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Abstract

The goal of this theory is to study the conversion of a fraction of a laser beam to its phase-mismatch second and third
harmonics. This conversion takes place by focusing an intense laser beam into a transversely magnetized plasma, as a
nonlinear medium. The influence of the polarization field is considered, however, the plasma density is below the
critical density. It has already been revealed that for dense plasma, the second and third harmonics efficiencies
decreased with density increasing in the presence of a sufficiently strong magnetic field. This result is in contrast to the
under dense and weakly magnetized plasma, which the harmonics efficiencies increased with density increasing. It is
shown that the harmonics radiation cut-off, when the magnetic field increases up until the saturation strength Bsat. In
addition, the results indicated that the average phase-mismatch third harmonic conversion efficiency is a little smaller
than the phase-match case reported for non-magnetized plasma.
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1. INTRODUCTION

Study of intense laser propagating through plasma is of inter-
est for wide range of applications, such as laser wakefield ac-
celeration (Tajima & Dawson, 1979; Jha et al., 2005), plasma
based light source (Mori, 1993), X-ray laser (Amendt et al.,
1991; Lemoff et al., 1995), optical harmonic generation
(Sprangle et al., 1990; Lin et al., 2002), inertial confinement
fusion (Tabak et al., 1994), and so on. These applications
provide strong motivation to encourage the studying of laser-
plasma interaction, so this area has always been a fundamen-
tal topic in theoretical plasma physics in the past decades. On
the other hand, owing to the generation of a hundred mega-
guass quasi-static magnetic field in laser plasma interaction
(Gorbunov et al., 1997), the analysis of laser interaction
with magnetized plasma was always an important issue for
a real plasma system.
The harmonic generation is a nonlinear phenomenon in

which the electrons oscillating in high-intensity laser fields
is surveyed and assessed as a means of producing short-
wavelength radiation sources. This phenomenon engaged

scientists to clarify the mechanisms and methods of high-
order harmonic generation.

Recently, high-order nonlinear effects have attracted great
attention with the development of ultrafast laser technology.
When we focus on an intense laser pulse into a gas, strong
nonlinear interactions can lead to the generation of very
high odd harmonics of the optical frequency of the pulse
(Corkum, 1993; Salieres & Lewenstein, 2001). This effect
typically occurs at optical intensities on the order of
1014 W/cm2 or higher. Although only a tiny fraction of the
laser power can be converted into higher harmonics, this
output can still be useful for technical applications (Kienberger,
2004).

The previous reports indicated that only the odd harmonics
can be generated in the laser interaction with homogenous
plasma (Esarey et al., 1993; Gibbon, 1997; Mori et al.,
1993; Wilks et al., 1993), however, in the presence of a modu-
lated transverse magnetic field, the phase-match second har-
monic generation has been investigated (Rax & Fisch,
1992). Beside, the phase-mismatch second harmonic gener-
ation has been reported for the laser field interaction with un-
derdense transversely magnetized plasma ( jha et al., 2007).

When a strong magnetic field applied into a plasma, the
electron dynamic modified, and this leads to the nonlinear
current modification. Therefore, it is reasonable that the
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magnetic field makes affect the harmonics generation. When
the density perturbation produced by magnetic field coupled
with electron quiver motions, it is plausible to generate the
second harmonic ( jha et al., 2007).
In this paper, we investigate the phase-mismatch second

and third harmonics generation in the interaction of intense
laser beam and transversely magnetized plasma, when the
plasma is dense and applied, magnetic field is strong. This
report may be applicable in the wide range of external mag-
netic field strength and plasma density, in contrast to the per-
vious report for second harmonic generation that has been
performed for underdense weakly magnetized plasma in
the absence of the polarization field ( jha et al., 2007).
This paper is organized in four section. In Section 2, by

using the perturbative technique in mildly relativistic and
weakly nonlinear regime (a1< 1), induced nonlinear current
density due to the interaction of intense laser beam with
transversely magnetized plasma is derived for the second
and third harmonics. In Section 3, the nonlinear wave
equation solved for vector potential of driving laser beam,
and the conversion efficiencies are obtained for the phase-
mismatch second and third harmonics. Finally, a summary
and conclusion is presented in Section 4.

