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Abstract

This paper describes Picat’s planner, its implementation, and planning models for several

domains used in International Planning Competition (IPC) 2014. Picat’s planner is imple-

mented by use of tabling. During search, every state encountered is tabled, and tabled states

are used to effectively perform resource-bounded search. In Picat, structured data can be

used to avoid enumerating all possible permutations of objects, and term sharing is used to

avoid duplication of common state data. This paper presents several modeling techniques

through the example models, ranging from designing state representations to facilitate data

sharing and symmetry breaking, encoding actions with operations for efficient precondition

checking and state updating, to incorporating domain knowledge and heuristics. Broadly, this

paper demonstrates the effectiveness of tabled logic programming for planning, and argues

the importance of modeling despite recent significant progress in domain-independent PDDL

planners.

1 Introduction

Planning and logic programming are two close areas of research. PLANNER (Hewitt

1969), which was designed as a language for proving theorems and manipulating

models in a robot, is perceived as the first logic programming language. Planning

has been an important problem domain for Prolog (Kowalski 1979; Warren 1974).

Despite the amenability of Prolog to planning, Prolog is no longer a competitive

tool for planning.

Tabling (Michie 1968; Tamaki and Sato 1986; Warren 1992) is a technique used

in logic and functional programming systems, which caches the results of certain

calculations in memory and reuses them in subsequent calculations through a quick

table lookup. Like state marking used in search algorithms, tabling can prevent the

same state from being expanded more than once during search. Tabling has been

found useful in many search problems, including theorem proving (Nielson et al.

2004; Pientka 2003), program analysis (Dawson et al. 1996) and model checking

(Ramakrishna et al. 1997). Recently, tabled logic programming has been successfully
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employed to solve specific planning problems (Bartak and Zhou 2014; Zhou and

Dovier 2013; Zhou 2014), and has been shown to be significantly faster than the

state-of-the-art ASP (Answer Set Programming) planners on some problems (Zhou

and Dovier 2013; Zhou 2014).

This paper describes Picat’s planner and its implementation. This paper also

presents planning models in Picat for several domains used in International Plan-

ning Competition 2014 (IPC’14) (Chrpa et al. 2014), and demonstrates broader

applicability of tabled logic programming to planning. Picat is a logic-based multi-

paradigm language that provides logic variables, pattern matching, nondeterminism

through backtracking, loops, functions, constraints, and tabling as its core modeling

and solving features. As a modeling language for planning, Picat differs from

PDDL (Plan Domain Description Language) (McDermott 1998) and ASP (Brewka

et al. 2011; Gebser et al. 2012; Lifschitz 2002) in several aspects: (1) Picat allows

use of structures to represent states; (2) Picat supports explicit commitment and

nondeterministic actions, which enables users to have better control over action

applications; (3) Picat provides facilities for describing domain knowledge and

heuristics for pruning search space.

As a solving system, Picat’s planner implements several techniques for better

performance. First, it tables every state encountered during search and avoids

repeating the exploration of the same state. Second, it adopts the hash-consing

technique (Zhou and Have 2012) to share common state data and to speed up

the equality testing of states. Third, it utilizes tabled states to effectively perform

resource-bounded search. For optimal planning, Picat offers built-ins to perform

iterative search, but unlike IDA* (Korf 1985), Picat also reuses results tabled in

early iterations (Zhou 2014).

This paper shows that the above-mentioned features of Picat make Picat a more

appropriate language than PDDL for modeling and solving planning problems.

To that end, this paper presents examples in Picat for several domains used in

IPC’14. These examples illustrate several modeling techniques on how to design state

representations to facilitate data sharing and symmetry breaking, on how to translate

PDDL operators into Picat actions, and on how to incorporate domain knowledge

and heuristics to reduce search spaces. This paper also gives the experimental results

of the presented models and several other models encoded in the same way. The

experimental results demonstrate the effectiveness of tabling and the importance of

modeling.

