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A LOGICAL AND ALGEBRAIC CHARACTERIZATION OF
ADJUNCTIONS BETWEEN GENERALIZED QUASI-VARIETIES

TOMMASOMORASCHINI

Abstract. We present a logical and algebraic description of right adjoint functors between generalized
quasi-varieties, inspired by the work of McKenzie on category equivalence. This result is achieved by
developing a correspondence between the concept of adjunction and a new notion of translation between
relative equational consequences.

The aim of the article is to describe a logical and algebraic characterization of
adjunctions between generalized quasi-varieties.1 This characterization is achieved
by developing a correspondence between the concept of adjunction and a newnotion
of translation, called contextual translation, between equational consequences rela-
tive to classes of algebras. More precisely, given two generalized quasi-varieties K
andK′, every contextual translation of the equational consequence relative toK into
the one relative to K′ corresponds to a right adjoint functor from K′ to K and vice-
versa (Theorems 3.5 and 4.3). In a slogan, contextual translations between relative
equational consequences are the duals of right adjoint functors. Examples of this
correspondence abound in the literature, e.g., Gödel’s translation of intuitionistic
logic into the modal system S4 corresponds to the functor that extracts the Heyting
algebra of open elements from an interior algebra (Examples 3.3 and 3.6), and
Kolmogorov’s translation of classical logic into intuitionistic logic corresponds to
the functor that extracts the Boolean algebra of regular elements out of a Heyting
algebra (Examples 3.4 and 3.6).
The algebraic aspect of our characterization of adjunctions is inspired by thework
of McKenzie on category equivalences [24]. Roughly speaking, McKenzie discov-
ered a combinatorial description of category equivalence between prevarieties of
algebras (here Theorem 2.14). In particular, he showed that if two prevarieties K
and K′ are categorically equivalent, then we can transform K into K′ by apply-
ing two kinds of deformations to K. The first of these deformations is the matrix
power construction. The matrix power with exponent n ∈ � of an algebra A is
a new algebra A[n] with universe An and whose basic m-ary operations are all n-
sequences of (m × n)-ary term functions of A, which are applied component-wise.
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900 TOMMASOMORASCHINI

The other basic deformation is defined by means of idempotent and invertible
terms, see Example 2.11. This algebraic approach to category equivalences has
been reformulated in categorical terms in [27,28] and has an antecedent in [12].
Building on McKenzie’s work and on the theory of locally presentable categories
[3], we show that every right adjoint functor between generalized quasi-varieties can
be decomposed into a combination of two deformations that generalize the ones
devised in the special case of category equivalence. These deformations are matrix
powers with (possibly) infinite exponent and the following construction. Given an
algebra A, we say that a set of equations � in a single variable is compatible with a
sublanguageL of the languageofA if the set of solutions of � inA is closed under the
restriction of the operations inL . In this case we let �L (A) be the algebra obtained
by equipping the set of solutions of � in A with the restriction of the operations in
L . The main result of the article shows that every right adjoint functor between
generalized quasi-varieties is, up to a natural isomorphism, a composition of the
matrix power construction and of the �L construction (Theorem 5.1). Moreover,
every functor obtained as a composition of these deformations is indeed a right
adjoint. This result can be seen as a purely algebraic formulation of the classical
description of adjunctions in categories with a free object, which can be traced back
at least to [14] (Remark 5.5).

§1. Algebraic preliminaries. For information on standard notions of universal
algebra we refer the reader to [6,9,25]. Given an algebraic languageL and a set X ,
we denote the set of terms over L built up with the variables in X by Tm(L , X ),
and the corresponding absolutely free algebra by Tm(L , X ). We also denote the set
of equations built up from X by Eq(L , X ). Formally speaking, equations are pairs
of terms, i.e., Eq(L , X ) := Tm(L , X )×Tm(L , X ). When the languageL is clear
from the context, we simply write Tm(X ), Eq(X ) and Tm(X ). Sometimes we write
Tm(L , κ) to stress the cardinality κ of the set of variables. The same convention
applies to equations and term algebras. Given two cardinals κ and �, we denote
their Cartesian product by κ × �. We denote the set of natural numbers by �.
We denote the class operators of isomorphism, homomorphic images, subalge-
bras, direct products, (isomorphic copies of) subdirect products and ultraproducts,
respectively, by I, H, S, P, P

sd
and P

u
. We assume that product-style class operators

admit empty set of indexes and give a trivial algebra as a result. We denote algebras
by bold capital letters A, B, C , etc. (with universes A, B, C , etc.). Given a class of
algebras K, we denote its language byLK.
Given an algebraic languageL , a generalized quasi-equationΦ is an expression

Φ = (
∧
i∈I
αi ≈ �i)→ ϕ ≈ 	,

where I is a possibly infinite set and αi ≈ �i and ϕ ≈ 	 are equations. A quasi-
equation is a generalized quasi-equation in which the set I is finite. Given an algebra
A, we say that a generalized quasi-equation Φ holds in A, in symbols A � Φ, if for
every assignment 
a ∈ A we have that

if αAi (
a) = �
A
i (
a) for all i ∈ I , then ϕA(
a) = 	A(
a).
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A prevariety is a class of algebras axiomatized by (a class of) arbitrary generalized
quasi-equations or, equivalently, a class closed under I,S andP. A generalized quasi-
variety is a class of algebras axiomatized by (a set of) generalized quasi-equations
whose number of variables is bounded by some infinite cardinal.2 These can be
equivalently characterized [7] as the classes of algebras closed under I,S,P and Uκ
(for some infinite cardinal κ), where for every class of algebras K,

Uκ(K) := {A : B ∈ K for every κ-generated subalgebra B ≤ A}.
It is well known that a quasi-variety is a class of algebras axiomatized by quasi-
equations or, equivalently, a class closed under I, S, P and P

u
. A variety is a class

of algebras axiomatized by equations or, equivalently, closed under H, S and P.
Given a class of algebras K, we denote by GQκ(K) the models of the generalized
quasi-equations in κ-many variables that hold in K and, respectively, by Q(K) and
V(K) the quasi-variety and the variety generated by K. It is well known that

GQκ(K) = UκISP(K) Q(K) = ISPP
u
(K) V(K) = HSP(K).

Given a class of algebras K and a set X , we denote by TmK(X ) the free algebra
in K with free generators X . In general the free algebra TmK(X ) is constructed as
a quotient of the term algebra Tm(X ) and its elements are congruence classes of
terms equivalent in K. Sometimes we identify the universe of TmK(X ) with a set
of its representatives, i.e., with a set of terms in variables X . It is well known that
prevarieties contain free algebras with arbitrary large sets of free generators.
Given a class of algebras K and an algebra A, we say that a congruence � of A is
a K-congruence if A/� ∈ K, and denote the collection of K-congruences by ConKA.
In particular, we will denote by �� : A → A/� the canonical surjection. If K is a
prevariety, then ConKA forms a closure system when ordered under the inclusion
relation. We denote by CgAK the closure operator of generation of K-congruences.
Given a class of algebras K and Φ ∪ {ε ≈ 
} ⊆ Eq(X ), we define

Φ �K ε ≈ 
 ⇐⇒ for every A ∈ K and every h : Tm(X )→ A
if hϕ = h	 for every ϕ ≈ 	 ∈ Φ, then hε = h
.

