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A balloon bursting underwater
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A buoyant vortex ring produced by an underwater bursting balloon was studied
experimentally. The effect of dimensionless surface tension on characteristics including
rise velocity, rate of expansion, circulation, trajectory, and lifetime of the vortex ring
bubble was investigated. Results showed reasonable agreement with the literature
on vortex rings produced by conventional approaches. It was observed that as
the dimensionless surface tension increased, the rise velocity, the circulation and
consequently the stability of the vortex ring bubble increased; however, the rate
of expansion tends toward constant values. A semi-analytical model is proposed
by modifying the drag-based model presented by Sullivan et al. (J. Fluid Mech.,
vol. 609, 2008, pp. 319–347) to make it applicable to buoyant vortex rings. The
modified model suggests that the vortex ring expansion is essentially due to the
buoyancy force. An expression is also derived for the circulation in terms of the
initial volume of the balloon and the depth at which the balloon bursts.

Key words: bubble dynamics, vortex dynamics

1. Introduction

There is a fundamental difference in the physics of vortex rings depending on
whether they are buoyant or not. According to Reynolds (1876), the impulse P of a
non-buoyant vortex ring in a viscous fluid is constant. Hence, considering Turner’s
(1957) impulse equation P = ρΓπR2 and the fact that vortex rings expand as they
advance, the circulation Γ of a non-buoyant vortex ring decreases with time. In
the case of buoyant vortex rings, also called vortex ring bubbles, impulse increases
under the action of the buoyancy force; therefore, the circulation remains constant.
Non-buoyant vortex rings have been extensively studied for more than a century; the
buoyant vortex rings, however, have received relatively less attention. Nevertheless, a
number of seminal theoretical (e.g. Turner 1957; Walters & Davidson 1963; Pedley
1968; Joseph, Funada & Wang 2007), experimental (e.g. Turner 1957; Walters &
Davidson 1963) and numerical (e.g. Lundgren & Mansour 1991; Cheng, Lou &
Lim 2013) contributions have been made concerning the general properties and the
stability of buoyant vortex rings. One of the latest studies on the vortex ring bubbles
was the lattice Boltzmann simulation conducted by Cheng et al. (2013). The main
motivation of their study was to assess whether the ring bubble continues to expand

† Email address for correspondence: vaselb@uwindsor.ca

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:vaselb@uwindsor.ca
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.126&domain=pdf
https://doi.org/10.1017/jfm.2015.126


A balloon bursting underwater 523

while the rise velocity decreases, as was predicted by Turner (1957), Walters &
Davidson (1963), Pedley (1968) and Lundgren & Mansour (1991), or ultimately a
steady state is achieved at which the ring radius and rise velocity become constant,
as was predicted by Joseph et al. (2007). Cheng et al. (2013) found that, in contrast
to Joseph et al.’s (2007) prediction, the ring radius increases and the rising velocity
decreases with time until the vortex ring becomes unstable and breaks down into
small spherical cap bubbles.

For further investigation, we extended the model proposed by Sullivan et al. (2008)
to include buoyant vortex rings and, unexpectedly, achieved a steady-state solution
suggesting that similar to spherical bubbles, the vortex ring bubbles eventually attain
a constant velocity, as was predicted by Joseph et al. (2007). This implication
prompted us to experimentally assess whether the modified model matches with
reality or not. Another major motivation for the present work was the conspicuous
lack of an investigation concerning the flow produced by the bursting of balloons
used increasingly in maritime energy storage and salvage applications. According to
the literature (e.g. Walker et al. 1987; Sullivan et al. 2008; Hershberger, Bolster
& Donnelly 2010; Gan, Dawson & Nickels 2012) the common technique for
the generation of a vortex ring bubble is the rapid ejection of fluid into a water
tank through an orifice exit. In other words, the initial source of energy is kinetic,
whereas the vortex ring bubbles studied herein are powered by the potential energy
initially stored in the underwater balloons. Beyond this, an investigation exploring
high-Bond-number vortex rings was not evident in the literature. A secondary
motivation for the present work was to close this gap by studying vortex rings
up to Bo= 1000 produced by large balloons bursting in a 25 m−3 water tank.

Before the subject of a balloon bursting underwater can be discussed, it is important
first to briefly review some basic characteristics of buoyant vortex rings described
in the literature. Then, the dynamics of vortex ring bubbles will be characterized
through a semi-analytical model based on the concept of drag. Afterwards, the setup
and procedure of the experiment are described. At the end, results are presented and
discussed.