2. NON-LINEAR CURRENT DENSITY

We assume the linearly polarized vector potential for nth har-
monic is given as:

�An = �exAn(z, r, t) sin(knz− nω0t). (1)

Here, An, nω0 and kn= (nω0/c)en
1/2 are the amplitude, fre-

quency, and wavevector of the nth harmonic, in which the
en introduces the dielectric permittivity at frequency nω0.
The fundamental harmonic characteristics yield with n= 1.
We know the motion of charge particles in the presence of

the intense laser beam and external magnetic field are de-
scribed by relativistic Lorentz equation as:

d(γ�v)
dt

= − e

m
�E1 + �E + �v × (�B0 + �B)
[ ]

. (2)

Here E1 is the laser field amplitude, �B = ( �k1 × �E1)/ω0 and
�B0 = �eyB0 are the magnetic field of propagating laser beam
and external magnetic field, respectively. Additionally, �E is
the polarization field due to the charge separation, and γ=
(1+ p2 /m2 c2)1/2 is the relativistic factor. The ponderomo-
tive force −e(�v × �B) pushes the electrons in the direction of
the laser beam propagation and the polarization field Ez gen-
erated owing to the charge separation in the z direction. Fur-
thermore, the force −e(�v × �B0), which arises to the external
magnetic field has a component in the z direction, and so
the strong magnetic field can be affect the charge separation
efficiently. However, the ponderomotive force is smaller in
plan wave with respect to the Gaussian profile short pulse
beam, but for strongly magnetized plasma the influence of

the z component of the force −e(�v × �B0) is very dominate
for the charge separation process and the polarization field
generation.
Using the perturbative theory in Eq. (2), and continuity

equation (∂n/∂t + �∇.(n�v) = 0), it is possible to expand all
quantities in terms of the order of the radiation field. In this
method, the relativistic effect comes into play in the third
order velocity components and higher. If we consider the
plasma is cold and the electrons are at rest before the laser
field is applied, the first order equations for the electron vel-
ocity components, in accord to this technique, is written as:

∂v(1)x

∂t
= − eE1

m
+ ωcv

(1)
z ,

∂v(1)z

∂t
= − eE(1)

z

m
− ωcv

(1)
x ,

∂v(1)y

∂t
= 0,

(3)

where Ez
(1), E1=−∂A1/∂t, ωc= eB0/m, are the first order per-

turbation for polarization field, laser field amplitude, and the
electron cyclotron frequency, respectively. By taking a time
derivative of the second relation in Eq. (3), also using the
first relation, and estimate the relative term to the first order
of the polarization field (∂Ez

(1)/∂z=
−e n(1)/e0) as below:

− e

m

∂
∂t
E(1)
z = e2

me0 ∫
∂
∂t
n(1)dz

= − e2

me0 ∫
∂
∂z

(n0v
(1)
z )

[ ]
dz = −ω2

pv
(1)
z ,

(4)

we arrive

∂2v(1)z

∂t2
+ ω2

pv
(1)
z + ω2

cv
(1)
z = a1cω0ωc cosφ, (5)

where a1= eE1/mcω0, ωp= (ne2/me0)
1/2, and n0 are the nor-

malized laser field amplitude (or normalized vector potential
a1= eA1/mc), plasma frequency, and unperturbed electron
density, respectively, also φ= k1z−ω0t. Eq. (4) indicates
that the polarization field oscillates as the same frequency
with vz

(1), or the laser field frequency. This means that the
polarization field is not slow and it is reasonable that this
field makes affect the harmonic generation. The solution of
Eq. (5) and performing the same steps for component vx, the
first order electron velocity components are given by:

v(1)x = a1c(ω2
0 − ω2

p)

(ω2
0 − ω2

p − ω2
c )
sinφ

v(1)z = − a1cωcω0

(ω2
0 − ω2

p − ω2
c )
cosφ.

