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Alternating renewal processes have been widely used to model social and scientific phe-
nomenal where independent “on” and “off” states alternate. In this paper, we study
a model where the value of a process cumulates and declines according to two modes
of compound Poisson processes with respect to an underlying alternating renewal pro-
cess. The model discussed in the present paper can be used as a revenue management
model applied to inventory or to finance. The exact distribution of the process is derived
as well as the double Laplace transform with respect to the level and time of the
process.

1. INTRODUCTION

Brownian motions whose trends follow a generalized telegrapher process were studied by
Di Crescenzo and Zacks [5] and Di Crescenzo, Martinucci, and Zacks [4]. Applications of
such processes were mentioned in finance, physics, and other areas. In the present paper, we
study up and down compound Poisson processes (CPPs), which are driven by generalized
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telegrapher processes. The reader is referred to Zacks [6] for the properties of a generalized
telegrapher process.

To strengthen the motivation, let us introduce our model as a revenue management
model applied to inventory. That is, there are two periods: stocking period and selling
period that alternate according to two modes of CPPs. During the stocking period the
purchase price is low so that one only buys and during the selling period the price is high
so that one only sells. Another example of our model would be a storage model where
goods arrive or leave a warehouse according to two alternating phases. In cases where
arrival and departure processes consist of sequences of demands of independent identically
distributed amounts where each demand occurs on Poisson clock, it is appropriate to model
the arriving and departure processes by CPPs. The underlying alternating phases can be
thought as an alternating renewal process. Motivated by this model we study a general “up
and down” stochastic process {Y (t), t ≥ 0} which, for a random amount of time U , follows
a CPP {Y1(t), t ≥ 0} and then for a random amount of time V , follows a negative CPP
{−Y2(t), t ≥ 0}, intermittently. Formally, {Yi(t), t ≥ 0}, i = 1, 2 are defined as

Yi(t) =
Ni(t)∑
n=0

X(i)
n , i = 1, 2, (1.1)

where {Ni(t), t ≥ 0} is a Poisson counting process with intensity λi > 0, and {X(i)
n , n ≥ 1}

are i.i.d. positive random variables having an absolutely continuous distribution Fi, with
density fi. We also set X

(i)
0 ≡ 0. {X(i)

n , n ≥ 1} and {Ni(t), t ≥ 0} are mutually independent.
In addition, let {U1, V1, U2, V2, . . .} be an alternating renewal process. Ui and Vi (i ≥ 1) are
absolutely continuous positive random variables, having distribution functions FU and FV ,
with density functions fU and fV , respectively. Moreover, let τ0 = 0, and

τn =
n∑

i=1

(Ui + Vi), n ≥ 1, (1.2)

be renewal epochs after the nth renewal cycle. Each renewal cycle consists of one “up”
period Ui followed by one “down” period Vi.

To put notations into perspective, goods (or data) arrive at a central storage (or process)
unit during Ui and leave during Vi. The arrival and departure epochs follow two independent
Poisson counting processes N1(t) and N2(t), and the amount of item (data) arriving or
leaving at each epoch follows positive random variables X

(1)
n and X

(2)
n respectively (see

Figure 1).
Let us denote 1{} as the indicator function. The process Y (t) is defined formally as

Y (t) =
∞∑

n=1

[
1{τn−1≤t<τn−1+Un}

(
Y (τn−1−) + Y1(t − τn−1)

)

+ 1{τn−1+Un≤t<τn}
(
Y ((τn−1 + Un)−) − Y2(t − τn−1 − Un)

)]
, (1.3)

for t > 0 and Y (0) = 0. Notice that Y (0) = 0 is not an essential assumption. Figure 1
illustrates a typical sample path of Y (t).

Notice that the processes Y1(t) and Y2(t) might have no increase over some time period.
Thus,

P{Y1(U1) = 0} = E{e−λ1U1} = MU (−λ1) (1.4)

where MU is the moment generating function of U . Similarly, P{Y2(V1) = 0} = MV (−λ2).
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Figure 1. One possible sample path of Y (t) up to time t. (U1, V1, U2, V2, . . .) is an alter-
nating renewal process. Each increasing piece is a stochastic copy of the CPP Y1(t) with
positive jumps, while decreasing pieces are stochastic copies of −Y2(t), a CPP with negative
jumps.

