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Abstract

Sketching is a natural and intuitive communication tool used for expressing concepts or ideas
which are difficult to communicate through text or speech alone. Sketching is therefore used
for a variety of purposes, from the expression of ideas on two-dimensional (2D) physical
media, to object creation, manipulation, or deformation in three-dimensional (3D) immersive
environments. This variety in sketching activities brings about a range of technologies which,
while having similar scope, namely that of recording and interpreting the sketch gesture to
effect some interaction, adopt different interpretation approaches according to the environ-
ment in which the sketch is drawn. In fields such as product design, sketches are drawn at
various stages of the design process, and therefore, designers would benefit from sketch inter-
pretation technologies which support these differing interactions. However, research typically
focuses on one aspect of sketch interpretation and modeling such that literature on available
technologies is fragmented and dispersed. In this paper, we bring together the relevant litera-
ture describing technologies which can support the product design industry, namely technol-
ogies which support the interpretation of sketches drawn on 2D media, sketch-based search
interactions, as well as sketch gestures drawn in 3D media. This paper, therefore, gives a hol-
istic view of the algorithmic support that can be provided in the design process. In so doing,
we highlight the research gaps and future research directions required to provide full sketch-
based interaction support.

Introduction

Sketching is a natural and intuitive means of communication for expressing a concept or an
idea. A sketch may serve several purposes: it can be used as a support tool for problem-solving,
it might record something that a person sees, it can be a way of storytelling as a part of human
interaction, or it can be used for developing ideas at any stage of a design process. Thus,
sketching is seen as a method for creativity and problem-solving and is considered to be cen-
tral to the design-oriented disciplines of architecture, engineering, and visual communication
(Craft and Cairns, 2009). In order to assess the effectiveness of sketching, researchers con-
ducted experiments using applications in areas, such as industrial design (Schütze et al.,
2003; Lugt, 2002), route planning (Heiser et al., 2004), and interface design (Landay and
Myers, 1995). These studies demonstrate that participants who are allowed to sketch freely
during the experiment are able to design products which have better functionality while expe-
riencing fewer difficulties in the design process (Schütze et al., 2003). Moreover, when com-
pared to note taking, the act of sketching offers better support to individual
re-interpretative cycles of idea generation and enhances individual and group access to earlier
ideas (Lugt, 2002). In route design, sketching is shown to enhance collaboration, with users
who are allowed to use sketches designing more efficient routes in less time, demonstrating
the ability of sketches to focus attention and provide easy communication between groups
(Heiser et al., 2004). Moreover, in interface design, sketching has been shown to aid the evalu-
ation and formation of ideas, allowing designers to focus on the larger conceptual issues rather
than trivial issues such as fonts or alignment of objects (Landay and Myers, 1995).

The intuitive and communicative nature of sketches has brought the act of sketching to the
attention of human–computer interface designers who focus on developing intuitive interfaces.
Sketch-based interfaces have the potential to combine the processing power of computers with
the benefits of the creative and unrestricted nature of sketches. However, realizing this poten-
tial requires combining efforts from several research areas, including computer graphics,
machine learning, and sketch recognition. Sketch recognition has many challenges that arise
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from the computational difficulties of processing the output of the
highly individual and personal task of sketching, requiring algo-
rithms that can overcome the ambiguity and variability of the
sketch. An effective sketch recognition method should be able
to recognize freehand drawings, created on any surface and
with any material. Achieving high recognition rates that meet
these constraints remains a challenge.

This paper builds on the discussions which took place during a
three-day workshop held at the University of Malta in March
2018. This workshop brought together researchers with experi-
ence in sketch interpretation, sketch-based retrieval, sketch inter-
actions in virtual and augmented reality (VR/AR) interfaces, and
non-photorealistic rendering (NPR). Although these research
areas are often discussed independently, they complement each
other: natural interfaces in augmented reality systems allow for
the exploration of concepts in collaborative design.
Interpretation of drawings made in physical or digital ink also
focuses on natural interfaces, albeit in two-dimensional (2D)
digital or paper drawings. Thus, seeking common grounds
between these two research areas allow for the integration of dif-
ferent sketching modalities in conjunction with augmented reality
rendering. To such a synergy, research in three-dimensional (3D)
object search makes it possible to integrate library searching of
object parts within the augmented reality environment. The
object simplification through NPR is then particularly useful in
this context to search for specific parts. This paper presents the
position taken by the participants after this workshop. In the
paper, we take a broad view and look into the interpretation prob-
lem in diverse contexts, for example, in the context of 3D model-
ing, sketch-based retrieval, multimodal interaction, VR and AR
interfaces. Conclusions reached in this paper are a result of the
discussions which took place during the workshop and reflect
not only the authors’ opinions but also the insights brought
into the workshop by practicing manufacturing engineers and
architectural designers who were also present at the workshop.

The rest of the paper is divided as follows: the section “State of
the art in sketch interpretation and modeling” provides a review
of the state of the art in sketch interpretation and sketch-based
modeling algorithms, the section “Future directions” discusses
open challenges and future directions that should be addressed
to improve the practicality of these systems, while the section
“Conclusion” concludes the paper.

State of the art in sketch interpretation and modeling

Machine interpretation of drawings dates back to as early as the
1960s with the development of algorithms able to interpret blue-
prints and cadastral maps to automate the digitization process of
such drawings (Ablameyko and Pridmore, 2000), branching
quickly into the interpretation of drawings as 3D objects
(Clowes, 1971; Huffman, 1971). Research in sketch interpretation
remains active through attempts to relax drawing constraints as
well as the development of different technologies which changed
the way people draw. Figure 1 illustrates the different sketch inter-
actions which will be discussed in this paper. The section
“Interpretation of offline sketches” describes the processing
steps to obtain 3D models from paper-based sketches. The section
“Interactive sketches” describes the interactive interfaces which
require digital sketching. The section “Sketch-based shape
retrieval” describes sketch-based retrieval approaches which can
compare the sketch directly to some 3D object database or to a
sketched rendering of the object. Finally, the section “Beyond

the single-user, single-sketch applications” describes sketching
interactions in VR and AR which can be used to either manipu-
late a premade 3D object or create a fresh 3D object within the
VR/AR environment.

Interpretation of offline sketches

In its most primitive form, a sketch captures fleeting ideas (Eissen
and Steur, 2007). The sketch may, therefore, be incomplete and
inaccurate, but the ability to explain abstract concepts through
drawings makes the sketch a powerful means of communication
(Olsen et al., 2008). Notwithstanding the strengths of
pen-and-paper sketching, the sketch serves only as an initial
working document. Once a concept is sufficiently developed,
initial sketches are redrawn using computer-aided design (CAD)
tools to obtain blueprints for prototyping (Cook and Agah,
2009) or to benefit from VR or AR interactions with the product.
Despite the effectiveness and ability of CAD tools to handle com-
plex objects, these tools have a steep learning curve for novice
users and even experienced designers spend a considerable
amount of time and energy using these CAD tools. Ideally, the
conversion from paper-based sketches to a working CAD model
is achieved without requiring any redrawing of the sketch. The
machine interpretation of paper-based drawings may be loosely
divided into three steps, namely distinguishing ink marks from
the background through binarization; representing the ink strokes
in vector form; and obtaining shape information from the draw-
ing to change the flat drawing into a 3D working model.

Image binarization
Off-the-shelf binarization algorithms, such as Otsu’s or Chow and
Kaneko’s algorithms (Szeliski, 2010), provide a suitable fore-
ground to background separation when drawings are drawn on
plain paper and scanned. However, problems arise with the intro-
duction of textured paper, such as ruled or graph paper, bleed-
through from previous drawings, as illustrated in Figure 2a and
even variable illumination, as illustrated in Figure 2b. Thus, binar-
ization algorithms need to be robust to these gray-level artifacts,
leading to more robust binarization algorithms such as Lins
et al. (2017), among others.

Vectorization
Once the ink strokes are distinguished from the image fore-
ground, vectorization is applied to allow the ink strokes to be
redrawn under the CAD environment (Tombre et al., 2000).
The focus here lies in the accurate representation of the topology
of the ink strokes, paying particular attention to preserve an accu-
rate representation of junction points (Katz and Pizer, 2004).
Skeletonization algorithms, which remove pixels contributing to
the width of the ink strokes while retaining the pixels which con-
tribute to the medial-axis of strokes, are a natural first step toward
vectorization (Tombre et al., 2000). However, skeletonization pro-
duces spurious line segments, especially if the ink strokes are not
smooth. Thus, skeletonization algorithms rely heavily on beautifi-
cation and line fitting of the skeletal lines (Hilaire and Tombre,
2006). Alternatively, rather than attempt to correct the spurs cre-
ated through skeletonization, the medial-axis may be obtained
through matching pairs of opposite contours (Ramel et al.,
1998) or horizontal and vertical run lengths (Keysers and
Breuel, 2006). All of these algorithms require visiting each pixel
in the image to determine whether it forms part of the
medial-axis. Line strokes can, however, be approximated as
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piecewise linear segments, and thus, it is possible to reduce the
computational costs for locating the medial-axis by adopting a
sampling approach (Dori and Wenyin, 1999; Song et al., 2002).
These sampling approaches then rely on heuristics to propagate
the sampler through the stroke and attempt to propagate the
line for its entirety, beyond the junction point.