(6)

By following the same steps for the nth harmonic, the
first order velocity components yield only by substituting ω0
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→ nω0, a1→ an and φ→ knz− nω0t, into Eq. (6). Therefore,
the linear part of the induced current density corresponding to
the nth harmonic, Jx

(1)(nω0)=−n0e vx
(1)(nω0), can be written

as:

J(1)x (nω0) = − n0eanc(ω2
0 − ω2

p)

(n2ω2
0 − ω2

p − ω2
c )
sin(knz− nω0t), (7)

where an= eAn/mc is the normalized vector potential for nth
harmonic. Substituting Eq. (7) into the wave equation for nth
harmonic, it is possible to derive the linear dispersion equation
as:

c2 k2n = n2ω2
0 −

ω2
p(n

2ω2
0 − ω2

p)

(n2ω2
0 − ω2

p − ω2
c )
. (8)

Using Eq. (8) into the well known transverse wave dispersion
equation kn= (nω0/c)en

1/2, the plasma permittivity corre-
sponding to the frequency nω0 is given by:

en = 1− ω2
p(n

2ω2
0 − ω2

p)

n2ω2
0(n

2ω2
0 − ω2

p − ω2
c )
. (9)

It is important to note that, the effect of polarization field is in-
cluded in deriving the Eq. (9).
It is intuitively understood that electron density is dis-

turbed when a driving laser beam propagate through the
plasma. The spatiotemporal variations for electron pertur-
bations are given by the continuity equation. Therefore, simi-
larly to the velocity components, we can expand the electron
density in terms on the order of the radiation field. Then in
accordance to the continuity equation and Eq. (6), the first
order electron density perturbation takes the form as:

n(1) = −∫
∂
∂z

(n0v
(1)
z )dt = − a1n0ck1ωc

(ω2
0 − ω2

p − ω2
c )
cosφ. (10)

Now, we are on the stage to obtain the second order velocity
components. In doing so, similar to the first order, by the
same procedure the coupled equations arise from the relati-
vistic Lorentz equation are given by:

∂v(2)x

∂t
+ v(1)z

∂v(1)x

∂z
= ωcv

(2)
z + eB

m
v(1)z

∂v(2)z

∂t
+ v(1)z

∂v(1)z

∂z
= − e

m
E(2)
z − ωcv

(2)
x − eB

m
v(1)x ,

(11)

where Ez
(2) is the second order perturbation for polarization

field. After some mathematical processes, we arrive to the
following partial differential equation for the z component

of the second order of the electron velocity as:

∂2v(2)z

∂t2
+ ω2

pv
(2)
z + ω2

cv
(2)
z = − a21c

2 k1ω0ω2
c (ω

2
p + ω2

c )

2(ω2
0 − ω2

p − ω2
c )

2

+
a21c

2 k1ωc 2(ω2
0 − ω2

p)
2 − ω2

c (4ω
2
0 − ω2

p + ω2
c )

[ ]
2(ω2

0 − ω2
p − ω2

c )
2 cos 2φ.

(12)

The solution of Eq. (12) give us the component vz
(2), so by the

same procedure it is possible to find the component vx
(2).

Therefore, the second order velocity components, easily,
find as:

v(2)x = a21c
2 k1ωc

[
(ω2

0 − ω2
p)

2 − ω2
c (4ω

2
0 − ω2

p)
]

2(ω2
0 − ω2

p − ω2
c )

2(4ω2
0 − ω2

p − ω2
c )

sin 2φ

v(2)z = − a21c
2 k1ω2

cω0(ω2
p + ω2

c )

2(ω2
0 − ω2

p − ω2
c )

2

− a21c
2 k1ω0

[
2(ω2

0 − ω2
p)

2 − ω2
c (4ω

2
0 − ω2

p + ω2
c )
]

2(ω2
0 − ω2

p − ω2
c )

2(4ω2
0 − ω2

p − ω2
c )

cos 2φ.

