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In this paper, we use formal asymptotic arguments to understand the stability properties of

equivariant solutions to the Landau–Lifshitz–Gilbert model for ferromagnets. We also analyse

both the harmonic map heatflow and Schrödinger map flow limit cases. All asymptotic results

are verified by detailed numerical experiments, as well as a robust topological argument. The

key result of this paper is that blowup solutions to these problems are co-dimension one and

hence both unstable and non-generic.
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1 Introduction

A well-known model from micromagnetics is the Landau–Lifshitz–Gilbert equation, which

describes the interaction of magnetic moments in a magnetic spin system on a square

lattice. Here, the energy is given by the Hamiltonian

H = −K
∑
i,j

Si,j · (Si+1,j + Si,j+1),

with vector Si,j denoting the spin at lattice point (i, j) and K > 0 the coupling constant.

The associated dynamic equation with nearest-neighbour interactions is

Ṡi,j = −KSi,j × (Si+1,j + Si−1,j + Si,j+1 + Si,j−1).

We arrive at a continuum limit by introducing m : R2 × R �→ S2, where m(ih, jh, t) = Si,j .

Assuming K is inversely proportional to the square of the lattice spacing h leads to

mt = m× Δm+ O(h2). (1.1)

The linear Schrödinger equation

mt = m× Δm (1.2)
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follows in the limit h → 0. Physical experience shows that such systems settle over time

and hence lose energy. This is modelled [26] with the addition of the Lifhsitz dissipation

term

−βm× (m× Δm) .

In this paper, we study the connection between the purely dissipative equation

mt = −βm× (m× Δm)

and the conservative Schrödinger equation (1.2), so we will study the Landau–Lifshitz–

Gilbert equation in the form

mt = αm× Δm − βm× (m× Δm) .

In the case α � 0, β > 0 this equation arises as a model for the exchange interaction

between magnetic moments in a magnetic spin system on a square lattice [24, 26] as

described above but it arises in many other contexts as well. Taking α = 0 recovers the

harmonic map heatflow which is a model in nematic liquid crystal flow [9]. It is also

of much fundamental interest in differential geometry [34]. Finally, the conservative case

β = 0 is the Schrödinger map from the disk to the sphere, which is a model of current

study in geometry [14, 20, 21].

In this paper, we are interested in the existence and stability of finite-time singularities

of the Landau–Lifshitz–Gilbert equation for maps from the unit disk (in the plane) to the

surface of the unit sphere, m : D2 → S2:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂m

∂t
= αm× Δm− β m× (m× Δm),

m(x, t) = mb(x) |x| = 1,

m(x, 0) = m0(x).

(1.3)

We will always require the damping term β � 0 and take α2 + β2 = 1 without loss of

generality. This problem preserves the length of the vector m, i.e., |m0(x)| = 1 for all x

implies that |m(x, t)| = 1 for all positive time (for all x).

Stationary solutions in all these cases are harmonic maps. This allows us to analyse

singularity formation in a unified manner for all parameter values. Traditionally, the

Landau–Lifshitz–Gilbert equation is posed with Neumann boundary conditions, but this

does not affect the local structure of singularities, should they arise. We note that in

the harmonic map literature, the second term on the right-hand side of the differential

equation (1.3) is often rewritten using the identities

m× (m× Δm) = −Δm+ (Δm,m)m = −Δm− ‖∇m‖2m,

where (·, ·) denotes the inner product in �3 and ‖∇m‖2 =
∑2

i=1

∑3
j=1(∂imj)

2, with wi the

components of w.

Finite-time blowup solutions are thus far only known to arise in the harmonic map

heatflow in the special case of radial symmetry. Solutions permitted to deviate from this

symmetry remain global for all time but may, for suitable initial data, approach arbitrarily
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close to blowup. A careful asymptotic analysis of solutions near blowup shows that finite-

time blowup corresponds to a saddle fixed point in a low dimensional dynamical system.

Radial symmetry precludes motion anywhere but on the stable manifold towards blowup.

The Landau–Lifshitz–Gilbert problem is not invariant under radial symmetry. Never-

theless, a similar scenario emerges in the equivariant setting: blowup is unstable. To be

more precise, blowup is co-dimension one both within the equivariant symmetry class

and in the unrestricted class of initial data. The value of the parameter in the Landau–

Lifshitz–Gilbert equation plays a very subdued role in the analysis of equivariant blowup,

leading to identical blowup rates and spatial scales for all parameter values. One notable

exception is the angle between solution in inner scale (which bubbles off) and outer scale

(which remains), which does depend on parameter values.

Analysing near-blowup solutions, we find that in the inner scale these solutions quickly

rotate over an angle π. As a consequence, for the blowup solution, it is natural to consider

a continuation scenario after blowup where one immediately re-attaches a sphere (thus,

restoring the energy lost in blowup), yet rotated over an angle π. This continuation is

natural since it leads to continuous dependence on initial data.

As discussed in much greater detail in Sections 1.1 and 1.2, there are initial data for

which the solution to (1.3) becomes singular in finite time. In this paper, we analyse this

blowup behaviour, in particular its stability properties under (small) perturbations of the

initial data. Considering initial data that lead to blowup, the question is whether or not

solutions starting from slightly different initial data also blowup. Our main conclusion is

that blowup is an unstable co-dimension one scenario. With this in mind, we also investigate

the behaviour of solutions in “near-miss” of blowup and the consequences this has for

the continuation of the blowup solution after its blowup time.

1.1 Problem formulation

We will consider two formulations for equation (1.3). The first is the so-called equivariant

case: using polar coordinates (r, ψ) on the unit disk D = D2, these are solutions of the

form

m(t, r, ψ) =

⎛⎝ cos(nψ)u(r, t) − sin(nψ)v(r, t)

sin(nψ)u(r, t) + cos(nψ)v(r, t)

w(r, t)

⎞⎠ , (1.4)

which have the (intertwining) symmetry property m(t, ·) ◦ Rω2 = Rnω3 ◦ m(t, ·) for all ω and

each fixed t, where Rω2 is a rotation over angle ω around the origin in the plane �2, while

Rω3 is a rotation over angle ω around the z axis in �3.

The components (u, v, w) then satisfy the pointwise constraint u2 + v2 + w2 = 1, as well

the differential equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut = α

(
vΔw −

(
Δv − n2

r2
v

)
w

)
+ β

(
Δu− n2

r2
u+ Au

)
,

vt = α

(
−uΔw +

(
Δu− n2

r2
u

)
w

)
+ β

(
Δv − n2

r2
v + Av

)
,

wt = α (uΔv − vΔu) + β (Δw + Aw) ,

(1.5)
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where

Δ =
∂2

∂r2
+

1

r

∂

∂r
and A ≡ u2

r + v2r + w2
r +

n2

r2
(u2 + v2).

We will take n = 1 in what follows, except in Section 6.

