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Motivated by the fact that many investors have limited ability to update the expectation
regarding future stock returns with the arrival of new information instantly, this paper
provides a continuous-time model to study the performance of passive trading strategies.
We derive the true Sharp ratio of the passive strategies in terms of the mean and vari-
ance of an explicit stochastic process. Based on this expression, we quantify the impact
of partial information by performing a thorough comparative static analysis. Such an
analysis provides a rationale for why investors with inaccurate information about stock
return behave better in the mean-reverting environment than in the i.i.d. environment and
why pessimistic investors can achieve better performance than optimistic ones. As a by-
product, we propose an analytical approach to compute the “implied” parameters in stock
return predictor for both i.i.d. and mean-reverting dynamics, which seems interesting for
future research.

1. INTRODUCTION

In financial markets, investors usually have partial information about stock returns. The vast
literature studying the implications of partial information generally assumes that investors
can infer the information through a perfect learning mechanism. However, due to investors’
limited time, limited attention, limited access to information, or limited computing abil-
ity, passive strategies which cannot update the expectation regarding future stock returns
with the arrival of new information instantly seem more prevalent in real markets. The
focus of this paper is on the performance of passive strategies, taking the perfect learner’s
performance as a benchmark. Since Sharpe ratio is a widely welcomed evaluation method
which has a solid theoretical foundation and an easy tractability, we take Sharpe ratio as
the performance measure in this paper.1

1 The literature on Sharpe ratio optimization is vast, see Sharpe [31], Sharpe [32], and Modigliani and
Modigliani [27], among others.
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There are several recent papers which are also concerned with inaccurate underlying
information and non-perfect learning. Peng [29] studies the learning process of a repre-
sentative investor with a capacity (or attention) constraint and predicts that assets with
greater total fundamental volatility will attract more capacity allocation from the investor.
Peng and Xiong [30] point out that limited investor attention leads to category-learning
behavior, which when combined with investor overconfidence generates important features
observed in return comovement. Gomes [18] empirically tests the utility gains from exploit-
ing short-run predictability in the volatility of stock returns and finds that utility gains are
quite significant, both ex ante and out-of-sample. We contribute to this literature by inves-
tigating non-perfect learning associated with passive trading strategies affects investors’
performance in the Sharpe ratio framework.

The new findings of our paper lie in the following three aspects.
First, for an investor who strives to maximize the Sharpe ratio ST (hereafter T is a

predetermined investment horizon) of his portfolio but follows passive trading strategies
without exploiting the dynamics of return predictor, we are able to compute the true Sharp
ratio performance of his passive strategies S true

T in terms of the mean and variance of an
explicit stochastic process, thanks to Proposition 1 below. Since both the pre-specified goal
ST and the ex post realization S true

T are accessible to the investor, Proposition 1 thus
provides an analytical approach to compute implied parameters in the actual stock return
predictor. For example, given that the true but unobservable drift μ̃ of the stock price in the
market is normally distributed with mean v̄ and variance δ0, independent of the Brownian
motion in price fluctuation, if the investor projects his portfolio strategy just based on the
passive information μ̃ = v̄, the actual Sharpe ratio produced by the market is doomed to be
different from his inferred goal. The investor thus can figure out the variance δ0 by equating
the theoretical prediction with the realized observation. This procedure helps the investor
to understand the market trend more thoroughly in an ex-post way, and may serve as a
guide to his subsequent investments. An empirical test of the validity of such a procedure
seems interesting for future research.

Second, as an application of Proposition 1, we can quantify analytically the gap between
the aimed Shape ratio ST and the actually realized one S true

T , denoted by Rerror
T , which

facilitate the comparative static analysis of the performance loss with respect to fundamental
factors in underlying dynamics. Notably, our comparative static analysis provides a rationale
for why investors following passive trading strategies behave better in the mean-reverting
environment than in the i.i.d. environment and why pessimistic passive investors can achieve
better performance than optimistic ones.

Third, the comparative statics shows that investors who follow passive trading strategies
without inferring the dynamics of stock return predictor are only competent for short-
run investments. For long-run investments, the accumulated potential error of the passive
strategies becomes huge, giving rise to the poor reliability. Our numerical results illustrate
that for a fixed time horizon, employing multi-period strategies instead of one-period long-
run strategies helps passive investors to improve the reliability.

Our paper is related to but different from the following literature. Detemple [11], Dothan
and Feldman [12], Gennotte [17], Feldman [16], David [10], Barberis [2], Veronesi [33],
Xia [35], Pástor and Veronesi [28], Cvitanić et al. [9] and Leippold, Trojani and Vanini [22]
explore the implications of learning in portfolio optimization. However, different from ours,
these papers all invoke utility-based maximization to describe the investor’s policy. Since
utility-based optimization and mean-variance optimization do not agree with each other,2

2 Zhao and Ziemba [37] clarify the non-efficiency of the utility maximization in mean and standard
deviation. They also give an intuitive criteria in knowing which approach makes a sound investment decision.

https://doi.org/10.1017/S0269964813000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000090


QUANTIFYING THE IMPACT OF PARTIAL INFORMATION 377

the conclusions in these papers cannot be applied directly to fund managers who employ
Sharpe ratio rule. Xiong and Zhou [36] establish a generalized mathematical solution to
mean-variance optimization for Bayesian learners with the same information structure as in
our model. However, they do not consider how investors are misled to deviated outcomes by
partial information and passive trading strategies, which constitutes the main body of our
article. From this point of view, our Proposition 1 is new in the literature in the sense that
it firstly gives an analytical expression for the true performance of the portfolio which is
constructed on inaccurate stock return predictor. Cvitanić, Lazrakb A and Wang [8] report
and quantify some implications of the Sharpe ratio performance for investors who follow up
the market information exactly. However, they do not deal with the information processing
problem and thus cannot shed light on how inaccurate information misleads investors. One
should distinguish the imprecise information in our model from investor’s ambiguity or
multi-priors. The latter is a popular subject in recent research, see for example Epstein and
Wang [15] and Epstein and Schneider [14].

Our Sharpe ratio portfolio model with partial information on stock return predictor is
a combination of the Kalman filtering problem and the Sharpe ratio optimization problem.
The former problem can be solved by the “separation theorem” (Xiong and Zhou [36]) and
the latter problem with perfect market information has already been solved by Cvitanić
et al. [8]. The technical contribution of our paper is thus not the solving of an integration
of these two problems, but rather the analytical expression for the relation between the
pre-specified goal ST and the ex post realization S true

T and a thorough comparative static
analysis of the performance of passive strategies with respect to fundamental factors in
underlying dynamics. In this direction, our paper is in the same spirit of Caliendo and
Huang [6], who study the implications of maximizing the life-cycle consumption utility
based on an unrealistic (optimistic) estimation of asset return.

This paper is organized as follows. Section 2 presents the market information structure
to be used to construct the model. In Section 3, we build a quite general model to character-
ize the way in which investors are misled by partial information. In this section, we compute
the aforementioned S true

T and S potential
T , and introduce the reliability measures Rerror

T and
Rloss

T . Sections 4 and 5 are devoted to the comparative static studies when the general model
is specified in the i.i.d. and the mean-reverting environments respectively. In the i.i.d. envi-
ronment, a technical contribution is that we can carry through all the above calculations
analytically. In the mean-reverting case, we express the desired quantities in a system of
ordinary differential equations (ODEs), and such ODEs can be solved numerically in a sim-
ple way. In Section 6, we discuss multi-period strategies via numerical illustrations. At the
end, Section 7 concludes our work. All proofs and calculations are relegated to the Appendix.

2. ASSET DYNAMICS

The financial market consists of one risk-free bond, paying interest at an exogenously given
positive constant rate r, and one risky security, referred to stock, the return of which is
unobservable for the investor.3 To model uncertainty, we adopt a framework where the drift
of stock is unobservable. For concreteness, the stock price Su

t evolves as4

dSu
t

Su
t

= (r + σϑu
t )dt + σdWu

t . (1)

3 Whether there are more than one risky assets available for the investor is not crucial to our analysis.
All the results in this article can be extended straightforwardly to the case with multiple risky assets.

4 The evolution (1) of price Su
t is routine in continuous-time financial theory. See Merton [26].
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Here Wu
t is a standard Brownian motion which is defined in a complete probability space

(Ω,F , P ) and Fu
t := σ{Wu

s |0 ≤ s ≤ t} denotes the filtration generated by Wu
t . The risk

award ϑu
t determines the dynamic price of risk in economy, which is a Fu

t -adapted process
to be specified later. The volatility σ is assumed to be a known positive constant.5 Here we
use the superscript “u” to identify the scenarios which is unobservable for the investor.