2. Buoyant vortex rings
Turner (1957) developed one of the earliest analytical theories about vortex ring

bubbles by invoking two fundamental assumptions. First, vorticity generated on the
bubble surface was assumed to be confined within a region which never extends
to the symmetry axis of the vortex ring; therefore, no vorticity is cancelled due to
diffusion across the axis of symmetry (OO′ in figure 1). As sketched in figure 1,
a region of rotational flow rising along with the vortex ring was postulated; Turner
illustrated this moving region via a shadowgraph picture of a buoyant vortex ring,
see Turner (1957, figure 7). Second, Turner (1957) assumed that no vorticity was
diffused across the boundary of the bulk fluid region B, that is, no vorticity was lost
to a wake. In view of the aforementioned assumptions, circulation remains constant
since vorticity is constant, and the viscous effect is negligible in the force balance
since there is no momentum loss in a viscous wake. These assumptions also underlay
some later theoretical and numerical analyses such as those of Walters & Davidson
(1963), Pedley (1968) and Lundgren & Mansour (1991). Turner (1957) predicted that
a ring bubble expands radially as it rises;

RT =
(

R2
0 +

Ft
πΓ

)1/2

(2.1)
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FIGURE 1. B is the boundary of the bulk fluid carried along with the vortex ring; within
this region the flow is rotational whereas the ambient flow is irrotational. The shape of
the boundary B depends on the ratio R/a, where R and a respectively represent the ring
and core radii; at R/a < 14, it looks like an oblate spheroid; as R/a increases points u
and l approach each other and eventually meet at R/a= 86, forming a toroidal region.

where R0 is the initial radius of the vortex ring, t stands for time and F is defined
as gΩ(ρ − ρ ′)/ρ in which Ω is volume of the vortex ring, ρ is the density of water
and ρ ′ is the density of air. The rising velocity, however, decreases as

uT = cΓ
RT

(2.2)

where c is a constant. In the present paper, § 5.2, a comparison is drawn with the
expansion of the vortex ring bubble generated by the bursting balloon and those given
by (2.1). In addition to this analytical theory, Turner (1957) also performed some
experiments and realized the rather unexpected conclusion that for a given circulation,
increasing the buoyancy force decreases the rising velocity. Furthermore, he found that
increasing the buoyancy force gives a greater rate of expansion; our mathematical
model presented in § 3.2 confirms this observation by demonstrating that the ring
expansion is basically caused by the buoyancy force.

Turner’s (1957) findings on the general properties of a vortex ring were later
confirmed by Pedley’s (1968) analytical solution. Pedley (1968) demonstrated that
the vortex ring radius increases as t and the rising velocity decreases as t−1/2 which
is in accordance with (2.2). Besides tracing these properties, he investigated the
stability of the vortex ring and predicted that it will eventually break up since the
stabilizing influence of the circulation decreases as the velocity at the bubble surface
decreases through the action of viscosity. Further to this, the destabilizing effect of
surface tension increases as the diameter of the core decreases with the vortex ring
expansion. He expressed the critical time tc, the time at which a vortex ring breaks
down, as

tc = 3Γ
16πν

(
ρa3

T

)1/2

. (2.3)
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FIGURE 2. Circulation associated with three vortex ring bubbles with initial volumes
of 21, 43 and 88 cm3; symbols represent experimental results and lines correspond to
the analytical prediction given by (2.4) (Walters & Davidson 1963). Maximum deviation
corresponds to the case of 88 cm3 for which relative standard deviation is approximately
7 %, indicating that circulation can be considered almost constant.

Equation (2.3) is valid only if the Weber number We = ρΓ 2/4π2aT is much larger
than unity. In this equation, T stands for the surface tension of water in contact with
air, and, ρ and ν are density and viscosity of water respectively. It must be considered
that (2.3) is an implicit function since a is the core radius at the critical time and
must be written in terms of tc by combining ring volume Ω = 2πR(πa2) with (2.1).
For the vortex ring bubbles produced by bursting balloons we found a trend similar
to that predicted by (2.3), i.e. as the circulation increases the bubble becomes more
stable (see § 5).

Similar to Turner’s (1957) theory, constant circulation is an essential assumption
for Pedley’s (1968) analysis. By deriving a similarity scale, Pedley demonstrated that
the time required for vorticity to diffuse to the ring symmetry axis or to the boundary
of the rotational flow region B (see figure 1) is on the order of a2/ν, which is much
greater than the critical time tc. Hence, before the vorticity starts being cancelled
across the symmetry axis or being swept off into a wake, the vortex ring becomes
unstable and breaks down; upholding the assumption of vorticity conservation and,
consequently, constant circulation. The assumption of constant circulation was also
experimentally verified by Walters & Davidson (1963). They generated three vortex
ring bubbles with volumes of 21, 43 and 88 cm3 by rapidly releasing a jet of air
at the bottom of a water tank. The circulations associated with these bubbles are
reproduced in figure 2; relative standard deviation of each case is approximately
7 % indicating that the circulation can be considered roughly constant. In addition
to experiments, Walters & Davidson (1963) applied the initial-motion theory to
analytically investigate the motion of a vortex ring bubble, assuming it is initially
spherical and starts from rest. They found a rough approximation of the circulation
in terms of the initial volume Ω0 as

Γ = 3g1/2Ω
1/2
0 . (2.4)
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As illustrated in figure 2, the circulation obtained from (2.4) is roughly in accordance
with their experimental measurements; we also found satisfactory agreement between
circulations of bubbles produced by the bursting balloons and values determined
from (2.4) (see § 5.1). In addition to the circulation, Walters & Davidson (1963)
investigated the rising velocity. According to them, the bubble starts rising with twice
the acceleration of gravity; however, as it travels upward it slows down.