2 A brief overview of picat

Picat is a dynamically-typed language. The basic types are taken from Prolog, except

for arrays and maps. An array takes the form {t1,. . .,tn}. The index of the first array

element is 1, and the index notation X[I] can be used to access array elements. Picat

also borrows the basic logical operators from Prolog, including conjunction (A,B),

negation (not A), disjunction (A;B), and if-then-else (C->A;B).
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Picat allows function calls in arguments. For this reason, it requires structures to

be preceded with a dollar symbol $ in order for them to be treated as data, unless

the structure is special, or it occurs in a head pattern.

For each type, Picat provides a set of built-in functions and predicates. Many built-

in predicates are taken from Prolog, including member/2, nth/3, and select/3. The

function insert ordered(List,Term) inserts Term into the ordered list List such

that the resulting list remains ordered.

In Picat, predicates and functions are defined with pattern-matching rules. Picat

has two types of rules: the non-backtrackable rule Head, Cond => Body, and the

backtrackable rule Head, Cond ?=> Body. In a predicate definition, the Head takes

the form p(t1, . . . , tn), where p is a predicate name, and n is the arity. The condition

Cond, which is an optional goal, specifies a condition under which the rule is

applicable. For a call C , if C matches Head and Cond succeeds, then the rule is

said to be applicable to C . When applying a rule to call C , Picat rewrites C into

Body. If the used rule is non-backtrackable, then the rewriting is a commitment, and

the program can never backtrack to C . However, if the used rule is backtrackable,

then the program will backtrack to C once Body fails, meaning that Body will be

rewritten back to C , and the next applicable rule will be tried on C . In a function

definition, the Head takes the form f(t1, . . . , tn) = Term where f is a function name

and Term is a result to be returned. All of the rules in a function definition must

be non-backtrackable.

A pattern can contain as-patterns of the form V@Pattern, where V is a new

variable in the head, and Pattern is a non-variable term. The as-pattern V@Pattern

is the same as Pattern in pattern matching, but after pattern matching succeeds, V

is made to reference the term that matched Pattern.

Picat supports loops and list comprehensions. For example, the loop

foreach(E in L) Goal end

is true if Goal is true for each E in L. Picat adopts the following simple scoping

rule: variables that occur only in a loop, but do not occur before the loop in the outer

scope, are local to each iteration of the loop. Loops are compiled into tail-recursive

predicates, and list comprehensions are compiled into tail-recursive predicates

through foreach loops.

Picat supports tabling for dynamic programming solutions. Other features of Picat

include assignments, list comprehensions, global maps for storing permanent data,

higher-order functions, action rules for defining event-driven actors, and modules

for modeling and solving constraint satisfaction problems with CP, SAT, and MIP.

3 Tabling in picat

Both predicates and functions can be tabled. In order to have all calls and answers

of a predicate or function tabled, users just need to add the keyword table before

the first rule. For a predicate definition, the keyword table can be followed by a

tuple of table modes, including + (input), - (output), min, max, and nt (not tabled).

For a predicate with a table mode declaration that contains min or max, Picat tables
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Fig. 1. A DAG.

one optimal answer for each tuple of the input arguments. The last mode can be nt,

which indicates that the corresponding argument will not be tabled.

Linear tabling (Zhou et al. 2008) is used in Picat, and table modes are taken from

(Guo and Gupta 2008), except for the nt mode, which was initially proposed by

(Zhou et al. 2010). Ground structured terms are hash-consed (Zhou and Have 2012)

so that common ground terms are tabled only once. For example, for the three

lists [1,2,3], [2,3], and [3], the shared sub-lists [2,3] and [3] are reused from

[1,2,3].
Mode-directed tabling has been successfully used to solve specific planning

problems such as Sokoban (Zhou and Dovier 2013), and the Petrobras planning
problem (Bartak and Zhou 2014). A planning problem is modeled as a path-finding
problem over an implicitly specified graph. The following gives the framework used
in all these solutions.

table (+,-,min)

path(S,Path,Cost), final(S) => Path = [],Cost = 0.

path(S,Path,Cost) =>

action(S,S1,Action,ActionCost),

path(S1,Path1,Cost1),

Path = [Action|Path1],

Cost = Cost1+ActionCost.

