv + k) + δin

)r]
kc1r

≤ Ar < ∞

holds for some constants, Ar, r = 1, . . . , p − 1. Let A0 = max{Ar : r = 1, . . . , p − 1}; then by
(A.2), we have

E

((
Din

v (Sv + k + 1) + δin

)p)
≤E

((
Din

v (Sv + k) + δin

)p
(

1 + p
α + β

Sv + k + δin|V(Sv + k)|
))

+
p−1∑
r=1

(α + β)

(
p
2

)
Arkc1r−1

≤E

((
Din

v (Sv + k) + δin

)p
(

1 + p
α + β

Sv + k + δin|V(Sv + k)|
))

+ 1

2
(α + β)p(p − 1)2 A0kc1(p−1)−1

=: C(1)
v (k) + C(2)

v (k). (A.9)
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We rewrite the C(1)
v (k) term in (A.9) to get

C(1)
v (k) =

(
1 + c1p

k

)
E

[(
Din

v (Sv + k) + δin

)p]
+E

[(
Din

v (Sv + k) + δin

)p
(

p(α + β)

Sv + k + δin|V(Sv + k)| − c1p

k

)]
≤
(

1 + c1p

k

)
E

[(
Din

v (Sv + k) + δin

)p]
+E

⎡⎣(Din
v (Sv + k) + δin

)p pδin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

(k + δin|V(k)|)(1 + δin(1 − β))k

⎤⎦
≤
(

1 + c1p

k

)
E

[(
Din

v (Sv + k) + δin

)p]
+E

⎡⎣(Din
v (Sv + k) + δin

)p pδin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

k2

⎤⎦ .

Similarly to the Chernoff bound in (A.5), we have, for p ≥ 2,

P

(∣∣∣|V(k)
∣∣− (1 − β)k

∣∣∣≥ 1 +√6p(1 − β)k log k
)

≤ 2

k2p
. (A.10)

Therefore, analogously to the calculation in (A.6), we have

E

⎡⎣(Din
v (Sv + k) + δin

)p pδin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

k2

⎤⎦

=E

⎡⎣(Din
v (Sv + k) + δin

)p pδin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

k2
1{∣∣∣|V(k)|−(1−β)k

∣∣∣≤1+√
6p(1−β)k log k

}
⎤⎦

+E

⎡⎣(Din
v (Sv + k) + δin

)p pδin

∣∣∣|V(k)| − (1 − β)k
∣∣∣

k2
1{∣∣∣|V(k)|−(1−β)k

∣∣∣>1+√
6p(1−β)k log k

}
⎤⎦ ,

and since
(
Din

v (Sv + k) + δin
)p ≤ (k + 1 + δin

)p, this is

≤E

[(
Din

v (Sv + k) + δin

)p] pδin
(
1 + √

6p k log k
)

k2
+ pδin

(
k + 1 + δin

)p(k + 1)

k2

2

k2p
.

Hence,

C(1)
v (k) ≤E

[(
Din

v (Sv + k) + δin

)p] (
1 + c1p

k
+ pδin

(
1 + √

6p k log k
)

k2

)

+ 2pδin
(
k + 1 + δin

)p(k + 1)

k2p+2
.

Note also that(
k + 1 + δin

)p(k + 1)k−2p−2 ≤ 2(2 + δin)pk−p−1 ≤ 2
(
2 + δin

)p
kc1(p−1)−1

https://doi.org/10.1017/apr.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.52


738 T. WANG AND S. I. RESNICK

for all k ≥ 1, p ≥ 2. We conclude from (A.9) that

E

((
Din

v (Sv + k + 1) + δin
)p)

≤E

((
Din

v (Sv + k) + δin
)p) (1 + c1p

k
+ pδin

(
1 + √

6pk log k
)

k2

)
+
(

A0(α + β)p(p − 1)2/2 + 4pδin
(
2 + δin

)p)
kc1(p−1)−1.

Following the recursive step as for the p = 1 case gives

sup
k≥1

E
[(

Din
v (Sv + k)

)p]
kc1p

≤ sup
k≥1

E
[(

Din
v (Sv + k) + δin

)p]
kc1p

< ∞.

Note that for p ≥ 1,

E

((
Din

v (n)

nc1

)p
)

=E

((
Din

v (n)

nc1

)p

1{Sv≤n−1}

)
+E

((
Din

v (n)

nc1

)p

1{Sv≥n}

)

≤E

((
Din

v (Sv + n)

nc1

)p
)

+
(

1

nc1

)p

,

since Din
v (n) is monotone in n. Then we have, for v ≥ 1,

sup
n≥1

E

((
Din

v (n)

nc1

)p
)

< ∞.