Although numerical simulation of the generation and the translation of an air-core
vortex ring is technically challenging, a few in-depth CFD analyses such as those of
Lundgren & Mansour (1991) and Cheng et al. (2013) have been performed, revealing
interesting details of the phenomenon. Lundgren & Mansour (1991) conducted a two-
stage numerical simulation using a boundary integral method. In the first stage, it was
observed that a liquid jet penetrated through the bubble from below until it impinged
on the upper surface and generated a toroidal geometry. Owing to the complicated
physics involved in the impingement, they could only continue the simulation until
the liquid jet penetrated very close to the upper surface. Then, the second stage of
the simulation started from a toroidal bubble, the initial circulation of which was
determined from the first stage. Lundgren & Mansour (1991) improved Turner’s (1957)
results by solving the force balance equation,

ρA
du
dt
= ρΓ êt × u+ ρAg êz + FT (2.5)

where u is velocity of an arbitrary point on the perimeter of the ring relative to the
rising velocity of the ring, A is the cross-section area, êt is the unit vector in the
tangential direction and êz is the unit vector in the vertical direction. The left-hand side
of (2.5) represents the inertia and the right-hand side terms are Kutta–Joukowski lift,
buoyancy and surface tension forces respectively. Having no viscous force in the force
balance equation is supported by the aforementioned assumptions made by Turner
(1957); also see the note by Sirakov, Greitzer & Tan (2005) on irrotational viscous
flow. Solving (2.5) yields

R= RT − 1
Γ 2

4
9

sin τ

R1/2
T R3/2

0

(2.6)

where τ = (3/4)Γ 2(R3
T − R3

0). Equation (2.6) corrects Turner’s (1957) radius (2.1) by
introducing a sinusoidal term; note the inverse effect of the initial condition (R0) on
the amplitude of oscillations. Although this equation suggests no phase difference in
oscillations of the fluid particles located on the ring perimeter, it seems to be related
to the azimuthal waves described by Krutzsch (1939) and Maxworthy (1972); this was
confirmed by Lundgren in a private communication. We believe the energy consuming
oscillations described by (2.6) may be a reason for the continuous decrease in the
rising velocity of a vortex ring bubble.

3. Model
In this section, the model developed by Sullivan et al. (2008) is first recapitulated

and then reformulated to be applicable to buoyant vortex rings. At the outset, consider
the following equations, respectively for impulse P, energy E and velocity V of vortex
rings:

P= ρΓπR2, (3.1)
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E= 1
2
ρΓ 2R

(
ln
(

8R
a

)
− α

)
, (3.2)

V = Γ

4πR

(
ln
(

8R
a

)
− β

)
. (3.3)

Parameters α and β depend on the core models; for viscous cores they are 2.040 and
0.558 while for solid rotating cores they are 7/4 and 1/4 respectively.

3.1. Sullivan et al.’s (2008) model
Based on their experiments, Sullivan et al. (2008) constructed a mathematical model
for vortex rings generated by fast ejection of fluid via a piston/cylinder mechanism,
namely a vortex gun. Accordingly, the momentum of the fluid displaced by the piston
PP was assumed to be equal to the impulse of the vortex ring PV . Using (3.1)

ρΓπR2 = ρπR2
0LVP (3.4)

where R0, L, VP and R are the initial radius of the piston, length of the cylinder,
velocity of the piston and radius of the vortex ring respectively. Thus, the circulation
can be expressed in terms of vortex gun parameters as

Γ = R2
0LVP

R2
(3.5)

suggesting that the circulation increases with the volume of the cylinder and the
velocity of the piston.

In addition to the circulation, Sullivan et al. (2008) modelled the slowing down of
the vortex ring by considering the concept of drag. Drag force causes the impulse of
the vortex ring to decrease as given by

dP
dt
=−Df =−Cd

1
2
ρV2 4πaR (3.6)

where Cd is the drag coefficient, V is the rise velocity, a is the radius of the core
and R is the radius of the vortex ring. Combining (3.1), (3.3) and (3.6) yields the
following homogeneous differential equation:

dV
dt
= Λa

2πR2
CdV2 (3.7)

in which Λ= ln(8R/a)− β. Solving (3.7) for the rise velocity yields

V = V0

1+ V0ct
(3.8)

where V0 is the initial velocity of the vortex ring and c is the decay coefficient defined
as c=ΛaCd/2πR2. One fundamental assumption to obtain (3.8) is that the radius of
the vortex ring does not vary as it travels through the fluid. It is worth noting that for
long times (3.8) agrees with the Maxworthy’s (1972) prediction that the rising velocity
decreases as t−1.
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3.2. Modified model
Unlike the approach adopted by Sullivan et al. (2008), it is not possible to construct
a model for a vortex ring bubble produced by an underwater bursting balloon through
the impulse (3.1), since there is no moving piston to equate its momentum to the
initial impulse of the vortex ring. Instead, one can assume that the initial energy of
the vortex ring bubble is equal to the potential energy of compressed air stored in the
underwater balloon. Assuming an isothermal compression process, the potential energy
stored in the balloon is given by