Junction points, however, have an essential role in the interpre-
tation of the drawing, and thus, if the vectorization does not find
the junction locations directly, these are often estimated from the
intersection points of lines (Ramel et al., 1998). This approach,
while suitable for neat, machine-generated line drawings, is not
suitable for human sketches which are typically drawn sloppily
with poorly located junctions (Ros and Thomas, 2002) as illus-
trated in Figure 3. Moreover, these algorithms typically assume

that the drawings consist predominantly of straight lines and cir-
cular arcs. Problems arise when this assumption is relaxed to
include a larger variety of smooth curves, which allows for draw-
ings with more natural surfaces, as illustrated in Figure 4. Recent
vectorization algorithms shifted the focus from the location of
lines to the localization of junction points, borrowing from com-
puter vision approaches of finding corners in natural images but
adapting this to sketched drawings. Notably, Chen et al. (2015)
use a polar curve to determine the number of branches at a poten-
tial junction point, hence establishing the junction order as well as
locating the junction position. Noris et al. (2013), Pham et al.
(2014), Favreau et al. (2016), and Bessmeltsev and Solomon
(2019) characterize the topology of junctions typically found in
sketches, describing the different possible points of contact

Fig. 2. (a) A pen-based sketch with bleed-through (drawing provided by Stephen C. Spiteri). (b) A pencil sketch showing variable illumination.

Fig. 1. An overview of the different sketch interaction modes discussed in this paper.
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between the central lines of two strokes at every junction, while
Bonnici et al. (2018) use Gabor-like filters to first roughly localize
junctions, and then refine the junction position and topology by
focusing only on the image area around the junction.

Table 1 provides an overview of the vectorization algorithms
discussed and their performance. We note that the evaluation
of vectorization algorithms does not follow a standardized proce-
dure, and there are four metrics described in the literature. The
edit cost index (ECI) which is the weighted average of the number
of false alarms, the number of misses, the number of fragmented
ground-truth vectors, and the number of individual ground-truth
vectors grouped into a single vector (Chhabra and Phillips, 1998).
This measure, therefore, assesses the number of corrections to the
vector data that the user must perform to correct any algorithmic
errors. Dori and Wenyin (1999) introduce the vector recovery
index (VRI) which gives a measure of the similarity between
the extracted vectors and the ground-truth vectors, taking into
account the overlap between vectors, fragmentation and merging
of vectors. Noris et al. (2013) later introduce two alternative
metrics. The centerline error (CE) measures the shift in the
detected centerline position from ground-truth centerline as a
ratio of the line thickness, while the salient point error (SPE) mea-
sures the distance between the detected junction points and the
ground-truth junction points as a percentage of the line width.

Moving away from traditional preprocessing required for vec-
torization techniques, Simo-Serra et al. (2016) employ a fully con-
volutional neural network (CNN) to change a rough sketch into a
simplified, single-line drawing. The CNN is designed to have
three parts. First, an encoded spatially compresses the image.
The second step then extracts the essential lines from the
image, while the third step acts as a decoder and converts the sim-
plified representation into a gray scale image of the same

resolution as the input. The CNN is trained using pairs of
rough and simplified sketches, with the rough sketches being gen-
erated through an inverse reconstruction process, that is, given a
simplified sketched drawing, the artist is asked to make a rough
version of the sketch by drawing over it. Data augmentation is
then used to introduce tonal variety, image blur and noise, thus
increasing the drawing pairs. Similarly, Li et al. (2017) apply
CNNs to extract structural lines from manga images. Here, a dee-
per network structure is used to overcome the patterned regions
of the manga. The use of CNNs can, therefore, provide the neces-
sary preprocessing to allow for the extraction of line vectors from
rough sketches exhibiting over-sketching, as well as textures typi-
cal of shading strokes.

Interpretation
Once vectorized, the sketch can be rewritten in a format which is
compatible with CAD-based software such as 3DMax1 among
many others. These drawings remain, however, flat 2D drawings
and obtaining the desired sketch-to-3D interpretation requires
further drawing interpretation. The problem of assigning depth
to a drawing is not a trivial task due to the inherent ambiguity
in the drawing (Lipson and Shpitalni, 2007; Liu et al., 2011).
Edge labeling algorithms, such as those described in Clowes
(1971), Huffman (1971), Waltz (1975), and Cooper (2008)
among others, determine the general geometry of the edge, that
is, whether an edge is concave, convex, or occluding. These algo-
rithms define a junction as the intersection of three or four edges,
creating a catalog of all possible junction geometries. The catalog
of junctions is used as a look-up table to recover the 3D structure
from the drawing. Although this approach is effective, its main

Fig. 3. Lines do not necessarily intersect accurately at a junction
point.

Fig. 4. The two smooth curves are badly repre-
sented by two junction points in (a) rather than
the single tangential point of intersection as in (b).

1https://www.autodesk.eu/products/3ds-max/overview
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drawback lies in the intensive computation to search and manage
the junction catalog. Moreover, specifying the geometry alone is
not sufficient for the formation of the 3D shape since there
may be numerous 3D inflations of the sketch which satisfy this
geometry. Thus, optimization-based methods, such as those
described in Lipson and Shpitalni (2007) and Liu et al. (2011),
use shape regularities, such as orthogonality and parallel edges,
to obtain a 3D inflation which closely matches the human inter-
pretation of the drawing as illustrated in Figure 5. Alternatively,
the initial inflation can make use of perspective or projective geo-
metries, for example, by locating vanishing points to estimate the
projection center, then using camera calibration techniques to
estimate the 3D geometry (Mitani et al., 2002).

The problem remains in deducing the hidden, unsketched part
of the drawing. Algorithms, such as that described in Ros and
Thomas (2002), obtain the full 3D structure by solving planar
equations of the object surfaces and assume that a wireframe
drawing of the object is available. However, when people sketch,
they typically draw only the visible part of the object such that
the wireframe drawing is not always readily available. Moreover,
our visual understanding of sketches allows us to infer the hidden
parts of the drawing without too much effort (Cao et al., 2008).

Identification of hidden sketch topology typically starts from
the geometric information held within the visible, sketched
parts. In general, several plausible connections between the exist-
ing, visible vertices in the drawing are created to obtain a

Table 1. Comparison of vectorization algorithms listing a brief description of the algorithms and their performance

Algorithm Brief description Performance measure

Ramel et al. (1998) Straight line, quadrilateral and Bezier curve fitting on edge contours of
drawings. Suitable for technical and engineering drawings

Visual inspection using the author’s own image
database

Dori and Wenyin
(1999)

Propagates a rectangular segment along lines in a binary image to
extract line and circular arc fragments. Suitable for technical and
engineering drawings

Average VRI of 0.88 on the author’s own images

Song et al. (2002) Propagates a rectangular segment for lines and three rectangular
segments for circular arcs, progressively simplifying the drawing.
Suitable for technical and engineering drawings

Average VRI of 0.95 and an average ECI of 0.16

Hilaire and Tombre
(2006)

Fuzzy segmentation of the skeleton into lines and arcs, followed by
skeleton simplification and unification of parts. Suitable for technical
and engineering drawings

An average ECI of 0.68 and an average VRI of 0.74 on
sample images from the GREC 2003a contest images

Keysers and Breuel
(2006)

Performs run-length encoding directly on the binary image and fits
geometric primitives (lines and arcs) to resulting codes, using a
branch-and-bound technique to recursively subdivide the parameter
space. Suitable for technical and engineering drawings

A VRI of 0.76 on the GREC 2003 contest images

Noris et al. (2013) Analyses the drawing topology to overcome junction ambiguities.
Handles freehand sketches

Evaluated on the author’s own drawings. An average
CE of 4.15% of line thickness and an SPE smaller than
the linewidth

Chen et al. (2015) Performs contour tracking on the image to detect line junctions. The
position of the junction is then determined through intensity polar
mapping. The bending degrees of contour paths are used to determine
the junction topological structure. Handles freehand sketches