The rest of the paper is structured as follows. In Section 2, we derive the cumulative
distribution function (c.d.f.) of Y (t) in details in terms of the distributions of Yi(t), i = 1, 2.
In Section 3, we find the double Laplace transform of Y (t). Finally, in Section 4, we present
numerical results for the special case where {X(i)

n , n ≥ 1} and {Ui}, {Vi} are exponentially
distributed.

2. DISTRIBUTION OF Y (T )

In this section, we derive the distribution function and the moments of Y (t). Recall from
Eq. (1.2) that τn denotes the time epoch at the end of the nth renewal interval. Define the
following random intervals:

I+
n = [τn−1, τn−1 + Un), (2.1)

and
I−n = [τn−1 + Un, τn), (2.2)

On I+
n , Y (t) is always non-decreasing and develops like a stochastic copy of Y1(t), while on

I−n it is always non-increasing and develops like a stochastic copy of −Y2(t). Intervals I+
n

will be referred to as “up” intervals, and I−n “as down” intervals. Let us define W (t) to be
the total “on” time before a fixed time t. Formally,

W (t) =
∫ t

0

1{s∈⋃∞
n=1 I+

n }ds. (2.3)

Since CPP’s Y1(t) and Y2(t) are Lévy processes, that is, processes with stationary
independent increments, we have

Y (t) ∼ Y1(W (t)) − Y2(t − W (t)). (2.4)

Thus, the c.d.f. of Y (t) at t can be written as

HY (y; t) := P{Y (t) ≤ y} = P{Y1(W (t)) ≤ y + Y2(t − W (t))}. (2.5)

Zacks [7] derived the distribution of W (t), and it was applied in many papers such as
Di Crescenzo et al. [3] and Boxma et al. [1]. To derive the c.d.f. of Y (t), we now outline
the derivation of the exact distribution of total “on” time W (t) before t in the following
subsection.
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Figure 2. Two possible cases of C(w), namely C1(w) and C2(w) crossing the linear bound-
ary βt(w) = t − w. Case 1: C1(W1(t)) = t − W1(t). Case 2: C2(W2(t)) > t − W2(t). Notice
that in Case 1, W1(t) ∈ I+, and in Case 2, W2(t) ∈ I−.

2.1. Distribution of Total “on” Time

Consider the same alternating renewal process (U1, V1, U2, V2, . . .) defined in Section 1. First,
we construct a compound renewal process C(t) from the above alternating renewal process.
Then, W (t) can be related to the first exit time of C(t) hitting a certain boundary, whose
distribution is easier to derive. Define C(t) as follows (see Figure 2):

C(t) =
M(t)∑
m=0

Vm, (2.6)

where M(t) is a counting process which gives the total number of complete “up” intervals
that their sum is less than or equal to t. More precisely,

M(t) = max{m ≥ 0 :
m∑

j=0

Uj ≤ t}. (2.7)

Since U0 ≡ 0, U1 > t implies that M(t) = 0. For m = 0, 1, . . ., the probability that there are
exactly m complete “up” intervals is

P{M(t) = m} = P

⎧⎨
⎩

m∑
j=0

Uj ≤ t <

m+1∑
j=0

Uj

⎫⎬
⎭ = F

(m)
U (t) − F

(m+1)
U (t), (2.8)

where F
(m)
U (t) is the m-fold convolution of FU (t). Here, F

(0)
U (t) = 1 for 0 ≤ t < ∞. For

m ≥ 1,

F
(m)
U (t) =

∫ t

0

fU (s)F (m−1)
U (t − s)ds. (2.9)

Conditioning on M(t), we obtain the c.d.f. of C(t) as

KC(x; t) := P{C(t) ≤ x} =
∞∑

m=0

(
F

(m)
U (t) − F

(m+1)
U (t)

)
F

(m)
V (x). (2.10)
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Note that C(t) has an atom at 0, that is,

P{C(t) = 0} = 1 − FU (t). (2.11)

Moreover, we note that {C(w), w > 0} is a non-decreasing process, and

{W (t) > w} = {C(w) < t − w}

as it is illustrated in Figure 2. Therefore, for 0 ≤ w < t,

P{W (t) > w} = KC(t − w;w). (2.12)

Next, we derive the distribution function of W (t) in the following proposition.