Uc = P0Ω0 ln
(

Pamb

P0

)
(3.9)

where P0, Ω0 and Pamb are initial pressure of the balloon, initial volume of the balloon
and ambient pressure respectively. Equating this to (3.2) gives

1
2ρΓ

2R(ln(8R/a)− α)= P0Ω0 ln
(

Pamb

P0

)
. (3.10)

Considering P= ρgh and Ω = 4πr3/3, (3.10) can be written as

Γ =

8πg
3

r0
3(h0 + hamb) ln

(
hamb

h0

)
R0Λ′


1/2

(3.11)

where Λ′ = ln(8R0/a) − α, h0 is the initial depth of the underwater balloon, hamb is
the atmospheric pressure in meters of water, R0 is the initial radius of the vortex
ring and r0 is equal to the radius of a perfect sphere enclosing the same volume
of air, namely equivalent radius. An interesting analogy can be drawn between (3.5)
and (3.11). Equation (3.5) suggests that the circulation of the vortex ring produced
via a piston/cylinder mechanism depends on the displacement volume of the cylinder
and the velocity of the piston, whereas according to (3.11), the circulation of the
vortex ring produced by an underwater bursting balloon depends on the volume
of the balloon and the depth at which the balloon bursts. Therefore, the effect of
balloon volume is similar to the effect of cylinder volume and the effect of bursting
depth is similar to the effect of piston velocity; both cause the circulation to increase.
Moreover, (3.11) agrees well with (2.4), demonstrating that the circulation of the
vortex ring is a function of Ω1/2

0 .
To model the slowing down of the vortex ring we add the buoyancy force

FB to Sullivan et al.’s (2008) force balance equation (3.6) to give the following
inhomogeneous differential equation:

dP
dt
=−Df + FB =−Cf

1
2
ρV2 4πaR+ FB (3.12)

in which Cf is the force coefficient representing all effective forces including viscous
force, Kutta–Joukowski lift force, surface tension force etc., except buoyancy force.
We can start solving (3.12) from the assumption made by Sullivan et al. (2008) that
the radius of the vortex ring does not significantly change with time. Accordingly,
the rise velocity converges to the constant value of V = √πag/Cf for long times.
Although this solution qualitatively confirms the solution offered by Joseph et al.
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(2007), it is in contrast with our preliminary experimental observations. The disparity
is due to the assumption of constant radius. To resolve this, the radius is considered
to be a time-dependent variable. The circulation, however, is assumed to be constant
on the basis of (2.4) and (3.11). The validity of this assumption is further confirmed
by our experimental measurements presented in § 5.1. Combining (3.12) with (3.1)
and (3.3) under the assumption of constant circulation yields

dR
dt
=C1

(ln(C2R
√

R)− 1
4)

2

R2
√

R
+ C3

R
(3.13)

where C1 = −
√

6ΓCf /48
√

π5, C2 = 4
√

6π and C3 = FB/2πΓ . All parameters
appearing in (3.13), including those with dimension of length, time, velocity,
circulation and force, are normalized using r0, (r0/g)1/2, (gr0)

1/2, (gr3
0)

1/2 and ρgr3
0

respectively, where ρ is the density of water, g is the gravitational acceleration and
r0 is the equivalent radius.

Although (3.13) is highly nonlinear with no general solution, one can produce a
semi-analytical solution for any specific case by expanding the Taylor series for the
right-hand side of the equation. Substituting the calculated radius into (3.3) yields
the rise velocity. As a preliminary analysis, basic scaling can be used to qualify the
solution of (3.13) by estimating the order of magnitude of each term. Note that the
value of the dimensionless radius R in (3.13) is always larger than unity, i.e. the radius
of the vortex ring bubble is always larger than the equivalent radius of the balloon
r0. Therefore, on the right-hand side, the order of magnitude of the second term,
i.e. buoyancy term, is significantly greater than the order of magnitude of the first
term, i.e. viscous term, since the exponent of radius in the denominator of the second
term is smaller than that of the first term. It is worth mentioning that the disparity
between the order of magnitude of the viscous term and that of the buoyancy term
on the right-hand side of (3.13) increases with time, since these terms are inversely
correlated to the ring radius and the vortex ring bubble expands as it rises.