Visual inspection using the author’s own image
database

Pham et al. (2014) Detect zones of high curvature on the image skeleton to detect junction
zones. The skeleton topology around this zone is then used to optimize
the position of the junction. Handles rough sketches

A repeatability score of 75.25% on rotation, scale and
noise variations on GREC 2011 drawings

Favreau et al. (2016) Image skeleton is over-segmented and represented as a hypergraph.
Segments are then merged according to simplicity and fidelity criteria.
Junction locations determined through curve connectivity constraints.
Handles rough sketches

An average displacement between ground truth and
extracted vectors of 0.6 pixels for a line width of 24
pixels

Bessmeltsev and
Solomon (2019)

Uses frame-field processing to disambiguate junctions, using graph
structure to preserve the drawing topology. Handles freehand sketches

Visual comparison using the images from Favreau
et al. (2016) and Noris et al. (2013)

ahttp://www.cvc.uab.es/grec2003/

Fig. 5. A 2D drawing may have several 3D inflations. Optimization algorithms based
on heuristic regularities, such as orthogonality and parallel edges, may be used to
prune out unlikely interpretations.
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reasonable, initial wireframe representation of the drawing. This
initial representation is then modified by breaking links, introdu-
cing new vertex nodes to merge two existing edge branches, or
introducing new edge branches to link two otherwise discon-
nected vertices (Cao et al., 2008; Varley, 2009). These modifica-
tions are carried out in such a way that the final hidden
topology satisfies some heuristics, mainly based on human per-
ception principles, such as the similarity between the hidden
faces and visible faces (Cao et al., 2008), retaining collinear and
parallel relationships, and minimizing the number of vertices in
the topology (Kyratzi and Sapidis, 2009). An exhaustive explora-
tion of all the possibilities with which the visible vertices can be
combined to form the hidden topology remains a problem.
Kyratzi and Sapidis (2009) resolve this problem by adopting
graph-theoretical ideas, allowing for multiple hypotheses of the
hidden topology to exist in the branches of the tree structure.

The main limitation in the interpretation of paper-based
sketched drawings remains that of the accuracy of the drawing.
Misrepresentation of a junction point will result in a bad match
between the sketched junction and the cataloged junctions
which in turn results in incorrect geometry labels. This error
will then propagate to the sketch inflation and estimation of the
hidden viewpoints. Human interpretation of a 3D shape from
sketches can, however, tolerate considerable variations from the
true geometric form. Moreover, the geometric constraints used
in the creation of depth from drawings may not fully represent
the human ability of understanding the shape from sketches.
Learning-based approaches may, therefore, be more suited to
this task. Lun et al. (2017) consider such an approach, using
deep networks to translate line drawings into 2D images repre-
senting the surface depth and normal from one or more view-
points. A 3D point cloud is generated from these predictions,
following which a polygon mesh is formed. Although the archi-
tecture proposed by Lun et al. (2017) can be trained to provide
a reconstruction from a single viewpoint, the network architecture
does not obtain sufficient information from this single viewpoint
to reconstruct the 3D shape accurately. Lun et al. (2017) propose
to allow users to introduce viewpoints interactively, bridging the
gap between offline interpretation techniques and interactive
sketching.

The interpretation of offline sketches, therefore, relies on the
ability of the vectorization algorithms to extract the lines and
junctions that form the drawing topology as well as the interpre-
tation algorithms that convert the 2D drawing into its 3D geom-
etry. Perhaps the most difficult task of the vectorization
algorithms lies in the identification of the line strokes and junc-
tion locations when presented with rough sketches consisting of
overtracing and scribbling. While the most recent literature, par-
ticularly the works proposed by Pham et al. (2014) and Favreau
et al. (2016), allows for some degree of roughness in the drawing,
vectorization algorithms need to be robust to a greater degree of
scribbling and incomplete drawings if these algorithms are to be
useful for an early-stage design.

The interpretation algorithms which add depth to the 2D
drawing also need to become more robust to drawing errors
which can be introduced due to the quick manner with which
initial sketches are drawn. While learning approaches, such as
that described in Lun et al. (2017), can relax the need for strict
adherence to correct geometry, a compromise between learning
wrong interpretations of a junction geometry and the possibility
of handling badly drawn junctions needs to be reached. The algo-
rithms must, therefore, be able to learn the broader context in

which the junction is being interpreted. Human artists resolve
ambiguities through the use of artistic cues such as shadows
and line weights. Thus, learning-based algorithms could also
include the interpretation of these cues when gathering evidence
on the geometric form of the sketched object.

Interactive sketches

The availability and increasing popularity of digital tablets
brought about a shift in the sketching modality from the tradi-
tional pen-and-paper to interactive sketches drawn using digital
ink. Sketch-based interfaces, such as Sketch (Zeleznik et al.,
2006), Cali (Fonseca et al., 2002), NaturaSketch (Olsen et al.,
2011), Teddy (Igarashi et al., 1999), Fibermesh (Nealen et al.,
2007), and DigitalClay (Schweikardt and Gross, 2000) among
many others, make use of additional inked gestures to allow
users to inflate or mold the 2D drawings into a 3D shape.

Sketch-based interfaces often require that the user creates
sketches using some particular language. For example, in Teddy
(Igarashi et al., 1999), the user draws a simple 2D silhouette of
the object from which the 3D shape is constructed through the
operation of blobby inflation. The algorithm first extracts the
chordal axis of the triangulated mesh of a given silhouette.
Then, an elevating process is carried out to inflate the 2D shape
into 3D space, which is mirrored by the other side of the shape.
The system demonstrates a simple but effective interface of
sketch-based modeling. However, it can only handle simple and
bulbous shapes, and hence cannot be easily generalized to other
shape modeling such as shapes with sharp features.

While sketch-based interfaces overcome some of the
difficulties in the interpretation of the sketch, they introduce a
sketching language which distracts from the natural spontaneity
of freehand sketching. Moreover, the interfaces are often designed
such that the user progressively refines the 3D shape (Masry and
Lipson, 2007; Xu et al., 2014), which can be time-consuming.

Delanoy et al. (2018) learn to reconstruct 3D shapes from one
or more drawings, using a deep CNN that predicts occupancy of a
voxel grid from a line drawing. The CNN provides an initial 3D
reconstruction as soon as the user draws a single view of the
desired object. This single view will be updated once a new view-
point is introduced, using an updater CNN to fuse together infor-
mation from different viewpoints without requiring stroke
correspondences between the drawings. The CNN is trained on
primitive shapes, such as cubes and cylinders, which are com-
bined through geometric additions and subtractions to create
objects which have flat orthogonal faces but which can also sup-
port holes or protruding convex surfaces. A total of 20,000 such
objects were created, using 50 of these shapes for testing, while
the rest were used for training. Li et al. (2018) also adopt a
CNN to infer depth from the 2D sketch of the 3D surface. This
approach, however, aims at rendering general freeform shapes,
focusing on geometric principles and optional user input to over-
come drawing ambiguities. The CNN is used to predict depth/
normal maps using flow field regression and a confidence map,
which gives the ambiguity at each point of the input sketch. As
with Delanoy et al. (2018), the user first draws a single viewpoint
of the object which is rendered as a 3D object. The user can then
either further modify the surface by drawing curves over the sur-
face, or providing depth values at sparse sample points, or reuse
the frontal sketch to draw the back view of the object. Training
data for CNN was generated by applying NPR to 3D shapes to
attain sketch-like silhouette curves.
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Table 2 compares some of the interactive sketch-based inter-
faces described in the literature. We observe that interactive sys-
tems which perform an initial blob-like inflation of the drawing,
seem to require less effort to create the first 3D model of the
object. However, these systems then require effort to deform
the initial shape to the desired object form. On the other
hand, language-based systems may require more effort to create
the initial model, but then, this would require fewer

deformations to achieve the desired shape. Deep learning sys-
tems appear to provide a good middle ground, using viewpoints
which are a natural way of reducing ambiguities. By removing
the need to align the viewpoints, these systems reduce the bur-
den on the user. However, these systems produce models which
appear to be lacking in object detail. Hence, more work is
required to capture the desired level of surface detail with
such systems.