Alternatively, we can parametrize the solutions on the sphere via the Euler angles:

m(t, r, ψ) =

⎛⎝ cos[ψ + ϕ(r, t)] sin θ(r, t)

sin[ψ + ϕ(r, t)] sin θ(r, t)

cos θ(r, t)

⎞⎠ , (1.6)

where the equations for θ and ϕ are given by⎧⎪⎪⎨⎪⎪⎩
βθt + α sin θϕt = θrr +

1

r
θr − sin 2θ

2

(
1

r2
+ ϕ2

r

)
,

βϕt − α

sin θ
θt = ϕrr +

1

r
ϕr +

sin 2θ

sin2 θ
ϕrθr.

(1.7)

We note that due to the splitting ψ + ϕ(r, t) in (1.6), the system (1.7) has one spatial

variable. In this equivariant case, the image of one radius in the disk thus fixes the entire

map (through rotation) and we write m(t, r) = m(t, r, 0).

In the special case α = 0 and β = 1 only, there are radially symmetric solutions of the

form ϕ ≡ constant, reducing the system to a single equation

θt = θrr +
1

r
θr − sin 2θ

2r2
. (1.8)

1.2 Previous results

It is well known that not all strong solutions to the radially symmetric harmonic map

heatflow (1.8) are global in time. Equation (1.8) is π-periodic in θ. Supplemented with

the (finite energy) boundary condition θ(0) = 0, it only has stationary solutions of the

form u∞
q = 2arctan qr for q ∈ R. Hence, with prescribed boundary data θ(0, t) = 0 and

θ(1, t) = θ∗ > π there is no accessible stationary profile. However, there is an associated

Lyapunov functional,

E(t) = π

∫ 1

0

[
θr(t, r)

2 +
sin2 θ(t, r)

r2

]
r dr,

whose only stationary points are the family u∞
q . It is this paradox that leads to blowup:

there is a finite collection of (possibly finite) times at which u(0, t) “jumps” from nπ to

(n± 1)π, losing 4π of energy [8,34]. The structure of the local solution close to the jumps

(in time and space) is known, which allows us to analyse the stability of these solutions.

The fundamental result in this area is due to Struwe [34], who first showed that solutions

of the harmonic map heatflow could exhibit the type of jumps described above and derived

what the local structure of the blowup profile is. Chen, Ding and Ye [13] then used super-

and sub-solution arguments, applicable only to (1.8), to show that finite-time blowup must
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occur when u(0, t) = 0 and u(1, t) � π. The blowup rate and additional structural details

were determined through a carefully matched asymptotic analysis in [36].

The analysis is based on the original result of Struwe, who showed that any solution

which blows up in finite time must look locally (near the blowup point) like a rescaled

harmonic map at the so-called quasi-stationary scale. That is, there is a scale r = O(R(t))

on which the solution takes the form

θ(t, r) → 2 arctan

(
r

R(t)

)
, where R(t) → 0 as t → T . (1.9)

From [36], it is known that for generic initial data, one has

R(t) ∼ κ
T − t

| ln(T − t)|2 as t → T (1.10)

for some κ > 0 and blowup time T > 0, which both depend on the initial data. This

result is intriguing as the blowup rate is very far from the similarity rate of
√
T − t [3].

While the blowup rate (1.10) was derived in [36] for the harmonic map heatflow, i.e.

α = 0, β = 1, in this paper we demonstrate that formal asymptotics imply that this rate

is universal for all parameter values of α and β.

It is common to consider radial symmetry when analysing the blowup dynamics of

many reaction–diffusion equations. Typically, there one can show that there must be

blowup using radially symmetric arguments. Moreover, numerical experiments generically

show that rescaled solutions approach radial symmetry as the blowup time is approached.

For the harmonic map problem, the proof of blowup solutions due to Cheng, Ding

and Ye is completely dependent on the radial symmetry. Moreover, there are stationary

solutions to the problem which are in the homotopy class of the initial data, but which

are not reachable under the radial symmetry constraint. This begs the question: What

happens when we relax the constraint of radially symmetric initial data?

The above description is mainly restricted to the harmonic map problem (α = 0), which

has received considerably more attention than the general Landau–Lifshitz–Gilbert equa-

tion. Before addressing the question of stability under non-radially symmetric constraints

for the harmonic map heatflow problem, we first show that blowup solutions are still

expected for the full Landau–Lifshitz–Gilbert equation with α, β > 0, see Section 2. We

note that

E(t) = π

∫ 1

0

[
θr(t, r)

2 + sin2 θ(t, r)

(
ϕr(t, r)

2 +
1

r2

)]
r dr

is a Lyapunov functional for the equivariant problem (1.7) as long as β > 0, whereas it is

a conserved quantity for the Schrödinger map flow (β = 0).

After completion of this work, it became apparent that part of our results were derived

in parallel and independently in [28, 31] using a different, powerful, rigorous method.

In particular, solutions with the blowup rate (1.10) have been proven to exist both

for theharmonic map heatflow (α = 0, β = 1) in [31] and for the Schrödinger map flow

(α = 1, β = 0) in [28], i.e., the two limit cases of the Landau–Lifshitz–Gilbert problem. The

matched asymptotics results in this paper unify these results by providing a comprehensive

description of blowup for all parameter values in the Landau–Lifshitz–Gilbert problem.
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The universal instability mechanism for blowup in the Landau–Lifshitz–Gilbert problem,

as outlined in the introduction and described and quantified in detail in Section 5, is also

observed qualitatively in the analysis of the Schrödinger map flow in [28]. Additionally, we

note the seminal work in [30] on blowup in the corotational wave map and the equivariant

Yang–Mills problem. Related results on wave maps can be found in e.g. [10, 25, 29].

Furthermore, there is an extensive literature on the (local) stability of harmonic maps for

the Landau–Lifshitz–Gilbert problem, and on the dynamic behaviour of solutions near

these stationary configurations, see e.g. [5, 18, 21]. Finally, the possibility of the twisted

reattachment scenario (“reverse bubbling”) was first put forward in [35] for the radially

symmetric harmonic map heatflow. In the present paper, we give a quantitative matched

asymptotic description in the full generality of the Landau–Lifshitz–Gilbert problem,

thereby putting the mechanism in the context of continuous dependence on initial data.

The outline of the paper is as follows. We discuss the question of stability for the full

problem in a uniform manner. The topological argument in Section 2 suggests that blowup

is co-dimension one, and this is indeed supported by the asymptotic analysis in Section 3

and the numerics in Section 4. The main quantitative and qualitative properties turn out to

be independent of the parameter values, except for the angle between sphere that bubbles

off and the remaining part of the solution. In Section 5, we analyse near-blowup solutions.

These solutions rotate quickly over an angle π in the inner scale. For the blowup solution,

this implies a natural continuation scenario (leading to continuous dependence on initial

data) after the time of blowup: the lost energy is restored immediately by re-attaching a

sphere, rotated over an angle π. Finally, in Section 6, we present the generalization to the

case n � 2, followed by a succinct conclusion in Section 7.