The call path(S,Path,Cost) binds Path to an optimal path from S to a final state.

The predicate final(S) succeeds if S is a final state, and the predicate action

encodes the set of actions in the problem.

Consider using the path/3 predicate to find a shortest path from node a to node

d in the DAG shown in Figure 1. The final state is d. The call path(a,Path,Cost)

initiates the search from node a. In order to resolve the call, Picat applies the

transition a→b to node a, and generates a new call to path for finding a shortest

path from b to d. After the answer b→c→d is found for the call, Picat tables the

answer a→b→c→d, which has cost 8, for the inital call. After that, Picat backtracks,

trying the alternative transition a→c to node a. After the shortest path c→d is

found, Picat finds another path a→c→d, which has cost 5, for the initial call. Since

this path is shorter than the tabled path, Picat replaces the tabled path with this new

path. Since the graph has no cycles, Picat returns the new path as the final answer.

In general, calls need to be re-evaluated until fixed points are reached if there are

looping calls (Zhou et al. 2008).

When applied to the single-source shortest path problem, linear tabling is similar

to Dijkstra’s algorithm, except that linear tabling tables shortest paths from the

encountered states to the goal state rather than shortest paths to the encountered

states from the initial state.
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The above framework performs depth-unbounded search. For many planning

problems, branch & bound and IDA* (Korf 1985) are useful for finding optimal

solutions. The planner module of Picat provides built-ins for planning with different

types of search.

4 The planner module of picat

The planner module is based on tabling but it abstracts away tabling from users.

For a planning problem, users only need to define the predicates final/1 and

action/4, and call one of the search predicates in the module on an initial state in

order to find a plan or an optimal plan.

• final(S): This predicate succeeds if S is a final state.

• action(S,NextS,Action,ACost): This predicate encodes the state transition

diagram of a planning problem. The state S can be transformed to NextS by

performing Action. The cost of Action is ACost, which must be non-negative.

If the plan’s length is the only interest, then ACost = 1.

These two predicates are called by the planner. The action predicate specifies the

precondition, effect, and cost of each of the actions. This predicate is normally

defined with nondeterministic pattern-matching rules. As in Prolog, the planner tries

actions in the order they are specified. When a non-backtrackable rule is applied to

a call, the remaining rules will be discarded for the call.

The following predicates constitute the core of the planner module.

• best plan unbounded(S,Limit,P lan,P lanCost): This predicate finds an op-

timal plan by performing depth-unbounded search. This predicate is imple-

mented based on the path-finding framework shown above. The argument

Limit is not utilized to limit the depth of search. It is compared with P lanCost

after an optimal plan has been found. During depth-unbounded search, once

a state has failed, it will not be explored again.

• plan(S,Limit,P lan,P lanCost): This predicate searches for a plan by per-

forming resource-bounded search, in which a state is expanded only if it is new

and its resource limit is non-negative, or if the state has previously failed but

the current occurrence has a higher resource limit than before. This predicate

is defined as a tabled predicate that tables the Limit argument but does not

use it in variant checking (Zhou 2014). The implementation of this predicate

is described in the next subsection.

• best plan(S,Limit,P lan,P lanCost): This predicate finds an optimal plan

by performing resource-bounded iterative-deepening search. It calls the plan/4

predicate to find a plan, using 0 as the initial cost limit and gradually relaxing

the cost limit until a plan is found. Unlike IDA*, which starts a new round

from scratch, Picat also reuses the states that were tabled in the previous

rounds.

• best plan bb(S,Limit,P lan,Cost) This predicate finds an optimal plan using

branch & bound. First, it calls plan/4 to find a plan. Then, it tries to find a
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plan(S,Limit,Plan,PlanCost) =>

IPlan = {Limit,[],0},

catch(plan_bounded_aux(S,IPlan), (Plan,PlanCost), true).

table (+,nt)

plan_bounded_aux(S,{Limit,IPlan,IPlanCost}),

final(S)

=>

throw((IPlan.reverse(), IPlanCost)).

plan_bounded_aux(S,{Limit,IPlan,IPlanCost}) =>

action(S,NextS,Action,ACost),

Limit1 = Limit-ACost,

Limit1 >= 0,

Inherited1 = {Limit1,

[Action|IPlan],

IPlanCost+ACost},

plan_bounded_aux(NextS,Inherited1).

