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Abstract. We consider continuous free semigroup actions generated by a family (gy)y ∈ Y

of continuous endomorphisms of a compact metric space (X, d), subject to a random
walk Pν = νN defined on a shift space YN, where (Y , dY ) is a compact metric space with
finite upper box dimension and ν is a Borel probability measure on Y. With the aim of
elucidating the impact of the random walk on the metric mean dimension, we prove a
variational principle which relates the metric mean dimension of the semigroup action with
the corresponding notions for the associated skew product and the shift map σ on YN, and
compare them with the upper box dimension of Y. In particular, we obtain exact formulas
whenever ν is homogeneous and has full support. We also discuss several examples to
enlighten the roles of the homogeneity, of the support and of the upper box dimension of
the measure ν, and to test the scope of our results.
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1. Introduction
In the late 1990s, Gromov [10] proposed a new dynamical concept of dimension that was
meant to extend the usual topological dimension to broader contexts. This notion, called
mean dimension and denoted by mdim, is defined for continuous maps on compact metric
spaces in terms of the growth rate of refinements of coverings of the phase space, and is
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hard to compute in general (cf. [14]). Amid the many virtues of this notion we refer to
the following: given compact metric spaces (X1, dX1) and (X2, dX2) and continuous maps
T1 : X1 → X1 and T2 : X2 → X2, one has

mdim(X1 × X2, T1 × T2) � mdim(X1, T1) + mdim(X2, T2).

Moreover, there are examples where the previous inequality is strict (cf. [14, 18]), which
attests how this new concept is subtler than a mere topological dimension. Meanwhile,
the topological entropy and its relation to measure-theoretic entropy have become cen-
tral tools in dynamical systems. The variational principle states that for a continuous
dynamical system the supremum of the measure-theoretic entropies of all possible
invariant probability measures gives the topological entropy. Yet, one often encounters
natural systems with infinite entropy, about which the classical theory is less conclusive.
Lindenstrauss and Weiss [14] successfully addressed this problem by introducing a novel
entropy-like invariant called metric mean dimension, which we abbreviate into mdimM .
This concept, inspired by the topological entropy, turns out to be a metric version of
Gromov’s notion. Besides, it is an upper bound for the mean dimension and, in general,
easier to estimate. However, it depends on the metric used, while the topological entropy
is metric independent. Despite this drawback, the metric mean dimension exhibits several
intrinsic features which makes it a rather compelling notion to be studied. For instance, the
topological entropy of a product of dynamics is given by

htop(T1 × T2) = htop(T1) + htop(T2)

and similarly one has

mdimM(X1 × X2, T1 × T2, dX1 × dX2) = mdimM(X1, T1, dX1) + mdimM(X2, T2, dX2).

Moreover, as happens with the classical variational principle for the topological pressure,
Lindenstrauss and Tsukamoto [13] and Tsukamoto [19] established double variational
principles relating the mean dimension with potential to the upper and lower rate distortion
dimensions, the former being a topological concept and the latter depending both on the
metric and the set of invariant probability measures. In this paper, we extend the notion
of metric mean dimension to continuous and compactly generated free semigroup actions.
(We recall that a topological semigroup is compactly generated if there exists a compact
set K ⊂ G such that G = ⋃

n ∈ N
Kn.)

The research on partially hyperbolic dynamics brought to the stage iterated systems of
functions modeling the behavior within the central manifold (see, e.g., [3]). This circum-
stance led to the study of random dynamical systems, and a thorough understanding of the
dynamical and ergodic properties of these systems has already been achieved. On the other
hand, sequential dynamical systems have been introduced to model physical phenomena:
instead of iterating the same dynamics, one allows the system that describes the real
events to readjust with time, in a way that matches the inevitable experimental errors.
Being a natural approach in the statistical study of lattices (cf. [17]), instead of just
a Z action one considers semigroup actions of dynamical systems. This imparts more
comprehensive formulations in statistical mechanics, though it also presents a number of
technical problems.
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A free semigroup action S is prescribed by three ingredients: a compact metric space
(Y , dY ), a continuous family (gy : X → X)y ∈ Y of continuous maps on a compact metric
space (X, d) and a random walk P determined by a Borel probability measure ν on Y

which is invariant by the shift map σ acting in YN. Although an action is not a dynamical
system, it is somehow modeled by one, namely the continuous skew product

TG : YN × X → YN × X

(ω, x) �→ (σ (ω), gω1(x)),
(1.1)

where ω = (ω1, ω2, . . .) is an element of the full unilateral space of sequences YN. The
choice of free semigroup actions is due to two main reasons. Firstly, since we consider only
forward iterations, it is worthwhile coding the elements in the semigroup by all the finite
words associated to the composition of its generators. Secondly, we benefit from the use of
a true dynamics given by the skew product (1.1), an approach which is still not available for
general semigroups. We also observe that σ is a factor of TG and that, in order to describe
the metric mean dimension of a free semigroup action, one is led to address the metric
mean dimension of skew products under a randomness constraint P. Now, Ledrappier and
Walters’ relativized (also known as quenched) variational principle (cf. [12]) asserts that

sup
{μ : π∗μ = P}

hμ(TG) = hP(σ ) +
∫

Y

h(TG, π−1(ω)) dP(ω),

where π : YN × X → YN is the natural projection and h(TG, π−1(ω)) is the topological
entropy of the skew-product dynamics on the fiber π−1(ω). This equality suggests that we
look for a similar reformulation of the metric mean dimension of a semigroup action in
terms of purely topological ingredients specified by the corresponding skew product and
the shift dynamics.

The first difficulty we face in this project is the choice of adequate random walks to drive
the action. Let us be more precise. The dimension of a set is roughly the largest dimension
of a neighborhood of its points. This is in strong contrast to topological entropy, at least
for dynamical systems with local entropy zero, in which case entropy arises associated
to the equidistribution of orbits and is determined by the global nature of the dynamics.
Moreover, dimensions may be estimated using exterior measures, which give weights
according to a geometric structure of the covering elements and do not depend on the
locus inside the phase space. This explains why the homogeneous probability measures
(that is, those for which the measures of balls with equal radius are uniformly comparable)
arise as the most natural ground to approach the metric mean dimension of free semigroup
actions. And, in fact, using Borel homogeneous probability measures ν on Y , we establish,
under a few mild assumptions, the following variational principle:

mdimM (YN × X, TG, D × d) = sup
ν

(dimB (supp ν) + mdimM (X, S, d , Pν)),

which relates the upper metric mean dimension of the skew product with the least upper
bound of the sum of the upper box dimension of ν and the upper metric mean dimension
of the semigroup action subject to the random walk Pν = νN. Besides, we show that
when such a random walk Pν is built from a homogeneous probability measure ν with
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full support, then

mdimM (X, S, d , Pν) = mdimM (YN × X, TG, D × d) − dimBY

although it may happen that

sup
μ

mdimM (X, S, d , Pμ) > mdimM (YN × X, TG, D × d) − dimBY .

