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Abstract. For any infinite transitive sofic shift X we construct a reversible cellular
automaton (that is, an automorphism of the shift X) which breaks any given finite point of
the subshift into a finite collection of gliders traveling into opposing directions. This shows
in addition that every infinite transitive sofic shift has a reversible cellular automaton which
is sensitive with respect to all directions. As another application we prove a finitary version
of Ryan’s theorem: the automorphism group Aut(X) contains a two-element subset whose
centralizer consists only of shift maps. We also show that in the class of S-gap shifts these
results do not extend beyond the sofic case.
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1. Introduction
Let X ⊆ AZ be a one-dimensional subshift over a symbol set A. If w is a finite word
over A, we may say that an element x ∈ X is w-finite if it begins and ends with infinite
repetitions of w (in particular, the bi-infinite repetition wZ is w-finite). In this paper
we consider the problem of constructing reversible cellular automata (CAs)on X which
decompose all w-finite configurations into collections of gliders traveling into opposing
directions. As a concrete example, consider the full shift X = AZ over the alphabet
A = {(0, 0), (0, 1), (1, 0), (1, 1)} and the map G : X→ X defined as follows. Given
x ∈ X and i ∈ Z, if x contains (a1, a2) ∈ A at position i and (b1, b2) ∈ A at position
i + 1, then G(x) contains (b1, a2) at position i. In Figure 1 we have plotted the sequences
x, G(x), G2(x), . . . on consecutive rows for some (0, 0)-finite x ∈ X. It can be seen that
the sequence x eventually diffuses into two different ‘fleets’, the one consisting of (1, 0)s
going to the left and the one consisting of (0, 1)s remaining stationary.

The construction of G : X→ X in the previous paragraph relies on the fact that X can
be expressed as the cartesian product of two copies of the full shift BZ where B = {0, 1}.
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Glider automata on all transitivesofic shifts 3717

FIGURE 1. The diffusion of x ∈ X under the map G : X→ X. Squares ranging from white to black correspond
to symbols (0, 0), (0, 1), (1, 0) and (1, 1) in this order.

Performing a similar CA construction on more general subshifts is trickier, because not
all subshifts can be decomposed into a cartesian product of two non-trivial subshifts (in
particular, this cannot be done for full shifts with an alphabet of prime cardinality [14]).
In §4 we construct, on all infinite transitive sofic shifts X, a function GX that we call a
diffusive glider CA and that has the same diffusion property as the CA G above. The
essential statement is contained in Theorem 4.1.

In proving Theorem 4.1 we follow closely an analogous construction done for mixing
subshifts of finite type (SFTs) in [12]. In [12] the mixing SFT was presented as a directed
graph, and a sequence of state splittings was made in the underlying graph to guarantee
the existence of suitable marker words. These marker words then allowed for a simpler CA
construction. In this part the present paper differs: in §3 the existence of suitable marker
words is guaranteed by constructing a sequence of conjugacies between subshifts directly,
without making use of state splitting. Furthermore, even though the diffusive glider CAGX
will be constructed on infinite transitive sofic shifts, the constructions of §3 will be done
in the more general framework of synchronized subshifts. It turns out that the statements
and proofs of the auxiliary lemmas become simpler without using the extra structure of
soficness.

Using the framework of synchronized subshifts in the construction also allows us
to formulate a degree of freedom in the choice of the word w with respect to which
we consider finiteness: whenever X is a transitive sofic shift and wZ ∈ X contains a
synchronizing word, we can construct a GX which diffuses all w-finite points. This is
relevant, because in SFTs every sufficiently long word is synchronizing, but this is no
longer true for sofic shifts. In §6.1 we show that the construction of the CA GX can fail in
an essential way if we do not require that wZ contains a synchronizing word.

The existence of such a diffusive glider CAGX on a subshift X is interesting for several
reasons, the first being thatGX can be used to convert an arbitrary finite x ∈ X into another
sequence GtX(x) (for some t ∈ N+) with a simpler structure, which nevertheless contains
all the information concerning the original point x because GX is invertible. Such maps
have been successfully applied to other problems. For example, the paper [20] contains a
construction of a finitely generated group G of reversible CAs onAZ (when |A| = 4) whose
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elements can implement any permutation on any finite collection of 0-finite non-constant
configurations that belong to different shift orbits. An essential part of the construction is
that one of the generators of G is the diffusive glider CA G of Figure 1. Another example
is the construction of a physically universal CA G on AZ (when |A| = 16) in [21]. Also
here it is essential that G is a diffusive glider CA (but G also implements certain additional
collision rules for gliders).