Fig. 2. The implementation of plan/4.

better plan by imposing a stricter limit. This step is repeated until no better

plan can be found. It returns the last plan that was found.

• current resource(): This function returns the resource limit argument of

the latest call to plan/4. In order to retrieve the argument, the implementation

has to traverse the call-stack until it reaches a call to plan/4. This function

can be used to check against a heuristic value. If the heuristic estimate of the

cost to travel from the current state to a final state is greater than the resource

limit, then the current state should fail.

5 The implementation of resource-bounded search

Figure 2 sketches Picat’s implementation of the predicate plan/4. The following

array is passed from a state to the next state as an nt argument:

{Limit,IPlan,IPlanCost}

In order to perform resource-bounded search, Picat treats the second argument of the

predicate plan bounded aux differently from other nt arguments. Picat stores the

Limit argument of each failed call to plan bounded aux, and uses this information

to decide whether the same state should fail when it recurs.

The first rule of plan bounded aux throws the inherited plan and its cost as an

exception if final(S) succeeds. The exception will be caught by the catch call in

the rule body of plan/4.

The second rule of plan bounded aux calls action/4 to select an action, which

produces a new state, NextS. Then, the rule computes the new resource limit,

Limit1, by subtracting the cost of the selected action from Limit. If Limit1 >=

0 succeeds, then the rule continues with the tabled search by recursively calling

plan bounded aux on the new state NextS. Otherwise, if Limit1 >= 0 fails, then

Picat backtracks to select an alternative action.

The idea of resource-bounded search is to utilize tabled states and their resource

limits to effectively decide when a state should be expanded and when a state should
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Fig. 3. Resource-bounded search.

fail. Let SR denote a state with an associated resource limit, R, as depicted in Figure

3. If R is negative, then SR immediately fails. If R is non-negative and S has never

been encountered before, then S is expanded by using a selected action. Otherwise,

if the same state S has failed before and R′ was the resource limit when it failed,

then SR is only expanded if R > R′, i.e., if the current resource limit is larger than

the resource limit was at the time of failure.

6 Modeling examples

This section describes the Picat models for four of the problem domains used in

the sequential optimal track of IPC’14: Transport, Tetris, Floortile, and Parking.

Each of the following models will show the state representation, the encoding of

the actions, the search predicate that is used (best plan or best plan unbounded),

and the domain knowledge and heuristics that are employed. In these models, states

are typically represented by lists, and preconditions and state updates are handled

by standard list operations. Sometimes, arrays are used when no list suffixes can be

shared. The Picat encodings of actions are mostly straightforward translations from

the PDDL encodings. These models do not use sophisticated domain knowledge or

heuristics that would hurt the readability or compromise the optimality of answers.

These four domains, as well as five other domains, are described in Appendix A.

6.1 Example-1: Transport

This problem is a variant of the popular logistics domain in planning. Given a

weighted directed graph, a set of trucks each of which has a capacity for the number

of packages it can carry, and a set of packages each of which has an initial location

and a destination, the objective of the problem is to find an optimal plan to transport

the packages from their initial locations to their destinations. This problem is more

challenging than the Nomystery problem that was used in IPC’11, because of the

existence of multiple trucks, and because an optimal plan normally requires trucks to

cooperate. This problem degenerates into the shortest path problem if there is only

one truck and only one package. The PDDL and Picat encodings of the problem

are given in Appendix B.
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Basic encoding

A state is represented by an array of the form {Trucks,Packages}, where Trucks

is an ordered list of trucks, and Packages is an ordered list of waiting packages.

A package in Packages is a pair of the form (Loc,Dest) where Loc is the source

location and Dest is the destination of the package. A truck in Trucks is a list of

the form [Loc,Dests,Cap], where Loc is the current location of the truck, Dests is

an ordered list of destinations of the loaded packages on the truck, and Cap is the

capacity of the truck. At any time, the number of loaded packages must not exceed

the capacity.