Proposition 2.1: The distribution function of W (t) is

FW (w; t) = FU (w) −
∞∑

m=1

(
F

(m)
U (w) − F

(m+1)
U (w)

)
F

(m)
V (t − w), (2.13)

for 0 ≤ w < t, and

FW (w; t) = 1, for w ≥ t. (2.14)

Proof: The proof of Proposition 2.1 is immediately seen by applying the Eqs (2.10)–
(2.12). �

In order to develop the distribution of Y (t), we also need the density function of W (t)
whenever it exists. Notice from the above proposition that the distribution function of W (t)
has a jump at w = t and the amount of jump is P (W (t) = t) = 1 − FU (t). Differentiating
FW (w; t), we obtain the defective density fW (w; t) of W (t). For w ∈ (0, t),

fW (w; t) = fU (w) − d

dw

∞∑
m=1

(
F

(m)
U (w) − F

(m+1)
U (w)

)
F

(m)
V (t − w)

= fU (w) +
∞∑

m=1

(
f

(m+1)
U (w) − f

(m)
U (w)

)
F

(m)
V (t − w)

+
∞∑

m=1

(
F

(m)
U (w) − F

(m+1)
U (w)

)
f

(m)
V (t − w). (2.15)

One can see that the defective density fW (w, t) is always positive by observing the following
equation:

fU (w) +
∞∑

m=1

(
f

(m+1)
U (w) − f

(m)
U (w)

)
F

(m)
V (t − w)

=
∞∑

m=0

(
F

(m)
V (t − w) − F

(m+1)
V (t − w)

)
f

(m+1)
U (w). (2.16)

Since the distribution of W (t) is derived now, we can easily compute all the moments of
W (t) as we state in the following Proposition 2.2:
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Proposition 2.2: The kth moment of W (t) is

E{(W (t))k} = k

∫ t

0

uk−1KC(t − u;u) du. (2.17)

Proof:

E{(W (t))k} = tk(1 − FU (t)) +
∫ t

0

wkfW (w; t) dw.

Expressing wk = k
∫ w

0
uk−1du, and changing the order of integrals we get

E{(W (t))k} = tk(1 − FU (t)) + k

∫ t

0

uk−1

∫ t

u

fW (w; t) dw du

= tk(1 − FU (t)) + k

∫ t

0

uk−1(P (W (t) > u) − P (W (t) ≥ t)) du

= tk(1 − FU (t)) − tk(1 − FU (t)) + k

∫ t

0

uk−1KC(t − u;u) du. (2.18)

�

Now, we are in a position to derive the exact distribution of Y (t) and its moments in
the following subsection.

2.2. The Distribution Function and Moments of Y (t)

In order to find the exact distribution of Y (t), let us first state the distribution of Yi(t),
i = 1, 2. Since Ni(t) and X

(i)
n are independent for i = 1, 2, and n = 1, 2, . . ., conditioning on

Ni(t) yields the distribution function of Yi(t) as

Hi(y; t) = e−λit +
∞∑

m=1

p(m;λit)F
(m)
i (y), (2.19)

for y ≥ 0, where

p(m;λit) = e−λit
(λit)m

m!
is the probability mass function of Poisson(λit). The defective density function of Yi(t) is

hi(y; t) =
∞∑

m=1

p(m;λit)f
(m)
i (y), for y > 0. (2.20)

Hi(y; t) has a discontinuity at y = 0. Hi(0−; t) = 0 and Hi(0; t) = e−λit.
Since {Un}, {Vn} are independent of Yi(t), i = 1, 2, W (t) is independent of Y1(t) and

Y2(t). Therefore, from Eq. (2.5), we have

P{Y (t) ≤ y|W (t) = w} = P{Y1(w) ≤ y + Y2(t − w)}. (2.21)

Now, conditioning on Y2(t) and then using the independence of Y1(t) and Y2(t), we obtain

P{Y1(w) ≤ y + Y2(t − w)} = e−λ2(t−w)H1(y;w) +
∫ ∞

0

h2(u; t − w)H1(y + u;w) du.