The CA GX is also interesting when considered in the framework of directional
dynamics introduced by Sablik in [19]. As we see at the end of §4, the mapGX shows that
every infinite transitive sofic shift X has a reversible CA which is sensitive with respect
to all directions. This result is in some sense the best possible, which can be seen by
considering a natural class of synchronized subshifts known as S-gap shifts. We show
in §6.2 that an S-gap shift XS has a reversible CA which is sensitive with respect to all
directions if and only if XS is an infinite transitive sofic shift.

We also consider a finitary version of Ryan’s theorem. Let X be a subshift and denote
the set of its reversible CAs by Aut(X), which we may consider as an abstract group.
According to Ryan’s theorem [3, 18], the center of the group Aut(X) is generated by the
shift map σ if X is a transitive SFT (recently it has even been shown that every normal
amenable subgroup of Aut(X) is generated by some power of σ if X is a transitive sofic
shift [22]). There may also be subsets S ⊆ Aut(X) whose centralizers C(S) are generated
by σ . Denote the minimal cardinality of such a finite set S by k(X). In [20] it was proved
that k(X) ≤ 10 when X is the full shift over the four-letter alphabet. In the same paper
it is noted that k(X) is an isomorphism invariant of Aut(X) and therefore computing it
could theoretically separate Aut(X) and Aut(Y ) for some mixing SFTs X and Y. Finding
good isomorphism invariants of Aut(X) is of great interest, and it is an open problem
whether, for example, Aut({0, 1}Z) � Aut({0, 1, 2}Z) [2]. We show in §5 that k(X) = 2 for
all infinite transitive sofic shifts, the proof of which uses our diffusive glider automorphism
construction. In contrast, we show in §6.2 that k(XS) = ∞ whenever XS is a non-sofic
S-gap shift.

This paper largely follows Chapter 5 of the author’s PhD thesis [11], where the
construction of GX was done for infinite mixing sofic shifts X.

2. Preliminaries
In this section we recall some preliminaries concerning symbolic dynamics. The book [15]
is a standard reference on the topic.

A finite set A containing at least two elements (letters) is called an alphabet and the
set AZ of bi-infinite sequences (configurations) over A is called a full shift. Formally any
x ∈ AZ is a function Z→ A and the value of x at i ∈ Z is denoted by x[i]. It contains finite
and one-directionally infinite subsequences denoted by x[i, j ] = x[i]x[i + 1] · · · x[j ],
x[i,∞] = x[i]x[i + 1] · · · and x[−∞, i] = · · · x[i − 1]x[i]. Occasionally we signify
the symbol at position 0 in a configuration x by a dot as follows:

x = · · · x[−2]x[−1].x[0]x[1]x[2] · · · .

A configuration x ∈ AZ is periodic if there is a p ∈ N+ such that x[i + p] = x[i] for
all i ∈ Z. Then we may also say that x is p-periodic or that x has period p.
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A subword of x ∈ AZ is any finite sequence x[i, j ] where i, j ∈ Z, and we interpret
the sequence to be empty if j < i. Any finite sequence w = w[1]w[2] · · · w[n] (also
the empty sequence, which is denoted by λ) where w[i] ∈ A is a word over A. The
concatenation of a word or a left-infinite sequence u with a word or a right-infinite
sequence v is denoted by uv. A word u is a prefix of a word or a right-infinite sequence
x if there is a word or a right-infinite sequence v such that x = uv. Similarly, u is a suffix
of a word or a left-infinite sequence x if there is a word or a left-infinite sequence v such
that x = vu. The set of all words over A is denoted by A∗, and the set of non-empty words
is A+ = A∗ \ {λ}. The set of words of length n is denoted by An. For a word w ∈ A∗,
|w| denotes its length, that is, |w| = n ⇐⇒ w ∈ An. For any word w ∈ A+ we denote by
∞w and w∞ the left- and right-infinite sequences obtained by infinite repetitions of the
word w. We denote by wZ ∈ AZ the configuration defined by wZ[in, (i + 1)n− 1] = w
(where n = |w|) for every i ∈ Z. We say that x ∈ AZ is w-finite if x[−∞, i] = ∞w and
x[j ,∞] = w∞ for some i, j ∈ Z.