In particular, if the semigroup is finitely generated, then Y is a finite set and hence
dimBY = 0 and the upper metric mean dimensions of the action and the skew product
coincide.

The paper is organized as follows. For the reader’s convenience we start with a short
glossary with the main definitions we will use. After establishing the aforementioned
variational principle, we explore some relevant applications and discuss a number of
examples.

2. Definitions and preliminary results
We start recalling the main concepts we use and describing the systems we will work with.

2.1. Metric mean dimension of a map. Let (X, d) be a compact metric space. Given
a continuous map f : X → X and a non-negative integer n, define the dynamical metric
dn : X × X → [0, ∞) by

dn(x, z) = max {d(x, z), d(f (x), f (z)), . . . , d(f n(x), f n(z))},
which generates the same topology as d . Having fixed ε > 0, we say that a set E ⊂ X is
(n, ε)-separated by f if dn(x, z) > ε for every x, z ∈ E. In the particular case of n = 1,
we will call such a set ε-separated. Denote by s(f , n, ε) the maximal cardinality of all
(n, ε)-separated subsets of X by f . Due to the compactness of X, the number s(f , n, ε)

is finite for every n ∈ N and ε > 0. We say that R ⊂ X is a (n, ε)-spanning set if for
any x ∈ X there exists z ∈ R such that dn(x, z) < ε. When n = 1, we say that the set is
ε-spanning. Let r(n, ε) be the minimum cardinality of the (n, ε)-spanning subsets of X.

Definition 2.1. The lower metric mean dimension of f with respect to the fixed metric d

is given by

mdimM (X, f , d) = lim inf
ε → 0+

h(f , ε)

|log ε| ,

where

h(f , ε) = lim sup
n → ∞

1
n

log s(f , n, ε).

Similarly, the upper metric mean dimension of f with respect to d is the limit

mdimM (X, f , d) = lim sup
ε → 0+

h(f , ε)

|log ε| .

Clearly, mdimM (X, f , d) = mdimM (X, f , d) = 0 whenever the topological entropy
of f , given by htop(f ) = limε → 0+ h(f , ε), is finite.
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2.2. Compactly generated semigroup action of continuous maps. Let (X, d) and (Y , dY )

be compact metric spaces and (gy)y ∈ Y be a family of continuous maps gy : X → X.
Denote by G the free semigroup having the set G1 = {gy : y ∈ Y } as generator, where the
semigroup operation ◦ is the composition of maps. Let S be the induced free semigroup
action

S : G × X → X

(g, x) �→ g(x),

which is said to be compactly generated by Y , and denote by TG the associated skew
product given by

TG : YN × X → YN × X

(ω, x) �→ (σ (ω), gω1(x)),
(2.1)

where ω = (ω1, ω2, . . .) is an element of the full unilateral space of sequences YN and σ

denotes the shift map acting on YN. It will be a standing assumption that TG is a continuous
map. If for every n ∈ N and ω = (ω1, ω2, . . .) ∈ YN we write

f n
ω = gωn . . . gω1 ,

then

T n
G(ω, x) = (σn(ω), f n

ω (x)).

Consider the set G∗
1 = G1 \ {id} and, for each n ∈ N, let G∗

n denote the space of
concatenations of n elements in G∗

1. Similarly, define G = ⋃
n ∈ N0

Gn, where G0 = {id}
and g ∈ Gn if and only if g = gωn . . . gω2 gω1 , with gωj

∈ G1 (for notational simplicity’s
sake we will use gj gi instead of the composition gj ◦ gi). In what follows, we will assume
that the generator set G1 is minimal, meaning that no function gy ∈ G1, for y ∈ Y , can be
expressed as a composition of the remaining generators. To summon an element g of G∗

n,
we will write |g| = n instead of g ∈ G∗

n. Each element g of Gn may be seen as a word
which originates from the concatenation of n elements in G1. Yet, different concatenations
may generate the same element in G. Nevertheless, in the computations to be done, we
shall consider different concatenations instead of the elements in G they create.

2.3. Random walks. A random walk P on YN is a Borel probability measure in
this space of sequences which is invariant by the shift map σ . For instance, we may
consider a finite subset F = {p1, . . . , pk} of Y , a probability vector (a1, . . . , ak) (that is,
a selection of positive real numbers ai such that

∑k
i=1 ai = 1), the probability measure

ν = ∑k
i=1 ai δpi

on F and the Borel product measure Pν = νN on YN. Such a Pν will
be called a Bernoulli measure, which is said to be symmetric if ai = (1/k) for every
i ∈ {1, . . . , k}, in which case we denote it by Pk . If Y is a Lie group, a natural symmetric
random walk is given by νN, where ν is the Haar measure. We denote by P(YN) the space
of Borel probability measures on YN and by PB(YN) its subset of Bernoulli elements.
It will be clear later on that the role of each random walk is to point out a particular
complex feature of the dynamics, here defined in terms of either the topological entropy
(definition in §2.4) or the metric mean dimension (definition in §2.5).
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2.4. Topological entropy of an action S. Given ε > 0 and g := gωn . . . gω2 gω1 ∈ Gn,
the nth dynamical ball Bn(x, g, ε) is the set

Bn(x, g, ε) := {z ∈ X : d(g
j
(z), g

j
(x)) � ε for all 0 � j � n},

where, for every 0 � j � n, the notation g
j

stands for the concatenation gωj
. . . gω2 gω1

in Gj , and g
0

= id . Observe that this is a classical ball with respect to the dynamical
metric dg defined by

dg(x, z) := max
0 � j � n

d(g
j
(x), g

j
(z)). (2.2)

Notice also that both the dynamical ball and the dynamical metric depend on the
underlying concatenation of generators gωn . . . gω1 and not on the semigroup element g,
since the latter may have distinct representations.