It is now noteworthy to recall (2.5). Lundgren & Mansour (1991) did not include
a drag force in this equation on the basis of Pedley’s (1968) theory that the vortex
ring bubble is predicted to become unstable before the vorticity generated at the
bubble surface diffuses through the boundary of the rotational region (see figure 1).
Comparing the order of magnitude of the right-hand-side terms of (3.13) reveals that
even if the vorticity diffuses into the surrounding fluid, the effect of the drag force
is minimal in comparison with the buoyancy force. Equating the order of magnitude
of the left-hand side of (3.13) with the order of magnitude of the dominant term of
the right-hand side yields

1R
t
∼ C3

R
; (3.14)

therefore,

1R∼ FBt
2πΓ R

. (3.15)

One immediate outcome of (3.15) is the direct relation between expansion of the
vortex ring and buoyancy force. Accordingly, buoyancy force is what causes the
radius of the vortex ring to increase; this clearly reveals why the radius of the
non-buoyant vortex rings studied by Sullivan et al. (2008) did not increase with
time. One important point to consider is that although no buoyancy force acts on
the non-buoyant vortex rings, they still radially expand as they advance. According

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.126


530 A. R. Vasel-Be-Hagh, R. Carriveau and D. S.-K. Ting

3

2

1

5

4

Camera 8

Camera 7

Camera 6

FIGURE 3. Sketch of the experimental setup: 1, balloon; 2, nylon line; 3, winch; 4, pulley
system; 5, sharp needle; 6–8, cameras.

to (3.13), this expansion occurs under the action of viscous force and inertia, and is
considerably lower than the radial expansion of a similar buoyant vortex ring. Solving
(3.15) for radius R yields

R∼ R0 +
(

R0 + FBt
πΓ

)1/2

. (3.16)

This order of magnitude is in good agreement with Turner’s (1957) radius equation
((2.1); R= (R2

0 + Ft/πΓ )1/2). More is said regarding (3.11), (3.13), (3.15) and (3.16)
in the results and discussion section (§ 5).

4. The experiment
The experiments reported in this study were conducted in a Plexiglas tank that

was 4.2 m long, 2.5 m wide and 2.4 m high. The experimental setup is sketched
in figure 3. As illustrated in this figure, an air-filled balloon (labelled 1) was gently
pulled down via a thin nylon line (2) which was attached to a winch (3) through
a pulley system (4). Once impressed on the sharp pin (5), the balloon burst and a
vortex ring bubble was produced; a hypodermic needle with outer diameter of 0.4 mm
was chosen as the pin. Similar to Hershberger et al. (2010), all the experimental data
were obtained photographically. Three cameras (6–8) with speed of 60 f.p.s. at high
resolution of 1080P were configured above and on two orthogonal sides of the tank to
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record the generation and the motion of the vortex ring bubble. The videos were then
analysed frame by frame using the MATLAB image processing toolbar to deduce the
elevation and dimensions of the vortex ring bubble. The rate of expansion dR/dt was
calculated using the measured ring radius, and the rising velocity V was obtained from
the measured elevation. Substituting the rising velocity and the dimensions of the ring
in (3.3) yields the circulation as

Γ = 4πR V
(

ln
(

8R
a

)
− 1

4

)−1

. (4.1)

Similar to (3.13), all measured parameters including those with the dimension of
length, time, velocity, acceleration and circulation were made dimensionless using r0,
(r0/g)1/2, (gr0)

1/2, g and (gr3
0)

1/2 respectively, where g is the gravitational acceleration
and r0 is the equivalent radius of the balloon.

The reciprocal of dimensionless surface tension, the so-called Bond number, given
as

Bo= S−1 = ρgr2
0

T
, (4.2)

was chosen as the independent variable, where T = 72.8× 10−5 N cm−1 is water–air
surface tension at 20 ◦C. Results were reported for Bond numbers 225± 14, 500± 10,
750 ± 9 and 1000 ± 7, respectively associated with initial volumes of approximately
334, 946, 1740 and 2676 cm3. Given uncertainties were obtained from the standard
deviation of ten individual measurements at a 95 % confidence level. The initial
volume of each balloon was measured through three independent approaches:
Archimedes principle, the displacement volume of the balloon inflation pump through
utilization of the Boyle–Mariotte law, and finally MATLAB image processing. The
average of the three measurements was considered to represent the initial volume.
Note that, alternatively, one could use dimensionless surface tension S = T/(ρgR2

0)
instead of Bond number; therefore, Bond numbers 225, 500, 750 and 1000 could be
replaced with dimensionless surface tensions of 0.0040, 0.0020, 0.0013 and 0.0010,
respectively.

5. Results and discussion
When a sufficiently large air-filled balloon quickly bursts underwater, a vortex ring

bubble will be generated. Note that no vortex ring can be produced if the balloon is
not large enough, since the associated small bubble will be easily suppressed by the
punctured balloon. Likewise, if the air is released slowly, for instance if the balloon
is ripped by a blunt pin, no vortex ring will be generated either, even if the balloon is
large; this is similar to the case of tilting an inverted beaker as described by Lundgren
& Mansour (1991). To ensure that the wall effects are negligible, the largest vortex
ring bubbles included in this study were set to be approximately 2700 cm3 with an
associated dimensionless surface tension of S = 0.0010. This leads to a sufficiently
low blockage ratio of approximately 1 %, assuming that the vortex ring and the bulk
fluid region rising along with it is a bluff body. The smallest vortex ring bubbles
we could produce in the tank described in figure 3 were approximately 335 cm3