Any collection of words L ⊆ A∗ is called a language. For any S ⊆ AZ the collection of
words appearing as subwords of elements of S is the language of S, denoted by L(S). For
any L, K ⊆ A∗, let

LK = {uv | u ∈ L, v ∈ K}, L∗ = {w1 · · · wn | n ≥ 0, wi ∈ L} ⊆ A∗.
If λ /∈ L, define L+ = L∗ \ {λ} and if ε ∈ L, define L+ = L∗.

Given x ∈ AZ and w ∈ A+ we define the set of left occurrences of w in x by

occ�(x, w) = {i ∈ Z | x[i, i + |w| − 1] = w},
and the set of right occurrences of w in x by

occr (x, w) = {i ∈ Z | x[i − |w| + 1, i] = w}.
Note that both of these sets contain the same information up to a shift in the sense that
occr (x, w) = occ�(x, w)+ |w| − 1. Typically we refer to the left occurrences and we say
that w ∈ An occurs in x ∈ AZ at position i if i ∈ occ�(x, w).

For x, y ∈ AZ and i ∈ Z we denote by x ⊗i y ∈ AZ the ‘gluing’ of x and y at i,
that is (x ⊗i y)[−∞, i − 1] = x[−∞, i − 1] and (x ⊗i y)[i,∞] = y[i,∞]. Typically we
perform gluings at the origin and we denote x ⊗ y = x ⊗0 y.

We define the shift map σA : AZ→ AZ by σA(x)[i] = x[i + 1] for x ∈ AZ, i ∈ Z. The
subscript A in σA is typically omitted. The set AZ is endowed with the product topology
(with respect to the discrete topology on A), under which σ is a homeomorphism on AZ.
Any closed set X ⊆ AZ such that σ(X) = X is called a subshift. The restriction of σ to X
may be denoted by σX, but typically the subscript X is omitted. The orbit of a point x ∈ X
is O(x) = {σ i(x) | i ∈ Z}. Any w ∈ L(X) \ ε and i ∈ Z determine a cylinder of X,

CylX(w, i) = {x ∈ X | w occurs in x at position i}.
Next we define the classes of subshifts considered in this paper.

Definition 2.1. A subshift X is transitive if for all words u, v ∈ L(X) there is w ∈ L(X)
such that uwv ∈ L(X).
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Definition 2.2. A subshift X is sofic if L(X) is a regular language.

Alternatively, any sofic subshift can be given as the collection of labels of bi-infinite
paths on some finite labeled directed graph. Yet another characterization can be given
by considering syntactic monoids. Syntactic monoids have been defined in [8, 16], for
example.

Definition 2.3. Let X be any subshift. The set of contexts of w ∈ L(X) is defined
by CX(w) = {(w1, w2) | w1ww2 ∈ L(X)}. We define an equivalence relation called the
syntactic relation on L(X) as follows. For any u, v ∈ L(X) let u ∼ v if CX(u) = CX(v).
The equivalence class containing w ∈ L(X) is denoted by SX(w) and the collection of all
equivalence classes is denoted by SX. The subscript X can be omitted when the subshift
is clear from the context. By adjoining a zero element 0 to SX we get a syntactic monoid
where multiplication is defined by SX(u)SX(v) = SX(uv) if uv ∈ L(X), and otherwise
the product of two elements is equal to 0. It is easy to show that this monoid operation is
well defined.

It is known that a subshift X is sofic if and only if SX is finite; see, for example, [10,
Theorem 6.1.2].

Definition 2.4. Given a subshift X, we say that a word w ∈ L(X) is synchronizing if

for all u, v ∈ L(X) : uw, wv ∈ L(X) �⇒ uwv ∈ L(X).
We say that a transitive subshift X is synchronized if L(X) contains a synchronizing word.

Transitive sofic shifts in particular are synchronized, which follows by using results of
[15, §3.3 and Exercise 3.3].

Next we define the structure preserving transformations between subshifts.

Definition 2.5. Let X ⊆ AZ and Y ⊆ BZ be subshifts. We say that the map F : X→ Y

is a morphism from X to Y if there exist integers m ≤ a (memory and anticipation) and a
local rule f : Aa−m+1 → B such that F(x)[i] = f (x[i +m], . . . , x[i], . . . , x[i + a]).
The quantity d = a −m is the diameter of the local rule f. If X = Y , we say that F is a
cellular automaton. If we can choose f so that−m = a = r ≥ 0, we say that F is a radius-r
cellular automaton.