Given g = gωn . . . gω1 ∈ Gn, we say that a set K ⊂ X is (g, n, ε)-separated
if dg(x, z) > ε for any two distinct elements x, z ∈ K . The largest cardinality
of any (g, n, ε)-separated subset on X is denoted by s(g, n, ε) (or, equivalently,
s(gωn . . . gω1 , n, ε)). A set K ⊂ X is said to be (g, n, ε)-spanning if for every x ∈ X

there is k ∈ K such that dg(x, k) � ε. The smallest cardinality of any (g, n, ε)-spanning
subset on X is denoted by r(g, n, ε) (or r(gωn . . . gω1 , n, ε)).

Definition 2.2. The topological entropy of the semigroup action S with respect to a fixed
set of generators G1 and a random walk P in YN is given by

htop(S, P) := lim
ε → 0+ lim sup

n → ∞
1
n

log
∫

YN

s(gωn . . . gω1 , n, ε) d P(ω),

where ω = ω1 ω2 . . . ωn . . . . The topological entropy of the semigroup action S is then
defined by

htop(S) = sup
P

htop(S, P).

We observe that the semigroup may have multiple generating sets, and the dynamical
or ergodic properties (such as the topological entropy) depend on the chosen generator set.
More information regarding these concepts in the case of finitely generated free semigroup
actions may be found in [5, 6, 16].

2.5. Metric mean dimension of an action S. Let (X, d) be a compact metric space and S

be the free semigroup action induced on (X, d) by a family of continuous maps (gy : X →
X)y ∈ Y .

Definition 2.3. The upper and lower metric mean dimensions of the free semigroup action
S on (X, d) with respect to a fixed set of generators G1 and a random walk P in YN are
given respectively by

mdimM (X, S, d , P) = lim sup
ε → 0+

h(X, S, P, ε)

−log ε
,

mdimM (X, S, d , P) = lim inf
ε → 0+

h(X, S, P, ε)

−log ε
,
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where

h(X, S, P, ε) = lim sup
n → ∞

1
n

log
∫

YN

s(gωn . . . gω1 , n, ε) dP(ω). (2.3)

2.6. Upper box dimension. Let (Y , dY ) be a compact metric space.

Definition 2.4. The upper box dimension of (Y , dY ) is given by

dimBY = lim sup
ε → 0+

log N(ε)

|log ε| , (2.4)

where N(ε) stands for the maximal cardinality of an ε-separated set in (Y , dY ).

Consider now a Borel probability measure ν on Y .

Definition 2.5. The upper box dimension of ν is given by

dimB ν = lim
δ → 0+ inf {dimB Z : Z ⊂ Y and ν(Z) � 1 − δ}.

It is worth mentioning that, although the upper box dimension of a set Z coincides
with the upper box dimension of its closure, the upper box dimension of a probability
measure is intended to estimate the size of subsets rather than the entire support of the
measure (that is, the smallest closed subset with full measure). Indeed, it may happen
that dimB ν < dimB (supp ν) (cf. Example 7.1 in [15]). We refer the reader to [9, 15] for
excellent accounts on dimension theory.

2.7. Homogeneous measures. Let ν be a Borel probability measure on the compact
metric space (Y , dY ). A balanced measure should give the same probability to any two
balls with the same radius, but this is in general a too strong demand. Instead, we weaken
the request in the following way.

Definition 2.6. We say that ν is homogeneous if there exists L > 0 such that

ν(B(y1, 2ε)) � L ν(B(y2, ε)) for all y1, y2 ∈ supp ν, for all ε > 0. (2.5)

For instance, the Lebesgue measure on [0, 1], atomic measures and probability mea-
sures absolutely continuous with respect to the latter ones, with densities bounded away
from zero and infinity, are examples of homogeneous probability measures. We denote by
HY the set of such homogeneous Borel probability measures on Y .

By definition, every homogeneous measure satisfies

ν(B(y, 2ε)) � L ν(B(y, ε)) for all y ∈ supp ν, for all ε > 0 (2.6)

and, as ν(B(y1, ε)) � ν(B(y1, 2ε)),

ν(B(y1, ε)) � L ν(B(y2, ε)) for all y1, y2 ∈ supp ν, for all ε > 0. (2.7)

A measure ν satisfying (2.6) is said to be a doubling measure. Although the two concepts
(2.6) and (2.7) are unrelated in general, if Y is a subset of a Euclidean space R

k then
any probability ν satisfying (2.7) is a doubling measure. Indeed, as there is a constant
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Ck such that Leb(B(y, r)) = Ck rk for every y ∈ Y and every r > 0, any ball B(y, 2ε)

can be covered by at most 2k balls of radius ε; we now apply (2.5). For a discussion
of conditions on Y which ensure the existence of homogeneous measures and further
relations between homogeneity and the doubling property we refer the reader to [2, §4]
and references therein.

3. Main results
Given a compact metric space (Y , dY ), consider on YN the metric

D((yn)n∈N, (zn)n∈N) =
∞∑
i=1

dY (yi , zi)

2i
.

It is known (cf. [20, Theorem 5]) that

mdim (YN, σ , D) = dimBY ,

where σ : YN → YN is the shift map. Denote by PP (YN) the set of product probability
measures Pν = νN on YN, where ν is any Borel probability measure on Y .

Let (X, d) be a compact metric space and take on YN × X the product metric D × d .
Given a family of continuous endomorphisms (gy : X → X)y ∈ Y , consider the free
semigroup action S induced on (X, d) by G = {gy : y ∈ Y } and a random walk Pν ∈
PP (YN). Take its associated skew product TG : YN × X → YN × X, with the metric
D × d . We start relating the metric mean dimensions of TG and S with the upper box
dimension of the support of the measure ν.