(2.22)

The exponential term on the right-hand side of the above equation appears since Y2(t) has
an atom at 0. Finally, from Eqs (2.21) and (2.22), the distribution function of Y (t) is derived
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in the following proposition by taking expectation of P{Y (t) ≤ y|W (t) = w} with respect to
the distribution of W (t) and using the fact that W (t) has an atom at t by Proposition 2.1.

Proposition 2.3: The distribution function of Y (t) is given by

HY (y; t) = (1 − FU (t))H1(y; t)

+
∫ t

0

fW (w; t)
[
e−λ2(t−w)H1(y;w) +

∫ ∞

0

h2(u; t − w)H1(y + u;w) du

]
dw

(2.23)

An interesting observation from the above proposition is that the distribution of Y (t)
has an atom at 0. Below, we show that the distribution function HY (y; t) of Y (t) has a
discontinuity (atom) at y = 0. Moreover, we find the defective density function of Y (t).
Since Hi(y; t) = 0 for all y < 0, i = 1, 2, we can write HY (y; t) more explicitly as

HY (y; t) = 1{y<0}

(∫ t

0

fW (w; t)
∫ ∞

−y

h2(u; t − w)H1(y + u;w) dudw

)

+ 1{y≥0}

(
(1 − FU (t))H1(y; t) +

∫ t

0

fW (w; t)
[
e−λ2(t−w)H1(y;w).

+
∫ ∞

0

h2(u; t − w)H1(y + u;w) du

]
dw

)
. (2.24)

From Eq. (2.24), we obtain

HY (0−; t) =
∫ t

0

fW (w; t)
∫ ∞

0

h2(u; t − w)H1(u;w) dw. (2.25)

On the other hand, using the Eqs (2.24) and (2.25) and the fact that H1(y; t) has an atom
at 0 of amount e−λ1t, we write

HY (0; t) = (1 − FU (t)) e−λ1t +
∫ t

0

fW (w; t) e−λ2(t−w)−λ1wdw + HY (0−; t). (2.26)

Thus, HY (y; t) has a discontinuity at y = 0 of size

(1 − FU (t)) e−λ1t +
∫ t

0

fW (w; t) e−λ2(t−w)−λ1wdw. (2.27)

Differentiating HY (y; t) and using the fact that Hi(y; t), i = 1, 2, has an atom at 0, we
obtain the defective density of Y (t) as

hY (y; t) = 1{y<0}

(∫ t

0

fW (w; t)
[
e−λ1wh2(−y; t − w) +

∫ ∞

−y

h2(u; t − w)h1(y + u;w) du

]
dw

)

+ 1{y≥0}

(
(1 − FU (t))h1(y; t) +

∫ t

0

fW (w; t)
[
e−λ2(t−w)h1(y;w)

+
∫ ∞

0

h2(u; t − w)h1(y + u;w) du

]
dw

)
. (2.28)

Next, we derive the moments of Y (t) in the following proposition.

https://doi.org/10.1017/S0269964815000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000054


392 Y. Xu, S.K. De, and S. Zacks

Proposition 2.4: The kth moment of Y (t) is

E{(Y (t))k} =
k∑

j=0

(−1)j

(
k
j

)∫ t

0

fW (w; t)μ(1)
k−j(w)μ(2)

j (t − w) dw. (2.29)

Proof: Since W (t), Y1(t) and Y2(t) are independent, we have

E{(Y (t))k|W (t) = w} = E{(Y1(w) − Y2(t − w))k}

=
k∑

j=0

(−1)j

(
k
j

)
E{(Y1(w))k−j}E{(Y2(t − w))j}. (2.30)

For i = 1, 2, denote the moment generating function (m.g.f) of X
(i)
1 and Yi(t) by M

(i)
X (s)

and Mi(s; t), respectively. It is not hard to see

Mi(s; t) = e−λit(1−M
(i)
X (s)). (2.31)

Therefore, assuming M
(i)
X is known, the moments of Yi(t), denoted by μ

(i)
l (t) =

E{(Yi(t))l}, l = 0, 1, 2, . . ., can be found through Eq. (2.31). Finally, using the equality
E{(Y (t))k} = E{E{(Y (t))k|W (t)}} we complete the proof of Proposition 2.4. �

We remark that both the distribution function and the defective density function of
Y (t) can be computed numerically via some numerical integration method. Moreover, all
moments of Y (t) can also be computed from Proposition 2.4. We illustrate this in Section 4
through an example.