with an associated dimensionless surface tension of S = 0.0040. This is much larger
than those generated with previous techniques; for instance, Walters & Davidson
(1963) generated vortex rings with volume of 21 cm3 by rapidly releasing a jet of
air at the bottom of a water tank. In the conventional techniques the required upward
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momentum to generate a vortex ring is provided by an external source, for instance a
moving piston; therefore, even very small vortex rings can be generated if the input
momentum has been sufficiently increased. However, the input momentum of a vortex
ring generated by a bursting balloon is provided through the buoyancy force; when
the initial volume of the balloon was less than approximately 335 cm3 the buoyancy
force appeared to be insufficient to provide the momentum required for the vortex
ring generation.

For the case of S= 0.0040, the vortex ring appeared markedly unstable and broke
down into small spherical cap bubbles after approximately 2.5 s at an elevation of
approximately z= 1.25 m above the initial level of the balloon. According to Cheng
et al. (2013) the number of spherical cap bubbles that a vortex ring bubble breaks into
is equal to the number of azimuthal waves generated on the ring perimeter. In Cheng
et al.’s (2013) simulation, the number of waves was set to be 8; in our experiments,
however, it appeared to vary from run to run. Vortex ring bubbles with dimensionless
surface tension of S= 0.0020, however, did not break down before reaching the free
surface at z= 2 m. By decreasing the dimensionless surface tension to S= 0.0013 and
then to S= 0.0010 vortex ring bubbles appeared to become progressively more stable
and stronger, indicating that the lower dimensionless surface tension (i.e. higher Bond
number) leads to a longer lasting vortex ring bubble. In other words, the lifetime
of vortex rings appears to be limited by the amount of surface tension instability.
This trend is consistent with (2.3) proposed by Pedley (1968), but in contrast with
data reported by Cheng et al. (2013). According to Cheng et al. (2013), as the Bond
number decreases, the vortex ring becomes more stable and its lifetime increases. It
must be mentioned that their simulation was conducted over a very different range
of 30 6 Bo 6 100 which is notably smaller than the Bond number of the vortex
ring bubbles studied herein. The vortex ring instability can also be attributed to
the oscillations described by (2.6). The amplitude of those destructive oscillations
is directly proportional to the dimensionless surface tension; therefore, when the
dimensionless surface tension increases, the vortex ring will be subjected to stronger
oscillations, consequently, it will not survive as long. The azimuthal waves described
by Krutzsch (1939) and Maxworthy (1972) could be cited as another reason for vortex
ring breakdown. In addition, the process of destabilization is presumably accelerated
by external influences, for instance the punctured balloon, which is entrained by the
vortex and subsequently marks ring rotations at the bubble surface as it travels with
it. There is also slight distortion caused by the pin at the instant of bursting.

In the following sections the radius, the trajectory, the circulation, the rise velocity
and the energy balance of the vortex ring bubbles generated by a bursting balloon are
investigated over the range of S= 0.0010–0.0040.

5.1. Circulation
In contrast to the vortex ring guns where the circulation is produced by viscous
separation at the exit hole (Maxworthy 1972), the circulation associated with a vortex
ring produced by a bursting balloon is generated by the inertial process of the toroid
formation through which a gravitationally driven liquid tongue penetrates upward
into the droplet-shaped bubble from the bottom, impinges on the upper surface and
escapes out of the bubble; this makes the fluid rotate around an imaginary axis
forming the vortex ring bubble. Figure 4 attempts to illustrate the described process
via a time-sequence of frames: (a) corresponds to the moment just after the bursting,
and ( j) shows the approximate moment at which the vortex ring is formed. Due to
the opaque surface of the bubble it is difficult to visualize the penetrating tongue.
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(a) (b) (c) (e)(d)

( f ) (g) (h) ( j)(i)

FIGURE 4. (Colour online) Vortex ring bubble formation, S= 0.0010: (a) t= 0 s, (b) t=
1/30 s, (c) t = 3/30 s, (d) t = 5/30 s, (e) t = 7/30 s, (f ) t = 9/30 s, (g) t = 11/30 s,
(h) t= 13/30 s, (i) t= 15/30 s, (j) t= 17/30 s.

Figure 5 compares circulations associated with different dimensionless surface
tensions; these values are calculated using (4.1). It is observed that circulation
increases as the Bond number, i.e. the balloon size, increases. This observation
agrees well with what was predicted by (3.11), according to which at a specific
depth the circulation of the vortex ring directly depends on the initial volume of
the balloon. In other words, a greater initial potential energy causes circulation
to increase. This is logically consistent with the case of a vortex ring gun where
circulation increases with the speed of the piston, i.e. higher initial kinetic energy
(Sullivan et al. 2008). In other words, regardless of the technique used to produce the
vortex ring, circulation is a direct function of the initial amount of energy. As is seen,
at a specific dimensionless surface tension, circulation is approximately constant with
respect to time; maximum relative standard deviation is approximately 6 % which
is lower than that associated with Walters & Davidson’s (1963) measurements (see
figure 2).