THEOREM A. If dimBY < +∞ and ν ∈ HY , then:
(a) dimB (supp ν) + mdimM (X, S, d , Pν) � mdimM (YN × X, TG, D × d);
(b) if, in addition, supp ν = Y ,

dimBY + mdimM (X, S, d , Pν) = mdimM (YN × X, TG, D × d). (3.1)

Observe that if item (b) of Theorem A is rewritten as

mdimM (X, S, d , Pν) = mdimM (YN × X, TG, D × d) − dimBY ,

then the right-hand side deals only with geometrical objects, which are independent of the
random walk Pν . The previous equality extends to the notion of metric mean dimension
the formula of Bufetov

htop(S, Pp) = htop(TG) − htop(σ )

regarding the topological entropy of a finitely generated free semigroup action with respect
to the symmetric Bernoulli random walk Pp (cf. [4, 7]). In particular, this raises the
question of whether

sup
ν ∈ HY

mdimM (X, S, d , Pν) = mdimM (YN × X, TG, D × d) − dimBY .

Such a variational principle turns out to be false (cf. Example 6.3(1) in §6).
Notice also that taking homogeneous measures is a fundamental requirement in

Theorem A, and that the equality (3.1) may be realized by homogeneous measures that
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do not maximize the upper box dimension. For a discussion about the demands on the
measure ν, we refer the reader to §6.

We do not know a complete characterization of the compact metric spaces Y for which
a Borel homogeneous probability measure with full support exists. This is relevant, since,
for those spaces, one has the following.

COROLLARY I. If dimBY < +∞ and there exists a Borel homogeneous probability
measure on Y with full support, then

sup
ν ∈ HY

{dimB (supp ν) + mdimM (X, S, d , Pν)} = mdimM (YN × X, TG, D × d).

Moreover, the supremum is attained at every ν0 ∈ HY such that supp ν0 = Y .

We may ask whether the metric mean dimension of a free semigroup action is the
average of the metric mean dimensions of the generators. From Theorem A, we deduce
the following relation between these two values whenever the space Y has a Borel
homogeneous probability measure with full support.

COROLLARY II. If dimBY < +∞, then:
(a) for every ν0 ∈ HY such that supp ν0 = Y ,

mdimM (X, S, d , Pν0) � sup
y ∈ Y

{mdimM(X, gy , d)} − dimB Y ;

(b) for every η ∈ P(Y ) and any ν0 ∈ HY such that supp ν0 = Y ,

mdimM (X, S, d , Pν0) �
∫

Y

mdimM(X, gy , d) dη(y) − dimB Y ;

(c) in particular, when dimBY = 0, for every ν0 ∈ HY such that supp ν0 = Y ,

mdimM (X, S, d , Pν0) �
∫

Y

mdimM(X, gy , d) dν0(y)

and the equality cannot be attained unless we have for ν0-almost every y ∈ Y

mdimM(X, gy , d) = sup
α ∈ Y

{mdimM(X, gα , d)}.

Let us apply Theorem A to two relevant particular cases. Firstly assume that Y is finite.
In this case, dimBY = 0, and every probability ν on Y is homogeneous, satisfying also
dimB (supp ν) = dimB Y .

COROLLARY III. Assume that Y = {1, 2, . . . , p} for some p ∈ N. If ν is a Borel
probability measure on Y with full support, then

mdimM (X, S, d , Pν) = mdimM (YN × X, TG, D × d).

In what follows, we abbreviate into Leb the Lebesgue measure on [0, 1]k , k ∈ N.
Consider the Euclidean metric d in [0, 1]k and the probability PLeb := LebN on ([0, 1]k)N.
The next result is an immediate consequence of item (b) of Theorem A and the equality
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(cf. [14, 20])

mdimM(([0, 1]k)N, σ , D) = dimB([0, 1]k).

COROLLARY IV. Suppose that Y = [0, 1]k for some k ∈ N. Then

mdimM (X, S, d , PLeb) = mdimM (([0, 1]k)N × X, TG, D × d) − k.

4. Proof of Theorem A
Fix an arbitrary ε > 0 and take K = K(ε) � 1 such that

∑∞
i > K(diam(Y )/2i ) < ε/2.

For ν ∈ HY , consider Z = supp ν. Afterwards, choose E ⊂ Z a maximal (ε/4)-separated
subset and denote by NZ(ε) its cardinality. By the definition of upper box dimension, we
have

dimB Z = lim sup
ε → 0+

NZ(ε)

−log(ε/4)
= lim sup

ε → 0+

NZ(ε)

−log ε
.

For each n ∈ N and each point (pi1 , . . . , pin+K
) ∈ En+K , consider the cylinder

Ci1,i2,...,in+K
=

{
ω ∈ YN : ω0 ∈ B

(
pi1 ,

ε

4

)
, . . . , ωn−1 ∈ B

(
pin+K

,
ε

4

)}
(4.1)

and notice that every ω, θ ∈ Ci1,i2,...,in+K
satisfies Dn(ω, θ) < ε. Indeed, since

dY (ωi , θi) < (ε/2) for every 0 � i � n + K − 1, then

D(σj (ω), σ j (θ)) �
n+K−j∑

i=1

ε

2i+1 +
∑

i>n+K−j

diam(Y )

2i
< ε for all 0 � j � n.

Since E ⊂ Z is a maximal ε/4-separated subset of Z, it is an ε/4-spanning set of Z;
hence, the collection defined by (4.1) is a covering of ZN. Moreover, if we associate to each

p = (pi0 , . . . , pin+K−1) ∈ En+K a point ω(p) ∈ Ci1,i2,...,in+K
so that its j th coordinate ω

(p)

j

coincides with pij for every 1 � j � n + K , then we obtain a (σ , n + K , ε/4)-separated
subset of YN. In fact, if ω(p) 	= ω(q), then there exists 1 � j � n + K such that their

j -coordinates ω
(p)

j and ω
(q)

j belong to E and are different and so

D(σj (ω(p)), σ j (ω(q))) � min
y1 	=y2 ∈ E

dY (y1, y2) �
ε

4
.

Consequently,∫
YN

s

(
gω, n,

ε

4

)
dPν(ω) =

∫
ZN

s

(
gω, n,

ε

4

)
dPν(ω)

�
∑

i = (i1,i2,...,in+K)

[
max
ω ∈ Ci

s

(
gω, n,

ε

4

)
× Pν(Ci ∩ ZN)

]
.