We assume that the investor cannot observe ϑu
t or Wu

t directly and has to estimate
the current risky return by observing past and present stock prices. Thus the filtration
FSu

t := σ{Su
s |0 ≤ s ≤ t} denotes the information available to the investor up to time t, and

the process Wt defined by

dWt :=
1
σ

(
dSu

t

Su
t

− E[r + σϑu
t |FSu

t ]dt

)
(2)

signifies the observed randomness in risky stock prices. Notice that the information filtration
FSu

t is smaller than Fu
t because of Fu

t = FSu

t ∨ σ{ϑu
s |0 ≤ s ≤ t}, and Wt is a standard

Brownian motion which is adapted to FSu

t .6 The investor infers the posterior risk reward at
time t from FSu

t . Accordingly, from the investor’s viewpoint, the evolution of stock price is

dSt

St
= (r + σϑt)dt + σdWt. (3)

In the literature, ϑu
t is also called predictor of the mean return and ϑt is the inferred

predictor, see for instance Xia [35] and Wachter [34].
This paper distinguishes two types of investors:

• Type I is called “active investors” or “learners”, who attempt to learn about ϑt by
observing the market price of assets and update their expectation with the arrival of
new information. To be specific, we assume these investors take ϑt to be (1 + ε)θt,
where

θt := E[ϑu
t |FSu

t ] (4)

is an item arising from Bayesian learning. The parameter ε is a constant sat-
isfying ε > −1, characterizing the subjective attitude of investor.7 When ε > 0,
the investor is optimistic and overestimates the mean return. When −1 < ε < 0,
the investor is pessimistic and thus underestimates the mean return. When ε = 0, the
investor estimates the mean return perfectly.

• Type II is labeled as “passive investors”.8 These investors prefer not to implement
data mining through learning. In our model, the passive investor thinks of ϑt as
(1 + ε)θ0. Remember from (4) that θ0 is the mean of unobservable signal ϑu

t at time
t = 0. The interpretation of factor (1 + ε) is exactly the same as that for active
investors.

The information inferred by investors is illustrated in Figure 1. Formally, we give the
following definition.

5 It is feasible to obtain perfect estimates of variances but much harder to estimate expected returns
(Merton [25]).

6 By Lévy characterization, Brownian motion is an almost surely continuous martingale with mean zero
and quadratic variation t at time t. It is verified apparently that Wt defined in (2) is a martingale with

mean zero and quadratic t. The relationship FSu

t ⊂ Fu
t was already clarified in Xia [35, p. 212.].

7 The introducing of ε resembles the irrational assumption in Kogan et al. [20].
8 We thank the referee for suggesting this terminology, which makes our statement more precise.
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Figure 1. (Color online) Performance of “learners” and “passive investors”.

Definition 1: The unobservable true market information is described by (ϑu
t , dWu

t ). The
unbiased learners infer the correct information (θt, dWt) and achieve the potentially maximal
Sharpe ratio S potential

T . The passive investors infer that the market dynamic is given by
(ϑt, dWt) and derive the corresponding Sharpe ratio ST and the passive hedging strategy π̂t

according to it. The passive investors would actually achieve S true
T , which is the true Sharpe

ratio based on the passive strategy π̂t and the true market information.

To deal with partial information, investors prefer to become a learner to follow up the
information. The vast literature on learning assumes that the investor can learn the infor-
mation accurately. However, due to the investor’s limited time, limited attention, limited
access to information, or limited computing ability, passive strategies seem more prevalent
in reality. The focus of this paper is on the performance of passive strategies, taking the
learner’s performance as a benchmark.

3. SHARPE RATIO OPTIMIZATION

From the viewpoint of investors, the market is complete due to the fact that there is only
one stochastic source Wt in price dynamic (3). As it is well known in literature, the process

Zt := exp
(
−
∫ t

0

ϑsdWs − 1
2

∫ t

0

ϑ2
sds

)
(5)

is a martingale with respect to FSu

t and the risk-neutral probability measure Q is defined
via dQ = ZT dP , where T is a predesigned horizon. Under the risk-neutral measure Q, the
discounted price e−rtSt is a martingale. For an elaboration on martingale and risk-neutral
theory, we refer to Duffie [13].

The investor in our paper strives to maximize Sharpe ratio of his portfolio over time
span [0, T ]. This corresponds to the classical Markowitz problem in dynamic context. Let
x0 be initial wealth under management and πt be the amount invested in risky asset. With-
out additional influx or deduction of funds, the self-financing wealth process Xt develops
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according to

dXt = [πtσϑt + rXt]dt + πtσdWt, X0 = x0. (6)

Then the investor’s objective is

min Var[XT ]

subject to: the budget equation (6) and E[XT ] = x0e
bT , (7)

where b > r is an arbitrarily fixed expected return rate. The objective (7) is equivalent to
maximizing the observed Sharpe ratio

ST :=
x0(ebT − erT )√

Var[XT ]
.

The optimization problem (7) is a multi-period mean-variance problem, which has been
studied comprehensively in recent years and closed-form solutions of optimal trading strate-
gies are available in general situations. Among the extensive literature, we cite Korn and
Trautmann [21], Bajeux-Besnainou and Portait [1], Li and Ng [23], Xiong and Zhou [36] and
Cvitanić et al. [8] as our direct references. The following lemma reviews the main results
obtained in Cvitanić et al. [8] for our later uses.

Lemma 1 [Cvitanić et al. 9]: Assume that the market is complete such that it possesses an
unique risk-neutral kernel Zt as in (5). Denote

Λt :=
1

Z2
t

E[Z2
T |FSu

t ] and Nt := E[Z2
T |FSu

t ].

Define the FSu

t -adapted process κt by

dNt

Nt
= κtdWt.

Then for the minimization problem (7), the following assertions hold true.
(A) The optimal investment to risky asset π̂t is

π̂t = − 1
σ

[
x0

(
ebT +

ebT − erT

Λ0 − 1

)
e−r(T−t) − X̂t

]
(ϑt + κt),

where X̂t is the optimal wealth value at time t.
(B) The optimal terminal wealth X̂T is

X̂T = x0

[
ebT − ebT − erT

Λ0 − 1
(ZT − 1)

]
.

Hence at maturity T , one has

E[X̂T ] = x0e
bT , Var[X̂T ] =

x2
0(e

bT − erT )2

Λ0 − 1
, ST =

√
Λ0 − 1.

Lemma 1 is applicable as long as the financial market is complete, whatever the predictor
ϑt is specialized. The statement (A) describes how the investor manages his portfolio. The
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statement (B) shows that, following the strategy in (A), the investor takes for granted that
the maximal Sharpe ratio is

ST =
√

Λ0 − 1.

However, when he carries out the inferred strategy π̂t in the market, the true wealth process
is not

dX̂t = [π̂tσϑt + rX̂t]dt + π̂tσdWt, X̂0 = x0,

but
dX̂t = [π̂tσϑu

t + rX̂t]dt + π̂tσdWu
t , X̂0 = x0, (8)

because true uncertainty faced by the investor is not {ϑt, dWt} but {θu
t , dWu

t }. We label
the process defined via (8) by X̂true

t .
To solve X̂true

T , it seems necessary to work on the relatively bigger filtration Fu
t . We

remark that FSu

t ⊆ Fu
t , and Wu

t , Wt are both Brownian motions adapted to Fu
t . The

investor in our setup could not observe {Fu
t |t ≥ 0}. Thanks to the “separation theorem”

developed in Detemple [11], Dothan and Feldman [12] and Gennotte [17],9 we can express
X̂true

T conditional on FSu

t . In fact, the relationship implied by (2)

θtdt + dWt = ϑu
t dt + dWu

t (9)

clarifies that the dynamics of observed randomness dWt together with the perfectly inferred
drift θtdt coincide exactly with the original dynamics. By virtue of (9), we can reorganize
Eq. (8) as

dX̂t = rX̂tdt + π̂σ(ϑu
t dt + dWu

t ) = rX̂tdt + π̂σ(θtdt + dWt). (10)

All components of the right-hand side of above are observable to Bayesian learners. Eq. (9)
also justifies that the unbiased learner follows up the market dynamics precisely.

Now we are ready to calculate the true wealth process which is adapted to Fu
t explicitly.