Table 2. Comparison of interactive sketch-based algorithms

Algorithm Brief description Evaluation

Teddy (Igarashi et al.,
1999)

Creates a closed polygonal mesh model from the initial stroke
which the user can then modify through the use of extrusions,
cutting and smoothing operations each of which changes the
underlying polygonal structure such that it fits the new strokes.
The tool supports the formation of blob-like freeform objects

Informally evaluated among computer graphics researchers
and students who reported becoming fluent with the tool
within 10 min of tutorial and guided practice

DigitalClay
(Schweikardt and
Gross, 2000)

The user draws a sketch representation of the object using an
isometric viewpoint. The user strokes are “beautified”, that is,
lines straightened and adjacent strokes connected to each
other to form corners. This initial sketch can be modified by
the user by either dragging the corner points or drawing over
the edges. Huffman-Clowes labeling is then applied to the
drawing before creating the 3D representation of the object

n/a

Masry and Lipson
(2007)

The user draws a wireframe representation of the object which
is reconstructed assuming an underlying orthogonal axis
system. Hidden lines are not shown in the rendered
reconstruction, and the user can rotate the resulting object
and modify it accordingly. This approach supports planar
objects with straight or curved contours

Visual comparison by the authors of objects created
through this approach. Objects consist of initial sketches
with up to 50 strokes which are processed in interactive time

Sketch (Zeleznik et al.,
2006)

A gesture-based user interface to create 3D primitives such as
cones, cylinders, spheres, and prisms. Other gestures can be
used to modify these primitives through extrusions, rotation
and scaling deformations. Shadows can be sketched to show
spatial displacement

n/a

Fibremesh (Nealen
et al., 2007)

Similar to previous works, the user generates an initial 3D
model by sketching a contour which is then inflated. The user
can then modify this inflation. However, the stroke
modifications are applied directly to the 3D surface and are
added as a collection of 3D curves. The interface supports
mainly the creation of blob-like, freeform objects. However,
curve deformations and surface optimizations allow for the
modeling of sharp features on these surfaces

Informal evaluation with first-time, novice users as well as
one professional 2D animation artist. The users are reported
to have found the system easy-to-use and that it supports
the transfer of skills acquired in 2D sketching to 3D
modeling

NaturaSketch (Olsen
et al., 2008)

A sketch can be drawn over existing images to aid the drawing
of objects in proportion. A planar mesh is constructed over the
sketched strokes, and this is inflated using a functional vertical
displacement to create a 3D surface. Further annotations can
be made on the generated surface to introduce bumps, holes,
extrusions, and embossing deformations to the object

Evaluated through an informal study with eight participants,
five of whom are graphics researchers, one was a 2D pencil
artist and the other two did not have experience with
drawing or modeling. It was observed that participants drew
better when tracing on an image

True2Form (Xu et al.,
2014)

Sketches of objects are imported into the user interface and
the user may annotate these sketches with different colored
strokes to indicate properties such as orthogonalities,
parallelism, symmetry, and curve planarity. These properties
are then used as constraints in the reconstruction framework.
The algorithm can handle freeform objects

The authors provide a visual comparison between the
models generated by their system and those generated by
similar user interfaces

Delanoy et al. (2018) Use a CNN to provide an initial 3D reconstruction which is
updated when the user draws another viewpoint. Can be used
to model man-made objects with flat, orthogonal faces but
through the addition and subtraction of primitives also
supports holes and convex protrusions

Evaluated by two expert users and six other participants
with limited drawing/3D modeling skills. Users were asked
to model one of two shapes. Participants were quick to
learn how to use the system but found that the resulting 3D
models lacked detail

Li et al. (2018) Use a CNN to predict depth/normal maps using flow field
regression. The user is allowed to draw additional lines on the
sketch to refine or add details to the surface. Freeform smooth
shapes, with rolling guided normal filtering to allow for sharp
features on the smooth surfaces

Five novice users with little knowledge in sketching and 3D
modeling were asked to do three modeling tasks in which
they recreated target shapes
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Sketch-based shape retrieval

The interpretation methods discussed thus far attempt to create a
new 3D model based on the sketched ink strokes. An alternative
approach to generating the 3D model linked to the sketch is to
assume that a model already exists in some database and that
the sketch may be used to retrieve the best fitting model.
Sketch-based shape retrieval engines have been used to improve
human–computer interaction in interactive computer applications
and have been studied since the Princeton Shape Benchmark
(Shilane et al., 2004). While sketches are generally simpler than
images, they sufficiently describe 3D shapes and are easily pro-
duced by hand. Sketch-based retrieval engines for 3D models
are important in large datasets where we require fast and accurate
methods.

In the approach described by Shilane et al. (2004), the user
draws the side, front, and top views of the 3D object to retrieve
the 3D object whose shape agrees most closely to the given
views. Retrieval-based modeling algorithms then consist of three
steps, namely view selection and rendering, feature extraction
and shape representation, and metric learning and matching
(Chen et al., 2003; Pu and Ramani, 2005; Yoon et al., 2010). To
improve the quality of the retrieval, efforts are made for more
effective descriptors of both sketches and shapes. For instance,
in Chen et al. (2003), light field descriptors are extracted to repre-
sent 3D shapes.

Complex objects can then be modeled by retrieving and
assembling the object in a part-wise manner (Chen et al.,
2003), while complex scenes comprised of different objects can
be modeled by retrieving each object individually (Eitz et al.,
2012). However, retrieval-based methods require very large collec-
tions of shapes. Moreover, despite the size of the dataset, the like-
lihood of finding an identical match between a 3D shape and its
sketched counterpart is very small. This is because sketch-based
retrieval algorithms typically assume that the sketched drawing
will match one of the selected viewpoint representations of the
object in the database. However, there can be no guarantee that
the user’s sketch will match the selected object viewpoint. Nor
is there a guarantee that the sketching style will correspond to
the database object representation. Thus, shape retrieval algo-
rithms also focus on improving the matching accuracy between
the sketched query and the shape database, for example, in
Wang et al. (2015), CNNs are used to learn cross-domain similar-
ities between the sketch query and the 3D object at the image level
by projecting 3D shapes into 2D images, thus avoiding the need
to specify the object viewpoint. In Zhu et al. (2016), a cross-
domain neural networks approach is proposed to learn the cross-
domain mapping between 2D sketch features and 3D shape fea-
tures directly. A different method, deep correlated metric learning
(DCML), is proposed in Dai et al. (2018). The proposed DCML
exploits two different deep neural networks for each domain to
map features into feature space with a joint loss. They aim to
increase the discrimination of features within each domain as
well as the correlation between different domains, thus minimiz-
ing the discrepancy across the sketch and the shape domain. The
proposed method in this study performs significantly better than
the proposed method in Wang et al. (2015).

One approach to implementing database queries is to learn
alternative representations of 3D shapes to improve retrieval per-
formance. Xie et al. (2016) propose to learn the barycenters of 2D
projections of 3D shapes for significant improvement in sketch-
based 3D shape retrieval. A different approach is to convert the

database contents into a sketch-like form since this would make
subsequent query matching more straightforward. Thus, lines
making up strokes should be extracted from 2D images. The
same approach can be deployed for 3D models by first generating
multiple 2D views, from which the lines are extracted, or else the
lines can be directly extracted from the geometry of the 3D model.
For example, in Eitz et al. (2012), the main idea is to generate a set
of 2D sketch-like drawings from the 3D objects in the database,
thus, performing matching in 2D rather than direct matching
between the 2D sketch and the 3D shape.

2D image-based line detection
Extracting lines from images has been a well-studied topic in
computer vision for more than 20 years. In particular, there are
a number of common applications in areas such as medical imag-
ing (e.g., blood vessel extraction from retinal images) and remote
sensing (road network extraction from aerial images), and these
have spawned a variety of line detection methods such as methods
based on eigenvalues and eigenvectors of the Hessian matrix
(Steger, 1998); the zero-, first-, and second-order Gaussian deriva-
tives (Isikdogan et al., 2015); and 2D Gabor wavelets among
others (Soares et al., 2006). Alternatively, general features such
as local intensity features can be used in conjunction with classi-
fiers (e.g., neural network classifiers) to predict the existence of
lines (Marin et al., 2011). Line detection can also be applied to
NPR which aims at resynthesizing images and 3D models in
new styles, which include (but are not limited to) traditional artis-
tic styles. Thus, NPR provides the means to convert the 3D model
database contents into a sketch-like form.

One effective NPR approach was described by Kang et al.
(2007), who adapted and improved a standard approach to line
detection, which performs convolution with a Laplacian kernel
or a difference-of-Gaussians (DoG). As with some of the methods
described above, Kang et al. (2007) estimate the local image direc-
tion and apply the DoG filter in the perpendicular direction. The
convolution kernel is deformed to align with the local edge flow,
which produces more coherent lines than traditional DoG
filtering.