(13)

It is clear from Eq. (13), the second order velocity com-
ponents oscillate with frequency twice the laser field fre-
quency. This effect arises from the external magnetic field,
and coupling between the external and propagating magnetic
fields.

The second order electron density perturbation is derived
by the same method presented for n(1) as:

n(2) = − a21n0c
2 k21[(ω

2
0 − ω2

p)
2 − ω2

c (4ω
2
0 − ω2

p)]

(ω2
0 − ω2

p − ω2
c )

2(4ω2
0 − ω2

p − ω2
c )

cos 2φ. (14)

Finally, we can expand the Lorentz equation in terms of the
third order of the radiation field. Note that in this case, the
relativistic factor play an important role in electron dynamic.
The coupled equations for velocity components written as:

∂v(3)x

∂t
+ ∂(γ(2)v(1)x )

∂t
+ v(1)z

∂v(2)x

∂z
+ v(2)z

∂v(1)x

∂z

= ωcv
(3)
z + eB

m
v(2)z

∂v(3)z

∂t
+ ∂(γ(2)v(1)z )

∂t
+ v(1)z

∂v(2)z

∂z
+ v(2)z

∂v(1)z

∂z

= − eE(3)
z

m
− ωcv

(3)
x − eB

m
v(2)x ,

(15)

where Ez
(3) and γ(2)= [(vx

(1))2+ (vz
(1))2]/2c2 are the third order

perturbation for polarization field and the relativistic factor.
By using some careful mathematical processes, similar to
the first and second orders, we will get to the following
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results for the third order velocity components as:

v(3)x = − a31c

8(ω2
0 − ω2

p − ω2
c )

3

Aφ + ω2
cBφ

(ω2
0 − ω2

p − ω2
c )
sinφ

[

+ A3φ+ ω2
cB3φ

(9ω2
0 − ω2

p − ω2
c )
sin 3φ

]

v(3)z = a31c

8(ω2
0 − ω2

p − ω2
c )

3

Cφ + Dφ

(ω2
0 − ω2

p − ω2
c )
cosφ

[

+ C3φ+ D3φ

(9ω2
0 − ω2

p − ω2
c )
cos 3φ

]
,

(16)