(4.2)

We observe now that the image of the map s(·, n, (ε/4)) : Ci → Z defined by ω ∈ Ci �→
s(gω, n, ε/4) is contained in [0, s(TG, n, ε/4)] ∩ Z. So, it has a maximum in Z, which
ensures that ω(i) can be chosen as a point in Ci where the maxCi

s(gω, n, ε/4) is attained.
Combining this information with (4.2), the fact that Pν is a product measure and the
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homogeneity assumption on ν, we obtain∫
ZN

s

(
gω, n,

ε

4

)
dPν(ω) �

[∑
i

max
ω ∈ Ci

s

(
gω, n,

ε

4

)]
× max

i
Pν(Ci ∩ ZN)

�
[∑

i

s

(
gω(i) , n,

ε

4

)]
× max

i

n+K−1∏
j=0

ν

(
B

(
pij ,

ε

4

))

� s

(
TG, n,

ε

4

) (
1

NZ(ε)

)n+K

.

The inequality [∑
i

s

(
gω(i) , n,

ε

4

)]
� s

(
TG, n,

ε

4

)

is a consequence of the fact that, if {x(i)
1 , . . . , xs(g

ω(i) ,n,ε)} is a (gω(i) , n, ε/4)-separated set
of biggest cardinality, then⋃

i

{(
ω(i), x

(i)

1

)
, . . . ,

(
ω(i), x

(i)

s(g
ω(i) ,n,ε/4)

)}
is a (TG, n, ε/4)-separated set. On the other hand, the inequality

max
i

n+K−1∏
j=0

ν

(
B

(
pij ,

ε

4

))
�

(
1

NZ(ε)

)n+K

is due to the homogeneity of ν. In fact, for every q ∈ supp ν, any pij and all i, one has

ν

(
B

(
pij ,

ε

8

))
� L ν

(
B

(
q,

ε

8

))
for all ε > 0

and, as the balls in the collection (B(e, ε/8))e ∈ E are pairwise disjoint (due to the
maximality of E as an ε/4-separated set),

1 � ν

( ⋃
e ∈ E

B

(
e,

ε

8

))
=

∑
e ∈ E

ν

(
B

(
e,

ε

8

))
� NZ(ε) L ν

(
B

(
q,

ε

8

))
.

Thus,

ν

(
B

(
q,

ε

8

))
� 1

L

1
NZ(ε)

for all q ∈ supp ν.

Finally, since ν is a doubling measure, there exists L > 0 (independent of ε) such that

ν

(
B

(
q,

ε

4

))
� L ν

(
B

(
q,

ε

8

))
for all q ∈ supp ν.
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We may now complete the proof of Theorem A(a):

mdimM (X, S, d , Pν) = lim sup
ε → 0+

lim supn → ∞ (1/n) log
∫
ZN s(gω, n, (ε/4)) dPν(ω)

−log(ε/4)

� mdimM (YN × X, TG, D × d) − lim sup
ε → 0+

log NZ(ε)

−log ε

= mdimM (YN × X, TG, D × d) − dimBZ

= mdimM (YN × X, TG, D × d) − dimB (supp ν).

Before proving item (b) of Theorem A, we establish an alternative characterization of
the metric mean dimension using spanning sets.

LEMMA 4.1. If S is a free semigroup action on (X, d) with respect to a random walk P in
YN, then

mdimM (X, S, d , P) = lim sup
ε → 0+

hr(X, S, P, ε)

−log ε
,

where

hr(X, S, P, ε) = lim sup
n → ∞

1
n

log
∫

YN

r(gωn . . . gω1 , n, ε) dP(ω)

and r(gωn . . . gω1 , n, ε) stands for the minimal cardinal of an (n, ε)-spanning set in
(X, d).

Proof. In view of Definition 2.3, it is enough to prove that

lim sup
ε → 0+

h(X, S, P, ε)

−log ε
= lim sup

ε → 0+

hr(X, S, P, ε)

−log ε
,

where h(X, S, P, ε) is given by (2.3). In fact, since r(gωn . . . gω1 , n, ε) � s(gωn . . . gω1 ,
n, ε) � r(gωn . . . gω1 , n, ε/2) for every n ∈ N, ε > 0 and P-almost every ω (the argu-
ments are identical to the ones with a single continuous map), it is clear that

hr(X, S, P, ε) � h(X, S, P, ε) � hr

(
X, S, P,

ε

2

)
for every ε > 0. This ends the proof of the lemma.

We now resume the proof of Theorem A(b). Although we are interested in homogeneous
measures with full support, the next result is more general.

PROPOSITION 4.2. If ν ∈ HY , then

dimB (supp ν) + mdimM (X, S, d , Pν) = mdimM ((supp ν)N × X, TG, D × d).
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Proof. We start by remarking that the argument to prove Theorem A(a) also shows that if
ν ∈ HY , then

dimB (supp ν) + mdimM (X, S, d , Pν) � mdimM ((supp ν)N × X, TG, D × d).

We are left to establish the reverse inequality.
Fix an arbitrary ε > 0 and consider an integer K = K(ε) � 1 such that∑∞
i > K(diam(Y )/2i ) < ε/2. For ν ∈ HY , take Z = supp ν and choose a maximal ε/4-

separated set E ⊂ Z, whose cardinality is denoted by NZ(ε). By the definition of upper
box dimension, lim supε → 0+(NZ(ε))/(−log ε) = dimB Z. For each n ∈ N and each
point (pi1 , . . . , pin+K

) ∈ En+K , consider the cylinder

Ci1,i2,...,in+K
= {ω ∈ YN : ω1 ∈ B(pi1 , ε/4), . . . , ωn ∈ B(pin+K

, ε/4)} (4.3)

and notice that every ω, θ ∈ Ci1,i2,...,in+K
satisfies Dn(ω, θ) < ε. Indeed, since

dY (ωi , θi) < ε/2 for every 1 � i � n + K , then

D(σj (ω), σ j (θ)) �
n+K−j∑

i=1

ε

2i+1 +
∑

i>n+K−j

diam(Y )

2i
< ε for all 0 � j � n.

Since E ⊂ Z is a maximal (ε/4)-separated subset of Z, it is an (ε/4)-spanning set of Z;
hence, the collection defined by (4.3) is a covering of ZN. Moreover, if we select for each

p = (pi1 , . . . , pin+K) ∈ En+K a point ω(p) ∈ Ci1,i2,...,in+K
so that its j th coordinate ω

(p)

j

coincides with pij for every 1 � j � n + K , then we obtain a (σ , n, ε)-spanning subset
of ZN. Consequently,∫

YN

r(gω, n, ε) dPν(ω) =
∫

ZN

r(gω, n, ε) dPν(ω)

�
[ ∑

i = (i1,i2,...,in+K)

min
ω ∈ Ci∩ZN

r(gω, n, ε)

]
× min

i
Pν(Ci ∩ ZN).