Another NPR technique related to line detection is the render-
ing of pencil drawings, in which methods aim to capture both the
structure and tone of pencil strokes. The former is more relevant
to sketch retrieval, and the approach described in Lu et al. (2012)
generates a sketchy set of lines while trying to avoid false
responses due to clutter and texture in the image. They first per-
form convolution using kernels as a set of eight line segments in
the horizontal, vertical, and diagonal directions. These line seg-
ments are set to the image height or width. The goal of this initial
convolution is to classify each pixel into one of the eight direc-
tions (according to which direction produces the maximum
response), thereby producing eight response maps. The second
stage of convolution is applied, using the eight line kernels on
the eight response maps. The elongated kernels link pixels into
extended lines, filling gaps, and slightly lengthening the lines pre-
sent in the input image, producing a coherent and sketchy effect.

With the advent of deep learning, CNN approaches have also
been applied in recent years to image-based line detection for the
same applications and tend to out-perform traditional methods.
For instance, Xu et al. (2018) extracted roads from remotely
sensed images using a segmentation model that was designed
based on the UNET architecture (Ronneberger et al., 2015) in
which the contracting part was implemented using DenseNet
(Huang et al., 2017). In addition, local attention units were
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included to extract and combine features from different scales.
Leopold et al. (2019) described an approach to retinal vessel seg-
mentation that was also based on the UNET architecture. Across
several datasets, the model’s performance did not always achieve
the state of the art. However, it was argued that this was due to
the downsizing of the input images that was performed in order
to improve computational efficiency. Gao et al. (2018) tackled
pencil drawing using a vectorized CNN model (Ren and Xu,
2015) and given the difficulty in obtaining suitable ground
truth they used a modified version of Lu et al. (2012) to generate
the training set. In order to improve the quality of the training
data, they manually adjusted the parameters of Lu et al.’s algo-
rithm to obtain the best result. This enabled them to build a
final deep model that was able to produce more stable results
than Lu et al. (2012).

As alluded to above, an issue in line detection is coping with
noisy data. Many line detection methods also include a postpro-
cessing step for improving the quality of the raw line detection.
For instance, Marin et al. (2011) apply postprocessing in order
to fill pixel gaps in detected blood vessels and remove isolated
false positives. Isikdogan et al. (2015) and Steger (1998) use the
hysteresis thresholding approach that is popular in edge detection:
two-line response thresholds are applied, and those pixels above
the high threshold are retained as lines, while those pixels
below the low threshold are discarded. Pixels with intermediate
line responses between the thresholds are only retained if they
are connected to pixels that were determined to form lines (i.e.,
above the high threshold).

Although state-of-the-art image-based line detection methods
are fairly effective and robust, they are limited by the lack of RGB
images to directly capture the object’s underlying geometric infor-
mation. Another limitation is the lack of semantic knowledge
needed to disambiguate conflicting information or handle missing
information. These factors make the current methods prone to
detecting lines arising from the clutter in the images, whereas
humans are better able to focus on the salient contours.
Moreover, the output of typical image-based line detection
methods can be somewhat fragmented and noisy.

3D model-based line detection
If lines are extracted from 3D models, then these lines can directly
reflect the geometry of the object. In comparison, lines extracted
from images are determined by the image’s intensity variations,
which can be affected by extraneous factors, such as illumination,
and perspective distortion, meaning that significant lines may
easily be missed, and spurious lines introduced.

A straightforward approach to locate lines on the surface of a
3D model is to find locations with extremal principal curvature in
the principal direction – such loci are often called ridges and val-
leys. The curvature of a surface is an intrinsic property, and thus,
the ridge and valley lines are view independent. While this might
seem advantageous, DeCarlo et al. (2003) argued (in the context
of NPR) that view-dependent lines better convey smooth surfaces
and proposed an alternative that they termed suggestive contours.
These are locations at which the surface is almost in contour from
the original viewpoint and can be considered to be locations of
true contours in close viewpoints. More precisely, the suggestive
contours are locations at which the dot product of the unit surface
normal and the view vector is a positive local minimum rather
than zero.

Related work by Judd et al. (2007) on apparent ridges also
modified the definition of ridges to make them view-dependent.

They defined a view-dependent measure of curvature based on
how much the surface bends from the viewpoint. Thus, it takes
into consideration both the curvature of the object and the fore-
shortening due to surface orientation. Apparent ridges are then
defined as locations with maximal view-dependent curvature in
the principal view-dependent curvature direction.

This earlier work was systematically evaluated by Cole et al.
(2008), based on a dataset that they created which contains 208
line drawings of 12 3D models, with two viewpoints and two
lighting conditions for each model, obtained from 29 artists.
Using precision and recall measures, they quantitatively compared
the artists’ drawings with computer-generated (CG) drawings,
namely image intensity edges (Canny, 1986), ridges and valleys,
suggestive contours and apparent ridges. They showed that no
CG method was consistently better than the others, but that
instead, different objects were best rendered using different CG
methods. For instance, the mechanical models were best rendered
using ridges and edges, while the cloth and bone models were best
rendered using occluding contours and suggestive contours. Cole
et al. (2008) experimented with combining CG methods, and
found for example that folds in the cloth model could be iden-
tified by the presence of both suggestive contours and apparent
ridges. They also found that the artists were consistent in their
lines, and in a later user study showed that people interpret cer-
tain shapes almost as well from a line drawing as from a shaded
image (Cole et al., 2009), which confirms the hypothesis that a
sketch-based interface should be an effective means of accessing
3D model information.

In contrast to image-based line detection, there has been sub-
stantially less take-up of deep learning for 3D models due to the
irregular structure of 3D data. Thus, a common approach is to
process 3D as multiview 2D data. For instance, Ye et al. (2019)
take this approach. They aim to generate line drawings from 3D
objects but apply their model to 2D images rendered from the
3D object. Their general adversarial network (GAN) incorporates
long short-term memory (LSTM) to enable it to generate lines as
sequences of 2D coordinates. Nguyen-Phuoc et al. (2018) propose
a CNN-based differentiable rendering system for 3D voxel grids
which is able to learn various kinds of shader including contour
shading. While voxel grids provide the regular structure missing
from meshes, in practice their large memory requirements limit
their resolution, and so Nguyen-Phuoc et al. (2018) resize their
3D data to a 64 × 64 × 64 voxel grid.

Displaying the search results
Equally important in the sketch-based retrieval approach is the
way the matching results are presented to the user for the user
to make full benefit of search. Traditionally, search results are dis-
played as thumbnails (Shilane et al., 2004) and applications, such
as Google’s 3D Warehouse2, allow the user to select and modify
the viewpoint of the object. These display strategies, however,
do not take into account the advantages of human–computer
interaction paradigms and devices. Adopting VR/AR environ-
ments for the exploration of search results have the advantage
of allowing far more content to be displayed to the user by mak-
ing full use of the 3D space to organize the content, allowing the
user to examine search results with respect to three different cri-
teria simultaneously (Munehiro and Huang, 2001). The challenge
here is to determine how to arrange the query result in the open

2https://poly.google.com/
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3D space such that the organization remains meaningful to the
user as the user navigates in the 3D space. While the 3D axis
has been used for such purposes, with each axis defining a search
criterion, the display problem is a more complex problem and
requires more attention. Also, challenging is establishing the
way the users interact with the search objects in the immersive
environment. While gestures seem like the most natural interac-
tion modality, the interpretation of unintended gestures may
lead to undesirable states (Norman, 2010).

Beyond the single-user, single-sketch applications

The applications discussed thus far focus on single-user, single-
object, sketch-to-3D applications. While this remains a significant
research challenge, sketch communication is not limited to
single-user applications, nor does it have to be focused on individ-
ual objects. Sketches may be used in communication with multi-
ple parties and may capture not only the physical form of the
object but also the interaction of the sketched object with other
objects in its environment or the functionality of the object.
The interpretation of the sketch, therefore, goes beyond the inter-
pretation of the ink strokes but should include other means of
communication, such as speech or eye-gaze, which occur while
sketching. The collaborative aspect of sketching may be extended
from the physical world to the VR or AR domain, where
improved tools make virtual sketching more accessible. VR and
AR opens sketching applications to sketching directly in the 3D
sketching domain and to applications where collaborators may
be present together in the virtual world. The following sections
discuss these aspects of sketching interfaces in greater depth.

Multimodal sketch-based Interaction
When people sketch, particularly when sketching is taking place
in a collaborative environment, other, natural and intuitive
methods of communication come into play. Thus, combining
sketch interpretation with different sources of information
obtained during the act of sketching increases the richness of
the data available for understanding and interpreting the sketch
to improve the user-interface experience. Hence, the need for
multimodal sketch-based interactions.

Informal speech is one of the leading interactions in multimo-
dal sketch-based systems since speech is a natural method of com-
munication and can provide additional information beyond that
captured in the sketch. The research questions that arise are two-
fold: how will the user using such a system want to interact with
the system and how will the system analyze the conversation that
has arisen? Experiments have been carried out to find answers to
these questions by analyzing the nature of speech–sketch multi-
modal interaction. These studies investigate general tendencies
of people, such as the timing of the sketch (Adler and Davis,
2007), and the corresponding conversation interaction to design
effective sketch–speech-based systems (Oviatt et al., 2000).