Note that keeping Cap as the last element of the list facilitates sharing, since the

suffix [Cap], which is common to all the trucks that have the same capacity, is tabled

only once. Also note that the names of the trucks and the names of packages are

not included in the representation. Two packages in the waiting list that have the

same source and the same destination are indistinguishable, and as are two packages

loaded on the same truck that have the same destination. This representation breaks

symmetries. Two configurations that only differ by a truck’s name or a package’s

name are treated as the same state.
A state is final if all of the packages have been transported.

final({Trucks,[]}) =>

foreach([_Loc,Dests|_] in Trucks)

Dests == []

end.

The PDDL rules for the actions are straightforwardly translated into Picat as
follows.

action({Trucks,Packages},NextState,Action,ACost) ?=>

Action = $load(Loc), ACost = 1,

select([Loc,Dests,Cap],Trucks,TrucksR),

length(Dests) < Cap,

select((Loc,Dest),Packages,PackagesR),

NewDests = insert_ordered(Dests,Dest),

NewTrucks = insert_ordered(TrucksR,[Loc,NewDests,Cap]),

NextState = {NewTrucks,PackagesR},

action({Trucks,Packages},NextState,Action,ACost) ?=>

Action = $unload(Loc), ACost = 1,

select([Loc,Dests,Cap],Trucks,TrucksR),

select(Dest,Dests,DestsR),

NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),

NewPackages = insert_ordered(Packages,(Loc,Dest)),

NextState = {NewTrucks,NewPackages}.

action({Trucks,Packages},NextState,Action,ACost) =>

Action = $move(Loc,NextLoc),

select([Loc|Tail],Trucks,TrucksR),

road(Loc,NextLoc,ACost),

NewTrucks = insert_ordered(TrucksR,[NextLoc|Tail]),

NextState = {NewTrucks,Packages}.

For the load action, the rule nondeterministically selects a truck that still has room

for another package, and nondeterministically selects a package that has the same
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location as the truck. After loading the package to the truck, the rule inserts the

package’s destination into the list of loaded packages of the truck. Note that the rule

is nondeterministic. Even if a truck passes by a location that has a waiting package,

the truck may not pick it. If this rule is made deterministic, then the optimality of

plans is no longer guaranteed, unless there is only one truck and the truck’s capacity

is infinite.

Domain knowledge and heuristics

Domain knowledge can be used to reduce the nondeterminism and avoid unnecessary

applications of actions. In the complete Picat encoding given in Appendix B, the

predicate action begins with a rule that deterministically unloads a package if the

package’s destination is the same as the truck’s location.
Resource-bounded search is used to find an optimal plan. After each new state

is generated, the following condition is checked to ensure that the current path is
viable.

current_resource() - ACost >= estimated_cost(NewState).

Let P1, . . ., Pn be the remaining packages, and Ci be the minimum cost of moving

package Pi to its destination by using any truck. The moving cost of a state can

be safely estimated as max({C1, . . . , Cj}). The estimated total cost is the estimated

moving cost plus the loading and unloading costs of all of the remaining packages.

This heuristic is admissible.

6.2 Example-2: Tetris

The problem is a simplified version of the well-known Tetris. There are three kinds

of pieces: 1-cell boxes, 2-cell rectangles, and 3-cell L-shaped pieces. Initially, all the

pieces are distributed on a grid board. The pieces can freely move on the board to

any cells as long as the cells are not occupied by other pieces. There is a region

on the board that is designated as the target region. The goal of the game is to

move all the pieces to the target region. In the IPC setting, rectangles can rotate but

L-shaped pieces cannot.