(4.4)

As the image of the map r(·, n, ε) : Ci → Z+ defined by ω ∈ Ci �→ r(gω, n, ε) is
contained in the set of positive integers, it has a minimum in Z+, which guarantees that
ω(i) can be chosen as a point in Ci where the minBi

r(gω, n, ε) is attained. This together
with (4.4), the fact that Pν is a product measure and the homogeneity assumption on ν

imply that∫
YN

r(gω, n, ε) dPν(ω) �
[ ∑

i = (i1,i2,...,in+K)

min
ω ∈ Ci∩ZN

r(gω, n, ε)

]
× min

i
Pν(Ci ∩ ZN)

�
∑

i

r(gω(i) , n, ε) × min
i

n+K−1∏
j=0

ν

(
B

(
pij ,

ε

4

)
∩ Z

)

� r(TG |ZN×X, n, ε)

(
1
L2

)n+K(
1

NZ(ε)

)n+K

,

https://doi.org/10.1017/etds.2020.143 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.143


78 M. Carvalho et al

where L > 0 is specified by the homogeneity of ν and does not depend on either ε or n.
Notice that the inequality∑

i

r(gω(i) , n, ε) � r(TG |ZN×X, n, ε)

is a consequence of the fact that, if {x(i)
1 , . . . , xr(g

ω(i) ,n,ε)} is a (gω(i) , n, ε)-spanning set of
Z with smallest cardinality, then⋃

i

{(
ω(i), x

(i)

1

)
, . . . ,

(
ω(i), x

(i)

r(g
ω(i) ,n,ε)

)}
is a (TG |ZN×X, n, ε)-spanning set. Besides, the inequality

min
i

n+K−1∏
j=0

ν

(
B

(
pij ,

ε

4

))
�

(
1
L2

)n+K(
1

NZ(ε)

)n+K

is due to the homogeneity of ν, which implies that, for every q ∈ supp ν, any pij and all i,

ν(B(pij , ε)) � 1
L

ν(B(q, ε)) for all ε > 0

and the fact that, as
⋃

e ∈ E B(e, ε/4) = Z,

1 = ν

( ⋃
e ∈ E

B

(
e,

ε

4

))
�

∑
e ∈ E

ν

(
B

(
e,

ε

4

))
� NZ(ε) L ν

(
B

(
q,

ε

4

))
;

thus,

ν

(
B

(
q,

ε

4

))
� 1

L

1
NZ(ε)

.

Therefore,

mdimM (X, S, d , Pν) = lim sup
ε → 0+

lim sup
n → ∞

(1/n) log
∫

ZN

r(gω, n, ε) dPν(ω)

−log ε

� mdimM (ZN × X, TG, D × d) − lim sup
ε → 0+

log NZ(ε)

−log ε

= mdimM (ZN × X, TG, D × d) − dimBZ

= mdimM ((supp ν)N × X, TG, D × d) − dimB (supp ν).

Consequently, if ν ∈ HY and supp ν = Y , then Proposition 4.2 yields

dimB (Y ) + mdimM (X, S, d , Pν) = mdimM (YN × X, TG, D × d)

and the proof of Theorem A(b) is complete. �

Remark 4.3. We observe that in the previous argument we only used a weaker version of
the homogeneity of the measure, namely condition (2.7).

Remark 4.4. We note that a priori the full support assumption in item (b) of Theorem A
cannot be replaced by the weaker requirement of the existence of a sequence (νn)n ∈ N
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of probabilities in HY such that dH (supp νn, Y ) → 0 as n → ∞, where dH denotes the
Hausdorff distance. Actually, for a C0-generic homeomorphism g, the function Z �→
mdimM(X, g |Z , d) is not continuous when we endow the space of compact subsets in
X with the Hausdorff metric (cf. [8]).

5. Proof of Corollary II
Assume that dimBY < +∞ and there exists a Borel homogeneous probability measure
ν0 on Y with full support. Take y ∈ Y and the Dirac measure δy supported on y, which is
homogeneous. Therefore,

sup
y ∈ Y

{mdimM(X, gy , d)} � sup
ν ∈ HY

{dimB (supp ν) + mdimM (X, S, d , Pν)},

where, by Corollary I, one has

sup
ν ∈ HY

{dimB (supp ν) + mdimM (X, S, d , Pν)} = mdimM (YN × X, TG, D × d).

Moreover, by Theorem A(b), we know that, for every ν0 ∈ HY such that supp ν0 = Y ,

mdimM (YN × X, TG, D × d) = mdimM (X, S, d , Pν0) + dimB Y .

Therefore,

mdimM (X, S, d , Pν0) � sup
y ∈ Y

{mdimM(X, gy , d) } − dimB Y .

In particular, given η ∈ P(Y ), we deduce that

mdimM (X, S, d , Pν0) �
∫

Y

mdimM(X, gy , d) dη(y) − dimB Y .

In case dimBY = 0 and η = ν0, we are reduced to

mdimM (X, S, d , Pν0) �
∫

Y

mdimM(X, gy , d) dν0(y). (5.1)

Regarding the equality in (5.1), since mdimM(X, gy , d)� supα ∈ Y {mdimM(X, gα , d)}
for every y ∈ Y and∫

Y

mdimM(X, gy , d) dν0(y) � sup
y ∈ Y

{mdimM(X, gy , d)} � mdimM (X, S, d , Pν0),

if we have an equality in (5.1), then mdimM(X, gy , d) = supα ∈ Y {mdimM(X, gα , d)} for
ν0-almost every y ∈ Y .

6. Examples
Example 6.1. Consider the set Y = {(1/n) : n ∈ N} ∪ {0} endowed with the Euclidean
distance d in R. It is known that dimBY = 1

2 (cf. [1, p. 229]). If μ is a probability measure
on Y and δ > 0, we can find a finite set Yδ ⊂ Y such that μ(Yδ) � 1 − δ. This proves that
dimB μ = 0 (see Definition 2.5). In particular,

sup
μ

dimB μ < dimBY ,
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where the supremum is taken over all Borel probability measures μ on Y . Moreover,
if f : [0, 1] → [0, 1] is a continuous map with positive upper metric mean dimension
(whose existence is proved in [8, 20]), then

mdimM(YN × [0, 1], σ × f , D × d) = 1
2 + mdimM([0, 1], f , d),

while

dimB μ + mdimM ([0, 1], S, d , Pμ) = mdimM([0, 1], f , d)

for every probability μ on Y . This shows that, in general, one cannot replace dimB(supp ν)

by dimB ν in Theorem A.