During sketching, people exhibit subtle eye-gaze patterns,
which in some cases, can be used to infer important information
about user activity. Studies demonstrate that people perform dis-
tinguishing eye-gaze movements during different sketch activities
(Çığ and Sezgin, 2015). Thus, the natural information coming
from eye-gaze movements can be used to identify particular
sketch tasks. These observations lead researchers to take eye-gaze
information into account when creating multimodal sketch-based
interaction. For example, in Çığ and Sezgin (2015), eye-gaze infor-
mation is used for early recognition of pen-based interactions.

They collect data from 10 participants (6 males and 4 females)
over five different tasks to train an SVM-based system for task
prediction with an 88% success rate. They demonstrate that eye-
gaze movement that naturally accompanies pen-based user inter-
action can be used for real-time activity prediction.

An important aspect which eye-gaze and speech prediction
systems need to address is the ability of the systems to recover
from prediction errors. While error recovery is important in all
steps of the sketch interpretation, it becomes more critical with
eye-gaze and speech predictions since the user’s natural reaction
to errors would be to change their behavior in an attempt to
force the system to correct the error. Such a change in behavior
could, in turn, further reduce the prediction performance.

While eye-gaze and speech provide information about the
sketch, haptic feedback is a different mode of interaction which
provides information to the user, conveying the natural feeling
of interaction to the user. Haptic feedback changes the sketch
interaction in VR or AR applications, providing a realistic substi-
tute for the interaction with physical surfaces (Strasnick et al.,
2018). In this study, they propose three prototypes a novel VR
controller, Haptic Links, that support the haptic rendering of a
variety of two-handed objects and interactions. They conduct a
user evaluation with 12 participants (ages 25–49, 1 female) that
shows users can perceive many two-handed objects or interac-
tions as more realistic with Haptic Links than with typical VR
controllers. Such a feedback is of particular use when the virtual
environment plays a significant role in sketch interaction. Such
tasks include sketching or drawing on a virtual object or writing
on a board, where haptic feedback enhances the user experience
through the physical feelings of the virtual surface. Systems
which include haptic feedback use principles of kinematics and
mechanics to exert physical forces on the user. For example, in
Massie and Salisbury (1994), a force vector is exerted on the
user’s fingertip to allow the user to interact with and feel a variety
of virtual objects including controlling remote manipulators,
while in Iwata (1993), a pen-shaped gripper is used for direct
manipulation of a freeform surface.

Augmented and virtual reality
The qualities of sketching as an easy and efficient method to cre-
ate visual representations have also had an impact in the field of
VR and AR. Virtual and augmented media are inherently 3D spa-
tial media, and thus, sketching in VR and AR involves usually the
creation of 3D visual representations. Such systems typically allow
users to draw and immediately perceive strokes and planes in 3D
space. Users create strokes by using input devices, such as control-
lers or pens, which are also tracked by the VR system. Users can
easily perceive the drawings from different angles by just moving
their head and body. Table 3 provides a comparative summary of
the VR and AR interactions discussed here under.

Early immersive sketching systems were developed by Keefe
et al. (2001), who created a sketching environment for artists
within a cave automatic virtual environment (CAVE),
Fiorentino et al. (2002), who tried to introduce 3D sketching in
industrial styling processes, or Schkolne et al. (2001), who sug-
gested to use bare hands for the creation of rough sketches. The
Front Design Sketch Furniture Performance Design3 project dem-
onstrated an AR-alike application of freehand 3D sketching for
the design of furniture, including printing of the results using

3http://www.frontdesign.se/sketch-furniture-performance-design-project
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rapid prototyping technologies. Among the most recent immer-
sive sketching systems are commercially available tools such as
Tilt Brush4 and Gravity-Sketch5 which provide modeling func-
tionalities, including the creation of strokes, surfaces, volumetric
meshes, or primitives. Such tools provide advanced 3D user inter-
faces, menus, and widgets and can be run with most of the latest
VR headsets and 3D controllers.

The VR market has seen a major technology shift in the past
years particularly, with the emergence of affordable high-
resolution head-mounted displays (HMDs) in the consumer mar-
kets. Industrial VR solutions make more and more use of HMDs
which today significantly outnumber projection-based solutions.
This shift is also visible in the field of immersive sketching.
Where earlier works such as those described in Fiorentino et al.
(2002), Keefe et al. (2001), Israel et al. (2009), and Wiese et al.
(2010) among others, mainly used projection-based solutions, recent
research systems such as those described in Arora et al. (2017) and
Barrera Machuca et al. (2017) and commercial systems such as Tilt
Brush and Gravity-Sketch, typically employ HMDs. HMDs offer the
advantages of lower costs, lower space requirements, and increased

mobility in comparison to projection-based systems. However,
HMDs typically block the view of the physical environment,
whereas in projection-based systems, users can see each other,
even though usually only one user can perceive the 3D scene
from the right perspective (Drascic and Milgram, 1996).

A considerable number of studies has investigated the charac-
teristics of immersive freehand sketching. In their seminal paper
“CavePainting: A Fully Immersive 3D Artistic Medium and
Interactive Experience”, Keefe et al. (2001) were the first to
show that immersive sketching within a CAVE can foster creative
drawing and sculpting processes among artists. They reported
their observations of participants from two art classes, painters,
and art students of varied backgrounds. They noted that skilled
artists, young artists, and novice users were able to create “mean-
ingful piece[s] of art” (op. cit., p. 92) with their system. In another
study among 12 experienced designers and artists, Keefe et al.
(2007) investigated the effects of two bimanual 3D drawings tech-
niques with haptic support. They found that these techniques
allow for drawings with roughly half the positional and rotational
errors compared to freehand 3D sketching techniques. Israel et al.
(2009) compared 2D and 3D sketching processes and the result-
ing sketches. In a study among 24 furniture designers and interior
architects, they found that 3D sketches were almost twice as large

Table 3. Overview of immersive sketching studies

Project/
authors Environment Aim and metrics Participants Key findings

Cave painting
Keefe et al.
(2001)

VR CAVE Uses informal observations to
evaluate the feasibility of immersive
modeling

Two art classes, painters, art
students of varied backgrounds

Demonstrates the feasibility of
immersive modeling to create
pieces of art

Drawing on
air
Keefe et al.
(2007)

Desktop VR Evaluation of haptic support for
immersive sketching by recording
the positional error and the drawing
time

12 experienced designers and
artists

Haptic support allows for
drawings with roughly half the
positional and rotational errors in
comparison to freehand 3D
sketching

Immersive
sketching
Israel et al.
(2009)

VR CAVE Comparing user behavior during 2D
and 3D sketching by observing the
sketch size and details, the usage
time, and user speed

24 furniture designers and interior
architects

3D sketches were almost twice as
large, users moved 33% faster, the
sketches contained twice as much
detail, and usage times were 50%
higher in the 3D condition as in
the 2D condition

Learnability
Wiese et al.
(2010)

VR HMD Measure the line accuracy,
uniformity, shape deviation,
workload time, line matching, and
corrective movements while
sketching

25 students, 12 designers, 4
architects, 1 visual artist, and 4 art
teachers

Line accuracy, uniformity of
objects, shape deviation increased
after 30 minutes

Sketching on
surfaces
Arora et al.
(2017)

VR HMD Evaluation of possible accuracy
benefits from sketching on virtual
and physical surfaces compared to
no support (free mode). Measures
the depth deviation and
smoothness of curvature

12 participants without immersive
sketching experience

Physical drawing surfaces
improved accuracy by 22% and
virtual surfaces by 17%

Multiplanes
Barrera
Machuca
et al. (2017)

VR HMD Measures the acceptance of
real-time “beautification” of strokes
through the ease of interaction,
perceived speed and accuracy, and
the overall opinion

8 undergraduate students (2 with
prior immersive sketching
experience)

In average medium ratings (4.5 on
a 7-point Likert scale), 6
participants were excited about
the features

Physical
guides
Wacker et al.
(2018)

AR HMD Comparing the sketching
performance of virtual and physical
objects of the same size. Measures
the deviation in 3D in the x, y, and z
directions

16 participants (11 with no prior AR
or immersive drawing experience, 4
with AR but no immersive drawing
experience, 1 with immersive
drawing but without AR
experience)

Tracing physical objects 48% more
accurate than tracing virtual
objects with no haptic support