Define

Z̄t = exp
[
−
∫ t

0

ϑsdWs +
∫ t

0

ϑs

(
θs − 3

2
ϑs

)
ds +

∫ t

0

κs(θs − ϑs)ds

]
. (11)

Proposition 1: Following the optimal portfolio strategy π̂t in Lemma 1 (A), the actual
terminal wealth given by (8) is

X̂true
T = x0

[
ebT − ebT − erT

Λ0 − 1
(Z̄T − 1)

]
.

Hence at maturity T , one has

E[X̂true
T ] = x0e

bT − x0

(
ebT − erT

Λ0 − 1

)
(E[Z̄T ] − 1),

Var[X̂true
T ] = x2

0

(
ebT − erT

Λ0 − 1

)2

Var[Z̄T ].

Moreover, the true Sharpe ratio S true
T := [E[X̂true

T ] − x0e
rT ]/[

√
Var[X̂true

T ]] equals

S true
T =

Λ0 − E[Z̄T ]√
Var[Z̄T ]

.

9 For a generalized version of “separation theorem” in the learning context, see Xiong and Zhou [36].
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Since both the pre-specified mean, variance and ST and their ex post realizations
are accessible to the investor, Proposition 1 provides an analytical approach to compute
the “implied” parameters in the actual stock return predictor θt by equating the theoret-
ical mean, variance, or ST with the realized observations.10 Noticing that we can in fact
obtain two equations which are concerned with mean and variance respectively, such a
procedure can determine at most two independent parameters by solving these two equa-
tions together. Because both i.i.d. predictor and mean-reverting predictor usually involve
at most two unknown underlying parameters,11 such a procedure seems ready for determin-
ing the parameters in the predictor dynamics. An empirical test of the validity of such a
methodology is an interesting topic for future research.

According to Proposition 1, for learners, we have ϑt = (1 + ε)θt and

Z̄t = Zt exp
[
− ε

1 + ε

∫ t

0

(ϑs + κs)ϑsds

]
, (12)

for passive investors, we have ϑt = (1 + ε)θ0, κt = −2ϑt and12

Z̄t = Zt exp
{
−(1 + ε)θ0

∫ t

0

[θs − (1 + ε)θ0]ds

}
. (13)

Eqs. (12) and (13) demonstrate that, among active and passive investors, it is only the
unbiased learner (ε = 0 in (12)) who arrives at Z̄t = Zt. More precisely we have

Theorem 1: In our setup, the following statements hold:

(A) Among all investors, only the unbiased learner achieves his primitive objective
exactly. For other investors, there is always a gap between objective and actual
outcome.

(B) Both the inferred and the true maximal Sharpe ratios are determined by underlying
dynamics, independent of the exogenous objectives.

As a result of Theorem 1, only being an unbiased learner can he achieve the largest
Sharpe ratio which the market can generate potentially, since only an unbiased learning
process can follow up market dynamics correctly. All the other investors attain a smaller
Sharpe ratio.

When an investor is either passive or error-learning, he could not attain his primitive
objective in reality. To quantify the bias, we introduce

Rerror
T :=

ST − S true
T

ST

to measure the associated fractional error. Furthermore we define

Rloss
T :=

S potential
T − S true

T

S true
T

,

which serves as an effective assessment of relative loss of opportunities. Remember that
Rloss

T is always non-negative because of S potential
T ≥ S true

T , and the equality holds if and
only if the investor is an unbiased learner.

10 This procedure for computing the underlying parameters is in the same spirit of computing implied
volatility in option pricing.

11 Usually, in the i.i.d. case, the unknown parameter is the variance, while in the mean-reverting case,
the unknown parameters are the mean-reverting intensity and long-run volatility.

12 When ϑt is a constant, it can be computed that E[Z2
T |FSu

t ] = Z2
t exp[ϑ2

t (T − t)], following which we
have κt = −2ϑt.
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In the following, we skip the learners with biased inferences (ε �= 0), and focus on differ-
ences between the unbiased learner (who serves as a benchmark) and passive investors. The
main reason is that learners with inappropriate inferences only bear the losses caused by
measurement errors, while, passive investors bear the expenses of being blind to predictor
dynamics. Compared to the former, the latter deserves a deeper study.

4. I.I.D. ENVIRONMENT

In this section, we consider the situation in which risky returns are independent and iden-
tically distributed. Brennan [4] and Cvitanić et al. [9] have explored the learning problem
in the corresponding utility-based optimization.

4.1. Sharpe Ratio Performance

Under the i.i.d. assumption, ϑu
t = ṽ. Here ṽ is a normal random variable with mean θ0 and

variance δ0, which is independent of the Brownian motion Wu
t . θt = E[ṽ|FSu

t ] evolves as

dθt =
(

δ0

δ0t + 1

)
dWt. (14)

The unbiased learner believes ϑt = θt whereas the passive investor thinks ϑt = (1 + ε)θ0. To
proceed, we need some computational results on relevant quantities, which are presented as
Proposition A.1 and Proposition A.2 in Appendix A.

Proposition 2: Under the i.i.d. assumption, the largest Sharpe ratio that the market can
potentially yield is

S potential
T =

(
1 + δ0T√
1 + 2δ0T

e(Tθ2
0/(1+2δ0T ) − 1

)1/2

.

The associated efficient strategy is

π̂t =
1
σ

[
x0

(
ebT +

ebT − erT

1+δ0T√
1+2δ0T

e(Tθ2
0/1+2δ0T ) − 1

)
e−r(T−t) − X̂t

] [
1 − 2δ0(T − t)

1 + δ0(2T − t)

]
θt,

where X̂t is the optimal wealth value at time t.

The optimal stock holding π̂t is a function of X̂t, θt, and δ0. In the long run, when X̂t

is large, the optimal risky holding π̂t tends to be reduced. This is the so-called “reversal”
feature for investors in the traditional i.i.d. environment.13 In the short run, an additional
force driving π̂t is θt. Because stocks are allowed to be traded instantaneously without
frictions, the motivation to earn the temporary profit makes π̂t increase when θt is high,
and vice versa.

A noteworthy phenomenon implied by Proposition 2 is that, there is a positive con-
stant δ∗ such that S potential

T is monotonously decreasing in δ0 ∈ (0, δ∗), while monotonously

13 See Cvitanić et al. [8] for a detailed discussion on the reversal feature in the i.i.d. case.
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increasing in δ0 ∈ (δ∗,+∞) with limδ0→+∞ S potential
T = +∞. It can be verified that

δ∗ =
4θ2

0

(1 − 2Tθ2
0) +

√
(1 − 2Tθ2

0)2 + 16Tθ2
0

. (15)

There are two conflicting influences of δ0 in determining the maximal Sharpe ratio. It
increases the underlying risk as well as brings opportunities of high returns. When δ0 < δ∗,
the former impact dominates while when δ0 > δ∗, the latter impact dominates.

Remark 1: We list some detailed analysis on Eq. (15).

• Observe that δ∗ is fully determined by θ0 and T . The fact limθ0→+∞ δ∗ = +∞ tells
us that when θ0 is high, δ0 tends to depress the Sharpe ratio, while limθ0→0 δ∗ = 0
says that when θ0 is low, δ0 tends to raise the Sharpe ratio. In the extreme case
of θ0 = 0, S potential

T is always increasing in δ0, because in this case learners benefit
merely from the fluctuation of returns.

• The limit points limT→0 δ∗ = 2θ2
0 and limT→+∞ δ∗ = θ2

0 are notable. If a learner has
access to a variety of stocks with the same mean return θ0, he is then advised by
(15) to invest in the stock whose signal variance δ0 is distant from δ∗.

• The main reason why the learner seems risk-seeking is that he is capable of uncov-
ering the market information completely in our model. Note that in reality, such
perfect learners are rare in markets. One worthy research subject is to explore the
behavioral mechanism of passive investors.