2 The global topological picture

We present a topological argument to corroborate that blowup is co-dimension one. It

does not distinguish between finite and infinite time blowup. Since the argument relies on

dissipation, it works for β > 0, but since the algebra is essentially uniform in α and β, as

we shall see in Section 3, we would argue that the situation for the Schrödinger map flow

is the same.

Let us first consider the equivariant case, where, as explained in Section 1.1, the image

of one radius in the disk fixes the entire map, and we write m(t, r) = m(t, r, 0).

Let m(t, 0) = N (the north pole) and m(t, 1) = mb. In the notation using Euler angles

from Section 1.1, by rotational symmetry we may assume that mb = (θb, 0), θb ∈ [0, π].

The only equilibrium configuration satisfying these boundary conditions is m = (θ, ϕ) =

(2 arctan qr, 0), where q = tan(θb/2). Note that for θb = π there is no equilibrium, hence

blowup must occur for all initial data in that case [2].

For θb ∈ [0, π), i.e. mb � S , we shall construct a one parameter family of initial data

m0(r; s), and we argue that at least one of the corresponding solutions blows up. Since

the presented argument is topological, it is robust under perturbations, hence it proves

that blowup is (at most) co-dimension one. The matched asymptotic analysis in Section 3

confirms this co-dimension one nature of blowup.

We choose one-parameter families of initial data as follows. The family of initial data

will be parametrized by s ∈ S1, or [0, 1] with the end points identified. Let m0(r; s) be a
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N

mb

N

Figure 1. One parameter families of initial data for the equivariant case; several members of half

of each family are shown (the other half lives on the hemisphere facing away from us). Left: for

mb �N, one may obtain such a family for example by stereographic projection (with respect to N)

of all straight lines through the point in the plane corresponding to mb. Right: for mb = N one can

choose the stereographic projection of parallel lines covering the plane.

continuous map from [0, 1] × S1 to S2, such that

m0(0; s) = N and m0(1; s) = mb for all s. (2.1)

We may then view m0 as a map from S2 → S2 by identifying {0} × S1 and {1} × S1 to

points. Now choose any continuous family m0(r; s) satisfying (2.1) such that it represent

a degree 1 map from S2 to itself. One such choice is obtained by using the stereographic

projection

T (x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,

−1 + x2 + y2

1 + x2 + y2

)
.

Let xb > 0 be such that
−1+x2

b

1+x2
b

= cos θb, i.e. xb = tan((π − θb)/2) = 1/q. Then we choose

m0(r; s) = T

(
xb + xb cos(2πs)

1 − r

r
, xb sin(2πs)

1 − r

r

)
,

see also Figure 1. For the special case that mb = N, we choose

mN0 (r; s) = T
(
tan(π(r − 1/2)), tan(π(s− 1/2))

)
. (2.2)

This is just one explicit choice; any homotopy of this family of initial data that obeys the

boundary conditions (2.1) also represents a degree 1 map on S2. Let X0 be the collection

of initial data obtained by taking all such homotopies. It is not hard to see that X0 is the

space of continuous functions (with the usual supremum norm) satisfying the boundary

conditions. Let X1 be the subset of initial data in X0 for which the solution to the

equivariant equation (1.5) blows up in finite or infinite time. The following result states

that the co-dimension of X1 is at most one. In particular, each one parameter family of

initial data that represent a degree 1 map from S2 to itself has at least one member that

blows up.

Proposition 2.1 Let β > 0. The blowup set X1 for the equivariant equation (1.5) has co-

dimension at most 1.

Proof Let m0(r, s) be any family of initial data that, via the above identification, represent

a degree 1 map from S2 to itself. Let m(t, r; s) correspond to the solution with initial
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data m0(r; s). As explained above, we see from (2.1) that we may view m0(·; ·) as a map

from S2 → S2 by identifying {0} × S1 and {1} × S1 to points. Since the boundary points

are fixed in time, we may by the same argument view m(t, ·; ·) as a map from S2 to itself

along the entire evolution. Note that since the energy is a Lyapunov functional for β > 0,

any solution tends to an equilibrium as t → ∞. If none of the solutions in the family

would blow up (in finite or infinite time) along the evolution, then all solutions converge

smoothly to the unique equilibrium. In particular, for large t the map m(t, ·; ·) : S2 → S2

has its image in a small neighbourhood of this equilibrium, hence it is contractible and

thus has degree 0. Moreover, if there is no blowup then m(t, ·; ·) : S2 → S2 is continuous in

t, i.e. a homotopy. This is clearly contradictory, and we conclude blowup must occur for

at least one solution in the one-parameter family m0(r, s). This is a topologically robust

property in the sense that any small perturbation of m0(r, s) also represents a degree 1

map, and the preceding arguments thus apply to such small perturbations of m0(r, s) as

well. This proves that the co-dimension of X1 is at most 1. �

One may wonder what happens when (equivariant) symmetry is lost. Although a priori

the co-dimension could be higher in that case, we will show that this is not so. For

convenience, we only deal with boundary conditions m(t, x) = N for all x ∈ ∂D, which

simplifies the geometric picture, but the argument can be extended to more general

boundary conditions.

The only equilibrium solution in this situation is m(x) ≡ N [27]. Let mN0 (r; s) be the

family of initial data for the equivariant case with boundary condition mb = N (see (2.2)

and Figure 1). Consider now the following family of initial data for the general case:

M
N

0 (x; s) = M
N

0 (r, ψ; s) =

⎛⎝ cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎞⎠mN0 (r; s).

We see that M
N

0 maps D × [0, 1] to S2, and M
N

0 (∂D; [0, 1]) = N, but also M
N

0 (D2; 0) =

M
N

0 (D2; 1) = N. We may thus identify ∂D× [0, 1]∪D× {0, 1} to a point, and interpret M
N

0

as a map from S3 to S2. In particular, M
N

0 represents an element in the homotopy group

π3(S
2) ∼= �. Furthermore, upon inspection, M

N

0 represents the generator of the group,

since it is (a deformation of) the Hopf map (see e.g. [22]). Let X̃0 be the collection of

initial data in one parameter families obtained from all homotopies of M
N

0 that obey the

boundary conditions

M0(∂D; [0, 1]) = N and M0(D
2; 0) = M0(D

2; 1) = N. (2.3)

Let X̃1 be the subset of initial data in X̃0 for which the solution to the differential

equation (1.3) blows up in finite or infinite time. As before, the co-dimension of X̃1 is at

most 1, showing that dropping the equivariant symmetry does not further increase the

instability of the blowup scenario.

Proposition 2.2 Let β > 0 and mb = N. The blowup set X̃1 for the general equation (1.3)

has co-dimension at most 1.
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Proof The proof is analogous to that of Proposition 2.1, but one uses π3(S
2) instead of

π2(S
2), i.e. the degree, to obtain the contradiction. �

As a final remark, even though blowup is co-dimension one (co-dimension zero is

excluded in the analysis in Section 5), this does not mean it is irrelevant. Clearly,

by changing the initial data slightly, one may avoid blowup. On the other hand, the

arguments above indicate that blowup is caused by the topology of the target manifold,

and one can therefore not circumvent this type of singularity formation by simply adding

additional terms to the equation (for example a physical effect that works on a smaller

length scale), unless additional equilibria are introduced which reflect the pinning of a

defect.