The relation �K is called the equational consequence relative to K. The function
CK : P(Eq(X ))→ P(Eq(X )) defined by the rule

CK(Φ) := {ε ≈ 
 : Φ �K ε ≈ 
}, for every Φ ⊆ Eq(X )
is a closure operator over Eq(X ). If K is a prevariety, then the set of fixed points
of CK : P(Eq(X )) → P(Eq(X )) coincides with ConKTm(X ). Now let K be a
quasi-variety and A an arbitrary algebra. The lattice ConKA is algebraic and its
compact elements CompKA are the finitely generated K-congruences. In particular,
the closure operatorCgAK is finitary.An algebraA ∈ K isK-finitely presentable if there
is some n ∈ � and � ∈ CompKTmK(n) such that A is isomorphic to TmK(n)/�.

2It is worth remarking that both the existence and the nonexistence of a prevariety that is not a
generalized quasi-variety are consistent (relative to large cardinals) with von Neumann–Bernays–Gödel
class theory (NGB) with the Axiom of Choice. In fact in NBG the assumption that every prevariety is a
generalized quasi-variety is equivalent to the Vopěnka Principle, which states that every class of pairwise
nonembeddable models of a first-order theory is a set [1] (see also [16, Proposition 2.3.18]).
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For standard information on category theory we refer the reader to [2,5,21], while
for categorical universal algebra see [3,4]. Let κ be a regular cardinal and let K be a
locally small category. An objectA inK is κ-presentable if the functor hom(A, ·) pre-
serves κ-directed colimits. In generalized quasi-varieties the κ-presentable objects
can be described as follows:

Lemma 1.1. Let κ be a regular cardinal and K be a generalized quasi-variety
axiomatized by generalized quasi-equations in less than κ variables. An algebraA ∈ K
is κ-presentable in the categorical sense if and only if it is (isomorphic to) a quotient
of TmK(�) under a �-generated K-congruence for some �, � < κ.

Let κ be a regular cardinal and K be a locally small category. K is locally κ-
presentable [3] if it is cocomplete, and has a set J of κ-presentable objects such
that every object in K is a κ-directed colimit of objects in J . Moreover, K is locally
presentable if it is locally κ-presentable for some regular cardinal κ. Generalized
quasi-varieties, equipped with homomorphisms, can be seen as categories.3

Lemma 1.2. Generalized quasi-varieties are locally presentable categories.

Adámek and Rosický proved in [3, Theorem 1.66] the following characterization
of right adjoint functors between locally presentable categories. By Lemma 1.2 it
applies to generalized quasi-varieties as well.

Theorem 1.3 (Adámek and Rosický). A functor between locally presentable cate-
gories is right adjoint if and only if it preserves limits and κ-directed colimits for some
regular cardinal κ.

Given two prevarieties X and Y, the functors F : X ←→ Y : G, where F sends
everything to the initial object and G sends every object to the terminal object,
always form an adjunction F 
 G. We call the adjunctions of this kind trivial. In
particular, we say that a left (resp. right) adjoint functor between prevarieties is
trivial if it sends everything to the initial (resp. terminal) object.

§2. The two basic deformations. In this section we describe two general methods
to deform a given generalized quasi-variety, obtaining a new generalized quasi-
variety that is related to the first one by an adjunction. The first deformation that
we consider is just an infinite version of the usual finite matrix power construction.
Let X be a class of similar algebras and κ be a cardinal. Then observe that every
term ϕ ∈ Tm(κ) induces a map ϕ : Aκ → A for every A ∈ X.

Definition 2.1. Let κ > 0 be a cardinal and X a class of similar algebras. Then
L κ

X is the algebraic language whose n-ary operations (for every n ∈ �) are all
κ-sequences 〈ti : i < κ〉 of terms ti of the language of X built up with variables

{xjm : 1 ≤ m ≤ n and j < κ}.
Observe that each ti has a finite number of variables, possibly none, of each sequence

xm := 〈xjm : j < κ〉 with 1 ≤ m ≤ n. We will write ti = ti (
x1, . . . , 
xn) to denote this
fact.

3If the language of a generalized quasi-variety K contains no constant symbols, then (when seen as a
category) K is assumed to contain the empty algebra as an object.
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Example 2.2. Consider the variety of bounded distributive lattices DL01.
Examples of basic operations ofL 2

DL01
are

〈x1, x2〉 
 〈y1, y2〉 := 〈x1 ∧ y1, x2 ∨ y2〉,
〈x1, x2〉 � 〈y1, y2〉 := 〈x1 ∨ y1, x2 ∧ y2〉,

¬〈x1, x2〉 := 〈x2, x1〉,
1 := 〈1, 0〉,
0 := 〈0, 1〉.

Definition 2.3. Consider an algebra A ∈ X and a cardinal κ > 0. We let A[κ]

be the algebra of type L κ
X with universe A

κ where a n-ary operation 〈ti : i < κ〉 is
interpreted as

〈ti : i < κ〉(a1, . . . , an) = 〈tAi (a1/
x1, . . . , an/
xn) : i < κ〉
for every a1, . . . , an ∈ Aκ (the notation am/
xm means that we are assigning the
tuple am of elements of A to the tuple of variables 
xm). In other words 〈ti : i <
κ〉(a1, . . . , an) is the κ-sequence of elements ofA defined as follows. Consider i < κ.
Observe that only a finite number of variables occurs in ti , say

ti = ti(x
α11
1 , . . . , x

α1m1
1 , . . . , x

αn1
n , . . . , x

αnmn
n ),

where α11 , . . . , α
1
m1 , . . . , α

n
1 , . . . , α

n
mn < κ. Then the i-th component of the sequence〈ti : i < κ〉(a1, . . . , an) is

tAi (a1(α
1
1), . . . , a1(α

1
m1
), . . . , an(αn1 ), . . . , a1(α

n
mn )).

If X is a class of similar algebras, we set

X[κ] := I{A[κ] : A ∈ X}
and call it the κ-th matrix power of X.

Now, let [κ] be the map defined as follows:

A �−→ A[κ]
f : A→ B �−→ f [κ] : A[κ] → B [κ],

where f [κ]〈ai : i < κ〉 := 〈f(ai) : i < κ〉, for every A,B ∈ X and every
homomorphism f. It is easy to check that the map f [κ] : A[κ] → B [κ] is indeed
a homomorphism.

Example 2.4. In Example 2.2 we highlighted some operations of L 2
DL01
. Let

us explain how are they interpreted in the matrix power construction. Consider
A ∈ DL01. The universe of A[2] is just the Cartesian product A× A. We have that

〈a, b〉 
 〈c, d 〉 = 〈a ∧ c, b ∨ d 〉,
〈a, b〉 � 〈c, d 〉 = 〈a ∨ c, b ∧ d 〉,

¬〈a, b〉 = 〈b, a〉,
1 = 〈1A, 0A〉,
0 = 〈0A, 1A〉
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for every 〈a, b〉, 〈c, d 〉 ∈ A × A. Examples of matrix powers with infinite exponent
are technically, but not conceptually, more involved (see Example 5.7). �
Theorem 2.5. Let X be a generalized quasi-variety and κ > 0 a cardinal. If Y is
a generalized quasi-variety such that X[κ] ⊆ Y, then [κ] : X → Y is a right adjoint
functor.
Proof. It is not difficult to see that the map [κ] is a functor that preserves
direct products and equalizers. Since all limits can be constructed as combination
of products and equalizers, we conclude that [κ] preserves limits. Moreover, [κ]
preserves �-directed colimits for every regular cardinal �, larger than the number of
variables occurring in the generalized quasi-equations axiomatizing X and Y. With
an application of Theorem 1.3 we are done. 