where,

Aφ = (3ω8
0 − 12ω6

0ω
2
p + 2ω6

0ω
2
c + 18ω4

0ω
4
p

+ 3ω4
0ω

4
c − 12ω2

0ω
6
p − 4ω4

0ω
2
pω

2
c

+ 2ω2
0ω

4
pω

2
c + 3ω8

p), Bφ = c2 k21
4ω2

0 − ω2
p − ω2

c

(10ω6
0 − 18ω4

0ω
2
p + 10ω4

0ω
2
c + 6ω2

0ω
4
p − 20ω2

0ω
4
c

− 14ω2
0ω

2
pω

2
c + 2ω6

p + 4ω4
pω

2
c + 2ω2

pω
4
c ),

A3φ = (− 9ω8
0 + 28ω6

0ω
2
p + 6ω6

0ω
2
c − 30ω4

0ω
4
p

+ 3ω4
0ω

4
c + 12ω2

0ω
6
p − 4ω4

0ω
2
pω

2
c − 2ω2

0ω
4
pω

2
c + ω8

p),

B3φ = c2 k21
4ω2

0 − ω2
p − ω2

c

(34ω6
0 − 66ω4

0ω
2
p − 86ω4

0ω
2
c

+ 30ω2
0ω

4
p − 20ω2

0ω
4
c + 10ω2

0ω
2
pω

2
c + 2ω6

p + 4ω4
pω

2
c

+ 2ω2
pω

4
c ), Cφ = (4ω6

0 − 11ω4
0ω

2
p + 4ω4

0ω
2
c + 10ω2

0ω
4
p

− ω2
0ω

2
pω

2
c − 3ω6

p), Dφ = c2 k21
4ω2

0 − ω2
p − ω2

c

(2ω6
0

+ 6ω4
0ω

2
p, + 26ω4

0ω
2
c − 18ω2

0ω
4
p − 22ω2

0ω
4
c − 40ω2

0ω
2
pω

2
c

+ 10ω6
p + 14ω4

pω
2
c − 2ω2

pω
4
c − 6ω4

c ), C3φ = (− 12ω6
0

+ 27ω4
0ω

2
p + 12ω4

0ω
2
c − 18ω2

0ω
4
p − 3ω2

0ω
2
pω

2
c + 3ω6

p),

D3φ = c2 k21
4ω2

0 − ω2
p − ω2

c

(30ω6
0 − 46ω4

0ω
2
p − 34ω4

0ω
2
c

+ 2ω2
0ω

4
p − 66ω2

0ω
4
c − 64ω2

0ω
2
pω

2
c + 14ω6

p + 26ω4
pω

2
c

+ 10ω2
pω

4
c − 2ω6

c ).

In view of the fact that the harmonics are driven by the
nonlinear current, we can evaluate this source term using
the perturbed quantities obtained previously. According to
the current density carried by the electrons J=−nev, the
second order nonlinear current density for the second harmo-
nic, Jx

(2)=−e(n0vx
(2)+ n(1) vx

(1)), after substituting the re-
quired quantities, written as:

J(2)x (2ω0) =
3a21n0ec

2 k1ω2
0ωc(ω2

0 − ω2
p + ω2

c )

2(ω2
0 − ω2

p − ω2
c )

2(4ω2
0 − ω2

p − ω2
c )
sin 2φ. (17)

To proceed further, we find the third order current density for
third harmonic, Jx

(3)=−e(n0 vx
(3)+ n(1) vx

(2)+ n(2) vx
(1)) as:

J(3)x (3ω0) = a31n0ec

8(ω2
0 − ω2

p − ω2
c )

3(9ω2
0 − ω2

p − ω2
c )

×

[(
A′
3φ +

c2 k21
(4ω2

0 − ω2
p − ω2

c )
B′
3φ

)
sin 3φ

]
,

(18)

where,

A′
3φ = (− 9ω8

0 + 28ω6
0ω

2
p + 6ω6

0ω
2
c − 30ω4

0ω
4
p + 3ω4

0ω
4
c

+ 12ω2
0ω

6
p − 4ω4

0ω
2
pω

2
c − 2ω2

0ω
4
pω

2
c − ω8

p),

B′
3φ = (36ω8

0 − 112ω6
0ω

2
p − 96ω6

0ω
2
c

+ 120ω4
0ω

4
p − 144ω4

0ω
4
c − 48ω2

0ω
6
p − 12ω2

0ω
6
c

+ 104ω4
0ω

2
pω

2
c − 16ω2

0ω
4
pω

2
c + 20ω2

0ω
2
pω

4
c

+ 4ω8
p + 8ω6

pω
2
c + 4ω4

pω
4
c ).

3. CONVERSION EFFICIENCY

The above expressions for the harmonic components of the
source current, Jx

(2)(2ω0) and Jx
(3)(3ω0), can be used in the fol-

lowing wave equation, to determine the growth of harmonics
radiation.

∂2

∂z2
− 1

c2
∂2

∂t2
− ω2

p

c2

( )
an = − e

e0mc3
J(n)x (nω0), (19)

where subscript n refers to the order of harmonic. We ob-
tained this source term in the previous section, thus the
vector potential amplitude can be evaluate by solution the
wave equation. The steady state amplitude for the phase-
mismatch second harmonic obtained by suggestion a2=
a2(z)e

i(k2z−2ω0t)/2+ c.c into Eq. (19), and making used
of the Eq. (17).
Assuming that ∂2a2(z)/∂z