For passive investors, by virtue of Proposition 1, Proposition 2, Proposition A.1 and
Proposition A.2, we have

E[X̂T ] = x0e
bT , (16)

Var[X̂T ] =
x2

0(e
bT − erT )2

e(1+ε)2θ2
0T − 1

, (17)

ST =
[
e(1+ε)2θ2

0T − 1
]1/2

, (18)

and

E[X̂true
T ] = x0e

bT − x0

[
ebT − erT

e(1+ε)2θ2
0T − 1

] [
e

1
2 (1+ε)2θ2

0T ([2ε/(1+ε)]+δ0T ) − 1
]
, (19)

Var[X̂true
T ] = x2

0

[
ebT − erT

e(1+ε)2θ2
0T − 1

]2
e(1+ε)2θ2

0T ([2ε/(1+ε)]+δ0T )[e(1+ε)2θ2
0T (1+δ0T ) − 1], (20)

S true
T =

e
1
2 (1+ε)2θ2

0T ([2/(1+ε)]−δ0T ) − 1[
e(1+ε)2θ2

0T (1+δ0T ) − 1
]1/2

. (21)

To compare the actual and the inferred mean, variance and the Sharpe ratio respectively,
we deduce from (16) and (19) to obtain

E[X̂T ] − E[X̂true
T ] = x0

[
ebT − erT

e(1+ε)2θ2
0T − 1

]
[e

1
2 (1+ε)2θ2

0T ([2ε/(1+ε)]+δ0T ) − 1],
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and from (17) and (20) to get

Var[X̂true
T ]

Var[X̂T ]
= e(1+ε)2θ2

0T ([2ε/(1+ε)]+δ0T )

[
e(1+ε)2θ2

0T (1+δ0T ) − 1
e(1+ε)2θ2

0T − 1

]
.

It is easy to see that E[X̂T ] > E[X̂true
T ] if and only if ε > −[δ0T/(2 + δ0T )]. However, for

variance, we only have a partial assertion that ε > −[δ0T/(2 + δ0T )] implies Var[X̂true
T ] >

Var[X̂T ]. When ε < −(δ0T )/(2 + δ0T ), the relative size of Var[X̂true
T ] and Var[X̂T ] is uncer-

tain. A numerical approach can be applied for detailed analysis. Implications of the above
comparisons are listed below.

• When ε ≥ 0, it is definite that E[X̂true
T ] < E[X̂T ], Var[X̂true

T ] > Var[X̂T ] and in turn
S true

T < ST . It indicates that for optimistic investors, passive strategies lead them
to a lower portfolio mean and a higher portfolio variance.

• The situation ε < 0 is a little complicated.
– When −[δ0T/(2 + δ0T )] < ε < 0, it remains that E[X̂true

T ] < E[X̂T ], Var[X̂true
T ]

> Var[X̂T ] and S true
T < ST . The intuition is that the slight pessimism could

not offset the effects caused by ignoring predictor dynamics.
– When ε < −[δ0T/(2 + δ0T )], definitely E[X̂true

T ] > E[X̂T ], but the rela-
tive size of Var[X̂true

T ] and Var[X̂T ] is uncertain. However, the fact
limε→−1(S true

T /(ST ) = +∞ tells us that the passive investor with more severe
pessimism could earn a higher Sharpe ratio.

Intuitively, the optimistic investor overestimates the portfolio mean, underestimates
the portfolio risk and in turn obtain a lower Sharpe ratio. On the contrary, the pes-
simistic underestimates the portfolio mean, overestimates the portfolio risk, and in turn
obtain a higher Sharpe ratio.14 Notice that the passive investor with slight pessimism
(−[δ0T/(2 + δ0T )] < ε < 0) can nevertheless obtain a lower Sharpe ratio. Eq. (27) below
indicates that when θ0 is relatively high enough, the threshold between S true

T > ST and
S true

T < ST is ε = −[δ0T/(1 + δ0T )].
To visualize the above analysis, we calibrate the model to a set of empirical parameters.

Without loss of generality, we set initial wealth x0 = 1 throughout this paper. We take the
yearly data r = 3%, b = 10%, θ0 = 0.35, and δ0 = 0.025 as given.15 For passive investors,
panels A, B, and C in Figure 2 compare the actual and the inferred mean, variance and the
Sharpe ratio, respectively, with ε ranging from −0.5 to 0.5. Notice that in panel B, all the
three possibilities Var[X̂true

T ] < Var[X̂T ], Var[X̂true
T ] = Var[X̂T ] and Var[X̂true

T ] > Var[X̂T ]
can happen when ε < −[δ0T/(2 + δ0T )]. In panel C, it is obvious that when ε is close to
−1, there holds S true

T > ST . Panel D in Figure 2 compares the true and the potentially
maximal Sharpe ratio. The next subsection discusses these gaps in detail.

4.2. RError
T and RLoss

T

In order to see how the Sharpe ratio performance is influenced by fundamental parameters,
we study the comparative statics of Rerror

T and Rloss
T . Recall Proposition 2, (18) and (21).

14 Eq. (25) demonstrates that when predictor information is completely exposed to investors, ε > 0 always
results in a lower S true

T while ε < 0 always results in a higher S true
T , relative to ST .

15 When we consult a relevant empirical study in Brennan [4], Table 1 therein, the four possi-
ble values of δ0 are δ0 = v0/σ2 = (0.0243/0.202)2 = 0.014, δ0 = v0/σ2 = (0.0243/0.140)2 = 0.030, δ0 =
v0/σ2 = (0.0452/0.202)2 = 0.050, δ0 = v0/σ2 = (0.0452/0.140)2 = 0.104, for slightly different databases.
The notations v0 and σ are also from Table 1 there.
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Figure 2. (Color online) Relationship between passive investors’ performances and ε for
the i.i.d. case. In this figure, we compare E[X̂T ] and E[X̂true

T ], Var[X̂T ] and Var[X̂true
T ],

ST and S true
T , S true

T , and S potential
T , respectively. Here we set x0 = 1, r = 3%, b = 10%,

θ0 = 0.35, δ0 = 0.025 and T = 20.

Comparative statics with respect to time horizon T .

• When T goes to infinity, one has

lim
T→+∞

ST = +∞, lim
T→+∞

S true
T = 0, lim

T→+∞
S potential

T = +∞,

which yield
lim

T→+∞
Rerror

T = 1 and lim
T→+∞

Rloss
T = +∞. (22)

As T goes to infinity, both ST and S potential
T rise to infinity. However, the true

outcome S true
T approaches zero. This indicates that the passive investor’s belief

deviates from the truth seriously, especially for long-run investments. Moreover, the
passive investor’s portfolio strategy is doomed to behave badly in reality.

• When T goes to zero, one has

lim
T→0

Rerror
T =

ε

1 + ε
and lim

T→0
Rloss

T = 0. (23)

In short-time horizon, the loss caused by ignorance of predictor dynamics is
small enough such that passive investors are competent. The fact limT→0 Rerror

T =
ε/(1 + ε) suggests that the mis-perception on Sharpe ratio caused by subjective
attitude could not be removed thoroughly.

The tendencies of (22) and (23) are illustrated in panels A and B of Figure 3.
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Figure 3. (Color online) Relationship between passive investors’ R values and (T, δ0, θ0, ε)
for the i.i.d. case. In this figure, the benchmark is given by x0 = 1, r = 3%, b = 10%,
θ0 = 0.35, δ0 = 0.025, and T = 10. Panels A, B, C, D, E, F plot the dependencies of Rerror

T

and Rloss
T on (T, ε), (δ0, ε), (θ0, ε), respectively. When we picturize the dependencies of

Rerror
T and Rloss

T on ε and one of these parameters, we keep other parameters equal to the
benchmark.

Comparative statics with respect to δ0.

• When δ0 goes to infinity, one has

lim
δ0→+∞

S true
T = 0 and lim

δ0→+∞
S potential

T = +∞,

which yield
lim

δ0→+∞
Rerror

T = 1 and lim
δ0→+∞

Rloss
T = +∞. (24)
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These inequalities confirm again the fact that judgement error and potential loss
are mainly caused by the ignorance of δ0.

• When δ0 goes to zero, one has

lim
δ0→0

S true
T =

e(1+ε)θ2
0T − 1[

e(1+ε)2θ2
0T − 1

]1/2
and lim

δ0→0
S potential

T =
(
eθ2

0T − 1
)1/2

,

which yield

lim
δ0→0

Rerror
T =

e(1+ε)2θ2
0T − e(1+ε)θ2

0T

e(1+ε)2θ2
0T − 1

, (25)

lim
δ0→0

Rloss
T =

√
(eθ2

0T − 1)[e(1+ε)2θ2
0T − 1]

e(1+ε)θ2
0T − 1

− 1. (26)

When δ0 = 0, our model reduces to be the one in which the predictor information
is completely exposed to investors. In this case, Eq. (25) shows that ε > 0 always
results in a lower S true

T while ε < 0 always results in a higher S true
T , relative to ST .

Eq. (26) shows that potential loss is always positive unless ε = 0, which implies that
only the investor who estimates the predictor precisely can prevent himself from
suffering potential Sharpe ratio loss.

The tendencies of (24), (25), and (26) are illustrated in panels C and D of Figure 3.
Comparative statics with respect to θ0.