Example 2.6 (Finite exponent). It is not difficult to see that if X is a class of
similar algebras and κ > 0, then the functor [κ] : X→ X[κ] is a category equivalence
(see for example [24, Theorem 2.3(i)] where this is stated under the assumption that
κ is finite). Moreover, when κ is finite, it happens that if X is a prevariety (or a
generalized quasi-variety, a quasi-variety, a variety), then so is X[κ]. �
In order to describe the second kind of deformation, we need the following:

Definition 2.7. Let X be a class of similar algebras and L ⊆ LX. A set of
equations � ⊆ Eq(LX, 1) is compatible with L in X if for every n-ary operation
ϕ ∈ L we have that

�(x1) ∪ · · · ∪ �(xn) �X �(ϕ(x1, . . . , xn)).

In other words � is compatible with L in X when the solution sets of � in X are
closed under the interpretation of the operations and constants inL .
Now we will explain how is it possible to build a functor out of a set of equations
� compatible withL ⊆ LX. For every A ∈ X, we let �L (A) be the algebra of type
L whose universe is

�L (A) := {a ∈ A : A � �(a)}
equipped with the restriction of the operations in L . We know that �L (A) is well-
defined, since its universe is closed under the interpretation of the operations inL
and contains the interpretation of the constants inL . Observe that by definition of
compatibility �L (A) can be empty if and only ifL contains no constant symbol.
Given a homomorphism f : A→ B in X, we denote its restriction to �L (A) by

�L (f) : �L (A)→ �L (B).
It is easy to see that �L (f) is a well-defined homomorphism. Now, consider the
following class of algebras:

�L (X) := I{�L (A) : A ∈ X}.
Let �L : X→ �L (X) be the map defined by the following rule:

A �−→ �L (A)
f : A→ B �−→ �L (f) : �L (A)→ �L (B).

It is easy to check that �L is a functor.
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Theorem 2.8. Let X be a generalized quasi-variety and � ⊆ Eq(LX, 1) a set of
equations compatible with L ⊆ LX. If Y is a generalized quasi-variety such that
�L (X) ⊆ Y, then �L : X→ Y is a right adjoint functor.

Proof. By Theorem 1.3 we know that the functor �L is a right adjoint if and
only if it preserves limits and κ-directed colimits for some regular cardinal κ. It
is easy to see that �L preserves direct products and equalizers and, therefore, all
limits. Moreover, �L preserves κ-directed colimits for every regular cardinal κ,
larger than the number of variables occurring in the generalized quasi-equations
axiomatizing X. 

A familiar instance of the above construction is the following:

Example 2.9 (Subreducts). Let X be a (generalized) quasi-variety andL ⊆ LX.
AnL -subreductof an algebraA ∈ X is a subalgebra of theL -reduct ofA. From [16,
Proposition 2.3.19] it is easy to infer that the class Y ofL -subreducts of algebras in
X is a (generalized) quasi-variety. For quasi-varieties this fact was proved byMaltsev
[23]. Consider the forgetful functor U : X→ Y. It is easy to see that U = �L where
� = Ø. From Theorem 2.8 it follows that U has a left adjoint. �

In the next examples we illustrate how the two deformations introduced so far
can be combined to describe right adjoint functors.

Example 2.10 (Kleene algebras). A Kleene algebra A = 〈A,
,�,¬, 0, 1〉 is a De
Morgan algebra in which the equation x
¬x ≤ y�¬y holds. We denote by KA the
variety of Kleene algebras and by DL01 the variety of bounded distributive lattices.
In [10] (but see also [17]) a way of constructing Kleene algebras out of bounded
distributive lattices is described. More precisely, givenA ∈ DL01, the Kleene algebra
G(A) has universe

G(A) := {〈a, b〉 ∈ A2 : a ∧ b = 0}
and operations defined as in Example 2.4. Moreover, given a homomorphism
f : A → B in DL01, the map G(f) : G(A) → G(B) is defined by replicating f
component-wise. It turns out that G : DL01 → KA is a right adjoint functor [10,
Theorem 1.7].
In order to decompose G into a combination of our two deformations, consider
the sublanguageL of the language of DL[2]01 , defined in Example 2.2. Consider also
the set of equations

� := {〈x1 ∧ x2, x1 ∧ x2〉 ≈ 〈0, 0〉} ⊆ Eq(LDL[2]01
, 1).

It is easy to see that � is compatible with L . Moreover, for every A ∈ DL01 and
a, b ∈ A we have that

〈a, b〉 ∈ G(A)⇐⇒ 〈a, b〉 ∈ �L (A).
Hence we conclude that �L (A[2]) = G(A) ∈ KA for every A ∈ DL[2]01 . This implies
that the functor G coincides with the composition �L ◦ [2], where [2] : DL01 →
DL[2]01 . �

Before concluding this section, we show that the deformations described until
now can be applied to decompose equivalence functors between prevarieties. This
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will make the connection with McKenzie’s work [24] explicit. To this end, let us
recall the definition of a special version of the �L construction.

Example 2.11 (Idempotent and invertible terms). Suppose that X is a prevariety
and �(x) a unary term. We say that �(x) is idempotent if X � ��(x) ≈ �(x) and
that �(x) is invertible if there are an n-ary term t and unary terms t1, . . . , tn such
that

X � t(�t1(x), . . . , �tn(x)) ≈ x.
Given a unary and idempotent term �(x) of X, we define

L := {�t : t is a basic symbol of X[1]}
and � := {x ≈ �(x)}. Moreover, we define

X(�) := �L (X[1]).

McKenzie proved that the functor � : X → X(�) defined as the composition
�L ◦ [1] is a category equivalence [24, Theorem 2.2(ii)]. Moreover, if X is a
prevariety (or a generalized quasi-variety, a quasi-variety, a variety), then so
is X(�). Following the literature, we will write A(�) instead of �(A) for every
A ∈ X. �

To introduce McKenzie’s characterization of category equivalence, we restrict to
prevarieties without constant symbols. It should be kept in mind that this restriction
is somehow immaterial, since, given a prevariety K, we can always replace the
constant symbols of K by constant unary operations obtaining a new prevariety K′

whose only difference with K is the presence of the empty algebra.
We need to recall some basic concepts [6, Definitions 4.76 and 4.77]:

Definition 2.12. Let X and Y be prevarieties without constant symbols. An
interpretation of X in Y is a map � : LX → Tm(LY, �) such that

1. � sends n-ary basic symbols to at most n-ary terms for every n � 1.
2. A� := 〈A, {�(�) : � ∈ LX}〉 ∈ X for every A ∈ Y.