3. LAPLACE TRANSFORMS

In this section, we derive the double Laplace transform of W (t) and of Y (t). Cohen [2]
derived the Laplace Stieltjes transform of W (t)I{t∈I+}. Here, we extend the result to the
entire time line.

Denote the Laplace transforms of U1, V1, X
(1)
1 and X

(2)
1 by

φU (s) :=
∫ ∞

0

e−stfU (t) dt, φV (s) :=
∫ ∞

0

e−stfV (t) dt,

φ1(s) :=
∫ ∞

0

e−stf1(t) dt, φ2(s) :=
∫ ∞

0

e−stf2(t) dt, (3.1)

respectively. Let

φW (s, ρ) =
∫ ∞

0

e−stE
{

e−ρW (t)
}

dt (3.2)

be the double Laplace transform of W (t). Substituting Eqs (2.15) and (2.16) gives

φW (s, ρ) =
∞∑

n=0

∫ ∞

t=0

e−st

∫ t

v=0−
e−ρ(t−v)

(
F

(n)
U (t − v) − F

(n+1)
U (t − v)

)
f

(n)
V (v)dv dt

+
∞∑

n=0

∫ ∞

t=0

e−st

∫ t

u=0−
e−ρu

(
F

(n)
V (t − u) − F

(n+1)
V (t − u)

)
f

(n+1)
U (u) du dt.

(3.3)
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For n = 0, the first renewal cycle covers t. We have

∫ ∞

0

e−stE
{

e−ρW (t)I{t∈I+
1 }

}
dt =

∫ ∞

0

e−ste−ρt(1 − FU (t)) dt =
1 − φU (s + ρ)

s + ρ
(3.4)

and
∫ ∞

0

e−stE
{

e−ρW (t)I{t∈I−
1 }

}
dt =

∫ ∞

0

e−st

∫ t

0

e−ρu(1 − FV (t − u)) du dt

=
1
s

(
1 − φV (s)

)
φU (s + ρ). (3.5)

Recall that the Laplace transform of the n-fold convolution of a positive function equals
the nth power of the Laplace transform of the function. Therefore, the two parts on the
right-hand side of Eq. (3.3) are simplified by separating the case n = 0 and changing the
order of integrations. Some calculation yields

∞∑
n=0

∫ ∞

t=0

e−st

∫ t

v=0−
e−ρ(t−v)

[
F

(n)
U (t − v) − F

(n+1)
U (t − v)

]
dF

(n)
V (v) dt

=
1 − φU (s + ρ)

s + ρ
+

∞∑
n=1

∫ ∞

v=0

∫ ∞

t=v

e−ste−ρ(t−v)
[
F

(n)
U (t − v) − F

(n+1)
U (t − v)

]
dt dF

(n)
V (v)

=
1

s + ρ
· 1 − φU (s + ρ)
1 − φU (s + ρ)φV (s)

. (3.6)

Similarly,

∞∑
n=0

∫ ∞

t=0

e−st

∫ t

u=0−
e−ρu

[
F

(n)
V (t − u) − F

(n+1)
V (t − u)

]
dF

(n+1)
U (u) dt

=
1
s

(
1 − φV (s)

)
φU (s + ρ) +

∞∑
n=1

∫ ∞

u=0

e−(s+ρ)u

∫ ∞

t=0

e−st
[
F

(n)
V (t) − F

(n+1)
V (t)

]
dt dF

(n+1)
U (u)

=
φU (s + ρ)

s
· 1 − φV (s)
1 − φV (s)φU (s + ρ)

. (3.7)

Thus, φW (s, ρ) is the sum of (3.6) and (3.7) as given in Proposition 3.1 below. Now, let us
find the double Laplace transform of Y (t) defined as

φY (s, ρ) :=
∫ ∞

0

e−stE
{

e−ρY (t)
}

dt.