4https://www.tiltbrush.com/
5www.gravitysketch.com/vr/
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as 2D sketches, users moved 33% faster in the 3D condition than
in the 2D condition, the resulting 3D sketches contained twice as
many details than 2D sketches, and usage times were 50% higher
in the 3D condition. Furthermore, users reported that it felt more
“natural” to draw three-dimensionally in a 3D environment. The
3D environment seemed to support the creation of 3D representa-
tions in one-to-one scale and to foster the interaction with
sketches from the moment of their creation, which could, in
turn, stimulate creative development processes. In an effort to
investigate the effects of visual and physical support during
immersive sketching, Arora et al. (2017) discovered in an observa-
tional study among five design experts that they prefer to switch
back and forth between controlled and free modes. In another
study among 12 participants without professional drawing experi-
ence, Arora et al. (2017) used depth deviation and smoothness of
curvature as a measure of accuracy and show that a physical draw-
ing surface helped to improve the accuracy of a sketch by 22%
over their free mode counterpart. Virtual surfaces, which are
easy to implement, were surprisingly close with a 17% improve-
ment. The use of visual guides, such as grids and scaffolding
curves, improved the drawing accuracy by 17% and 57%, respec-
tively. However, the drawings were less esthetically pleasing than
the free mode sketches, especially with the use of scaffolding
curves. A system developed by Barrera Machuca et al. (2017) fol-
lowed another approach. Here, 3D strokes were projected onto 2D
planes and corrected or “beautified” in real time. In a preliminary
evaluation among eight undergraduate students, of which 25%
had prior immersive sketching experience, users appreciated
this informal and unobtrusive interaction technique and were sat-
isfied with the quality of the resulting sketches.

The question of how fast users can adapt to immersive sketch-
ing was subject to a learnability study with 25 design, arts, and
architecture students by Wiese et al. (2010). In the study, Wiese
et al. (2010) measured immersive sketching abilities during
three test trials occurring within 30 min of each other and in
which users had to draw four basic geometries. Wiese et al.
(2010) report improvements of approximately 10% in line accu-
racy, 8% in shape uniformity, and 9% in shape deviation. These
results underline the hypothesis that immersive sketching skills
can improve over time, even after short periods of learning.

With the growing popularity of AR, some AR-based 3D
sketching approaches recently surfaced. In AR, the user can per-
ceive their physical environment, seamlessly augmented with vir-
tual information and objects. Typical AR frameworks either use
the hardware of mobile device, for example, Apple ARKit6,
Google ARCore7, and Vuforia8 or HMDs, for example, Microsoft
HoloLens9. Both frameworks have the potential for drawing and
sketching applications. Smartphone-based solutions typically use
the motion, environmental and position sensors as well as the
device’s camera to determine its position in space. The user can
either draw directly on the screen or by moving the screen.

Among the AR-based sketching systems, SketchAR10 helps
users to increase their drawing skills. The application uses the
phone’s camera to capture the physical environment. When the
system detects physical paper in the image, the user may overlay
a template, such as the sketch of a face as shown in Figure 6, onto

the physical paper. The user can then use physical pens to trace
the template on the physical sheet of paper while controlling
the result on the smartphone display. CreateAR11, another
AR-based sketching applications, allows users to create and
place sketches at particular geo-locations, making them accessible
for other users (Skwarek, 2013). Similar applications are also
available for Microsoft’s HoloLens; most applications let the
user draw by pressing the thumb against the forefinger, creating
strokes when the user moves their hand. In a study among 16 par-
ticipants (4 female, 12 male, 11 with no prior AR nor immersive
drawing experience, 4 with AR but no immersive drawing experi-
ence, 1 with immersive drawing but without AR experience),
Wacker et al. (2018) compared the sketching performance on vir-
tual and physical objects of the same size in AR. They found that
tracing physical objects can be performed 48% more accurate than
on virtual objects with no haptic support.

Interesting research questions remain in the field of learnabil-
ity, especially in the AR/VR context. Future mid- and long-term
studies could investigate to which degree users can develop free-
hand sketching skills and if they can even reach the accuracy of
traditional sketching on paper. Physical and virtual scaffolding
curves, grids and planes have been shown, to a limited extent,
to improve the drawing accuracy. However, in some cases, these
structures result in overloaded user interfaces and reduce the
esthetic quality of the resulting sketches. The search for support-
ing structures which do not compromise the creativity and fluidity
of the sketching process will thus remain an essential branch of
research in the field of immersive sketching. AR-related research
has also shown that haptic feedback also improves accuracy when
tracing virtual objects. This raises the question of whether haptic
feedback may introduce the structure introduced by grid lines or
scaffolding curves without the same hindering effect on the
esthetics of the resulting sketches.

Future directions

While there are many breakthroughs in the literature in the area
of sketch-based interpretations and interactions, these are not
reflected in the tools available in the industry, particularly in
the design industry where there still exists a gulf between 2D
sketching and 3D modeling for rapid prototyping and 3D print-
ing. Examining the problems faced in industrial applications lead
us to identify the following questions and challenges.

Media breaks in the product design workflow

The different nature of the sketches and drawings used at each
stage in the design process calls for different software/hardware
support throughout the design process (Tversky and Suwa,
2009). For instance, sketch-based modeling which does not
require precise dimensions is ideal for the development of 3D
models from initial sketches. However, precise dimensions are
required at later, detailed design stage, and thus, the sketch-based
interface should allow for their introduction. Moreover, while
novel AR and VR environments are useful to visualize and inter-
act with the virtual prototypes, the more traditional CAD tools
may be more suited for detailed design. One must also take
into consideration the human factor: people may be more com-
fortable and proficient using the tools they are familiar with.

6https://developer.apple.com/arkit/
7https://developers.google.com/ar/discover/
8https://www.vuforia.com/
9https://www.microsoft.com/en-ca/hololens
10https://sketchar.tech/ 11https://www.createar.co/
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The current sketch-based interfaces and sketch-based model-
ing tools described in the literature do not take these factors
into account. Thus, while there is support for sketching systems
on 2D media, sketching in AR and VR environments as well as
sketch-based queries, these systems are not interoperable, result-
ing in media breaks which limit the practical use of these systems.
What is required is a system which allows for different sketch
interpretation systems to integrate seamlessly with each other
such that there is no interruption of the workflow. Early work
described in Bonnici et al. (2015) transitions from a paper-based
sketch to a 3D model in a virtual environment, providing a
glimpse that seamless transitions between media are possible.
Full interoperability will require an investigation into a file inter-
change format to facilitate the transition of sketch and model data
between different applications.

Thinking sketches

There is some considerable difference between sketches drawn at
an individual level and those drawn during group brainstorming
sessions. Recording multimodal interactions become necessary in
group sketching to capture fully the thought process, especially
since gestures can be considered as a second-layer sketch.
Through the concept of reflection in action, the fluid, mental rep-
resentation of the concept is objectified and externally repre-
sented, refining the concept through gestures.

However, recording and using gestures raises further chal-
lenges. Gestures are subconscious actions, unlike sketching,
which is a conscious action. Capturing all unconscious actions
during sketching, while interesting will overload the interpretation
system with information, giving rise to the need to filter out nat-
ural gestures, such as habitual arranging of one’s hair, which are
not related to the act of sketching. Such filtering requires identify-
ing gestures which are commonly used across different cultures
and which can be interpreted in the same manner across the
board, raising the question of whether it is possible to find such
common gestures which have been naturally adopted across dif-
ferent cultures, or if the interpretation system can adapt to the

personalization of gestures. However, before a system that records
all gestures is brought into place, it is worth investigating whether
such a system would bring about a change in the group interac-
tion since full recording may be seen as inhibiting and imposing
on the “free-will” of the group participants.

Support for off-site collaborative sketches

Internationalization has brought about a greater need for off-site
collaboration in the design process. Technology has made it pos-
sible to share media in the form of text documents, sketches,
computer-aided models, or physical artifacts which facilitates
this collaboration. However, despite the advances in telepresence
systems, one of the main bottlenecks, reducing the effectiveness of
communication in collaborative work, remains the lack of mecha-
nisms for communicating nonverbal cues such as the locus of
attention on the shared media at any given instance in time
(D’Angelo and Gergle, 2018). In small groups of two or three,
the participants, predominantly the speaker, issues deictic ges-
tures (naturally by hand or finger pointing) to communicate the
locus of attention and context. Previous work on communication
of distant dyads shows that speech and deictic gestures collectively
carry complementary information that can be used to infer
regions of interest in 2D shared media (Monk and Gale, 2002;
Kirk et al., 2007; Cherubini et al., 2008; Eisenstein et al., 2008).
For larger groups, and in particular in remote collaboration, the
inability to issue deictic gestures severely limits the quality of
communication and makes it difficult to create common ground
for communication. Real-time eye-gaze visualizations can, there-
fore, support the collaboration process by providing the means
for communicating shared visual space, thus improving the coor-
dination between collaborating parties (D’Angelo and Gergle,
2018). However, the real-time eye-gaze display is often considered
to be distracting because of the low signal-to-noise ratio of the
eye-gaze data which is a result of the constant movement of the
eyes (Schlösser, 2018). This calls for the need of further investiga-
tions into the visualization of shared spaces from eye-gaze infor-
mation. D’Angelo and Gergle (2018) apply eye-gaze visualizations

Fig. 6. Sketching with SketchAR: the application
overlays a template over the image of the physical
paper which the user can then trace onto the
paper using physical pens.
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to search tasks, illustrating shared spaces using two approaches,
first by displaying heat-maps which are retained for as long as a
pair of collaborators fixate on an area and second through path
visualizations. The findings of this study show that while eye-gaze
information does facilitate the search task, the used visualization
methods received mixed responses.