Definition 2.13. Two prevarieties X and Y without constant symbols are term-
equivalent if there are interpretations � and � of X in Y and of Y in X, respectively,
such that for every A ∈ X and B ∈ Y,

(A� )� = A and (B�)� = B.

When two prevarieties X and Y without constant symbols are term-equivalent,
the map that sends A ∈ X to A� ∈ Y and that is the identity on arrows is a category
equivalence F� : X→ Y. Then we have the following [24, Theorem 6.1]:

Theorem 2.14 (McKenzie). If G : X → Y is a category equivalence between pre-
varieties without constant symbols, then there are a natural number n > 0 and a unary
idempotent and invertible term �(x) of X[n] such that

1. Y is term-equivalent to X[n](�) under some interpretation � of Y in X[n](�).
2. The functors G and F� ◦ (� ◦ [n]) are naturally isomorphic.
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§3. From translations to right adjoints. As we mentioned, our aim is to develop
a correspondence between the adjunctions between two generalized quasi-varieties
X and Y and the translations between the equational consequences relative to X and
Y. To simplify the notation, we will assume throughout this section that X and Y
are two fixed generalized quasi-varieties (possibly in different languages).

Definition 3.1. Consider a cardinal κ > 0. A κ-translation � ofLX intoLY is a
map fromLX toL κ

Y that preserves the arities of function symbols.

In other words, if a basic symbol ϕ ∈ LX is n-ary, we have that �(ϕ) = 〈ti : i < κ〉
for some terms ti = ti(
x1, . . . , 
xn) of language of Y, where 
xm = 〈xjm : j < κ〉. It is
worth remarking that � sends constant symbols to sequences of constant symbols.
Thus if LX contains a constant symbol, then also LY must contain one for a
translation to exist.
A κ-translation � extends naturally to arbitrary terms. Let us explain briefly how.
Given a cardinal �, let Tm(LX, �) be the set of terms of X written with variables in
{xj : j < �} and let Tm(LY, κ × �) be the set of terms of Y written with variables
in {xij : j < �, i < κ}. We define recursively a map

�∗ : Tm(LX, �)→ Tm(LY, κ × �)κ.
For variables and constants we set

�∗(xj) := 〈xij : i < κ〉, for every j < �,
�∗(c) := �(c).

For complex terms, let 	 ∈ LX be n-ary and ϕ1, . . . , ϕn ∈ Tm(LX, �). We have that
�(	) = 〈ti : i < κ〉 where ti = ti (
x1, . . . , 
xn). Keeping this in mind, we set

�∗(	(ϕ1, . . . , ϕn))(i) := ti(�∗(ϕ1)/
x1, . . . , �∗(ϕn)/
xn) for every i < κ.

The map �∗ can be lifted to sets of equations yielding a new function

�∗ : P(Eq(LX, �))→ P(Eq(LY, κ × �))
defined by the following rule:

Φ �−→ {�∗(ε)(i) ≈ �∗(
)(i) : i < κ and ε ≈ 
 ∈ Φ}.
Definition 3.2. Consider a cardinal κ > 0. A contextual κ-translation of �X into

�Y is a pair 〈�,Θ〉 where � is a κ-translation ofLX intoLY and Θ(
x) ⊆ Eq(LY, κ)
is a set of equations written with variables among {xi : i < κ} that satisfies the
following conditions:

1. For every cardinal � and equations Φ ∪ {ε ≈ 
} ⊆ Eq(LX, �) written with
variables among {xj : j < �},

if Φ �X ε ≈ 
, then �∗(Φ) ∪
⋃
j<�

Θ(
xj) �Y �
∗(ε ≈ 
).

2. For every n-ary operation 	 ∈ LX,

Θ(
x1) ∪ · · · ∪Θ(
xn) �Y Θ(�∗	(x1, . . . , xn)).

In 1 and 2 it is intended that 
xj = 〈xij : i < κ〉. The set Θ is the context of the
contextual translation 〈�,Θ〉.
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A contextual κ-translation 〈�,Θ〉 of �X into �Y is nontrivial provided that if there
is a (nonempty) sequence 
ϕ ∈ Tm(LY, 0)κ of constant symbols such thatY � Θ(
ϕ),
then there is i0 < κ and sequences of variables


x = 〈xi : i < κ〉 and 
y = 〈yi : i < κ〉
such that

Θ(
x) ∪Θ(
y) �Y x
i0 ≈ yi0 .

Several translations between logics classically considered in the literature provide
examples of this general notion of contextual translation.

Example 3.3 (Heyting and interior algebras). As shownbyGödel in [15] (see also
[13, 22, 26]), it is possible to interpret the intuitionistic propositional calculus IPC
into the consequence relation associated with the global modal system S4 [19, 20].
Since these two logics are algebraizable [8] with equivalent algebraic semantics
the variety of Heyting algebras HA and of interior algebras IA, respectively, this
interpretation can be lifted from terms to equations. More precisely, let � be the
1-translation ofLHA intoLIA defined as follows for all for � ∈ {∧,∨}:

x � y �−→ x � y ¬x �−→ �¬x x → y �−→ �(x → y).
The interpretation of IPC into S4 can now be presented as follows:

Γ �IPC ϕ ⇐⇒ ��∗(Γ) �S4 ��∗(ϕ) (1)

for every Γ∪{ϕ} ⊆ Tm(LHA, �), where � is the substitution sending every variable
x to its necessitation �x. In order to present this translation in our framework,
we have to deal with the fact that we allow only translations that send variables to
variables. As we mentioned, this problem is overcome by introducing a context in
the premises. To explain how, we recall that the terms of Tm(LHA, �) are written
with variables among {xj : j < �}. Then we have that

��∗(Γ) �S4 ��∗(ϕ)⇐⇒ �∗(Γ) ∪ {xj ↔ �xj : j < �} �S4 �∗(ϕ). (2)

The left-to-right direction of (2) follows from the fact that the algebraic meaning of
xj ↔ �xj is xj ≈ �xj . To prove the other direction, suppose that the right-hand
deduction holds. Then by structurality we can apply the substitution � to it. This
fact, together with ∅ �S4 �x ↔ ��x, yields the desired conclusion. Now, using the
completeness of IPC and S4 with respect to the corresponding equivalent algebraic
semantics, we obtain that

Φ �HA ε ≈ 
 ⇐⇒ �∗(Φ) ∪
⋃
j<�

Θ(xj) �IA �
∗(ε ≈ 
) (3)

for every Φ ∪ {ε ≈ 
} ⊆ Eq(LHA, �), where Θ(x) = {x ≈ �x}. Observe that
(3) implies condition 1 of Definition 3.2. It is easy to see that condition 2, of the
same definition, holds as well. Therefore we conclude that 〈�,Θ〉 is a contextual
translation of �HA into �IA. �
Example 3.4 (Heyting and Boolean algebras). The same trick can be applied to
subsume Kolmogorov’s interpretation of classical propositional calculus CPC into
IPC [18] in our framework. Let � be the 1-translation defined as follows:

0 �−→ 0 1 �−→ 1 ¬x �−→ ¬x x � y �−→ ¬¬(x � y)
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for every � ∈ {∧,∨,→}. The original translation of Kolmogorov states that
Γ �CPC ϕ ⇐⇒ ��∗(Γ) �IPC ��∗(ϕ)

for every Γ∪{ϕ} ⊆ Tm(L , �), where � is the substitution sending every variable x
to its double negation ¬¬x. Combining it with the observation that ∅ �IPC ¬x ↔
¬¬¬x, it is easy to see that 〈�,Θ〉 with Θ = {x ≈ ¬¬x} is a contextual translation
of �BA into �HA, where BA is the variety of Boolean algebras. �

The importance of nontrivial contextual κ-translations of �X into �Y is that
they correspond to nontrivial right adjoint functors from Y to X. Notice that right
adjoints reverse the direction of contextual translations and vice-versa.We now pro-
ceed to establish one half of this correspondence by showing how to construct a right
adjoint functor out of a contextual translation. Consider a nontrivial contextual
κ-translation 〈�,Θ〉 of �X into �Y. Then consider the set

L := {�(	) : 	 ∈ LX} ⊆ L κ
Y . (4)

Observe that L is a sublanguage of the language of the matrix power Y[κ]. Then
consider the set

� := {
ε ≈ 

 : ε ≈ 
 ∈ Θ},
where
ε and 

 are the κ-sequences constantly equal to ε and 
, respectively. Observe
that � is a set of identities between κ-sequences of terms of Y in κ variables. Now,
κ-sequences of terms of Y in κ-many variables can be viewed as unary terms of the
matrix power Y[κ]. Thus � can be viewed as a set of equations in one variable in the
language of Y[κ]. Hence we have the three basic ingredients of our construction: a
matrix power Y[κ], a sublanguageL ⊆ L κ

Y , and a set of equations � ⊆ Eq(L κ
Y , 1).

There is still a technicality wemust take into account: when κ is infinite thematrix
power Y[κ] may fail to be a generalized quasi-variety. Let K be the class of algebras
defined as follows:

K :=

⎧⎪⎨
⎪⎩

Q(Y[κ]) if X and Y are quasi-varieties
and CgTmY(κ)

Y (Θ) is finitely generated,

GQ�(Y[κ]) otherwise, where � is infinite and U�(X) = X,

where the expressionsQ andGQ� have been introduced at pag. 901. Observe that in
the above definition � is not uniquely determined, but any choice will be equivalent
for our purposes.

Theorem 3.5. Let X and Y be generalized quasi-varieties, let 〈�,Θ〉 be a nontrivial
contextual κ-translation of �X into �Y, and let K be the class just introduced. The
maps [κ] : Y → K and �L : K → X defined above are right adjoint functors. In
particular, the composition �L ◦ [κ] : Y→ X is a nontrivial right adjoint.

Proof. Observe that K is a generalized quasi-variety. Therefore we can apply
Theorem 2.5, yielding that [κ] : Y → K is a right adjoint functor. Now we turn to
prove the same for �L . We will detail the case where X and Y are quasi-varieties
and CgTmY(κ)

Y (Θ) finitely generated, since the other case is analogous. Since Y is a
quasi-variety and CgTmY(κ)

Y (Θ) is finitely generated, there is a finite set {〈αi , �i〉 :
i < n} ⊆ Θ such that {〈αi , �i〉 : i < n} =||=Y Θ. It is easy to see that
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{
αi ≈ 
�i : i < n} =||=Y[κ] �, (5)

where 
αi and 
�i are the κ-sequences constantly equal to αi and �i , respectively.
Now from condition 2 of Definition 3.2 it follows that � is compatible with

L in Y[κ], where L is the language defined in (4). From (5) we know that this
compatibility condition can be expressed by a set of deductions, whose antecedent
is finite, of the equational consequence relative to Y[κ], i.e.,

⋃
j≤m
{
αi ≈ 
�i : i < n}(
xj) �Y[κ] �(�(	)(
x1, . . . , 
xn))

for every m-ary 	 ∈ L . In particular, this implies that � is still compatible withL
in K (recall that K is the quasi-variety generated by Y[κ]).
We claim that �L (A) ∈ X for every A ∈ K. To prove this, consider any finite
deduction

ϕ1 ≈ 	1, . . . , ϕm ≈ 	m �X ε ≈ 
.

Let x1, . . . , xp be the variables that occur in it. From condition 1 of Definition 3.2
it follows that

{�∗(ϕt) ≈ �∗(	t) : t ≤ m} ∪
⋃
j≤p
�(
xj) �Y[κ] �∗(ε) ≈ �∗(
),

where 
xj = 〈xij : i < κ〉. Thanks to (5) the above deduction can be expressed by a
collection of deductions, whose antecedent is finite, of the equational consequence
relative to Y[κ], i.e.,

{�∗(ϕt) ≈ �∗(	t) : t ≤ m} ∪
⋃
j≤p
{
αi ≈ 
�i : i < n}(
xj) �Y[κ] �∗(ε) ≈ �∗(
).

Since K is the quasi-variety generated by Y[κ], we know that the above deduction
persists in K. Together with the fact that {
αi ≈ 
�i : i < n} ⊆ �, this implies that for
every A ∈ K and every a1, . . . , ap ∈ �L (A), we have that

if �L (A) � ϕ1 ≈ 	1, . . . , ϕm ≈ 	m�a1, . . . , ap�,

then �L (A) � ε ≈ 
�a1, . . . , ap�.

Thus we showed that �L (A) satisfies every quasi-equation that holds in X. Since X
is a quasi-variety, we conclude that �L (A) ∈ X. This establishes our claim. Hence
we can apply Theorem 2.8, yielding that �L : K→ X is a right adjoint functor. We
conclude that �L ◦ [κ] : Y → X is a right adjoint functor.
The fact that �L ◦ [κ] is nontrivial follows from the fact that so is 〈�,Θ〉. 

If we apply the above construction to Gödel and Kolmogorov’s translations, we
obtain some well-known transformations:

Example 3.6 (Open and regular elements). Given A ∈ IA, an element a ∈ A is
open if �a = a. The set of open elements Op(A) of A is closed under the lattice
operations and contains the bounds. Moreover we can equip it with an implication
� and with a negation∼ defined for every a, b ∈ Op(A) as follows:

a � b := �A(a →A b) and ∼ a := �A¬Aa.
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It is well known that

Op(A) := 〈Op(A),∧,∨,�,∼, 0, 1〉
is a Heyting algebra. Now, every homomorphism f : A → B between interior
algebras restricts to a homomorphism f : Op(A) → Op(B). Therefore the map
Op: IA → HA can be regarded as a functor. As the reader may have guessed, it
is in fact the right adjoint functor induced by Gödel’s translation of IPC into S4
(Example 3.3).
A similar correspondence arises fromKolmogorov’s translation of CPC into IPC.
More precisely, given A ∈ HA, an element a ∈ A is regular if ¬¬a = a. It is well
known that the set of regular elements Reg(A) of A is closed under ∧,¬ and→ and
contains the bounds. Moreover we can equip it with a new join � defined for every
a, b ∈ Reg(A) as follows:

a � b := ¬A¬A(a ∨ b).
It is well known that

Reg(A) := 〈Reg(A),∧,�,→,¬, 0, 1〉
is a Boolean algebra. Now, every homomorphism f : A → B between Heyting
algebras restricts to a homomorphism f : Reg(A) → Reg(B). Therefore the map
Reg: HA → BA can be regarded as a functor, which is exactly the right adjoint
functor induced by Kolmogorov’s translation (Example 3.4). �

§4. From right adjoints to translations. In this section we will work with a fixed
nontrivial left adjoint functor F : X → Y between generalized quasi-varieties. Our
goal is to construct a contextual translation of �X into �Y induced by F . We rely
on the following easy observation:

Lemma 4.1. Let F : X→ Y be a nontrivial left adjoint functor between generalized
quasi-varieties. The universe of F(TmX(1)) is nonempty.
Now we construct the contextual translation 〈�,Θ〉 induced by F : X → Y. By
Lemma 4.1 we know that F(TmX(1)) �= ∅. Then we can choose a cardinal κ > 0
and a surjective homomorphism �1 : TmY(κ) → F(TmX(1)). Let Θ be the kernel
of � and observe that it can be viewed as a set of equations in Eq(LY, κ).
In order to construct the κ-translation � of LX into LY, consider a cardinal
� > 0. Since F preserves copowers and the algebra TmX(�) is the �-th copower of
TmX(1), we know that F(TmX(�)) is the �-th copower of F(TmX(1)). Keeping in
mind how coproducts look like in prevarieties, we can identify F(TmX(�)) with the
quotient of the free algebra TmY(κ × �) with free generators {xij : i < κ, j < �}
under the Y-congruence generated by

⋃
j<�Θ(
xj) where 
xj = 〈xij : i < κ〉.

The above construction can be carried out also for � = 0 as follows. Recall that
F preserves initial objects, since these are special colimits. Thus we can assume
that F(TmX(0)) = TmY(0). Now we have that TmY(0) is exactly the quotient of
TmY(κ × 0) under the Y-congruence generated by the union of zero-many copies
of Θ, i.e., under the identity relation. Thus we identify F(TmX(�)) with a quotient
of TmY(κ × �) for every cardinal �. Accordingly, we denote by �� : TmY(κ × �)→
F(TmX(�)) the corresponding canonical map.
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Definition 4.2. Let � be a cardinal and ϕ ∈ Tm(LX, �). We denote also by
ϕ : TmX(1)→ TmX(�) the unique homomorphism that sends x to ϕ, where x is the
free generator of TmX(1).

Now, we are ready to construct the κ-translation � of LX into LY. Consider an
n-ary basic operation 	 ∈ LX. Since �n is surjective and TmY(κ) is onto-projective
in Y, there is a homomorphism

�(	) : TmY(κ)→ TmY(κ × n)

that makes the following diagram commute:

TmY(κ)

�1
���(	)

��

F(TmX(1))

F(	)
��

TmY(κ × n) �n
�� F(TmX(n)).

(6)

The map �(	) can be identified with its values on the generators {xi : i < κ} of
TmY(κ). In this way it becomes a κ-sequence

〈�(	)(xi) : i < κ〉

of terms in variables {xij : i < κ, 1 ≤ j ≤ n}.
Let � be the κ-translation ofLX intoLY obtained by applying this construction
to every 	 ∈ LX. Hence we constructed a pair 〈�,Θ〉, where � is a κ-translation of
LX intoLY and Θ ⊆ Eq(LY, κ).

Theorem 4.3. Let F : X→ Y be a nontrivial left adjoint functor between general-
ized quasi-varieties. The pair 〈�,Θ〉 defined above is a nontrivial contextual translation
of �X into �Y.

Proof sketch. Consider a cardinal �. We know that � can be extended to a
function �∗ : Tm(LX, �) → Tm(LY, κ × �)κ, where the terms Tm(LX, �) and
Tm(LY , κ × �) are built, respectively, with variables among {xj : j < �} and
{xij : i < κ, j < �}.
Now, consider ϕ ∈ Tm(LX, �). Observe that �∗(ϕ) is a κ-sequence of terms of

Y in variables {xij : i < κ, j < �}. Thus �∗(ϕ) can be regarded as a map from
the free generators of TmY(κ) to TmY(κ × �). Since TmY(κ) is a free algebra, this
assignment extends uniquely to a homomorphism

�∗(ϕ) : TmY(κ)→ TmY(κ × �).

Recall that F preserves colimits, since it is left adjoint. Keeping this in mind, it is
not difficult to prove the following:

Fact 4.4. For every cardinal � and every ϕ ∈ Tm(LX, �), the following diagram
commutes:
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TmY(κ)
�∗(ϕ) ��

�1

��

TmY(κ × �)
��

��
F(TmX(1)) F(ϕ)

�� F(TmX(�)).

Now we turn to prove that 〈�,Θ〉 is a contextual translation of �X into �Y. We
begin by showing that 〈�,Θ〉 satisfies 1 of Definition 3.2. To this end, consider a
cardinal � and equations Φ ∪ {ε ≈ 
} ⊆ Eq(LX, �) such that Φ �X ε ≈ 
. Define
� := |Φ|. For the sake of simplicity we identify � with the set Φ. Then consider the
map �∗ : Tm(LX, �) → Tm(LY , κ × �)κ. Consider also the free algebras TmX(�)
and TmY(κ × �) with free generators {xα≈� : α ≈ � ∈ Φ} and {xiα≈� : i < κ, α ≈

� ∈ Φ}, respectively. Then let
pl , pr : TmX(�)⇒ TmX(�) and ql , qr : TmY(κ × �)⇒ TmY(κ × �)

be the homomorphisms defined, respectively, by the following rules:

pl(xα≈� ) := α and ql (xiα≈�) := �∗(α)(i),

pr(xα≈�) := � and qr(xiα≈�) := �∗(�)(i).

Observe that

�� ◦ ql = F(pl ) ◦ �� and �� ◦ qr = F(pr) ◦ ��. (7)

Now, let φ be the X-congruence of TmX(�) generated by Φ. It is clear that �φ
is a coequalizer of pl and pr . Since F preserves colimits and �� is surjective, this
means that F(�φ) is also a coequalizer of F(pl ) ◦ �� and F(pr) ◦ ��. Finally, with
an application of (7), we conclude thatF(�φ) is a coequalizer of �� ◦ ql and �� ◦ qr .
In particular, this implies that the kernel of F(�φ) ◦ �� is the Y-congruence of
TmY(κ × �) generated by

�∗(Φ) ∪
⋃
j<�

Θ(
xj), (8)

where 
xj = 〈xij : i < κ〉. Now, recall that Φ �X ε ≈ 
 and, therefore, that 〈ε, 
〉 ∈ φ.
This means that �φ ◦ ε = �φ ◦ 
, where ε, 
 : TmX(1) ⇒ TmX(�). By Fact 4.4 this
implies that

F(�φ) ◦ �� ◦ �∗(ε) = F(�φ) ◦ �� ◦ �∗(
).
Together with the description of the kernel of F(�φ) ◦ �� given in (8), this yields

�∗(Φ) ∪
⋃
j<�

Θ(
xj) �Y �
∗(ε ≈ 
).