3 Asymptotic analysis

In this section, we extend the results of [36], where the rate of blowup for radially

symmetric solutions to the harmonic heat map problem (1.8) was determined. We will

consider both the extension to the full Landau–Lifshitz–Gilbert equation (i.e. α� 0), and

allowing a particular class of non-radial perturbations. We find that blowup solutions are

always unstable in the equivariant regime. It can be understood that the blowup solutions

are separatrices between two distinct global behaviours.

3.1 The inner region

We will proceed with an expansion motivated by two facts: (i) blowup in the harmonic

map heatflow is a quasi-static modulated stationary solution; (ii) the full Landau–Lifshitz–

Gilbert problem has the same stationary profiles as the harmonic map heatflow.

Without specifying the rescaling factor R(t), yet we introduce the rescaled variable

ξ =
r

R(t)
,

which transforms (1.7) to

θξξ +
1

ξ
θξ − sin 2θ

2

(
1

ξ2
+ ϕ2

ξ

)
= β

(
R2θt − RR′ξθξ

)
+ α sin θ

(
R2ϕt − RR′ξϕξ

)
,

ϕξξ +
1

ξ
ϕξ +

sin 2θ

sin2 θ
ϕξθξ = β

(
R2ϕt − RR′ξϕξ

)
− α

sin θ

(
R2θt − RR′ξθξ

)
.

(3.1)

To solve this in the limit R → 0, we pose the expansion

θ ∼ θ0 + (βRR′ − αR2C ′)θ1 + · · · ,
ϕ ∼ ϕ0 + (βR2C ′ + αRR′)ϕ1 + · · · ,

where

θ0 = 2 arctan ξ, (3.2)

ϕ0 = C(t), (3.3)
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Figure 2. Regions for asymptotic analysis.

represent slow movement along the two-parameter family of equilibria θ = 2arctan(r/R)

and ϕ = C .

At the next order, we have

d2θ1

dξ2
+

1

ξ

dθ1

dξ
− cos 2θ0

ξ2
θ1 = −ξ dθ0

dξ
, (3.4)

d2ϕ1

dξ2
+

1

ξ

dϕ1

dξ
+

sin 2θ0

sin2 θ0

dθ0

dξ

dϕ1

dξ
= 1. (3.5)

These equations can both be solved exactly, but we omit the algebraic details since for

the matching we only need the asymptotic behaviour as ξ → ∞, viz.:

θ1 ∼ −ξ ln ξ + ξ, as ξ → ∞, (3.6)

ϕ1 ∼ 1

2
(ln ξ)ξ2 − 1

2
ξ2, as ξ → ∞. (3.7)

At this stage, both R(t) and C(t) are unspecified functions. They will be determined

through the matching of the inner (r ∼ R(t)) and outer regions (r ∼
√
T − t) (cf. Figure 2).

3.2 The outer region

To make the mechanics of the linearization and matching as transparent as possible, we

shall now change variables by linearizing around the south pole in the formulation (1.5):

(π − θ)eiϕ = u+ iv, w = −1.

This recovers

ut = β

(
urr +

1

r
ur − 1

r2
u

)
+ α

(
vrr +

1

r
vr − 1

r2
v

)
, (3.8)

vt = β

(
vrr +

1

r
vr − 1

r2
v

)
− α

(
urr +

1

r
ur − 1

r2
u

)
. (3.9)
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To solve this, we introduce z = u+ iv, whence

zt = (β − iα)

(
zrr +

1

r
zr − 1

r2
z

)
. (3.10)

This is simply the projection of the flow from the sphere on to the tangent plane at the

pole. Notice that in the respective limits we recover the modified linear heat equation

(α = 0) and Schrödinger equation (β = 0) on the tangent plane as appropriate.

To match the inner and outer regions, we first define the similarity variables

ξ =
r

R(t)
, τ = − ln(T − t), y = eτ/2r. (3.11)

To reduce confusion in what follows, we shall denote

df(t)

dt
= f′ and

df(τ)

dτ
= ḟ, thus

d

dt
f(τ) = eτḟ.

Under this change of variables, equation (3.10) becomes

zτ = Lz ≡ −y

2
zy + (β − iα)

(
zyy +

1

y
zy − 1

y2
z

)
. (3.12)

A solution for this equation is

z = σe−τ/2y

for any σ – this is just z = σr in (3.10). This corresponds to the eigenfunction of the

dominant eigenvalue of L, which governs the generic long-time behaviour of solutions

of (3.12). When we allow σ to vary slowly with τ, we obtain a series expansion for the

solution of the form

z ∼ e−τ/2
[
σ(τ)y + σ̇(τ)

(
(β − iα)

4

y
− 2y ln y

)
+ · · ·

]
as τ → ∞. (3.13)

We now see that the introduction of α non-zero does not affect the procedure for the

expansion.

Denoting σ(τ) = σr(τ) + iσi(τ), we introduce

λr + iλi ≡ (σ̇rβ + σ̇iα) + i(σ̇iβ − σ̇rα)

= (β − iα)(σ̇r + iσ̇i).
(3.14)
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We recover θ and ϕ through |z| = π − θ, arg z = ϕ and expand for small y:

|z| = eτ/2

√(
σry + λr

4

y
+ · · ·

)2

+

(
σiy + λi

4

y
+ · · ·

)2

,

π − θ ∼ e−τ/2

(√
λ2
r + λ2

i

4

y
+
σrλr + σiλi√
λ2
r + λ2

i

y + . . .

)
for small y, (3.15)

arg z = arctan

(
σiy + 4λiy

−1 + · · ·
σry + 4λry−1 + · · ·

)
,

ϕ ∼ arctan
λi

λr
+
σiλr − σrλi

λ2
r + λ2

i

y2

4
+ · · · for small y. (3.16)

Here and in what follows, one should be slightly careful interpreting all formulae involving

the arctan because of multi-valuedness. For future reference, we note that

arg z → arctan
σi

σr
for large y, (3.17)

arg z → arctan
λi

λr
= arctan

σ̇i

σ̇r
− arctan

α

β
for small y. (3.18)

3.3 The matching

In order to match the inner region to the outer, we first write the inner solution in the

similarity variables:

θ ∼ 2 arctan
(
e−τ/2 y

R

)
+ eτ

(
βRṘ − αR2Ċ

) (
−e−τ/2 y

R
ln

(
e−τ/2 y

R

)
+ e−τ/2 y

R

)
+ · · ·

∼ π − 2
Reτ/2

y
+ eτ/2

(
βṘ − αRĊ

) ( τ
2

+ lnR − 1
)
y + · · · , (3.19)