Applying a similar argument to the out-degrees completes the proof. �
Remark A.1. In the proof of Lemma A.2, if we revise the inequality |V(Sv + k)| ≥ |V(k)| to
|V(Sv + k)| ≥ |V(v + k − 1)|, then we have for p ≥ 1

sup
n≥1

sup
v≥1

E

((
Din

v (n)

(n/v)c1

)p
)

< ∞, sup
n≥1

sup
v≥1

E

((
Dout

v (n)

(n/v)c2

)p)
< ∞. (A.11)

These results are used in the proof of Theorem 3.2, in Section 3.2.

A.3. Proof of Proposition 2.1

We prove only the results for Din
v (n); those for Dout

v (n) follow from a similar argument. First,
by Lemma A.1, we see that for n ≥ 1,

Din
v (Sv + n) + δin∏n−1

k=0

(
1 + α+β

Sv+k+1+δin|V(Sv+k)|
) =:

Din
v (Sv + n) + δin

X(v)
n

(A.12)

is a nonnegative
(FSv+n

)
n≥0-martingale, which by the martingale convergence theorem con-

verges to some limit Lv a.s. as n → ∞. It remains to analyze the denominator and to verify
that P(Lv ∈ (0, ∞)) = 1. We do this by applying some proof machinery similar to that of [16,
Lemma 8.17].
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By Markov’s inequality, we see that for ε > 0, and max{−1, −δin} < m < 0,

P(Lv ≤ ε) = lim sup
n→∞

P

(
Din

v (Sv + n) + δin

X(v)
n

≤ ε

)

≤ ε|m| lim sup
n→∞

E

[(
Din

v (Sv + n) + δin

X(v)
n

)m]

≤ ε|m| lim sup
n→∞

E

⎡⎣ (
Din

v (Sv + n) + δin
)m∏n−1

k=0

(
1 + (α+β)m

Sv+k+1+δin|V(Sv+k)|
)
⎤⎦ . (A.13)

By (A.13), it suffices to show

lim sup
n→∞

E

⎡⎣ (
Din

v (Sv + n) + δin
)m∏n−1

k=0

(
1 + (α+β)m

Sv+k+1+δin|V(Sv+k)|
)
⎤⎦< ∞.

Similarly to [16, Equation (8.7.23)], there exists some constant Cm such that

lim sup
n→∞

E

⎡⎣ (
Din

v (Sv + n) + δin
)m∏n−1

k=0

(
1 + (α+β)m

Sv+k+1+δin|V(Sv+k)|
)
⎤⎦

≤ Cm lim sup
n→∞

E

⎡⎣

(
Din

v (Sv + n) + δin + m
)
/

(
Din

v (Sv + n) + δin
)

∏n−1
k=0

(
1 + (α+β)m

Sv+k+1+δin|V(Sv+k)|
)

⎤⎦ .

Hence, once we show

lim sup
n→∞

E

⎡⎣

(
Din

v (Sv + n) + δin + m
)
/

(
Din

v (Sv + n) + δin
)

∏n−1
k=0

(
1 + (α+β)m

Sv+k+1+δin|V(Sv+k)|
)

⎤⎦< ∞, (A.14)

the inequality in (A.13) implies P(Lv ∈ (0, ∞)) = 1.
We prove (A.14) by showing that

M(m)
n := 
(Din

v (Sv + n) + δin + m)/
(Din
v (Sv + n) + δin)∏n−1

k=0

(
1 + (α+β)m

Sv+k+1+δin|V(Sv+k)|
)

is an
(FSv+n

)
n≥0-martingale. Note that

E
FSv+n

(


(
Din

v (Sv + n + 1) + δin + m
)



(
Din

v (Sv + n + 1) + δin
) )

= 

(
Din

v (Sv + n) + δin + m
)



(
Din

v (Sv + n) + δin
) (

1 − (α + β)
(
Din

v (Sv + n) + δin
)

Sv + n + 1 + δin|V(Sv + n)|

)

+ (α + β)
(
Din

v (Sv + n) + δin
)

Sv + n + 1 + δin|V(Sv + n)|


(
Din

v (Sv + n) + δin + m
)



(
Din

v (Sv + n) + δin
) Din

v (Sv + n) + δin + m

Din
v (Sv + n) + δin

= 

(
Din

v (Sv + n) + δin + m
)



(
Din

v (Sv + n) + δin
) (

1 + (α + β)m

Sv + n + 1 + δin|V(Sv + n)|
)

,
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which confirms that M(m)
n is an

(FSv+n
)

n≥0-martingale. Also,

E
(
M(m)

n

)=E
(
M(m)

0

)
=E

(


(
Din

v (Sv) + δin + m
)
/

(
Din

v (Sv) + δin
)

1 + (α+β)m
Sv+1+δinv

)
.