Basic encoding

Pieces can be represented as follows: A square is represented by the cell it occupies;

a rectangle by a term of the form rect(C1,C2) where C1 and C2 are cell locations;

and an L-shaped piece by a term of the form ell(C1,C2,C3). In the IPC setting,

the ordering of the cells that are occupied by a piece is important. So rect(C1,C2)

and rect(C2,C1) represent two different rectangle pieces. A state is represented by

an array of the form {Squares,Rects,Ls}, where each argument gives a sorted list

of a single kind of pieces.
The PDDL rules for actions can be translated into Picat in a straightforward

manner. For example, the following rule selects a rectangle piece to move.
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action(State@{Squares,Rects,Ls},NewState,Action,ACost) ?=>

Action = $move(Rect,NewRect), ACost = 1,

select(Rect,Rects,RectsR),

Rect = $rect(C1,C2),

connected(C2,C3),

not_occupied(C3,State), %% C3 is free

NewRect = $rect(C2,C3),

NewState = {Squares,insert_ordered(Rects,NewRect),Ls}.

The predicate not occupied(C3,State) is true if C3 is not occupied by any of the

pieces in State.

Heuristics

Resource-bounded search is used to find an optimal plan for this problem. The goal

of the problem is to move all the pieces to the target region. For each piece, assume

that it’s the only piece on the board, disregarding all other pieces. The estimated cost

of moving the piece to the target region is its shortest distance to the nearest cell in

the target region times the cost of each move. The estimated cost of transforming

a state into a final state is the sum of the estimated costs of all the pieces. This

heuristic function is admissible and easy to compute, but very conservative because

a cell in the target region can serve as a target for multiple pieces.

6.3 Example-3: Floortile

A set of robots use two different colors (black and white) to paint patterns in floor

tiles. The robots can move around the floor tiles in four directions (up, down, left

and right). Robots paint with one color at a time, but can change their spray guns

to the other color. However, robots can only paint the tile that is in front (up) and

behind (down) them, and once a tile has been painted no robot can stand on it.

Basic encoding

A state is represented by a list of the form [Robots,WTiles,BTiles], where Robots

is an ordered list of robots and WTitles (BTiles) is an ordered list of locations

of the painted white (black) tiles. A robot in Robots is a pair (Color,Loc) where

Color is the color of the paint that the robot is holding and Loc is the robot’s

location.
A state is final if all the tiles that are required to be painted are all painted.

final({_,WTiles,BTiles}) =>

painted_w_tiles_in_goal(WTiles),

painted_b_tiles_in_goal(BTiles).

The actions are encoded according to the state representation. For example, once

a tile is painted, the tile’s location is added into WTiles or BTiles depending on

the color of the paint; once a robot (Color,Loc) moves from Loc to Loc1, the pair

is changed to (Color,Loc1). The current graph is determined by the initial graph,
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the set of painted tiles, and the set of robots. A robot can move from its current

location Loc to a new location NextLoc if NextLoc is connected to Loc in the graph,

NextLoc is not painted, and NextLoc is not occupied by another robot.

Macro actions and domain knowledge

The color-changing action, if needed, can be forced to take place right before a

painting action. This macro action helps reduce the search space.

For IPC’14, the used instances were generated in the fashion that robots should

only paint tiles in front of them. This special condition can be exploited to reduce

the nondeterminism of the painting rules: if a robot is at location Loc, trying to

paint the up location ULoc, and the up location of ULoc has already been painted,

then ULoc can be painted deterministically; similarly, if a robot is at location Loc,

trying to paint the down location DLoc, and the down location of DLoc has already

been painted, then DLoc can be painted deterministically.

Depth-unbounded search is used for this problem. During depth-unbounded

search, dead ends are tabled and are not re-explored when they are encountered

again. For this problem, a state becomes a dead end if there is an unpainted tile that

is not reachable by any robot. No extra code is needed to detect dead ends. Because

depth-unbounded search is used, no heuristics are needed.

6.4 Example-4: Parking

This domain involves parking cars on a street with N curb locations, and where cars

can be double-parked but not triple-parked. The goal is to find a plan to move from

one configuration of parked cars to another configuration, by driving cars from one

curb location to another. For each curb location, there are two parking spots: the

curb side and the road side. For a car to move from a spot at a curb into a spot at a

different curb, the destination spot must be clear; and if the spot is on the curb side,

then the road-side spot must also be clear. In some ways, this problem is similar to

the Blocks World and the Tower of Hanoi.