ϕ ∼ C +
(
βR2Ċ + αRṘ

)
eτ

(
e−τy2

R2
ln

(
e−τ/2y

R

)
− y2e−τ

R2

)
+ · · ·

∼ C − 1

2

(
βĊ + α

Ṙ

R

) ( τ
2

+ lnR − 1
)
y2 + · · · . (3.20)

The matching procedure now involves setting C and R such that the expansions (3.19)

and (3.20) agree with (3.15) and (3.16), respectively, to two orders in y:

θ : O(y−1) : 2Reτ/2 ∼ 4e−τ/2(λ2
r + λ2

i

)1/2
,

O(y) : −(βṘ − αRĊ)
( τ

2
+ lnR

)
eτ/2 ∼ e−τ/2 σrλr + σiλi

(λ2
r + λ2

i )
1/2
,

ϕ : O(y0) : C ∼ arctan

(
λi

λr

)
,

O(y2) : −1

2

(
βĊ + α

Ṙ

R

) ( τ
2

+ lnR
)

∼ 1

4

σiλr − σrλi

λ2
r + λ2

i

.
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To solve this, we set R = e−τp(τ) (with p(τ) algebraic in τ), and after rearranging terms,

we get ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ∼ 2
(
λ2
r + λ2

i

)1/2
,

C ∼ arctan

(
λi

λr

)
,

(
β(ṗ− p) − αpĊ

) ( τ
2

− ln p
)

∼ σrλr + σiλi

(λ2
r + λ2

i )
1/2
,

(
βpĊ + α(ṗ− p)

) ( τ
2

− ln p
)

∼ σiλr − σrλi(
λ2
r + λ2

i

)1/2
.

(3.21)

Since p is defined not to change exponentially fast in τ, we neglect the terms of O(ln p).

Using the definition of λ, we may simplify (3.21) to get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ∼ 2(σ̇2
r + σ̇2

i )
1/2,

C ∼ arctan
σ̇i

σ̇r
− arctan

α

β
,

τ

4
p(ṗ− p) ∼ β(σrλr + σiλi) + α(σiλr − σrλi) = σrσ̇r + σiσ̇i ,

τ

4
p2Ċ ∼ β(σiλr − σrλi) − α(σrλr + σiλi) = σiσ̇r − σrσ̇i .

(3.22)

Finally, we introduce C̃ = C + arctan α
β
, so that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p ∼ 2
(
σ̇2
r + σ̇2

i

)1/2
,

C̃ ∼ arctan
σ̇i

σ̇r
,

τ

4
p(ṗ− p) ∼ σrσ̇r + σiσ̇i ,

τ

4
p2 ˙̃
C ∼ σiσ̇r − σrσ̇i ,

(3.23)

which is independent of α and β. This formulation strongly suggests that the case α =

1, β = 0 is not different from the dissipative case β > 0. Before solving and studying the

system (3.23), let us recall what its solutions tell us: p(τ) gives an algebraic correction to

the blowup rate, C̃(τ) determines the local behaviour of ϕ near blowup and σ describes

the amplitude and orientation of the solution in self-similar coordinates, see (3.17),(3.18).

In order to fully understand blowup, we need to solve for the blowup coordinates and

determine their stability.

The blowup solution is represented by σi(τ) = cσr(τ) for some constant c ∈ � (or

c = ∞, i.e. σr = 0), with tan C̃ = c. In particular, equations (3.17) and (3.18) show that

there is an angle π − arctan α
β

between the sphere bubbling off and the solution remaining

at/after blowup, see Figure 3.

By rotating the sphere, we may take C̃ = 0 without loss of generality, i.e. σi = σ̇i = 0

and σ̇r > 0 (note the sign), see (3.23). The blowup dynamics is described by

(σ̈r − σ̇r)τ = σr , (3.24)
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Figure 3. The tangent plane at the south pole can be identified with the complex plane. The thick

curve represents z(t, ·) for a time near blowup. The angle between the solution in the inner scale

(which bubbles off) and the remote scale (which remains) is indicated.

and p = 2σ̇r > 0. This equation has general solutions of the form

σr = k1τe
τ + k2f(τ), where f(τ) ∼ 1

τ
as τ → ∞.

We can immediately set k1 ≡ 0 as this “instability” reflects shifts in the blowup time and

hence is not a real instability – this is common to all blowup problems [32]. We note that

k2 < 0 so that indeed σ̇r > 0 as τ → ∞, and p ∼ −2k2τ
2 > 0. This implies that σr < 0,

hence arg z → π for large y (cf. Figure 3).

At this stage, we have an asymptotic description of the blowup rate and its local

structure. Unfortunately, we do not have enough information to determine stability. To

more carefully understand the dynamics of this system, we need to linearize about this

leading order solution to find the subsequent corrections σ1r , σ1i, p1 and C̃1 in σr , σi, p

and C̃ , respectively. Taking σ0r = f(τ) ∼ k2/τ, σ0i = 0, p0 = 2f′(τ) ∼ −2k2/τ
2, C̃0 = 0, we

get as the system for the next order⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p0p1 = 4σ̇0rσ̇1r ,

C̃1 =
σ̇1i

σ̇0r
,

τ

4
(p1ṗ0 + p0ṗ1 − 2p0p1) = σ0rσ̇1r + σ1rσ̇0r ,

τ

4
p2

0
˙̃
C1 = σ1iσ̇0r − σ0rσ̇1i ,

(3.25)

which separates into two systems. The first one is (using p0 = 2σ̇0r)⎧⎨⎩ p1 = 2σ̇1r ,

τ

2
(p1σ̈0r + σ̇0rṗ1 − 2σ̇0rp1) = σ0rσ̇1r + σ̇0rσ1r ,

(3.26)

which, using that σ0r solves (3.24), reduces to

(σ̈1r − σ̇1r)τ = σ̇1r ,
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the same equation as for σ0r , and provides no additional information. The other system is⎧⎪⎨⎪⎩
C̃1 =

σ̇1i

σ̇0r
,

τσ̇2
0r

˙̃
C1 = σ1iσ̇0r − σ0rσ̇1i ,

(3.27)

which can be rewritten as

τ(σ̇0rσ̈1i − σ̇1iσ̈0r) = σ1iσ̇0r − σ0rσ̇1i ,

or, again using that σ0r solves (3.24),

(σ̈1i − σ̇1i)τ = σ̇1i ,

i.e., once again equation (3.24). The asymptotic behaviour of σ1i and C̃ is thus given by

(κ1, κ2 ∈ �)

σ1i ∼ κ1

τ
+ κ2τe

τ,

C̃1 ∼ −τσ1i ∼ −κ1 − κ2τ
2eτ,

where the exponentially growing terms show that blowup is unstable (the neutral mode

corresponds to a (fixed, time-independent) rotation of the sphere).

4 Numerical computations

To supplement the formal analysis above, we now present some numerical experiments in

the radial, equivariant and fully two-dimensional cases.