Example 6.2. Take k ∈ N \ {1}, Y = {1, 2, . . . , k} and X = [0, 1] with the Euclidean
metric d , and consider a continuous map gi : [0, 1] → [0, 1] for each 1 � i � k such that

mdimM ([0, 1], gi , d) � mdimM ([0, 1], gj , d) for all i < j .

We observe that every probability ν on Y is homogeneous and satisfies

dimB(supp ν) = 0 = dimBY .

Thus, Theorem A informs us that, for every full supported probability measure ν on Y ,

mdimM ([0, 1], S, d , Pν) = mdimM (YN × [0, 1], TG, D × d).

Suppose now that k = 2 and that

mdimM ([0, 1], g1, d) < mdimM ([0, 1], g2, d).

Consider the measure δ1, which is homogeneous and maximizes the dimension (that is,
dimB(supp ν) = dimBY ). Notice that

mdimM ([0, 1], S, d , Pν) = mdimM ([0, 1], g1, d) < mdimM ([0, 1], g2, d)

� mdimM (YN × [0, 1], TG, D × d).

This shows that the full support requirement in item (b) of Theorem A cannot be replaced
by a mere request on the full dimension of the support. In other words, although every full
supported probability ν ∈ HY attains the supremum in the variational principle stated in
Theorem A, the same property may fail for dimension-maximizing measures.

Example 6.3. Given α ∈ [ 1
2 , 1], let gα : [0, 1] → [0, 1] be a continuous map such that

mdimM([0, 1], gα , d) = α, where d is the Euclidean distance in [0, 1]. The existence of
these maps gα was established in [8]. Take Y = {(1/n) : n ∈ N} ∪ {0} and consider the
continuous skew product

TG : YN × [0, 1] → YN × [0, 1]

(ω, x) �→ (σ (ω), fω(x)),

where

fω(x) =
{

x if ω 	= 111 . . . ,

gα(x) otherwise.

https://doi.org/10.1017/etds.2020.143 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.143


Metric mean dimension of free semigroup actions 81

(1) Assume that ν = δ1 (which does not have full support) and Pν = νN. Such a ν is
homogeneous, dimB (supp ν) = 0 and

mdimM([0, 1], S, d , Pν) = mdimM([0, 1], gα , d),

since the random walk Pν = νN only detects the dynamics of gα . Moreover,

mdimM(YN × [0, 1], TG, D × d) = max{α, 1/2} = α

and dimBY = 1
2 . Thus,

mdimM([0, 1], S, d , Pν) > mdimM(YN × [0, 1], TG, D × d) − dimBY .

In particular,

sup
ν ∈ HY

mdimM (X, S, d , Pν) > mdimM (YN × X, TG, D × d) − dimBY .

(2) Consider now η =
∞∑

n=1

(1/2n) δ(1/n) and Pη = ηN. Observe that:

(i) dimB (supp η) = dimB(Y \ {0}) = 1
2 , since the upper box dimension is closure

invariant;
(ii) η has full support;
(iii) η is not homogeneous: given L > 0, if y1 = 1

2 , y2 = 0 and 0 < ε < ((log
[1 − (4L)−1])/(−log 2) − 1)−1,

η(B(y1, ε)) > L η(B(y2, ε)).

If we choose α > 1
2 , then

mdimM(YN × [0, 1], TG, D × d) = mdimM([0, 1], gα , d) > 1
2

and

mdimM([0, 1], S, d , Pη) = 0,

so

dimB (supp η) + mdimM([0, 1], S, d , Pη) < mdimM(YN × [0, 1], TG, D × d).

That is, the equality (3.1) in Theorem A fails, showing that the homogeneity assumption is
essential in item (b) of Theorem A.

If, on the contrary, α = 1
2 , then

dimB (supp η) + mdimM([0, 1], S, d , Pη) = mdimM(YN × [0, 1], TG, D × d).

Thus, (3.1) in Theorem A holds, even though η is not homogeneous.

Example 6.4. Consider the unit circle S1 endowed with the Euclidean metric d

induced by the plane and take Y1 = {0, 2} and Y2 = [0, 1] ∪ {2}. Given continuous
maps f0, f2 : S1 → S1, let S1 denote the free semigroup action generated by G =
{gλ : λ ∈ {0, 2}}, where gλ = fλ for both λ = 0 and λ = 2, and let S2 stand for the
free semigroup action generated by H = {hλ : λ ∈ [0, 1] ∪ {2}}, where hλ = f0 if
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λ ∈ [0, 1] and h2 = f2. If we consider a random walk P1 = νN1 and define P2 = νN2
with ν2 = ν1({0})Leb[0,1] + ν1({2})δ2, then the two free semigroup actions (S1, P1) and
(S2, P2) are isomorphic. Besides, it is easy to check that

h(S1, S1, P1, ε) = h(S1, S2, P2, ε) for all ε > 0.

So,

mdimM (S1, S1, d , P1) = mdimM (S1, S2, d , P2).

However, since these actions are driven by the shifts on the spaces YN

1 and YN

2 satisfying
dimB(Y1) = 0 and dimB(Y2) = 1, then item (b) of Theorem A yields

mdimM (S1, S1, d , P1) = mdimM (YN

1 × S1, TG, D1 × d)

and

mdimM (S1, S2, d , P2) = mdimM (YN

2 × S1, TH , D2 × d) − 1.

Thus, the larger metric mean dimension of TH is compensated by dimB(Y2). We remark
that, although the metric mean dimension is metric dependent, in this locally constant
setting we were able to change the metric and the probability measure in Y2 (keeping the
measure of the interval [0, 1] unchanged), while keeping the upper metric mean dimension
of the semigroup action.

Example 6.5. Consider Y = [0, 1] and the unit circle S1 with the multiplicative group
structure induced by C. Denote by d the Euclidean metric in S1.