Basic encoding

A configuration is represented by an array of curbs {B1, B2, . . . , Bn}, where each Bi

is a list of up to two cars. When a curb has two cars [C1,C2], it is assumed that

C1 is the road-side car and C2 is the curb-side car. This representation allows the

road-side car C1 to be removed without touching the curb-side car C2.

A state is represented by a pair of the form (CurrConfig,GoalConfig), where a

CurrConfig is the current configuration, and GoalConfig is the goal configuration.

As shown below, the inclusion of the goal configuration in the state representation

facilitates the encoding of domain knowledge.
A state is final if the current configuration is the same as the goal configuration.

final((Config,Config)) => true.

All possible moves are specified with one rule as follows:
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action((Config,GConfig),NextS,Action,ACost) =>

Action = $move(I,J), ACost = 1,

nth(I,Config,ICars),ICars = [ClearCar|NewICars],

nth(J,Config,JCars), J !== I, JCars != [_,_],

N = length(Config),

NewConfig = new_array(N),

foreach (K in 1..N)

(K == I -> NewConfig[K] = NewICars

;K == J -> NewConfig[K] = [ClearCar|JCars]

; NewConfig[K] = Config[K])

end,

NextS = (NextConfig,GConfig).

The built-in predicate nth(I,Array,Arg) is true if the I-th argument of Array

is Arg. When I is a variable, this predicate nondeterministically searches for an

argument that unifies with Arg. The rule finds a non-empty curb I and a different

curb J that has less than two cars, and moves the clear car, ClearCar, from curb I

to curb J.

Domain knowledge and heuristics

Two knowledge rules can be incorporated into the basic encoding in order to speed

up the search. First, when a car is moved into a spot that is its final spot in the

goal configuration, such a move should be made deterministically. Note that if a car

is moved to a road-side final spot then the curb-side spot must be occupied by a

correct car. Second, a car that has been placed in its final spot should not be moved

away. This kind of domain knowledge has been used in solving the Tower of Hanoi

(Alford et al. 2009) and the Blocks World (Bacchus and Kabanza 2000).

Resource-bounded search is used to find an optimal plan. The cost of transforming

a state to a final state can be simply estimated as the number of incorrectly-positioned

cars. This estimation is admissible, since at least one action is needed to move each

incorrectly-positioned car. The following improved heuristic function, which takes

special curb configurations into account, is used by the model: For each curb, if the

curb has two cars [A,B] in the current state, but is required to have [B,A] in the

final state, then its cost is 4; if the curb has two cars [A,B], but is required to have

[C,A] or [B,C] (A �= C, B �= C), then its cost is 3; otherwise, the cost is the number

of incorrectly-positioned cars.

7 Experimental results

In addition to the four domains presented in this paper, we have encoded in

Picat several other domains used in the deterministic sequential track of IPC’14. The

domains and their Picat encodings are given in Appendix A. The Picat encodings are

simple, compact, and comparable in size with the PDDL encodings used in IPC’14.

Most of the encodings can be further improved by incorporating sophisticated

domain knowledge and heuristics. In order to evaluate the effectiveness of the use

of tabling and the use of heuristics, we have built two separate sets of encodings,
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Table 1. The number of instances solved optimally

Domain # insts Picat Picat-nt Picat-nh Symba

Barman 14 14 0 14 6

Cave 20 20 0 20 3

Childsnack 20 20 20 20 3

Citycar 20 20 17 18 17

Floortile 20 20 0 20 20

GED 20 20 19 13 19

Parking 20 11 4 0 1

Tetris 17 13 13 9 10

Transport 20 9 0 4 8

namely, Picat-nt and Picat-nh, which use the same state representation as the original

Picat encodings but have some component removed. Picat-nt performs Prolog-style

non-tabled iterative-deepening search. Since Picat-nt does not table any state, it

may explore the same state multiple times during search. The Picat-nh encodings

do not use any heuristics. We have compared these Picat encodings with the IPC’14

PDDL encodings solved with Symba (Torralba et al. 2014), a domain-independent

bidirectional A* planner which won the optimal sequential track of IPC’14. This

comparison offers a glimpse of how well Picat compares with the best domain-

independent planner. A comparison of Picat’s planner and several domain-dependent

planners also shows the promise of tabled planning (Barták et al. 2015).