4.1 Numerical methods

To reliably numerically simulate potentially singular solutions to (1.3), one needs to use

adaptivity in both time and space as well satisfy the constraint |m(x, t)| = 1. For the

former, we use r-adaptive numerical methods as described in [12]. This approach is based

on the moving mesh PDE approach of Huang and Russell [23] combined with scale-

invariance and the Sundman transformation in time. The expository paper [12] provides

many examples of this method being effective for computing blowup solutions to many

different problems. For the latter, we can either use formulation (1.5) and use a projection

step or regularize the Euler angle formulation (1.7). We have implemented both and

found little difference in efficiency or accuracy and hence will use formulation (1.5) for

all but Example 1 as it directly follows the above asymptotic analysis and requires no

regularization.

Full two-dimensional calculations have only been performed in the case of formulation

(1.3) and on the unit disk. This latter fact is for numerical convenience and in no way affects

the structure of local singularities (should they arise). Here adaptivity was performed using

the parabolic Monge–Ampere equation as described in [11]. The projection performed
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was first used in [16], where the system is integrated explicitly as

v = F(un, xn),

xn+1 = G(un, xn),

then set

un+1 =
v

|v| .

We checked and no steps had ∑
|un|2 − 1

N2
> 1e− 6.

Any potential problems near the singularity are mitigated by the transformation in

time.

4.2 Numerical results

In this Section, we present a sequence of numerical experiments to validate the results

above. For examples 1–3, we used N = 201 spatial points, the monitor function

M = |∇m| +

∫
Ωc

|∇m| dx

and took
dt

ds
=

1

||M||∞
as the rescaling between computational time s and physical time t. Example 4 was

computed on a 61 × 61 grid using the same monitor functions. Here, we took |∇m| =√
u2
r + v2r + w2

r when using form (1.5) in radial coordinates, |∇m| = |θr| when using form

(1.8) and the Cartesian gradient when solving the problem in two dimensions. In one

dimension, the computational domain Ωc = [0, 1] and in two dimensions Ωc is the unit

disk. In both cases, the integral in the monitor function is computed in the physical

variables.

All computations have been performed with β > 0 as the dissipativity greatly re-

duces the numerical stiffness. This is a consequence of the spatial adaptation scheme

employed wherein the moving grid can cause small solution oscillations, which slows the

timestepping.

Example 1. The radial harmonic map heatflow

The first example we will consider is equation (1.8) with initial data

θ0(r) = 4
3
πr. (4.1)

This case has been proven to blowup with known structure [13, 34] and asymptotically

calculated rate R(t). Figures 4 and 5 demonstrate the method and show how the adaptive

scheme follows the emerging similarity structure in the underlying evolution. Figure 6
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Figure 4. Left: physical grid on which the solution was computed. Right: computational grid in

the region of ξ = 0. Notice there is a region of essentially constant in ξ grid trajectories in this

region. Some trajectories are leaving this region as ξ = r/R and R → 0+. Note, in both figures only

every fifth grid trajectory is plotted.

Figure 5. Left: solution on physical grid at selected times. Right: solution on computational grid

at same times. This clearly shows that the blowup region is very well resolved.

shows excellent agreement with the analytical prediction of convergence to the arctan

profile with R(t) changing over twelve orders of magnitude.

Example 2. Equivariant harmonic map heatflow

First, we reconsider the example above but using equation (1.5) with the harmonic map

case α = 0, β = 1. We take the same initial as (4.1) and set

u(0, t) = v(0, t) = sin
(

4
3
πr

)
/
√

2, and w(0, t) = cos
(

4
3
πr

)
.
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Figure 6. Evolution in the rescaled spatial variable. The solutions converge to the rescaled arctan

profile, θ̄ = 2 arctan(r/2R) as predicted (plotted under the numerical solutions).

Figure 7. Blowup of initial data (4.1) computed using (1.5). Left: evidence of blowup. Right:

computational grid. Note that is very similar to Figure 4 except that we cannot compute as far into

the blowup.

In Figures 7 and 8, we see the same behaviour as observed above. This is not surprising

but a reassuring test of the numerics.

We now consider equation (1.5) with α = 0 and β = 1 for a family of initial data

determined via stereographic projection

(uγ, vγ, wγ) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,

−1 + x2 + y2

1 + x2 + y2

)
, (4.2)

where

x = tan(−π/2 + rπ), and y = tan(−π/2 + γπ), for γ ∈ [0, 1],

which covers the sphere as γ varies. From the discussion of Section 2, we would expect

blowup for a single value of γ and decay to the stationary solution in all other cases.
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Figure 8. Blowup of initial data (4.1) computed using (1.5). Left: θ = arctan(
√
u2 + v2/w). Note

that it again converges to the rescaled arctangent profile. The initial data are not monotone in r as

now there is also a rotation in ϕ. Right: solutions u, v, w over time.

Figure 9. Left: ‖∇m‖∞ as a function of γ (for γ = 0.5, the computation was stopped when

‖∇m(·, t)‖∞ = 1e8). Right: growth and decay of ‖∇m(·, t)‖∞ over time for a sequence of values of

0 � γ � 0.5 (in this case, the dynamics is symmetric about γ = 1/2).

Figure 9 shows max(r,t) |∇m| as a function of the parameter γ for a sequence of values of

γ and initial data (4.2).

Example 3. Full Landau–Lifshitz–Gilbert (α > 0). We now consider the full Landau–

Lifshitz–Gilbert equation with α � 0 and β =
√

1 − α2 � 0. Figure 10 shows snapshots

in time for α = 1/
√

2 and β = 1/
√

2 as well as max(r) |∇m| over time for a sequence of

values of γ in (4.2). There is no qualitative difference to the case β = 1, α = 0.

Example 4. Full Landau–Lifshitz–Gilbert (α > 0) in 2 dimensions. We now consider the

full Landau–Lifshitz–Gilbert equation with α > 0 and β > 0. Figure 11 shows snapshots

in time for α = 1/2, β =
√

3/2 with initial data (4.2) and γ = 0.25 and a small non-radial

perturbation. Figure 12 shows snapshots in time for α = 1/2, β =
√

3/2 but now we

have taken a larger non-radial perturbation of (4.2) and varied γ until we had evidence

of blowup. Here ‖∇m‖∞ = maxj=1,...,3((∂1mj)
2 + (∂2mj)

2)1/2 changes almost four orders of

magnitude before the computation halts.
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Figure 10. Left: evolution of initial data (4.2) with γ = 0.612 . . . , α = 1/
√

2 and β = 1/
√

2. Right:

evolution of the maximum gradient for a sequence of values of γ with α = β = 1/
√

2.

Figure 11. (Colour online) Evolution of the first component m1 from non-radial initial data.

The (left) initial data, ‖∇m‖∞ = 23, (Centre) ‖∇m‖∞ = 387, (right) ‖∇m‖∞ = 12. Over time the

asymmetry grows before the solution converges towards the radially symmetric arctan profile.

Figure 12. (Colour online) Evolution of the first component m1 from non-radial initial data.

(Left) initial data, ‖∇m‖∞ = 28, (Centre) ‖∇m‖∞ = 953 (Right), ‖∇m‖∞ = 9.3e4.