2≪k2∂ a2(z)/∂z, which means
that ∂a2(z)/∂z changes appreciably larger than wavelength
2π/k2, and for 4ω0

2≫ωc
2 , we arrive the normalized amplitude

for the phase-mismatch second harmonic as below:

a2(z) = 3a21ωc

16c

ω2
p

ω2
0

×
1− ω2

p

ω2
0

1− ω2
p

ω2
0

( )
1− ω2

c

ω2
0
− ω2

p

ω2
0

( )−1
[ ]1/2

1− ω2
p

4ω2
0

1− ω2
p

4ω2
0

( )
1− ω2

c

4ω2
0
− ω2

p

4ω2
0

( )−1
[ ]1/2

×
1− ω2

p

ω2
0
+ ω2

c

ω2
0

( )
1− ω2

p

ω2
0
− ω2

c

ω2
0

( )2
1− ω2

p

4ω2
0
− ω2

c

4ω2
0

( )

× ei(Δkz)/2
sin(Δk.z/2)

Δk

( )
,

(20)
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where Δk= 2k1− k2 is the wavevector mismatch for the
second harmonic. Definitely, anyone find from Eq. (20)
that the second harmonic can be generate only in the
magneto-active plasmas, which may be considered as an
important advantage for such kind of plasmas.
The normalized amplitude for the phase-mismatch third

harmonic is obtained by the same procedure, by substituting
a3= a3(z)e

i(k3z−3ω0t)/2+ c.c into Eq. (19) and using the Eq.
(18), for 9ω0

2≫ ωc
2. The result is given by:

a3(z) =
ω2
pa

3
1

24ω0c
1− ω2

p

9ω2
0

1− ω2
p

9ω2
0

( )[
1− ω2

c

9ω2
0

− ω2
p

9ω2
0

( )−1]−1/2

×

A′
3φ

ω8
0

+ 1− ω2
p

ω2
0

1− ω2
p

ω2
0

( )
1− ω2

c

ω2
0

− ω2
p

ω2
0

( )−1
⎡
⎣

⎤
⎦

4− ω2
p

ω2
0

− ω2
c

ω2
0

( )−1

×
B′
3φ

ω8
0

1− ω2
p

ω2
0

− ω2
c

ω2
0

( )3

9− ω2
p

ω2
0

− ω2
c

ω2
0

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× ei(Δk
′z)/2 sin(Δk′.z/2)

Δk′

( )
, (21)

where Δk′ = 3k1− k3 is the wavevector mismatch for the
third harmonic. Taking into account that the conversion effi-
ciency for nth harmonic is defined as:

ηn =
e1/2n

∂an
∂t

∣∣∣∣
∣∣∣∣2

e1/21
∂a1
∂t

∣∣∣∣
∣∣∣∣2
, (22)

we get the conversion efficiencies for the phase-mismatch
second and third harmonics as below:
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With a short look at Eqs. (23) and (24), it is found that the
harmonics oscillate in magnitude around an average value
due to the dephasing between the pump laser and the radi-
ation harmonics. The maximum conversion efficiencies
take place in the coherence lengths zc= π/Δk and z′c= π/
Δk′, respectively, for the second and third harmonics. There-
fore, the power efficiencies are harmonic by z, so we have the
points with maximum and minimum electric field amplitude
for the radiation harmonics inside the plasma.

According to this fact that we deal with the strongly mag-
netized dense plasma, there is worry about that the laser
beam may be damped or absorbed. The absorbtion occurs
for e1→∞ and or ω0

2= ωp
2+ ωc

2, however, any damping
takes place for e1< 0.

In Figure 1, we show the damping and absorbing regions
on the (ωp/ω0− ωc /ω0) plan. The hachured area predicts the
damping region for the laser beam, while all points on the
solid line satisfy the absorbtion condition. If the parameters
ωp/ω0 and ωc/ω0 choose in such a manner that the corre-
sponding point on the (ωp/ω0− ωc/ω0) plan is placed on
the region e1> 0, the laser beam does not damp or absorb
during propagating through the plasma.