• When θ0 goes to infinity, one has

lim
θ0→+∞

ST = +∞, lim
θ0→+∞

S potential
T = +∞,

and

lim
θ0→+∞

S true
T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+∞, if ε <
1 − 2δ0T

1 + 2δ0T
,

1, if ε =
1 − 2δ0T

1 + 2δ0T
,

0, if ε >
1 − 2δ0T

1 + 2δ0T
.

Moreover,

lim
θ0→+∞

Rerror
T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∞, ε < − δ0T

1 + δ0T
,

0, ε = − δ0T

1 + δ0T
,

1, ε > − δ0T

1 + δ0T
,

(27)

and

lim
θ0→+∞

Rloss
T =

⎧⎪⎪⎨
⎪⎪⎩

+∞, ε �= − 2δ0T

1 + 2δ0T
,

0, ε = − 2δ0T

1 + 2δ0T
.

(28)

Eq. (27) suggests that when θ0 is high enough, the judgement of passive investor with
ε = [−δ0T/(1 + δ0T )] approximates reality. For ε < [−δ0T/(1 + δ0T )], the passive
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investor underestimates the true Sharpe ratio while for ε > [−δ0T/(1 + δ0T )], the
passive investor overestimates the true Sharpe ratio. To understand Eq. (28) well,
let us consider the special case of δ0 = 0. In this case, the gap between S true

T and
S potential

T is caused by ε only and Rloss
T = 0 holds only for ε = 0. All the other

investors with ε �= 0 tend to lose in Sharpe ratio substantially. For general cases, Eq.
(28) indicates that performance of the passive investor with ε = [−2δ0T/(1 + 2δ0T )]
is close to optimality when θ0 is high.

• When θ0 goes to zero, one has

lim
θ0→0

ST = 0, lim
θ0→0

S true
T = 0, lim

θ0→0
S potential

T =
(

1 + δ0T√
1 + 2δ0T

− 1
)1/2

.

Moreover,

lim
θ0→0

Rerror
T = 1 − [1/(1 + ε)] − 1

2δ0T√
1 + δ0T

and lim
θ0→0

Rloss
T = +∞, (29)

which confirm the fact that passive investors behave badly when θ0 is not significant.

The tendencies of (27), (28), and (29) are illustrated in panels E and F of Figure 3.

5. MEAN-REVERTING ENVIRONMENT

In this section, we study the mean-reverting case. Different from the i.i.d. case, the main
purpose in this section is to investigate the effects of mean-reverting intensity and long-run
volatility.

As in Wachter [34], we assume ϑu
t follows an Ornstein–Uhlenbeck process

dϑu
t = λ(θ̄ − ϑu

t )dt − σθdWu
t , ϑu

0 = ṽ, (30)

where λ, θ̄, σθ are non-negative constants and ṽ is a random variable independent of Wu
t .

The stock price Su
t and the state variable ϑu

t are perfectly negatively correlated, which
ensures the completeness of the market and subsequently enables us to use the martingale
approach.16 By Kalman filtering lemma, the dynamic of θt = E[ϑu

t |FSu

t ] is17

dθt = λ(θ̄ − θt)dt − (σθ − δt)dWt, θ0 = E[ṽ], (31)

where δt := Var[ϑu
t ] − Var[θt] solves the Riccati ODE

d

dt
δt = −2λδt + σ2

θ − (δt − σθ)2, δ0 = Var[ṽ].

The solution of δt is

δt =

⎧⎪⎪⎨
⎪⎪⎩

δ0

δ0t + 1
, if w = 0,

2δ0we−2wt

δ0(1 − e−2wt) + 2w
, if w �= 0,

16 For assumption (30), see for instance Kim and Omberg [19], Brennan, Schwartz and Lagnado [5],
Campbell and Viceira [7], Wachter [34], etc. Barberis [2] finds an empirical justification of such correlation
to be −0.93.

17 Eq. (31) follows immediately from Theorem 10.3 in Liptser and Shiryayev [24].
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Figure 4. (Color online) Relationship between S potential
T and (θ0, δ0, λ, σθ) for the

mean-reverting case. In this figure, panels A, B, C, and D plot the dependencies of S potential
T

on θ0, δ0, λ, and σθ, respectively. The benchmark is given by θ0 = θ̄ = 0.0788, λ = 0.2712,
σθ = 0.0655, δ0 = 0.025, and T = 10. When we picturize the dependency of S potential

T on
one of these parameters, we keep other parameters equal to the benchmark.

with w := λ − σθ.18 The positivity of δt indicates that the investor underestimates the
predictor volatility in general. When σθ ≤ λ, such bias diminishes as t goes to infinity.
When σθ > λ, such bias approaches a fixed positive level 2(σθ − λ).

5.1. Sharpe Ratio Performance

Keep in mind that the unbiased learner regards ϑt = θt, while passive investors believe
ϑt = (1 + ε)θ0. The required calculations are in Proposition A.3 and Proposition A.4 in
Appendix A. Due to the lack of explicit solutions, we resort to numerical results to illus-
trate the main points. To make sense, we have tried many plausible parameters in related
numerical experiments. The viewpoints to be given below present their common features as
well as can be interpreted intuitively.

Based on the monthly data in Wachter [34],19 matching the moments generates the
yearly data: θ̄ = 0.0788, λ = 0.0226 × 12 = 0.2712, and σθ = 0.0189 ×√

12 = 0.0655. We
picturize S potential

T , with θ0, δ0, λ and σθ varying in a reasonable range around the above
benchmark respectively in Figure 4.

18 Similar calculations can be found in Gennotte [17] and David [10].
19 See Table 1 therein.
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• Panel A shows that S potential
T is increasing in θ0. This is intuitive since a high initial

mean return is always profitable for investors.
• Panel B shows that S potential

T does rely on δ0 in a pattern similar to the i.i.d. case.
Namely, S potential

T is decreasing in δ0 if δ0 is small while increasing in δ0 if δ0 is big
enough. However, the critical point is different from the i.i.d. case. To illustrate it
more clearly, we choose θ0 = θ̄ = 0.0788 and see that S potential

T is increasing in δ0

when δ0 > δ1 = 0.2 approximately in panel B, while in the i.i.d situation, we find
that for the same value of θ0, S potential

T is increasing in δ0 just when δ0 > δ2 = 0.0113
from Eq. (15). Notice that δ1 is almost 18 times of δ2. Nevertheless, the insights in
Remark 1 remain valid.

• Panel C describes that S potential
T is at the beginning increasing and then decreasing

in λ. The interpretation is that as λ becomes positive from zero, the mean-reverting
intensity of θt is increased, which drives S potential

T upwards. As λ becomes larger, the
fluctuation of θt decays further such that θt converges to a stable level θ̄. The decline
of predictor risk also reduces the potential profits from risk, and therefore leads to
a smaller S potential

T . The influence of λ on S potential
T is substantial, supported by

the evidence that, when λ is strengthened to a slight extent, λ ≥ 0.2, for instance,
S potential

T is sharply reduced.

• Panel D shows that S potential
T increases rapidly in σθ. This indicates that the long-

run volatility in predictor contributes substantially to S potential
T .

For passive investors, to make the results comparable to the i.i.d. situation, we use an
artificial benchmark: r = 3%, b = 10%, θ̄ = 0.35, and δ0 = 0.025. We consider two special
cases of the mean-reverting model to emphasize the effect of each factor. In the first case,
we set σθ = 0, to stress the mean-reverting feature. In the second case, we set λ = 0, to
isolate the role of long-run volatility.

• Figure 5 depicts the Sharpe ratio performance in the first case. Compared with
Figure 2, the mean-reverting trend does not change the pattern of passive errors,
but mitigate the error magnitude. Intuitively, the mean-reverting tendency reduces
the risk compared with the i.i.d. situation.

• Figure 6 shows the Sharpe ratio performance in the second case. It is notable that
even an optimistic investor can underestimate his Sharpe ratio due to the loss of
information on long-run volatility when we compare the corresponding panel C’s
between Figure 2 and Figure 6.

5.2. RError
T and RLoss

T

In this subsection, we study the comparative statics on Rerror
T and Rloss

T . It is not surprising
to find that Rerror

T and Rloss
T diverge as T , δ0 or θ0 goes to infinity through our numerical

studies, which we prefer not to present here. To focus on the long-run feature, we draw the
pictures of Rerror

T and Rloss
T , taking (λ, ε) and (σθ, ε) as variables in Figure 7. To isolate the

influences of λ from σθ, we consider the above two subcases respectively.