Even though the analysis above is for radial initial data, we can find solutions that lead

to blowup with carefully tuned parameters specific to given non-radial initial data. This

is not necessarily a true blowup solution but rather a numerical one in the sense that it

focuses to such a degree that we cannot continue the computation.
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5 Behaviour of near-blowup solutions

Instability leads to a reconfiguration described by a quick rotation of the sphere that had

almost bubbled off. The derivation and asymptotics of this quick rotation are presented

in Section 5.1 below. This is highly relevant for the problem of continuing the exceptional

solution that does blowup after its blowup time, as explained in Section 5.3.

5.1 The quick rotation

Here, we present the asymptotics of near-blowup solutions. The inner scale (in the domain;

it describes a sphere in the image, or a semicircle in equivariant coordinates) is given by

the usual ξ = r/R(t) with

θ ∼ 2 arctan ξ + (βR′R − αR2C ′)[ξ − ξ ln ξ] for large ξ,

and

ϕ = C(t) + (βR2C ′ + αR′R)

[
1

2
ξ2(ln ξ − 1)

]
for large ξ.

For the outer scale (representing a small neighbourhood of the south pole S in the image),

we introduce a fast time scale t = T + ε2t̃. On this time scale, the dynamics takes place

at a small spatial scale r = εr̃, but large compared to R(t), i.e., R � ε � 1, where the

solution is described by (z representing coordinates in the tangent plane at the south pole

as in Section 3.2)

zt̃ = (β − αi)

(
zr̃r̃ +

1

r̃
zr̃ − 1

r̃2
z

)
,

with solution (σ = σr + iσi and γ = γr + iγi)

z = σ(̃t)r̃−1 + γ(̃t)r̃ + · · · .

Looking at the modulus and argument of z, we obtain for small r

|z| ∼
√
σ2
r + σ2

i r
−1 +

σrγr + σiγi√
σ2
r + σ2

i

r,

and

argz = arctan
σi

σr
+
σrγi − σiγr

σ2
i + σ2

r

r2.

Matching |z| to π − θ and arg z to ϕ, the matching conditions read

|z| : r̃−1 : 2ε−1R ∼
(
σ2
r + σ2

i

)1/2
,

r̃1 : −ε−1(βR′ − αRC ′) lnR ∼ σrγr + σiγi(
σ2
r + σ2

i

)1/2
,

argz : r̃0 : C ∼ arctan
σi

σr
,

r̃2 : −1

2
(βC ′ + αR′R−1) lnR ∼ σrγi − σiγr

σ2
r + σ2

i

.
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In the remote region, we have z(r) ∼ qr for small r for some q ∈ �, where q ∼ σ ∼ k2/τ

is small close to blowup, as explained in Section 3. And as before, by rotating the sphere

we may assume that q = −q0, with q0 > 0 real. By matching it follows that z(r̃) ∼ −q0εr̃

for large r̃, hence γr ≈ −εq0 and γi ≈ 0.

Hence, by rearranging the terms, we obtain

2ε−1R ∼
(
σ2
r + σ2

i

)1/2
,

C ∼ arctan
σi

σr
,

ε−1R′ ln(1/R) ∼ −βσrq0ε+ ασiq0ε(
σ2
r + σ2

i

)1/2
,

ε−1C ′R ln(1/R) ∼ βσiq0ε+ ασrq0ε(
σ2
r + σ2

i

)1/2
.

Let us again remove α and β from the formulas by setting μr = ασr−βσi and μi = βσr+ασi.

In complex notation: μr + μii = (β + αi)(σr + σii). Furthermore, write C̃ = C + arctan α
β
.

This leads to

2ε−1R ∼
(
μ2
r + μ2

i

)1/2
,

C̃ ∼ arctan
μi

μr
,

ε−2R′ ln(1/R) ∼ − μrq0(
μ2
r + μ2

i

)1/2
,

ε−2RC̃ ′ ln(1/R) ∼ μiq0(
μ2
r + μ2

i

)1/2
.

Looking at the matching conditions, we write μr = 2ε−1R cos C̃ and μi = 2ε−1R sin C̃ , with
dR
d̃t

= O(ε2), which we can neglect on this time scale. We are left with the dynamics of C̃ ,

determined by the remaining equation

dC̃

d̃t
=

q0ε
2

R ln(1/R)
sin C̃.

We see that the correct time scale is ε2 = R ln(1/R)
q0

, which is smaller the closer we are to

blowup (and the larger q0 is). Notice that indeed ε � R since q0 = O(1/ lnR) near blowup

as discussed before, demonstrating self-consistent separation of spatial scales. The angle

C̃ thus approaches ±π depending on the initial data, unless C̃ = 0. The quick rotation

due to the instability is described by dC̃
d̃t

= sin C̃ , and the solution, in the original time

variable, is C̃(t) = ±[ π
2

+ arctan[sinh(ε−2(t − T ) + c0))], with c0 ∈ �. This shows that

the blowup solution acts as a separatrix between rotations in two opposite directions, see

Figure 13. The dependence on α and β in this scale is only through the fixed rotation

C = C̃ − arctan α
β
.
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Figure 13. Left: in the (C̃, R) phase plane, the “stable manifold” of the blowup point acts as

separatrix. Right: geometrically, it is the boundary between a rotation over an angle π or −π.

Figure 14. (Left) γ < 0.5, (Centre) γ = 0.5, (Right) γ > 0.5. In this sequence, we plainly see the

role of the blowup solution as a separatrix. There is blowup for γ = 0.5 and rotation away form

blowup in opposite directions for γ < 0.5 than for γ > 0.5. Here, u and v have been plotted in the

spatiotemporal regime close to blowup.

5.2 Numerical investigation of near blowup

In the previous section, we saw solutions whose gradient grew dramatically and then

decayed as well as those that show blowup. We can investigate the near-blowup solutions

in the context of the previous subsection by plotting ϕ = arctan(v/u) in the region, where

the norm is large and also by plotting the dynamics in the (u, v)-plane. Figure 14 shows

the latter for three runs with α = 0 and β = 1 for three values of γ near the critical value

γ = 0.5. In the two cases with γ� 1/2, we see the initial motion towards the singularity

followed by decay to a regular equilibrium whereas γ = 1/2 leads to the separatrix blowup

behaviour. Similar behaviour is seen in the runs, seen in Figure 9.

5.3 Continuation after blowup

Starting from smooth initial data, solutions to (1.3) are unique as long as they are

classical, and finite-time blowup may indeed occur for the (radially symmetric) harmonic

map heatflow [13]. At a blowup point (in time), the strong solution terminates (at

least temporarily). On the other hand, it is known that weak solutions of (1.3) exist

globally in time [1, 7, 19, 33, 34]. It is well established that such weak solutions are not
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unique [1, 6, 15, 35]. It is thus of interest to come up with criteria that select the “most

appropriate” weak solution. In other words, how should one continue a solution after the

blowup time?