The conversion efficiency %η2 for the second harmonic is
plotted as a function of z/λ for ωp/ω0= 0.3, and for different
values of the external magnetic field, in Figure 2. We assume
the pump laser is a Nd:Yag laser with intensity around
1017 W/cm2 (a1= 0.271) and frequency ω0= 1.88 ×
1015s−1 and or wavelength λ= 1 μm. The figure shows the
second harmonic efficiency reaches to the maximum value
after that the laser beam traveling as coherence lengths
7.1 μm and 6.8 μm inside the plasma, respectively, for
ωc/ω0= 0.1 and ωc/ω0= 0.2. Therefore, the coherence
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length for radiation harmonic decreases with magnetic field
increasing. On the other hand, the figure demonstrates that
the second harmonic conversion efficiency drastically in-
creased with magnetic field increasing.
Figure 3 indicates the second harmonic maximum conver-

sion efficiency variation as a function of ωc/ω0, for various
values of the plasma density. The figure reveals that the har-
monic radiation is completely different for strongly magne-
tized plasma, in comparison to the weakly magnetized case
( jha et al., 2007). The difference arises for dense and
strongly magnetized plasma, when the effect of the polariz-
ation field dominates. It is clear from Figure 3 for sufficiently

strong magnetic field, the second harmonic generation scen-
ario is changed. For example, for ωc/ω0> 0.57, the second
harmonic generation is stopped for ωp/ω0= 0.6 and drasti-
cally increased for ωp/ω0= 0.5, however, based on the pre-
vious report ( jha et al., 2007) the second harmonic
generation increased continuously by increasing ωp/ω0 for
a given magnetic field. Furthermore, the figure predicts that
the harmonic radiation cuts off, when the magnetic field
strength increases up until the saturation strength Bsat. As
the figure demonstrates, saturation strength decreases with
density increasing.
In Figure 4, the maximum power efficiency variation

plotted as a function of parameter ωp/ω0, for different
values of magnetic field strength. The figure shows that for

Fig. 3. (Color online) The maximum conversion efficiency variation for
the phase-mismatch second harmonic with respect to the ωc/ω0, for a1=
0.271, respectively, the solid line for ωp/ω0= 0.6, the dash dot line for
ωp/ω0= 0.5.

Fig. 4. (Color online) The maximum conversion efficiency variation for
the phase-mismatch second harmonic with respect to the ωp/ω0, for a1=
0.271, respectively, the solid line for ωc/ω0= 0.5, the dash dot line for
ωc/ω0= 0.6.

Fig. 1. (Color online) Schematic investigation for damping and absorbing
region on the (ωp/ω0− ωc/ω0) plan for the laser beam propagating through
the plasma.

Fig. 2. (Color online) The phase-mismatch second harmonic conversion ef-
ficiency variation as a function of z/λ, for ωp/ω0= 0.3, a1= 0.271. The
solid line for ωc/ω0= 0.1 and the point line for ωc/ω0= 0.2.
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a constant magnetic field, the harmonic generation grows
with density increasing. However, the harmonic radiation
cuts-off, when the plasma density increases up until the sat-
uration density nsat. The saturation density depends on the ap-
plied magnetic field strength and increases for the weak
magnetic field.
The conversion efficiency %η3 variation is plotted as a

function z/λ, for the phase-mismatch third harmonic and
for a non-magnetized plasma, in Figure 5. However, the
power efficiency is very small, but it is important to note
that the third harmonic can be generate for the non-
magnetized case. In this figure, the dot line shows the average
conversion efficiency, while the dash dot line indicates the
conversion efficiency for the phase-match third harmonic
(Esarey et al., 1993; Gibbon, 1997; Mori et al., 1993;
Wilks et al., 1993). Thus, the power efficiency slightly de-
creased for the phase-mismatch harmonic.
In Figure 6, we plot the maximum conversion efficiency

variation for the third harmonic as a function of ωc/ω0, for
various values of the plasma density. The figure shows that
the harmonic radiation appreciably enhances by applying
the external magnetic field. Like to the second harmonic,
the third harmonic radiation stopped, when the magnetic
field increased up to the saturation strength Bsat. The satur-
ation strength increases for the low density plasma.
By tracking the values of the parameters ωp/ω0 and