• Panels A and B show that when mean-reverting intensity λ is big (say λ > 0.2 in our
figure), judgement error and potential loss mainly depend on ε, since the information
θt = θ0 is close to reality. Panel B also shows that Rloss

T is reduced substantially as
λ > 0.2 in our figure.
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Figure 5. (Color online) Relationship between passive investors’ performances and ε for
the mean-reverting case with σθ = 0. In this figure, we compare E[X̂T ] and E[X̂true

T ],
Var[X̂T ] and Var[X̂true

T ], ST and S true
T , S true

T , and S potential
T , respectively. Here we set

x0 = 1, r = 3%, b = 10%, θ0 = θ̄ = 0.35, δ0 = 0.025, λ = 1.0, σθ = 0, and T = 20.

• Panels C and D show that the ignorance of σθ contribute substantially to judgement
error and potential loss. Moreover, Rloss

T tends to increase no matter what the sign
of ε is. This confirms that for investors, no matter optimistic or pessimistic, being
blind to the long-run volatility eventually result in a positive loss in Sharpe ratio.

Remark 2: Panel B in Figure 7 indicates that passive investors behave much better in the
mean-reverting environment (λ > 0.2) than in the i.i.d. environment (λ = 0). Since the real-
istic market trend is influenced by periodic shocks (see Braun and Larrain [3] among others)
and exhibits the mean-reverting character, passive investors also have many opportunities
to perform closely to optimality, especially when the reverting intensity λ is large.

6. MULTI-PERIOD STRATEGIES

Cvitanić et al. [8] demonstrate that the manager’s focus on the short-run is detrimen-
tal to the long-run investor with the same time horizon. Their insights are applicable for
unbiased learners, who follow up the underlying information exactly. In our paper, we
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Figure 6. (Color online) Relationship between passive investors’ performances and ε for
the mean-reverting case with λ = 0. In this figure, we compare E[X̂T ] and E[X̂true

T ], Var[X̂T ]
and Var[X̂true

T ], ST and S true
T , S true

T and S potential
T , respectively. Here we set x0 = 1,

r = 3%, b = 10%, θ0 = θ̄ = 0.35, δ0 = 0.025, λ = 0, σθ = 0.05 and T = 20.

mainly focus on passive investors, taking learners as a benchmark. The following questions
arise naturally:

• Is the result of Cvitanić et al. [8] valid for passive investors?
• Is there anything new for passive investors when invoking a multi-period strategy?

In this section, we discuss these questions through numerical examples.
Let N be the number of time periods and τ = T/N be the length of each period. At the

beginning of each quarter Tn = n × τ , the passive investor restarts his policy according to

min : Var[XTn+1 |FSu

Tn
] := E[(XTn+1 − E[XTn+1 |FSu

Tn
])2|FSu

Tn
]

subject to : the budget equation (6) and E[XTn+1 |FSu

Tn
] = XTn

ebτ .

The equation E[XTn+1 |FSu

Tn
] = XTn

ebτ reflects the dynamic adjustments. Applying Lemma
1 recursively, we get the optimal wealth process

X̂T = x0

N−1∏
n=0

[
ebτ − ebτ − erτ

Var[Zτ ]
(Zτ − 1)

]
. (32)
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Figure 7. (Color online) Relationship between passive investors’ R values and (λ, σθ, ε)
for the mean-reverting case. In this figure, the benchmark is given by x0 = 1, r = 3%,
b = 10%, θ0 = θ̄ = 0.35, δ0 = 0.025, λ = 0, σθ = 0, and T = 10. Panels A, B, C, D plot
the dependencies of Rerror

T and Rloss
T on (λ, ε), (σθ, ε), respectively. When we picturize the

dependencies of Rerror
T and Rloss

T on ε and one of these parameters, we keep other parameters
equal to the benchmark.

Parallel to Proposition 1, the true wealth of this portfolio is

X̂true
T = x0

N−1∏
n=0

[
ebτ − ebτ − erτ

Var[Zτ ]
(Z̄τ − 1)

]
. (33)

Choose r = 3%, b = 10%, θ0 = θ̄ = 0.35, δ0 = 0.025, and T = 10 as before. We calculate the
inferred Sharpe ratio ST , the true Sharpe ratio S true

T , the potentially maximal Sharpe ratio
S potential

T , the reliability evaluations Rerror
T , and Rloss

T when N takes different values.20 Our
examples contain four typical structures: i.i.d. (λ = σθ = 0), mean-reverting only (λ = 1.0,

20 It follows from simple computations that Sharpe ratios associated to (32) and (33) are

ST =
ebT − erT√[

e2bτ +
(ebτ−erτ )2

Var[Zτ ]

]N − e2bT

,

S true
T =

(ατ − βτ E[Z̄τ ])N − erT√
(α2

τ − 2ατ βτ E[Z̄τ ] + β2
τ E[Z̄2

τ ])N − (ατ − βτ E[Z̄τ ])2N
,
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Table 1. Values of ST , S true
T , S potential

T , Rerror
T , and Rloss

T

(λ, σθ) ST S true
T S potential

T Rerror
T Rloss

T

N = 1 (0, 0) 1.5505 1.0090 1.1444 0.3492 0.1341
(1.0, 0) 1.5505 1.5438 1.5441 0.0043 0.0002
(0, 0.08) 1.5505 2.8434 8.7639 −0.8338 2.0822
(1.0, 0.08) 1.5505 1.9684 2.1448 −0.2695 0.0896

N = 2 (0, 0) 1.0805 0.9141 0.9423 0.1541 0.0309
(1.0, 0) 1.0805 1.0734 1.0736 0.0066 0.0002
(0, 0.08) 1.0805 1.4667 1.7330 −0.3573 0.1816
(1.0, 0.08) 1.0805 1.2700 1.3291 −0.1753 0.0465

N = 5 (0, 0) 0.8539 0.8076 0.8126 0.0542 0.0062
(1.0, 0) 0.8539 0.8450 0.8453 0.0104 0.0004
(0, 0.08) 0.8539 0.9578 0.9856 −0.1217 0.0290
(1.0, 0.08) 0.8539 0.9336 0.9513 −0.0933 0.0190

N = 10 (0, 0) 0.7847 0.7646 0.7664 0.0256 0.0023
(1.0, 0) 0.7847 0.7766 0.7769 0.0103 0.0004
(0, 0.08) 0.7847 0.8293 0.8380 −0.0568 0.0105
(1.0, 0.08) 0.7847 0.8249 0.8323 −0.0512 0.0090

N = 20 (0, 0) 0.7510 0.7417 0.7424 0.0124 0.0009
(1.0, 0) 0.7510 0.7452 0.7455 0.0077 0.0004
(0, 0.08) 0.7510 0.7715 0.7750 −0.0273 0.0044
(1.0, 0.08) 0.7510 0.7708 0.7740 −0.0263 0.0042

In this table, we use the parameter setting r = 3%, b = 10%, θ0 = θ̄ = 0.35, δ0 = 0.025,
T = 10, and ε = 0.

σθ = 0), diffusion only (λ = 0, σθ = 0.08), and mixed mean-reverting (λ = 1.0, σθ = 0.08).
We caution readers that in contrast to the single-period case, the Sharpe ratio relies on
the expected return rate b in a multi-period context. Therefore we redefine S potential

T to
be the Sharpe ratio acquired by the unbiased learner who aims at the expected return
ebT := E[X̂true

T ] in advance.
The results are listed in Table 1. In agreement with what Cvitanić et al. [8] documented,

ST , S true
T , and S potential

T all become smaller as the number N increases. This illustrates
that the strategy of maximizing the short-run Sharpe ratio results in a significant loss of
performance for both active and passive investors who care about the long-run Sharpe
ratio. For all the four subcases and all N , the performance of learners is always better than
that of passive investors. However, as N increases, S potential

T approximates ST more and
more closely, which implies that the effect of learning becomes less significant as τ becomes
smaller. Intuitively, when τ is infinitesimal, the effect of learning in such small time interval
diminishes and hence S potential

T converges monotonously to ST . As a result, Rloss
T and

Rerror
T go to zero as N becomes infinite. Relative to the one-period strategy, multi-period

strategies help passive investors to improve the reliability.

7. CONCLUSION

This paper investigates how inaccurate information about the stock return influences
the Sharpe ratio maximizer’s performance in a continuous-time model. The technical
contribution of our paper is not the solving of an integration of Kalman filtering and Sharpe

where ατ = ebτ + {(ebτ − erτ )/Var[Zτ ]} and βτ = (ebτ − erτ )/Var[Zτ ]. The details are in line with
Proposition 5 in Cvitanić et al. [8] and thus are omitted.
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ratio optimization, but rather an analytical expression for the relation between the pre-
specified goal ST and the ex post realization S true

T and a thorough comparative static analy-
sis of the performance of passive strategies with respect to fundamental factors in underlying
dynamics. Our framework also suggests an approach to compute the implied parameters in
stock return predictor by equating the theoretical prediction with the realized observation.