(1) Let S be the semigroup action generated by the family of rotations (Rα)α ∈ [0,1]

on S1 given by z ∈ S1 �→ Rα(z) = e2πiα z. Denote by TG the induced skew product
on [0, 1]N × S1 and take the random walk PLeb = LebN in [0, 1]N. Then Corollary IV
indicates that

mdimM ([0, 1]N × S1, TG, D × d) = mdimM (S1, S, d , PLeb) + 1.

Moreover, for every n ∈ N, ω ∈ [0, 1]N and ε > 0,

d(gωj ... ω1(x), gωj ... ω1(y)) = d(x, y) for every 1 ≤ j ≤ n

and hence r(gωn ... ω1 , n, ε) = (1/ε)� + 1. Consequently,

htop(S, PLeb) = 0 = mdimM (S1, S, d , PLeb).

Thus, mdimM ([0, 1]N × S1, TG, D × d) = 1.

(2) Consider now the semigroup action S generated by the family of endomorphisms
(gα)α ∈ [0,1] of (S1)N defined by

gα(z1, z2, . . . , zn, . . .) = (e2πiα z1, e2πiα z2, . . . , e2πiα zn, . . .). (6.1)
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If we take in (S1)N the metric

(a, b) �→ D(a, b) =
∞∑
i=1

d(ai , bi)

2i
, (6.2)

then each gα is an isometry as well. Denote by TG the induced skew product on [0, 1]N ×
(S1)N and take the random walk PLeb = LebN in [0, 1]N. Again, by Corollary IV,

mdimM ([0, 1]N × (S1)N, TG, D × D) = mdimM ((S1)N, S, D, PLeb) + 1.

Besides, as each gα is an isometry, for every n ∈ N, ω ∈ [0, 1]N and ε > 0 one has
r(gωn ... ω1 , n, ε) = r(gωn ... ω1 , 1, ε). This implies that

mdimM ((S1)N, S, D, PLeb) = 0

and

mdimM ([0, 1]N × (S1)N, TG, D × D) = 1.

Remark. We can estimate the minimal cardinality of an (n, ε)-spanning subset of (S1)N

associated to each gωn ... ω1 as follows.
(a) Take the minimum K ∈ N such that

∑K
i=1 (1/2i ) < (ε/2).

(b) Choose any point pi ∈ S1 for i � K + 1.
(c) Since each gα is an isometry, for 1 � i � K , consider a minimal (1, (ε/4))-spanning

subset Ri ⊂ S1, whose cardinality is (4/ε)� + 1. Then the set

R1 × R2 × · · · RK × {pK+1} × {pK+2} · · ·
is an (n, ε)-spanning subset of (S1)N. Thus,

r(gωn ... ω1 , 1, ε) ≤
(⌊

4
ε

⌋
+ 1

)K

.

(3) Let TG be the induced skew product on [0, 1]N × (S1)N associated to the free
semigroup action S generated by the family of maps (g̃α)α ∈ [0,1] : (S1)N → (S1)N defined
by

g̃α(z1, z2, . . . , zn, . . .) = (e2πiα z2, . . . , e2πiα zn, . . .).

Fix the random walk PLeb = LebN in [0, 1]N. Observe that g̃α = σ ◦ gα for each α ∈
[0, 1], where gα is given by (6.1) and σ denotes the shift map. Moreover, since σ ◦ gα =
gα ◦ σ , then g̃ n

α = σn ◦ gn
α for every n � 0 and every α ∈ [0, 1]. If the metric D is defined

as in (6.2), then the computation done to estimate the metric mean dimension of the shift
ensures that

s(g̃ωn ... ω1 , 1, ε) =
⌊

1
ε

⌋n

for every n and ω.

Therefore, using Corollary IV, one obtains

mdimM ([0, 1]N × (S1)N, TG, D × D) = mdimM ((S1)N, S, D, PLeb) + 1 = 2.
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Example 6.6. Consider p ∈ N, a finite set of non-negative real numbers {αi : 1 � i � p}
such that α1 	= 0 and the free semigroup action S : G × [0, 1] → [0, 1] generated by

G∗
1 = {gαi

∈ C0([0, 1]) : mdimM([0, 1], gαi
, d) = αi for all 1 � i � p}.

The existence of such maps gαi
was established in [8]. Take a Bernoulli probability

measure Pν on YN = {1, . . . , p}N determined by a probability vector (a1, . . . , ap). Set

α = max {αi : 1 � i � p}.
Without loss of generality, we may assume that α = α1. Afterwards, fix ε > 0. For any
n ∈ N, let Cn be the the cylinder of length n which contains the sequence 1 = 111 . . . .
Then ∫

{1,..., p}N
s(gωn . . . gω1 , n, ε) dPν(ω) �

∫
Cn

s(gωn . . . gω1 , n, ε) dPν(ω)

= an
1 s(gα , n, ε).

This implies that htop(S, Pν , ε) � htop([0, 1], gα , ε) for every ε. Consequently,

mdimM([0, 1], S, d , Pν) � α.

On the other hand, as ν has full support, by Corollary III one gets

mdimM([0, 1], S, d , Pν) = mdimM({1, . . . , p}N × [0, 1], TG, D × d).

Since (cf. [20])

mdimM({1, . . . , p}N × [0, 1], TG, D × d) � dimB({1, . . . , p}N × [0, 1]) = 1,

we finally conclude that

α � mdimM([0, 1], S, d , Pν) � 1.

It is unclear to us whether there are examples where mdimM([0, 1], S, d , Pν) can be strictly
larger than α.

Example 6.7. Let f2, f3 : S1 → S
1 be the doubling (f2(z) = z2) and tripling

(f3(z) = z3) maps of the circle, respectively, and consider the push-forward dynamics
(f2)∗ and (f3)∗ acting on the space P(S1) of Borel probability measures on the circle. By
[11, Theorem 1.1], if Wp denotes the p-Wasserstein metric in the space P(S1), then

mdimM (P(S1), (f2)∗, Wp) � p > 0 and mdimM (P(S1), (f3)∗, Wp) � 2p > 0.

Take Y = {1, 2}. As a consequence of the discussion in Example 6.2, we deduce that,
if g1 = (f2)∗, g2 = (f3)∗ and S is the free semigroup action generated by {g1, g2}, then

mdimM (P(S1), S, Wd , Pν) � mdimM (P(S1), (f3)∗, Wd) for all ν ∈ P(Y ) \ {δ1}.
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