Measured circulations are compared with those estimated by (2.4); fairly good
agreement is found. The disparity can be attributed to the basic assumption made in
the derivation of this equation that the bubble is initially spherical, whereas in our
experiments the bubble was initially droplet shaped. It is of note to mention that the
experimental results here compare much better with (2.4) than those of Walters &
Davidson (1963); this is likely to be due to the completely different test conditions
and vortex generation techniques (see figure 2). As is observed in figure 5, measured
circulations are also consistent with those from (3.11). The overestimation is due to
the assumption underlying this equation: that the initial potential energy stored in
the balloon entirely converts to the kinetic energy of the vortex ring. In other words,
viscous dissipation from the moment of bursting (see figure 4a) to the moment of
vortex ring formation (see figure 4j) is not taken into account. Hence, calculating the
difference between the energy associated with the measured initial circulation and the
energy associated with the circulation estimated through (3.11) yields the amount of
energy dissipated during the vortex ring formation process. For dimensionless surface
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FIGURE 5. (Colour online) Circulation associated with dimensionless surface tensions
ranging from S = 0.0010 to S = 0.0040; symbols represent measured values, lines show
values estimated through (2.4) and predicted by (3.11).

tension of 0.0010, almost 50 % of the initial potential energy stored in the balloon
was found to be dissipated during the vortex ring bubble formation; this value was
increased to 70 % for dimensionless surface tension of 0.0040.
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FIGURE 6. (Colour online) (a) Influence of dimensionless surface tension on the
dimensionless vortex ring radius. (b–e) Comparing measured radius of vortex ring bubbles
with values predicted by (2.1) and (3.16).

5.2. Radius
The effect of dimensionless surface tension on the radius of vortex ring bubbles is
illustrated in figure 6. As is observed in figure 6(a), at a fixed dimensionless surface
tension, the vortex ring radius increases with time. Figure 6(b–e) compares measured
ring radius with the Turner’s (1957) radius (2.1); a good qualitative agreement is
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Surface tension force

Downward component of the
Kutta–Joukowski lift force

Buoyancy force

P

P

FIGURE 7. (Colour online) The radial expansion of the vortex ring bubble, uR, leads to a
downward Kutta–Joukowski lift force, êt×uR, which is necessary to balance the buoyancy
force and inertia effect.

observed. Measured data were also compared with the order of magnitude given
by (3.16); although this equation was obtained from a very simple basic-scaling
analysis it appeared to predict the ring radius as well as Turner’s (1957) equation.
Although the experiment was carefully controlled to minimize the effect of the
initial conditions, the repeatability needs to be assessed by estimating the precision
of individual measurements. Error bars shown in figure 6(b–e) represent precision
of ten individual measurements at a 95 % confidence level. For visual clarity, error
bars are shown only on typical data points. As is suggested by (3.15) the radial
expansion of the vortex ring bubbles is essentially due to the buoyancy force.
According to (3.15), one expects to see a one order-of-magnitude change in the
rate of expansion by increasing the dimensionless surface tension from 0.0010 to
0.0040 since the buoyancy force decreases approximately 10 times. It is observed
that the dimensionless radius increases with the dimensionless surface tension; the
rate of expansion, however, appeared to remain constant. This is due to the inverse
correlation of circulation with the rate of expansion; as was observed in figure 5,
circulation increases with the buoyancy force. In addition to (3.15), the underlying
physics of the ring expansion can also be explained using (2.6) proposed by Lundgren
& Mansour (1991). Considering the upward buoyancy force and the radially inward
surface tension force, a downward component of the Kutta–Joukowski lift force must
exist, since the bubble rises with a negative acceleration (see (2.2)). As is illustrated
in figure 7, to have a downward Kutta–Joukowski lift force there must be a radial
velocity component uR, demonstrating the radial expansion of vortex ring bubbles.
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(a) (b) (c) (d) (e) ( f ) (g)

(h) (i) ( j) (k) (l) (m) (n)

FIGURE 8. Translation of the vortex ring bubble corresponding to the case of S= 0.0010.
This corresponds to later times of the vortex ring illustrated in figure 4: (a) t= 17/30 s,
(b) t= 19/30 s, (c) t= 21/30 s, (d) t= 23/30 s, (e) t= 25/30 s, (f ) t= 27/30 s, (g) t=
29/30 s, (h) t= 31/30 s, (i) t= 33/30 s, ( j) t= 35/30 s, (k) t= 37/30 s, (l) t= 39/30 s,
(m) t= 41/30 s, (n) t= 43/30 s.