All investors in this paper could not observe the fundamental Brownian motion Wu
t

or the risk award ϑu
t directly. Both active and passive investors infer the Brownian motion

Wt by observing market prices. The unique distinction between active and passive investors
lies in that active investors conduct a Bayesian procedure to complete their information
on ϑt, while passive investors give up learning and just take for granted ϑt to be constant.
For learners, matching the observed randomness Wt with the unbiased predictor θt allows
them to follow up the underlying dynamic precisely, and in turn to achieve the potentially
maximal Sharpe ratio that the market can provide. For passive investors, due to the partial
information, they are certainly confronted with a gap between their expected goals and
actual realizations. This gap is measured by Rerror

T . Aside from ill-judged errors, passive
investors also incur heavy losses in profit opportunities. The losses are quantified by Rloss

T .
We consider four typical dynamic structures: i.i.d., mean-reverting only (λ �= 0, σθ = 0),

diffusion only (λ = 0, σθ �= 0), and the mixture of mean-reverting and diffusion (λ �= 0, σθ �=
0). Overall, the uncertainty in predictor has two conflicting influences on the Sharpe ratio.
It gives rise to a higher underlying risk whereas it offers opportunities of higher returns.
As a benchmark, the unbiased learner captures the dynamic of θt accurately, and thus can
hedge its risk in an efficient way as well as benefit from its potentially high realizations.

For passive investors, being blind to predictor uncertainty makes them lose profit oppor-
tunities. In both i.i.d. and mean-reverting environments, Rerror

T and Rloss
T diverge as δ0

increases, while the reliability of passive investment is improved greatly when the mean-
reverting intensity λ is significant. Both Rerror

T and Rloss
T depart steeply from zero as σθ

grows. The above yields three implications. First, in the most common mean-reverting situ-
ation, passive investors behave much better than in the i.i.d. case. This partially explains the
reasonableness of the existence of passive investments. Second, the numerical result illus-
trates that the factor dominating the passive investor’s performance in the mean-reverting
environment is the long-run volatility σθ. Third, without exact information on the stock
return, pessimistic passive investors can achieve better performance than optimistic passive
ones.

For long-run investments, the accumulated potential error of passive strategies becomes
huge, giving rise to the poor reliability. Passive investors would face a lower Sharpe ratio
in the multi-period context relative to the one-period strategy with the same time horizon,
which is consistent with the result of Cvitanić et al. [8] for learners. However, our numerical
results illustrate that, multi-period strategies help passive investors to reduce Rerror

T and
Rloss

T .
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APPENDIX A

A.1. Technical Results

Proposition A.1: Under the i.i.d. assumption, solutions of minimization problem (7) are given
below.

(A) For learners, κt = [δtAt − 2(1 + ε)]θt and Λ0 = exp
(
[A0/2]θ2

0 + B0
)
, where At and Bt

are uniquely determined by (B.9) and (B.10) in Appendix B.

(B) For passive investors, κt = −2(1 + ε)θ0 and Λ0 = exp[(1 + ε)2θ2
0T ].

Proposition A.2: In the i.i.d. environment, moments of Z̄T defined in (11) for passive investors
are E[Z̄T ] = exp

[
ε(1 + ε)θ2

0T + 1
2δ0(1 + ε)2θ2

0T 2] and E[Z̄2
T ] = exp[(1 + ε)(1 + 3ε)θ2

0T + 2δ0(1 +

ε)2θ2
0T 2].

Proposition A.3: Under the mean-reverting assumption, solutions of minimization problem (7)
are given below.

(A) For learners, κt = −2(1 + ε)θt − (σθ − δt)(Atθt + θ̄Bt) and Λ0 = exp
(

1
2A0θ2

0 + θ̄B0θ0 +

θ̄2C0 + D0
)
, where At, Bt, Ct, and Dt are uniquely solved by (B.12)–(B.15) in

Appendix B.

(B) For passive investors, κt = −2(1 + ε)θ0 and Λ0 = exp[(1 + ε)2θ2
0T ].

Proposition A.4: In the mean-reverting environment, moments of Z̄T defined in (11) for passive

investors are E[Z̄T ] = eA+(B/2) and E[Z̄2
T ] = e2A+2B, where A = 1

2 (1 + ε)2θ2
0T − (1 + ε)θ0θ̄T −

1
λ (1 + ε)θ0(θ0 − θ̄)(1 − e−λT ) and B = (1 + ε)2θ2

0

∫ T
0

{
1 − 1

λ

[
1 − e−λ(T−t)

]
(σθ − δt)

}2
dt.

APPENDIX B

B.1. Detailed Proofs

Proof of Proposition 1: Recall from Proposition 1 (A) that the optimal portfolio π̂t is

π̂t = − 1

σ

[
x0

(
ebT +

ebT − erT

Λ0 − 1

)
e−r(T−t) − X̂t

]
(ϑt + κt).

Let c = x0

(
ebT + [ebT − erT /(Λ0 − 1)

)
]e−rT , thus the self-financing equation (8) can be written

in the form

dX̂t − X̂t{(ϑt + κt)dWu
t + [(ϑt + κt)ϑ

u
t + r]dt}

= −cert[(ϑt + κt)dWu
t + (ϑt + κt)ϑ

u
t dt]. (B.1)
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Choose a stochastic multiplier Gt = exp
(∫ t

0 asdWu
s +

∫ t
0 bsds

)
, where at and bt are Fu

t -adapted

stochastic processes to be determined later. Applying the Itô formula to the process X̂tGt yields

d(X̂tGt) = GtdX̂t + X̂tdGt + dX̂tdGt

= GtdX̂t + X̂tGt

[
atdWu

t +

(
a2

t

2
+ bt

)
dt

]
+ (X̂t − cert)(ϑt + κt)Gtatdt

= GtdX̂t + X̂tGt

{
atdWu

t +

[
a2

t

2
+ bt + (ϑt + κt)at

]
dt

}

− certGt(ϑt + κt)atdt. (B.2)

After taking at = −(ϑt + κt) and bt = −(ϑt + κt)ϑ
u
t − r + 1

2 (ϑt + κt)
2, we insert (B.1) into (B.2)

and find

d(X̂tGt) = −certGt[(ϑt + κt)dWu
t + (ϑt + κt)(ϑ

u
t + at)dt]

= cert(dGt + Gtrdt).

Integrating the above, we get

X̂t =
x0

Gt
+

c

Gt

∫ t

0
ers(dGs + rGsds)

=
x0

Gt
+

c

Gt
(ertGt − 1)

= x0e−r(T−t)

(
ebT +

ebT − erT

Λ0 − 1

)
+

x0

Gt

[
1 − e−rT

(
ebT +

ebT − erT

Λ0 − 1

)]
.

Notice that 1/Gt = ertYt, where

Yt := exp

{∫ t

0
(ϑs + κs)dWu

s +

∫ t

0

[
(ϑs + κs)ϑ

u
s − 1

2
(ϑs + κs)

2
]

ds

}
, (B.3)

we can rewrite X̂t as

X̂t = x0e−r(T−t)

(
ebT +

ebT − erT

Λ0 − 1

)
+ x0ert

[
1 − e−rT

(
ebT +

ebT − erT

Λ0 − 1

)]
Yt.

Especially, when t = T ,

X̂T = x0

(
ebT +

ebT − erT

Λ0 − 1

)
+ x0

[
erT −

(
ebT +

ebT − erT

Λ0 − 1

)]
YT . (B.4)

By definition of Nt, one gets Nt = Λ0 exp
(∫ t

0 ksdWs − 1
2

∫ t
0 k2

sds
)
. Because of NT = Z2

T =

exp
(
−2
∫ T
0 ϑsdWs − ∫ T

0 ϑ2
sds
)
, one obtains

exp

[∫ T

0
(2ϑs + κs)dWs +

∫ T

0

(
ϑ2

s − 1

2
κ2

s

)
ds

]
=

1

Λ0
. (B.5)

From (2), we have

dWt = dWu
t + (ϑu

t − θt)dt. (B.6)
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Inserting (B.5) and (B.6) into (B.3) yields

YT =
1

Λ0
exp

[
−
∫ T

0
ϑsdWs +

∫ T

0
ϑs

(
θs − 3

2
ϑs

)
ds +

∫ T

0
κs(θs − ϑs)ds

]
. (B.7)

The combination of (B.4) with (B.7) completes the proof. �

Proof of Proposition A.1: To prove (A), recall that

Zt = exp

[
−(1 + ε)

∫ t

0
θsdWs − 1

2
(1 + ε)2

∫ t

0
θ2
sds

]
.