Table 1 shows the number of instances (#insts) in the domains used in IPC’14

and the number of (optimally) solved instances by each planner. The results were

obtained on a Cygwin notebook computer with 2.4GHz Intel i5 and 4GB RAM.

Both Picat and Symba were compiled using g++ version 4.8.3. For Symba, a setting

suggested by one of Symba’s developers was used. A time limit of 30 minutes was

used for each instance as in IPC. For every instance that was solved by both Symba

and Picat, the plan quality is the same.

A comparison of Picat and Picat-nt shows the effectiveness of the use of tabling.

For every domain, except for Childsnack and Tetris, Picat solved more instances

than Picat-nt. For Barman, Cave, Floortile and Transport, Picat-nt could not solve

any of the instances. The Picat encodings for five of the domains (Citycar, GED,

Parking, Tetris, and Transport) use heuristics. The use of heuristics is helpful for these

domains, especially for Parking, for which Picat-nh did not solve any of the instances.

Picat solved more instances than Symba for every domain except for Floortile, for

which both systems solved all of the instances. The running times of the instances

are not given, but the total runs for Picat were finished within 24 hours, while the

total runs for Symba took more than 72 hours.

8 Conclusion and future work

This paper has presented Picat’s planner, its implementation, and example models

for several domains from IPC’14. The example models illustrate several modeling
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techniques in Picat. One key task of modeling is finding an efficient state represen-

tation. While classical planning frameworks such as PDDL are based on a factored

representation of states, Picat uses a structured representation. A structured state

representation can leave out unnecessary information that is not needed for planning

and can break symmetries by avoiding enumerating all possible permutations of

objects. Another key task of modeling is utilizing domain knowledge to reduce

search spaces. In the past, a lot of work has been done on the use of domain

knowledge in planning (Bacchus and Kabanza 2000; Haslum and Scholz 2003;

Kautz and Selman 1998), but recently, this part of modeling has been put aside,

because of the advancement of domain-independent PDDL planners. This paper has

shown that, even with simple domain knowledge, the declarative encodings of Picat

significantly outperform Symba, a state-of-the-art domain-independent planner.

This paper has demonstrated for the first time that tabled logic programming

is competitive with the cutting-edge PDDL planners. The key to the success is

tabling. Tabling avoids repeating the exploration of the same state and facilitates

performing resource-bounded search. The Picat planner does not do prior grounding

that is typical for most current state-space search planners, and hence Picat has

no problem with exploded memory consumption due to grounding. Nevertheless,

memory consumption can be demanding during search since every encountered state

is tabled. This is why careful modeling that removes symmetries and uses domain

control knowledge to prune useless state transitions is important.

A good state representation should also exploit the underlying term-sharing

technique that is used in the tabling system. In the examples that are presented in

this paper, ordered lists are used to represent collections of objects. It takes linear

time to perform the basic operations. One direction for future work is to design data

structures for state representations which are compact, efficient, and good for sharing.

A plethora of action languages have been designed for modeling and solving

planning problems (e.g., A and its successors (Gelfond and Lifschitz 1998), Golog

(Levesque et al. 1997), and K (Eiter et al. 2004)). The focus of these languages has

been on the modeling power rather than efficiency and scalability. These languages

have been implemented by translation into SAT, ASP, CP, or PDDL (Baier et al.

2011; Dovier et al. 2011), but no implementation has been shown to be competitive

with the cutting-edge PDDL planners. Picat can be used as an implementation

language for these action languages. Like in PDDL, a state is represented as a

set of flat facts in all of these action languages. Another direction for future

work is to devise an efficient translation from these action languages into Picat

that automatically exploits structural representation, symmetries, domain control

knowledge, and heuristics.
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