Hence 〈�,Θ〉 satisfies 1 of Definition 3.2.
To prove that 〈�,Θ〉 satisfies condition 2 of the same definition, consider an n-ary
operation symbol 	 ∈ LX and ε ≈ 
 ∈ Θ. Fact 4.4 and the observation that the
kernel of �1 is the Y-congruence of TmY(κ) generated by Θ imply that

�n(ε(�∗(	)/
x)) = �n(
(�∗(	)/
x)).
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Since �n is the kernel of the Y-congruence of TmY(κ×n) generated by Θ(
x1)∪· · ·∪
Θ(
xn), we conclude that

Θ(
x1) ∪ · · · ∪Θ(
xn) �Y ε(�∗(	)/
x) ≈ 
(�∗(	)/
x).

This establishes that 〈�,Θ〉 is a contextual translation of �X into �Y.
It only remains to prove that 〈�,Θ〉 is nontrivial. But this is a consequence of the
fact that F is nontrivial. 

As an exemplification of the construction above, we will describe the contextual
translation associated with the adjunction between Kleene algebras and bounded
distributive lattices.

Example 4.5 (Kleene algebras). Let G : DL01 → KA be the functor described in
Example 2.10. In [10] a functor F left adjoint to G is described. Let us briefly recall
its behaviour.GivenA ∈ KA, we let Pr(A) be the Priestley space dual to the bounded
lattice reduct ofA [11].Moreover, we equip it with amap g : Pr(A)→ Pr(A) defined
by the rule

g(F ) �−→ A� {¬a : a ∈ F }, with F ∈ Pr(A).
Now observe that

Pr(A)+ := {F ∈ Pr(A) : F ⊆ g(F )}
is the universe of a Priestley subspace of Pr(A). Keeping this in mind, we letF(A) be
the bounded distributive lattice dual to Pr(A)+. Moreover, given a homomorphism
f : A→ B in KA, we let F(f) : F(A)→ F(B) be the map defined by the rule

U �−→ {F ∈ Pr(B)+ : f−1(F ) ∈ U}, for each U ∈ F(A).
The map F : KA→ DL01 is the functor left adjoint to G.
Now we turn to describe the contextual translation associated with the adjunc-
tion F 
 G. To this end, observe that the free Kleene algebra TmKA(1), its
image F(TmKA(1)) in DL01 and the free bounded distributive lattice TmDL01 (2)
are, respectively, the algebras depicted below.

1 • 1 • 1•

x ∨ ¬x •
��

��
��

��

��
��
��
�� c •

��
��

��
��

��
��
��
�� x ∨ y•

��
��
��
��

��
��

��
��

x •
��

��
��

�� ¬x•

��
��
��
�� a •

��
��

��
�� b•

��
��
��
�� x •

��
��

��
�� y•

��
��
��
��

x ∧ ¬x • 0 • x ∧ y•

0 • 0•
Then let � : TmDL01 (2) → F(TmKA(1)) be the unique (surjective) homomorphism
determined by the assignment �(x) = a and �(y) = b. Following the general
construction described above, we should identify Θ with the kernel of � viewed as a
set of equations in 2 variables. But the only equation of this kind that is not vacuously
satisfied is x ∧y ≈ 0. Hence we can set without loss of generality Θ := {x ∧y ≈ 0}.
The description of � is more complicated and we will detail it only for the case of
negation. First observe that ¬ : TmKA(1)→ TmKA(1) is the unique endomorphism
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that sends x to ¬x. Then, applying the definition of F , it is easy to see that F(¬)
is the endomorphism of F(TmKA(1)) that behaves as the identity except that it
interchanges a and b. Now we have to choose an endomorphism �(¬) of TmDL01(2)
such that � ◦ �(¬) = F(¬)◦�. It is easy to see that the unique homomorphism �(¬)
determined by the assignment �(¬)(x) = y and �(¬)(y) = x fulfils this condition.
Hence the translation of ¬ consists of the pair 〈y, x〉. The same idea allows us to
extend � to the other constant and binary basic symbols of KA as follows:4

x 
 y �−→ 〈x1, x2〉 
 〈y1, y2〉:=〈x1 ∧ y1, x2 ∨ y2〉,
x � y �−→ 〈x1, x2〉 � 〈y1, y2〉:=〈x1 ∨ y1, x2 ∧ y2〉

and

¬x �→ ¬〈x1, x2〉 := 〈x2, x1〉 1 �→ 1 := 〈1, 0〉 0 �→ 0 := 〈0, 1〉.
By Theorem 4.3 the pair 〈�,Θ〉 is a contextual translation of �KA into �DL01 . �

§5. Decomposition of right adjoints. In the preceding sections we drew a corre-
spondence between adjunctions and contextual translations. Now we are ready to
present themain outcome of this correspondence, namely the observation that every
right adjoint functor between generalized quasi-varieties can be decomposed into a
combination of two canonical deformations, i.e., the matrix power with (possibly)
infinite exponents and the �L construction:

Theorem 5.1. Let X and Y be generalized quasi-varieties.
1. For every nontrivial right adjoint G : Y → X there are a generalized quasi-variety

K and functors [κ] : Y → K and �L : K → X (where � is compatible with L in
K) such that G is naturally isomorphic to �L ◦ [κ].

2. Every functor of the form �L ◦ [κ] : Y → X (where � is compatible with L in
Y[κ]) is a right adjoint.

Proof. 1. Let F be the functor left adjoint to G and let �, ε be the unit and counit
of the adjunction, respectively. In Theorem 4.3 we showed that F gives rise to a
contextual translation 〈�,Θ〉 of �X into �Y. Then consider the generalized quasi-
variety K and the right adjoint functors [κ] : Y → K and �L : K → X associated
with 〈�,Θ〉 as in Theorem 3.5. We will prove that G and the composition �L ◦ [κ]
are naturally isomorphic.
To this end, it will be convenient to work with some substitutes of G and �L ◦ [κ].
Let ALGX be the category of all algebras of the type of X. Then let G∗ : Y → ALGX

be the functor defined by the rule

A �−→ hom(TmX(1),G(A))
f �−→ G(f) ◦ (·)

for every algebra A and homomorphism f in Y. The operations of the algebra
G∗(A) are defined as follows. Given an n-ary operation	 ∈ LX with corresponding
arrow 	 : TmX(1)→ TmX(n), we set

	G∗(A)(f1, . . . , fn) := 〈f1, . . . , fn〉 ◦ 	
4At this stage the reader may find it useful to compare the translation displayed here with the

sublanguageL of the matrix power DL01 that we considered in Example 2.10.
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for every f1, . . . , fn ∈ G∗(A), where 〈f1, . . . , fn〉 : TmX(n) → G(A) is the map
induced by the universal property coproduct.
Now observe that the map �A : G(A) → G∗(A) that takes an element a ∈ G(A)
to the unique arrow f ∈ G∗(A) such that f(x) = a is an isomorphism for every
A ∈ Y. It is easy to see that the global map � : G → G∗ is a natural isomorphism
between G,G∗ : Y → ALGX. As a consequence, we obtain the following:

Fact 5.2. The map G∗ can be viewed as a functor fromY toX naturally isomorphic
to G.
Then we construct our substitute for �L ◦ [κ]. Consider the functor

hom(F(TmX(1)), ·) : Y→ ALGX.