It is worthwhile to mention that the small fluctuations of the ring radius observed
in figure 6 can be attributed to the azimuthal waves described by Krutzsch (1939)
and Maxworthy (1972). The mentioned fluctuations are more considerable at lower
dimensionless surface tensions, particularly at early times. Figure 8 is an attempt
to give a visual impression of these waves on the perimeter of a vortex ring
bubble through a time-series of snapshots at S = 0.0010. Figure 8(a) represents
the approximate moment at which the azimuthal waves were visualized for the first
time, and figure 8(n) depicts the vortex ring at the moment that the free surface starts
bowing; beyond this moment the vortex ring will be affected by the free surface
(free surface is not shown in the figure). Note that the bubble depicted in figure 8
corresponds to early times of the vortex ring illustrated in figure 4.

5.3. Trajectory
Figure 9 illustrates the trajectory of the core centre of the vortex ring bubble at the
dimensionless surface tensions studied herein. Note that the elevation and radius of
each case have been made dimensionless using the corresponding equivalent radius
r0 (see § 4). As is observed, the trajectory of each case is roughly linear; the slope
slightly decreases with the dimensionless surface tension. According to figure 9, as
the dimensionless surface tension increases, the vortex ring bubble forms at a higher
dimensionless elevation. Similarly, the larger dimensionless surface tension leads to a
larger initial dimensionless radius.

5.4. Rise velocity
Figure 10 illustrates the effect of dimensionless surface tension on dimensionless
rising velocity. As is observed, the rise velocity increases as the dimensionless
surface tension decreases. It is also observed that at a fixed dimensionless surface
tension, the rise velocity decreases with time. This trend is in agreement with Hick’s
equation (3.1). According to Hick’s equation, and considering the fact that vortex
rings expand as they rise, the rising velocity decreases with time. The velocity
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FIGURE 10. Effect of dimensionless surface tension on dimensionless rising velocity.

reduction illustrated in figure 10 also agrees with Turner’s (1957) velocity uT (2.2).
A similar trend is observed in Walters & Davidson’s (1963) experiments and Cheng
et al.’s (2013) simulations.

A number of physical factors can be listed to explain the slowing down of vortex
ring bubbles. This can be attributed to energy consuming oscillations described by
(2.6); the energy of the oscillations is supplied from mechanical energy of the vortex
ring; therefore, the total mechanical energy of the vortex ring decreases with time,
causing deceleration. A similar interpretation can be made for those azimuthal waves
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visualized in figure 8; waves extract energy from the vortex ring bubble, slowing its
motion. Another suggestion is the entrainment process (Maxworthy 1972). Velocity
depends upon the amount and distribution of vorticity, and due to the entrainment
process, the vorticity generated at the bubble surface is distributed over a larger region
of the bulk fluid as the bubble rises. This may cause a continuous reduction in the
rise velocity. Viscous dissipation also is likely to be influential on the deceleration of
the vortex ring bubbles.

To ensure the negligibility of the free surface tension, the rising velocity was
measured over a fair distance away from the free surface. The rising velocity was
calculated up to the level at which the free surface started bowing; beyond this point
the vortex ring bubble will be affected by the free surface. It is worth noting that the
rising velocity starts to decrease immediately after the vortex ring bubble is generated,
where it is far below the free surface, so the slowing of the vortex ring bubble cannot
be attributed to the effect of the free surface.

6. Conclusion
We have examined some of the basic dynamic features and stability characteristics

of vortex ring bubbles. The primary motivations for this work were investigating
flow generated by a balloon bursting underwater, modifying Sullivan et al.’s (2008)
drag-based model to include buoyant vortex rings, and studying large vortex rings
with Bond numbers up to 1000. Notable observations from the studied conditions are
summarized as follows:

(a) A basic scaling analysis demonstrated that the significant radial expansion of
vortex ring bubbles is essentially due to the buoyancy force. The effect of
buoyancy in the momentum balance was found to be much greater than the
effect of the viscous force; the difference was found to increase with time.

(b) An expression for the circulation was obtained according to which the circulation
increases with the volume of the balloon and the depth at which the balloon
bursts. Comparing the measured circulations with those predicted by this
expression demonstrates the considerable viscous dissipation through the vortex
ring formation process.

(c) For dimensionless surface tension of 0.0010, almost 50 % of the initial potential
energy stored in the balloon was found to be dissipated during the vortex ring
bubble formation; this value was increased to 70 % for dimensionless surface
tension of 0.0040.

(d) Vortex ring bubbles were found to have a finite lifetime. As the dimensionless
surface tension decreased, the structure of a vortex ring bubble became more
coherent and it survived longer.

(e) It was observed that vortex ring bubbles expand as they rise. The rate
of expansion appeared to remain approximately constant with respect to
dimensionless surface tension.

(f ) Non-dimensional radius was found to be larger as dimensionless surface tension
increased.

(g) Circulation appeared to be inversely proportional to dimensionless surface
tension. However, for a given dimensionless surface tension, it was approximately
constant with respect to time. Vortex ring bubbles were found to decelerate as
they rise. The rising velocity was faster at lower dimensionless surface tensions.

(h) The trajectory of the core centre of a vortex ring bubble was found to be
approximately linear, with line slope slightly decreasing with dimensionless
surface tension.
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