We calculate Λt = Λt(t, θt) which is defined in Proposition 1. Note that Λt is a function of t and
θt, where θt denotes the realization of the corresponding stochastic process. Let δt = δ0/(δ0t + 1).
Applying the Itô formula to the process Z2

t Λ(t, θt) yields

d[Z2
t Λ(t, θt)] = Z2

t dΛ(t, θt) + Λ(t, θt)dZ
2
t + dZ2

t dΛ(t, θt)

= Z2
t QΛ(t, θt)dt + Z2

t

[
δt

∂

∂θt
− 2(1 + ε)θt

]
Λ(t, θt)dWt (B.8)

with

Q =
∂

∂t
− 2(1 + ε)θtδt

∂

∂θt
+

1

2
δ2
t

∂2

∂θ2
t

+ (1 + ε)2θ2
t .

Since Z2
t Λ(t, θt) is a martingale under P , the drift in the right-hand side of (B.8) should vanish.

Therefore we obtain the partial differential equation (PDE) governing Λ(t, θt) from QΛ(t, θt) = 0
with the terminal condition Λ(T, θ) = 1 for all θ ∈ �. We fit the solution in the form Λ(t, θt) =

exp
(

At
2 θ2

t + Bt

)
and separate the polynomial coefficients of θt. Then we obtain that

1

2

d

dt
At − 2(1 + ε)δtAt +

1

2
δ2
t A2

t + (1 + ε)2 = 0, AT = 0, (B.9)

d

dt
Bt +

1

2
δ2
t At = 0, BT = 0. (B.10)

The ODE (B.9) is of Riccati type with variable coefficients and Bt = 1
2

∫ T
t δ2

sAsds. Having obtained
the expression of Λ(t, θt), one can calculate easily the process κt from (B.8) by

κt =
1

Λ(t, θt)

[
δt

∂

∂θt
− 2(1 + ε)θt

]
Λ(t, θt) = [δtAt − 2(1 + ε)]θt.

For (B), ϑt = (1 + ε)θ0 is a constant. In this case, E[Z2
T |FSu

t ] = Z2
t exp[(1 + ε)2θ2

0(T − t)], κt =
−2(1 + ε)θ0 and Λ0 = exp[(1 + ε)2θ2

0T ]. �

Proof of Proposition A.2: When ϑt = (1 + ε)θ0, one has Z̄T = eYT , with

YT =
1

2
(1 + ε)2θ2

0T − (1 + ε)θ0

(∫ T

0
dWt +

∫ T

0
θtdt

)

=
1

2
(1 + ε)2θ2

0T − (1 + ε)θ0

(∫ T

0
dWt + TθT −

∫ T

0
tdθt

)

=
1

2
(ε2 − 1)θ2

0T − (1 + ε)(1 + δ0T )θ0

∫ T

0

1

δ0t + 1
dWt,

which is normally distributed with mean 1
2 (ε2 − 1)θ2

0T and variance (1 + ε)2(1 + δ0T )θ2
0T . Thanks

to the familiar formula E[eN(μ,σ2)] = eμ+ σ2
2 , one gets the desired easily. �
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Proof of Proposition 2: The Riccati ODE with variable coefficients usually admits no closed-
form solutions. Even if it is solved analytically, the solution is always complicated. However, in the
case ε = 0, the ODE (B.9) is easily solved. In detail, (B.9) can be transformed as

d(Atδt)

(Atδt − 1)(Atδt − 2)
= −δtdt,

which can be solved completely by At = [2(1 + δ0t)(T − t)]/[1 + δ0(2T − t)]. Next, (B.10) gives us

Bt =
1

2
ln

{
(1 + δ0T )2

(1 + δ0t)[1 + δ0(2T − t)]

}
.

Thus Proposition 2 follows straightforwardly from Proposition 1 and Proposition A.1. �

Proof of Proposition A.3: For (A), denote Λt = Λt(t, θt), where the variable θt is involved in

the information FSu

t . Applying Itô formula to the process Z2
t Λ(t, θt), we get

d[Z2
t Λ(t, θt)] = Z2

t dΛ(t, θt) + Λ(t, θt)dZ
2
t + dZ2

t dΛt(t, θt)

= Z2
t QΛ(t, θt)dt − Z2

t

[
(σθ − δt)

∂

∂θt
+ 2(1 + ε)θt

]
Λ(t, θt)dWt (B.11)

with

Q =
∂

∂t
+ [λ(θ̄ − θt) + 2(1 + ε)θt(σθ − δt)]

∂

∂θt
+

1

2
(σθ − δt)

2 ∂2

∂θ2
t

+ (1 + ε)2θ2
t .

Since Z2
t Λ(t, θt) is a martingale under P , the drift in the right-hand side of (B.11) should be zero.

Hence the PDE of Λ(t, θt) is QΛ(t, θt) = 0, with the terminal condition Λ(T, θ) = 1 for all θ ∈ �.

We fit the solution in the form Λ(t, θt) = exp
(
[At/2]θ2

t + θ̄Btθt + θ̄2Ct + Dt

)
and separate the

polynomial coefficients of θt to obtain that

1

2

d

dt
At + [2(1 + ε)(σθ − δt) − λ]At +

1

2
(σθ − δt)

2A2
t + (1 + ε)2 = 0, AT = 0, (B.12)

d

dt
Bt + [(σθ − δt)

2A + 2(1 + ε)(σθ − δt) − λ]Bt + λAt = 0, BT = 0, (B.13)

d

dt
Ct + λBt +

1

2
(σθ − δt)

2B2
t = 0, CT = 0. (B.14)

d

dt
Dt +

1

2
(σθ − δt)

2At = 0, DT = 0. (B.15)

The ODE (B.12) is of Riccati type with variable coefficients and it admits a unique positive solution
theoretically. We solve (B.13)–(B.15) by

Bt = λ

∫ T

t
exp

{∫ s

t
[(σθ − δτ )2Aτ + 2(1 + ε)(σθ − δτ ) − λ]dτ

}
Asds,

Ct =

∫ T

t

[
λBs +

1

2
(σθ − δs)

2B2
s

]
ds and Dt =

1

2

∫ T

t
(σθ − δs)

2Asds.

Having obtained the expression of Λ(t, θt), the process κt follows directly from (B.11) by

κt = − 1

Λ(t, θt)

[
(σθ − δt)

∂

∂θt
+ 2(1 + ε)θt

]
Λ(t, θt)

= −2(1 + ε)θt − (σθ − δt)(Atθt + θ̄Bt).

The statement (B) is exactly the same as that in Proposition A.1. �
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Proof of Proposition A.4: When ϑt = (1 + ε)θ0, one has Z̄T = eYT , with

YT =
1

2
(1 + ε)2θ2

0T − (1 + ε)θ0

(∫ T

0
dWt +

∫ T

0
θtdt

)
, (B.16)

where

θt = e−λtθ0 + (1 − e−λt)θ̄ −
∫ t

0
e−λ(t−s)(σθ − δs)dWs.

Thus ∫ T

0
θtdt = TθT −

∫ T

0
tdθt

= θ̄T +
1

λ
(1 − e−λT )(θ0 − θ̄) − 1

λ

∫ T

0

[
1 − e−λ(T−t)

]
(σθ − δt)dWt. (B.17)

Inserting (B.17) into (B.16), we find

YT =
1

2
(1 + ε)2θ2

0T − (1 + ε)θ0θ̄T − 1

λ
(1 + ε)θ0(θ0 − θ̄)(1 − e−λT )

− (1 + ε)θ0

∫ T

0

{
1 − 1

λ

[
1 − e−λ(T−t)

]
(σθ − δt)

}
dWt.

Notice that YT is normally distributed with mean 1
2 (1 + ε)2θ2

0T − (1 + ε)θ0θ̄T − (1/λ)(1 +

ε)θ0(θ0 − θ̄)(1 − e−λT ) and variance (1 + ε)2θ2
0

∫ T
0 {1 − (1/λ)[1 − e−λ(T−t)](σθ − δt)}2dt. By

virtue of E[eN(μ,σ2)] = e[μ+(σ2/2)], one gets the desired easily. �
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