The Laplace transform of Y (t) is

E
{

e−ρY (t)
}

= E

{
e−ρ

(
Y1(W (t))−Y2(t−W (t))

)}
.

The Laplace transform of Yi(t) is

E{e−ρYi(t)} = e−λit(1−φi(ρ)), i = 1, 2. (3.8)
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Therefore, for 0 < w ≤ t,

E
{

e−ρY (t)|W (t) = w
}

= E{e−ρY1(w)}E{eρY2(t−w)}

= exp
{
−λ1w(1 − φ1(ρ)) − λ2(t − w)(1 − φ2(−ρ))

}

= exp
{
−w

(
λ1(1 − φ1(ρ)) − λ2(1 − φ2(−ρ))

)
− λ2t

(
1 − φ2(−ρ)

)}
.

(3.9)

Let a := λ1(1 − φ1(ρ)) − λ2(1 − φ2(−ρ)) and b := λ2(1 − φ2(−ρ)). Taking expectation of
E

{
e−ρY (t)|W (t) = w

}
with respect to the distribution of W (t), we obtain the Laplace

transform of Y (t) as e−btE {−aW (t)}. Therefore, the double Laplace transform of Y (t) is

φY (s, ρ) =
∫ ∞

0

e−stE
{

e−ρY (t)
}

dt =
∫ ∞

0

e−(s+b)tE
{

e−aW (t)
}

dt.

From the definition (3.2), it follows that

φY (s, ρ) = φW

(
s + λ2(1 − φ2(−ρ)), λ1(1 − φ1(ρ)) − λ2(1 − φ2(−ρ))

)
. (3.10)

We summarize these results in the following proposition.

Proposition 3.1: The double Laplace transforms of W (t) and Y (t) are

φW (s, ρ) =
s + φU (s + ρ) (ρ − (s + ρ)φV (s))
s(s + ρ) (1 − φU (s + ρ)φV (s))

(3.11)

and

φY (s, ρ) = φW

(
s + ζ2(−ρ), ζ1(ρ) − ζ2(−ρ)

)
, (3.12)

where

ζi(u) = λi(1 − φi(u)), i = 1, 2.

4. NUMERICAL RESULTS

In this section, we present the formula for distribution function HY (y; t) of Y (t) when length
of the “up” periods {Un} and the “down” periods {Vn} are exponentially distributed with
rate parameters θu and θv, respectively, and {X(1)

n } and {X(2)
n } follow exponential distribu-

tions with rate parameters θ1 and θ2, respectively. The random variables Un, Vn,X
(1)
n , and

X
(2)
n are mutually independent for n = 1, 2, . . .. Let g(.;m, θ) and G(.;m, θ) be the proba-

bility density function and the c.d.f. of a gamma random variable respectively, where m and
θ represent the shape and the rate parameter of gamma random variable, respectively. Let
us denote the c.d.f. of Poisson(λ) distribution by P(.;λ). Following Eq. (2.15), we obtain
for 0 ≤ w < t,
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fW (w; t) = g(w; 1, θu) +
∞∑

m=1

{g(w;m + 1, θu) − g(w;m, θu)}G(t − w;m, θv)

+
∞∑

m=1

{G(w;m, θu) − G(w;m + 1, θu)} g(t − w;m, θv)

= θue−θuw + θu

∞∑
m=1

{p(m; θuw) − p(m − 1; θuw)}(1 − P(m − 1; (t − w)θv))

+ θv

∞∑
m=1

p(m; θuw)p(m − 1; (t − w)θv)

= e−θuw−θv(t−w) + θu

∞∑
m=1

p(m; θuw)p(m; θv(t − w))

+ θv

∞∑
m=1

p(m; θuw)p(m − 1; (t − w)θv)