In particular, given A ∈ Y, the operations on hom(F(TmX(1)),A), for short
hom(A), are defined as follows:

	hom(A)(f1, . . . , fn) := 〈f1, . . . , fn〉 ◦ F(	),
for every f1, . . . , fn ∈ hom(A), where 〈f1, . . . , fn〉 : F(TmX(n)) → A is the map
induced by the universal property of the coproduct.
Now, given A ∈ Y, we consider the map �A : hom(A)→ �L (A[κ]) defined by the
rule

f �−→ 〈f ◦ �1(xi) : i < κ〉,
where �1 : TmY(κ) → F(TmX(1)) is the map defined right before Definition
4.2. It is not difficult to see that �A is a well-defined isomorphism. Hence the
global map � : hom(F(TmX(1)), ·) → �L ◦ [κ] is a natural isomorphism between
hom(F(TmX(1)), ·), �L ◦ [κ] : Y → ALGX. As a consequence we obtain the
following:

Fact 5.3. The map hom(F(TmX(1)), ·) can be viewed as a functor from Y to X
naturally isomorphic to �L ◦ [κ].
Thanks to Facts 5.2 and 5.3, in order to complete the proof it will be enough to
construct a natural isomorphism

� : G∗ → hom(F(TmX(1)), ·).
This is what we do now. For every A ∈ Y, the component �A of the natural
transformation � is the following map:

εA ◦ F(·) : hom(TmX(1),G(A))→ hom(F(TmX(1)),A).

From the hom-set adjunction associated with 〈F ,G, ε, �〉 it follows that �A is a
bijection. Since F preserves coproducts, we have that �A is a homomorphism.
Therefore we conclude that �A is an isomorphism.
Finally, the fact that the globalmap� satisfies the commutative condition required
of natural transformations is witnessed by the hom-set adjunction associated with
〈F ,G, ε, �〉. Hence � is a natural isomorphism as desired.
2. Consider an infinite cardinal � such thatU�(X) = X and defineK := GQ�(Y[κ]).
Since � is compatible withL in Y[κ] and the compatibility condition is expressible
by a set of generalized quasi-equations each of which is written with finitely many
variables, we conclude that � is compatible with L in K too. Moreover, from the
fact that �L (Y[κ]) ⊆ X and U�(X) = X it follows that the functor �L : K → X
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is well defined. By Theorems 2.5 and 2.8 we know that the maps [κ] : Y → K
and �L : K → X are right adjoint functors. As a consequence their composition
�L ◦ [κ] : Y → X is also a right adjoint. 

Corollary 5.4. Let F : X → Y be a nontrivial left adjoint functor between gen-
eralized quasi-varieties and φ ∈ ConXTmX(�). Assume that the right adjoint of F
decomposes as �L ◦ [κ]. Then

F(TmX(�)/φ) ∼= TmY(κ × �)/CgY(�∗(φ) ∪
⋃
j<�

Θ(
xj)).

Remark 5.5. The description of right adjoints given in Theorem 5.1 can be
seen as a purely algebraic formulation of the classical description of adjunctions in
categories with a free object, which can be traced back at least to [14].
To see why, suppose that F : X ←→ Y : G is an adjunction F 
 G, and that X
and Y are prevarieties. We proceed to sketch the general description of G(A) in [14].
Since X contains free algebras, the universe of the algebra G(A) can be identified
with homX(TmX(1),G(A)). By the hom-set adjunction induced by F 
 G, we know
that

homX(TmX(1),G(A)) ∼= homY(F(TmX(1)),A).

Since Y contains arbitrarily large free algebras, the algebra F(TmX(1)) can be
expressed as a suitable quotient of a free algebra, i.e., F(TmX(1)) ∼= TmY(κ)/�
for some cardinal κ and some congruence �. Thus the universe of G(A) can be
identified with homY(TmY(κ)/�,A). More in general G(A) can be identified with
the set homY(TmY(κ)/�,A), equipped with a suitable algebraic structure. This
provides a full arrow-theoretic description of the algebra G(A) as

G(A) ∼= homY(TmY(κ)/�,A).

The main contribution of the present work is to recognize that the algebra
homY(TmY(κ)/�,A) in the abovedisplay canbe given a very transparent description
in terms of matrix powers and compatible equations. �

Until now we showed that every right adjoint functor G : Y → X between gen-
eralized quasi-varieties induces a contextual translation 〈�, �〉 of �X into �Y, and
vice-versa. In general, contextual translations 〈�, �〉 are infinite objects, in the sense
that � is a map that translates terms into possibly infinite sequences of terms and
� is a possibly infinite set of equations. It is therefore natural to ask under which
conditions these contextual translations can be finitized. The next lemma provides
an answer in the case where X and Y are quasi-varieties.

Lemma 5.6. Let F : X←→ Y : G be an adjunction F 
 G between quasi-varieties.
The following conditions are equivalent:

1. F preserves finitely presentable algebras.
2. F(TmX(1)) is finitely presentable.
3. G preserves directed colimits.
4. G can be decomposed as �L ◦ [κ] with both κ and � finite.
Proof. The equivalence between (i) and (iii) is well known, and is a consequence
of the fact that the finitely X-presentable algebras are exactly the algebras A ∈ X
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for which the functor hom(A, ·) : A → Set preserves directed colimits (see Lemma
1.1). Part (i)⇒(ii) is trivial and part (iv)⇒(i) is a consequence of Corollary 5.4.
(ii)⇒(iv): Assume that F(TmX(1)) is finitely presentable. Then there are n ∈ �
and a compact Y-congruence Θ such that F(TmX(1)) = TmY(n)/Θ. Now, Θ is
generated by a finite set Φ ⊆ Θ. This means that G can be decomposed as �L ◦ [n],
where � := {
ε ≈ 

 : 〈ε, 
〉 ∈ Φ} and
ε, 

 are sequences of length n. 

The next example shows that there are adjunctions between quasi-varieties that
do not meet the equivalent conditions of Lemma 5.6. In other words, it shows that
there are contextual translations between finitary relative equational consequences
that cannot be finitized.

Example 5.7 (Ring hom-functor). Consider a generalized quasi-variety X and
an algebra A ∈ X. Then let hom(A, ·) : X → Set be the functor defined by the
following rule:

B �−→ hom(A,B)
f : B → C �−→ f ◦ (·) : hom(A,B)→ hom(A,C ).

The functor hom(A, ·) has a left adjoint F : Set→ X defined as follows. Given a set
I , the algebra F(I ) is the copower of A indexed by I . Moreover, given a function
f : I → J between sets, we let F(f) : F(I ) → F(J ) be the map 〈pf(i) : i ∈ I 〉
induced by the universal property of the coproduct F(I ), where {pj : A → F(J ) :
j ∈ J} are the maps associated with the copower F(J ).
Now consider the special case where X is the variety R of commutative rings with
unit. Then consider the functor F that is left adjoint to hom(Q , ·) : R→ Set, where
Q is the ring of rational numbers. First observe that F does not preserve finitely
generated algebras. Observe that finitely generated algebras are exactly the quotients
of the finitely presentable ones. Since F preserves surjective homomorphisms, we
conclude that it does not preserve finitely presentable algebras. �
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