For the harmonic map heatflow in two dimensions it has been shown [17, 33] that one

uniqueness criterion is non-increasing energy

e(t) =
1

2

∫
D2

|∇m(t)|2 dx,

i.e., there is exactly one weak solution that has non-increasing energy e(t) for all t ∈ [0,∞).

Furthermore, the energy of a solution jumps down by at least 4π at a singularity.

The co-dimension one character of blowup and our analysis of near-blowup solutions

in Section 5.1 lead us to propose a different scenario for continuation after blowup. It has

the important advantage of continuous dependence on initial data for times after blowup.

The scenario is identical for all parameter values α and β. Namely, consider an equivariant

solution of (1.3) that blows up as t ↑ T . The blowup behaviour is characterized by a

length scale R(t) → 0 as t ↑ T and

ϕ(r, t) → ϕ and θ(r, t) ∼ 2 arctan
r

R(t)
for r = O(R(t)) as t ↑ T ,

i.e., geometrically speaking a sphere bubbles off at t = T . Based on the analysis of

near-blowup solutions, we propose to continue the solution for t > T by immediately

re-attaching the sphere, rotated over an angle π with respect to the bubbled-off sphere:

ϕ(r, t) → ϕ+ π as t ↓ T ,

with θ(r, t) ∼ 2 arctan r

R̃(t)
for r = O(R̃(t)), and R̃(t) → 0 as t ↓ T . By rotating the

re-attached sphere (also referred to as a reverse bubble [35]) over an angle π, this

continuation framework leads to continuous dependence on initial data, since nearby

solution that avoids blowup undergoes a rapid rotation over an angle π, as derived in

Section 5.1.

A solution, that is continued past blowup through the re-attachment of a rotated sphere,

does not have a monotonically decreasing energy e(t). However, the renormalized energy

e(t) =

{
e(t) for t�T ,

e(T ) + 4π for t = T ,

is continuous and decreases monotonically.

In the radially symmetric harmonic map heatflow case described by (1.8), this scenario

corresponds to

θ(0, t) =

⎧⎨⎩
0 for t < T ,

π for t = T ,

2π for t > T .

For this particular case, it has been proved (R. van der Hout, 2010, personal communica-

tion, written) that such a re-attachment leads to a unique solution for t > T . For general

equivariant solutions of (1.3), such an assertion remains an open problem. Moreover, all
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conclusions in Sections 3 and 5, as they follows from formal matched asymptotics, require

mathematically rigorous justification.

6 Other n � 2

We now summarize the calculations for n = 2, 3, . . . , following the same methodology as

for n = 1, but now the formulas are simpler (since only the first term in the expansion in

the outer scale is needed). As analysed in [36], for n � 2 blowup is in infinite time. We

shall only consider blowup with one sphere bubbling off (i.e. θ1 ∈ (π, 2π]) in the harmonic

map flow case; the adaptation to the general case (α� 0) is analogous to Sections 3 and 5.

The θ-component of the large ξ asymptotics in the inner scale was already calculated

in [36]:

θ ∼ π − 2ξ−n +
(
βR′R − α

n
R2C ′) ( n

2n− 2
ξ−n+2 − Enξ

n
)
,

with

En =

∫ ∞

0

s2n+1

(1 + s2n)2
ds =

π

2n2 sin π
n

.

With n � 2, equation (3.5) for ϕ1 is now replaced by

ϕ1ξξ +
(2n+ 1) − (2n− 1)ξ2n

ξ(1 + ξ2n)
ϕ1ξ = 1.

Using the boundary condition ϕ1ξ(0) = 0, we find

ϕ1ξ =
ξ−2n + 2 + ξ2n

ξ

∫ ξ

0

s2n+1

(1 + s2n)2
ds,

which has asymptotic behaviour ϕ1ξ ∼ Enξ
2n−1 − 1

2n−2
ξ as ξ → ∞. We thus find that

ϕ ∼ C + (βR2C ′ + αnR′R)

(
En

2n
ξ2n − 1

4(n− 1)
ξ2

)
.

Since the blowup for n � 2 occurs as t → ∞, the outer variables are just the O(1) t and r

(i.e. not self-similar), and the equation becomes

zt = (β − iα)

(
zrr +

1

r
zr − 1

r2
z

)
.

The solution is asymptotically given by (with γ and σ complex valued)

z = γ(t)rn + σ(t)r−n + · · · .

This solution needs to match into the remote region, where ϕ = π, θ = π − 2 arctan q0r
n,

with q0 = tan π−θb
2

. Hence γ ≈ −q0 ∈ �.
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This leads to the matching conditions (see also Section 5.1):

|z| : r−n : 2Rn ∼
(
σ2
r + σ2

i

)1/2
,

rn : (βR′R1−n − α

n
R2−nC ′)En ∼ − σrq0(

σ2
r + σ2

i

)1/2
,

argz : r0 : C ∼ arctan
σi

σr
,

r2n :
1

2n
(βR2−2nC ′ + αnR′R1−2n)En ∼ σiq0

σ2
r + σ2

i

.

As before, let us transform the equation to remove the explicit dependence on α and β by

setting λr + λii = (β + αi)(σr + σi). Furthermore, write C̃ = C + arctan α
β

to obtain

2Rn ∼ |λ|,
C̃ ∼ argλ,

2R2C̃ ′En ∼ nλiq0,

2RR′En ∼ −λrq0.

Hence, λr = 2Rn cos C̃ and λi = 2Rn sin C̃ and the remaining system is

C̃ ′ =
nq0

En
Rn−2 sin C̃,

R′ = − q0

En
Rn−1 cos C̃,

from which we easily conclude that blowup is unstable, since the equilibria R = 0 and

C̃ = kπ are all unstable (in the C̃ direction if k is even, and in the R direction if k is odd).

7 Conclusions

In this paper, we have clearly demonstrated that blowup in the full Landau–Lifshitz–

Gilbert equation is possible but that it is not generic. Instead, we have identified finite-time

blowup as a co-dimension one phenomenon possible only for specially chosen initial data.

It is analogous to a saddle point along whose unstable manifold the flow is much slower

than on the stable one. This means that while actual finite-time blowup occurs for initial

data on a set of measure zero, there is a wide set of initial data for which the solution

gradient does increase significantly and may appear to blow up in numerical simulation.

While we agree with the results in [4, 26] about discrete blowup in this equation, their

computations do not indicate generic blowup in the continuous problem. Blowup in this

problem corresponds to energy concentration at small scales and so will vanish on any

fixed grid with limited resolution. The numerical results in [4] show changes in energy of

little more than one order of magnitude and are resolution limited with h = 1/64. Instead

of continuous blowup, growth in those results halts when the solution can no longer be

resolved and the authors carefully chose to call that discrete blowup [4].

In many other problems, this would not be an issue as blowup typically occurs only

because some small-scale physical effects (surface-tension, high-order diffusion, saturation,
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etc.) have been neglected. In those cases, blowup means loss of model validity. However,

in this problem, it is the geometry of the target manifold that leads to the singularity and

it cannot be avoided by simply adding a regularizing term.
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