In collaborative sketching applications, inferred regions of
interest could be used to create loci of attention, highlighting
the object parts that are under study. Combined with speech
information streamed from participants, such a part highlighting,
or VR/AR-based augmentation is expected to aid the communica-
tion process. Thus, further research is required on the joint fusion
of eye-gaze information and speech information such that this can
be visualized effectively without introducing unnecessary distrac-
tions which are counter-productive to the design process. It is also
worth noting that D’Angelo and Gergle consider pairs of colla-
borators. Thus, the visualization of the co-resolution of the differ-
ent point of regards in larger group settings also needs to be
investigated.

Data tracking: sketch information indexing through the
workflow

The different workflows in the design process give rise to different
sketches, often by different designers working at different phases
in the project. Thus, another important aspect of the design pro-
cess is the ability to trace through the different sketches, for exam-
ple, to identify when a specific design decision was taken. The
concept of product lifecycle management (PLM) in product
design is a management system which holds all information
about the product, as it is produced throughout all phases of
the product’s life cycle. This information is made available to
everyone in an organization, from the managerial and technical
levels to key suppliers and customers (Sudarsan et al., 2005).
Smart and intelligent products are becoming readily available
due to the widespread availability of related technologies such
as RFIDs, small-sized sensors, and sensor networks (Kiritsis,
2011). Thus, although sketching interfaces consider the interac-
tion between the designer and the artifact being designed, it is
important to look beyond this level of interaction and consider
all stakeholders of the artifact.

Such PLM systems typically include product information in
textual or organizational chart formats, providing information
different key actors along the product’s life cycle on aspects
such as recyclability and reuse of the different parts of the
product, modes of use and more (Kiritsis, 2011). Expanding
this information with the sketches, drawings and 3D modeling
information carried out during the design process will, therefore,
extend the information contained in the PLM. Consumers would
be able to trace back to the design decisions of particular features
on the object, while designers would be able to understand how
consumers are using the product and could exploit this informa-
tion, for example, to improve quality goals.

The challenge, therefore, lies in providing the means to estab-
lish an indexing and navigation system of the product design his-
tory, providing a storyboard of the design process from ideation
stages to the final end-product.

Data collection for a reliable evaluation test cases

Related to all of the above is the need to create common evalu-
ation test cases upon which research groups may evaluate their

algorithms. Notably challenging is the need to collect and anno-
tate data of people interacting naturally with an intelligent system
when such a system is not yet available.

From Table 1, we may observe that the GREC dataset has been
used for vectorization algorithms which are more suited for neat,
structured drawings such as circuit diagrams or engineering draw-
ings. However, a similar database for freeform objects is not
readily available, leading Noris et al. (2013), Favreau et al.
(2016), and Bessmeltsev and Solomon (2019) to use their own
drawings. Thus, a dataset useful for the evaluation of vectorization
algorithms should depict a broader range of 3D objects.
Moreover, these should be available not only as neat drawings
but also as rough sketches. Simo-Serra et al. (2016) note the dif-
ficulty in aligning ground-truth drawings with rough sketches,
and employ an inverted dataset reconstruction approach, asking
artists to draw rough sketches over the predefined ground-truth
sketches. This approach, however, restricts the drawing freedom
of the artist. A reverse approach was adopted in Bonnici et al.
(2018), whereby the artist was allowed to sketch freely, following
which, the sketch was scanned and traced over using a new layer
in a paint-like application. In this application, however, artists
were given drawings depicting 3D objects to copy. While this
approach serves the purposes for sourcing of data for vectoriza-
tion algorithms, a more holistic approach could, for example,
require that the artists draw rough sketches of physical 3D objects.
In this manner, besides collecting sketches for the vectorization
process, a dataset of different sketch representations of 3D objects
is also collected. If these sketches are also coupled with depth
scans or 3D models of the physical object, the same sketches
can also be used to assess 3D object reconstruction and retrieval
algorithms.

Conclusion

In this paper, we have presented a review of the state of the art in
sketch-based modeling and interpretation algorithms, looking at
techniques related to the interpretation of sketches drawn on
2D media, sketch-based retrieval systems, as well as sketch inter-
actions in AR and VR environments.

We discuss how current systems are focused on solving the
specific problems related to the particular interpretation problem,
however, few systems address the overarching sketch interpreta-
tion problem which provides continuity across different sketching
media and sketching interactions to support the entire design
process.

At an algorithmic level, we note that offline drawing interpre-
tation systems would benefit from robust extraction of junctions
and vectors from drawings which exhibit a greater degree of
roughness and scribbling than that typically used to evaluate
the algorithms described in the literature. At the same time, the
interpretation of the 2D sketch as a 3D object requires the
added flexibility to accept drawing errors and provide the user
with plausible interpretations of the inaccurate sketch. This flex-
ibility is necessary for offline interpretation algorithms to be
applicable for early-stage design drawings, which are drawn
rapidly and with not much attention to geometric accuracy. We
have also discussed online interpretation algorithms, noting that
interactive systems typically compromise between fast creation
of initial objects and overall deformation and editing time
required to achieve the desired object shape. Language-based
interactive systems generally require the user to dedicate more
effort in reducing ambiguities at the sketch-level but require
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knowledge of more drawing rules, whereas blob-like inflation sys-
tems can provide the initial inflation quickly but require more
effort to adjust the object. Combining online and offline interpre-
tation techniques could, therefore, provide solutions whereby the
user can obtain the initial 3D representation of the object using
offline interpretation techniques, such that the initial model has
more detail than the blob-like inflation systems, but can be
achieved through natural sketching without the need to introduce
any language-based rules. The interactive techniques can then be
used to modify the shape of the object to correct for 3D geometry
errors due to drawing ambiguities or errors.

We discuss that, while sketch interpretation algorithms are
typically concerned only with the generation of the 3D object gen-
erated, these interpretation systems can be used in conjunction
with sketch retrieval algorithms to help designers retrieve similar
objects from online resources and catalogs. Research in this area
needs to take into consideration two important aspects. The
first is how to match sketchy drawings with objects. Here, NPR
techniques can be used to facilitate the matching problems,
although these algorithms would benefit from further research
in line extraction in order to obtain line drawing representations
of objects that are less susceptible to image noise and closer to the
human-perceived lines. The second problem to investigate is the
visualization of the search results so as not to overwhelm the
user with many results. Here, VR and AR systems may provide
users with better search space exploration tools.

VR and AR systems offer a platform for sketching in their own
right, introducing a variety of user interactions and multiuser col-
laborations which would, otherwise, not be possible from tradi-
tional sketching interfaces. While user studies show that AR/VR
sketching systems are viable options, medium- and long-term
evaluation studies on the use of these systems are, thus far, not
available. Such studies are necessary to help shape future immer-
sive interactive systems.

Overall, although sketch interpretation systems are more intui-
tive and pleasant to use than the traditional CAD-based systems,
these systems are still not widely used among practitioners in the
design industry. One factor affecting this is the time and effort
required by the user to take the initial sketch into its desired
3D form. For these systems to have any impact among practi-
tioners, the time and effort required to create a model using auto-
mated sketch interpretation techniques should be less than that
required to redraw the object using traditional CAD systems.
Another factor that should be taken into consideration is the
interoperability of the interpretation system. Design companies
invest resources for systems and tools, and thus allowing for the
seamless integration of novel tools with existing work flow prac-
tices, designers are more likely to embrace the new technologies
being researched and developed.

Future sketch-based interfaces should also support collabora-
tive design, including interactions between all stakeholders of
the product design. We believe that addressing the challenges pre-
sented in this paper will allow for the development of new sketch
interpretation systems that take a more holistic approach to the
design problem and will, therefore, be of more practical use to
practicing designers.
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