= e−θuw−θv(t−w) +
∞∑

m=1

p(m; θuw){θup(m; θv(t − w)) + θvp(m − 1; (t − w)θv)}

(4.1)

and P (W (t) = t) = e−θut. The defective density function of Y2(t) is given by

h2(y; t) =
∞∑

m=1

p(m;λ2t)g(y;m, θ2) = θ2

∞∑
m=1

p(m;λ2t)p(m − 1; θ2y). (4.2)

for y > 0, and P (Y2(t) = 0) = e−λ2t. The distribution function of Y1(t) is given by

H1(y; t) = e−λ1t +
∞∑

m=1

p(m;λ1t)G(y;m, θ1) = 1 −
∞∑

m=1

p(m;λ1t)P(m − 1; θ1y). (4.3)

Finally, the distribution function of Y (t) is given by Eq. (2.24) where the jump at 0 is

ΔHY (0; t) = e−(θu+λ1)t +
∫ t

0

fW (w; t) e−λ2(t−w)−λ1wdw. (4.4)

In Figures 3 and 4, we plot the c.d.f of Y (t) for different values of t and the rate
parameters. The plots clearly show the fact that the distribution functions of Y (t) are
discontinuous at 0.

In addition to deriving the distribution function of Y (t), we also derive the moments of
Y (t) and then study the shape of the distribution of Y (t). In Table 1, we present mean μ(t),
standard deviation σ(t), measure of skewness γ1(t), and kurtosis γ2(t) of Y (t) for different
rate parameters of exponential distribution. Recall that

γ1(t) =
E(Y (t) − μ(t))3

σ(t)3
and γ2(t) =

E(Y (t) − μ(t))4

σ(t)4
− 3.
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(a) (b)

Figure 3. (a) The distribution functions of Y (t) for λ1 = λ2 = 0.5, θ1 = θ2 = 1, and
θu = θv = 2. (b) The distribution functions of Y (t) for λ1 = λ2 = 0.5, θ1 = θ2 = 1, and
θu = θv = 0.5.

(a) (b)

Figure 4. (a) The distribution functions of Y (t) for λ1 = λ2 = 0.5, θ1 = θ2 = 2, and
θu = θv = 0.5. (b) The distribution functions of Y (t) for λ1 = λ2 = 0.5, θ1 = θ2 = 2, and
θu = θv = 2.

Note that, for our exponential example, we can write the kth moment of Yi(t), i = 1, 2, as

μ
(i)
k (t) = E

(
Yi(t)k

)
=

∫ ∞

0

ykhi(y; t) dy

=
∞∑

m=1

p(m;λit)
∫ ∞

0

ykp(m − 1; θiy) dy

=
k!

θk+1
i

∞∑
m=1

(
k + m − 1

k

)
p(m;λit), (4.5)
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Table 1. The mean, standard deviation, coefficients of skewness, and kurtosis
of Y (t) for different values of parameters

Parameters Time μ(t) σ(t) γ1(t) γ2(t)

λ1 = λ2 = 0.5, θ1 = θ2 = 1, θu = θv = 2 t = 1 0.0550 0.9603 0.3961 14.2859
t = 3 0.1213 1.8191 0.1168 3.9472
t = 5 0.1249 2.3552 0.0546 2.3292

λ1 = λ2 = 0.5, θ1 = θ2 = 1, θu = θv = 0.5 t = 1 0.0128 0.6524 0.3627 34.9260
t = 3 0.1404 1.6803 0.2252 5.7384
t = 5 0.2914 2.4416 0.1236 2.6357

λ1 = λ2 = 0.5, θ1 = θ2 = 2, θu = θv = 0.5 t = 1 0.0064 0.3262 0.3628 34.9279
t = 3 0.0702 0.8417 0.2292 5.7942
t = 5 0.1457 1.2238 0.1254 2.6689

λ1 = λ2 = 0.5, θ1 = θ2 = 2, θu = θv = 2 t = 1 0.0275 0.4801 0.3961 14.2866
t = 3 0.0606 0.9105 0.1191 3.9741
t = 5 0.0624 1.1807 0.0560 2.3677

for k = 1, 2, . . ., and μ
(i)
0 (t) = 1. Finally, the moments of Y (t) are computed using Eq. (2.29)

in proposition 2.4.
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