Since m < 0 and Sv ≥ v − 1 ≥ 0, we have(
1 + (α + β)m

Sv + 1 + δinv

)−1

≤
(

1 + (α + β)m

(1 + δin)v

)−1

.

This further implies

E
(
M(m)

n

)≤(1 + (α + β)m

(1 + δin)v

)−1

E

(


(
Din

v (Sv) + δin + m
)
/

(
Din

v (Sv) + δin
))

=
(

1 + (α + β)m

(1 + δin)v

)−1 (
α


(δin + m)


(δin)
+ γ


(δin + 1 + m)


(1 + δin)

)
< ∞,

thus completing the proof of (A.14).
Next, we consider the convergence of X(v)

n by noting that

logX(v)
n

=
n−1∑
k=0

[
log

(
1 + α + β

Sv + k + 1 + δin|V(Sv + k)|
)

− α + β

Sv + k + 1 + δin|V(Sv + k)|
]

+
n−1∑
k=0

(
α + β

Sv + k + 1 + δin|V(Sv + k)| − c1

Sv + k + 1

)

+
(

n−1∑
k=0

c1

Sv + k + 1
− c1 log

Sv + n

Sv + 1

)
+ c1 log

Sv + n

Sv + 1

=: Iv(n) + IIv(n) + IIIv(n) + c1 log
Sv + n

Sv + 1
.

Since log (1 + x) ≤ x, for all x ≥ 0, we have Iv(n + 1) − Iv(n) ≤ 0 for all n; i.e. Iv(n) is
decreasing in n. Note also that |log (1 + x) − x| ≤ x2/2 for all x ≥ 0, so we have

E

∣∣∣∣∣
∞∑

k=0

(
log

(
1 + α + β

Sv + k + 1 + δin|V(Sv + k)|
)

− α + β

Sv + k + 1 + δin|V(Sv + k)|
)∣∣∣∣∣

≤
∞∑

k=0

E

∣∣∣∣log

(
1 + α + β

Sv + k + 1 + δin|V(Sv + k)|
)

− α + β

Sv + k + 1 + δin|V(Sv + k)|
∣∣∣∣

≤ (α + β)2

2

∞∑
k=0

E

(
1

Sv + k + 1 + δin|V(Sv + k)|
)2

≤
∞∑

k=1

1

k2
< ∞,

which implies Iv(∞) < ∞ a.s., and Iv(n)
a.s.−→ Iv(∞) as n → ∞.
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By [1, Theorem 3.9.4], we see that there exists a finite random variable Z such that

∞∑
k=1

(
α + β

k + δin|V(k − 1)| − c1

k

)
a.s.−→ Z;

then

IIv(n)
a.s.−→ Z −

Sv∑
k=1

(
α + β

k + δin|V(k − 1)| − c1

k

)
=: IIv(∞).

Since
∑n

k=1 1/k − log n → c̃, where c̃ is Euler’s constant, for v = 1 we have

III1(n)
a.s.−→ c1c̃ =: III1(∞),

and for v ≥ 2,

IIIv(n)
a.s.−→ c1

(
c̃ + log (Sv + 1) −

Sv∑
k=1

1

k

)
=: IIIv(∞).

Hence, as n → ∞,

X(v)
n

((Sv + n)/(Sv + 1))c1

a.s.−→ exp {Iv(∞) + IIv(∞) + IIIv(∞)} . (A.15)

Combining (A.15) with the convergence of the martingale in (A.12), we have

Din
v (Sv + n)

(Sv + n)c1

a.s.−→ Lv

(Sv + 1)c1
exp
{−(Iv(∞) + IIv(∞) + IIIv(∞)

)} =: ξ in
v ;

then

lim
n→∞

Din
v (n)

nc1
= lim

n→∞
Din

v (Sv + n)

(Sv + n)c1

a.s.= ξ in
v .

Since P(Lv ∈ (0, ∞)) = 1 and Sv + 1 ≥ v ≥ 1, we also have P(ξ in
v ∈ (0, ∞)) = 1.
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