ωc/ω0, in one of the branches in Figures 3 and 6, anyone
can find that the harmonics generation appreciably increase,
when we get closest to the border line between e1< 0 and
e1> 0, in Figure 1. For a point, which is exactly placed on
the border line the harmonic generation stopped. Therefore,
we can estimate the saturation magnetic field by making

used of the condition e1= 0, as below:

Bsat = ω0 m

e

2ω2
p − ω2

0

ω2
p − ω2

0

( )1/2

, (25)

where m and e, are the electron mass and charge,
respectively.

Finally, the maximum conversion efficiency variation for
the third harmonic is plotted as a function of ωp/ω0, for
different values of magnetic field strength, in Figure 7. The
figure shows that the harmonic radiation stopped, when
the density increased up to the saturation density nsat, while
the applied magnetic field remains constant. The saturation

Fig. 5. (Color online) The phase-mismatch third harmonic conversion effi-
ciency variation as a function of z/λ, for a non-magnetized plasma, ωp/ω0=
0.6, a1= 0.271. The dot line shows the average phase-mismatch conversion
efficiency and the dash dot line indicates the phase-matched conversion ef-
ficiency based on previous reports (Esarey et al., 1993; Gibbon, 1997; Mori
et al., 1993; Wilks et al., 1993).

Fig. 6. (Color online) The maximum conversion efficiency variation for the
the phase-mismatch third harmonic with respect to the ωc/ω0, for a1=
0.271, respectively, the solid line for ωp/ω0= 0.6, the dash dot line for
ωp/ω0= 0.5.

Fig. 7. (Color online) The maximum conversion efficiency variation for
the phase-mismatch third harmonic with respect to the ωp/ω0, for a1=
0.271, respectively, the solid line for ωc/ω0= 0.5, the dash dot line for
ωc/ω0= 0.6.
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density varies with magnetic field strength and decreases for
the stronger magnetic field. The saturation density is accessi-
ble according to the condition e1= 0, as:

nsat = ncr
ω2
0 − ω2

c

2ω2
0 − ω2

c

( )
, (26)

where ncr=me0 ω0
2 /e2 is the critical density.

4. SUMMARY AND CONCLUSION

In summary, we have investigated the conversion of a frac-
tion of a laser beam to its second and third harmonics, in
the interaction of intense laser field with transversely magne-
tized plasma. The plasma was dense and below the critical
density, but the effect of the polarization field was con-
sidered. The harmonics radiation studied when there was a
phase-mismatch between the phase velocities of the laser
field and the generated harmonics. We proved the existence
of a saturation magnetic field Bsat, in which the harmonics
radiation stopped for B≥ Bsat. The strength of saturation
field depended on the plasma density and increased for the
low density plasma. This result arose owing to the polariz-
ation field effect in strongly magnetized dense plasma, and
has not been reported previously. It is shown that for B<
Bsat the harmonics radiation appreciably enhanced with mag-
netic field increasing, however, the second harmonic disap-
peared in the absence of the magnetic field. We have
investigated the existence of saturation density nsat, where
the harmonic radiation stopped for n≥ nsat, while the applied
magnetic field remained constant. In addition, we shown that
for a non-magnetized plasma, the average phase-mismatch
conversion efficiency was always a little below the phase-
match one, for the third harmonic radiation. As a final, and
important remark, it would be useful to note that, for suffi-
ciently low density plasma we need a super strong magnetic
field to get a maximum efficiency, so take into account that
such strong field may be not accessible technically, we
should be make a balance between the plasma density and
the applied magnetic field to reach an optimum efficiency.
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