By Hedlund’s theorem [7] a map F : X→ Y is a morphism if and only if it is
continuous and F ◦ σ = σ ◦ F . We say that subshifts X ⊆ AZ and Y ⊆ BZ are conjugate
if there is a bijective morphism (a conjugacy) F : X→ Y . Bijective CAs are called either
reversible CAs or automorphisms. The set of all automorphisms of X is a group denoted
by Aut(X).

Remark 2.6. Technically it does not make any difference whether an element F ∈ Aut(X)
is called a reversible CA or an automorphism. In this paper we will make a distinction
based on the role the map F plays in a given context. If we think of F as forming a
dynamical system, that is, we are interested in repeated iteration of the map F on the points
of X, then we say that F is a cellular automaton. If on the other hand it is natural to think
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FIGURE 2. A space-time diagram of the binary shift map σ . White and black squares correspond to digits 0 and
1, respectively. The dashed line shows an almost equicontinuous direction.

of F as an element of Aut(X), for example if we are interested in the totality of the action
of some larger group G ⊆ Aut(X) containing F, then we say that F is an automorphism.
Sometimes this distinction is a bit blurry.

The notions of almost equicontinuity and sensitivity can be defined for general
topological dynamical systems. We omit the topological definitions, because for cellular
automata on transitive subshifts there are combinatorial characterizations for these notions
using blocking words.

Definition 2.7. Let F : X→ X be a radius-r CA and w ∈ L(X). We say that w is a
blocking word if there is an integer e with |w| ≥ e ≥ r + 1 and an integer p ∈ [0, |w| − e]
such that

for all x, y ∈ CylX(w, 0), for all n ∈ N, Fn(x)[p, p + e − 1] = Fn(y)[p, p + e − 1].

The following result is proved in [19, Proposition 2.1].

PROPOSITION 2.8. If X is a transitive subshift and F : X→ X is a CA, then F is almost
equicontinuous if and only if it has a blocking word.

We say that a CA on a transitive subshift is sensitive if it is not almost equicontinuous.
The notion of sensitivity is refined by Sablik’s framework of directional dynamics [19].

Definition 2.9. Let F : X→ X be a cellular automaton and let p, q ∈ Z be coprime
integers, q > 0. Then p/q is a sensitive direction of F if σp ◦ Fq is sensitive. Similarly,
p/q is an almost equicontinuous direction of F if σp ◦ Fq is almost equicontinuous.

This definition is best understood via the space-time diagram of x ∈ X with respect
to F, in which successive iterations F t(x) are drawn on consecutive rows (see Figure 2
for a typical space-time diagram of a configuration with respect to the shift map). By
definition −1 = (−1)/1 is an almost equicontinuous direction of σ : AZ→ AZ because
σ−1 ◦ σ = Id is almost equicontinuous. This is directly visible in the space-time diagram
of Figure 2, because it looks like the space-time diagram of the identity map when it is
followed along the dashed line. Note that the slope of the dashed line is equal to −1 with
respect to the vertical axis extending downwards in the diagram.
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3. Markers on synchronized subshifts
In this section we find a collection of marker words of suitable form in any infinite
synchronized subshift. The precise result is stated in Propositions 3.9 and 3.10 and it may
be of independent interest. Markers with good properties are found by transforming the
subshift via a sequence of conjugacies through multiple lemmas.

LEMMA 3.1. Let X be a subshift and u, v ∈ L(X) synchronizing words. If w1, w2 ∈ L(X)
are words both of which have u as a prefix and v as a suffix, then SX(w1) = SX(w2).

Proof. Let t1, t2 ∈ L(X) be such that t1w1t2 ∈ L(X). In particular, t1u ∈ L(X) and by
assumption w2 ∈ L(X), so by using the fact that u is synchronizing it follows that
t1w2 ∈ L(X). We also know that vt2 ∈ L(X), so by using the fact that v is synchronizing
it follows that t1w2t2 ∈ L(X). By symmetry, from t1w2t2 ∈ L(X) it would follow that
t1w1t2 ∈ L(X), which proves the lemma.

Definition 3.2. Given a subshift X ⊆ AZ, we say that w ∈ L(X) has a unique successor
in X (respectively, a unique predecessor) if wa ∈ L(X) (respectively, aw ∈ L(X)) for
a unique a ∈ A. Then we say that a is the unique successor (respectively, the unique
predecessor) of w.

Definition 3.3. LetX ⊆ AZ be a subshift and letw = w1 · · · wn ∈ L(X)with allwi ∈ A
distinct. If wi have unique successors for 1 ≤ i < n, we say that w is future deterministic
in X and if wj have unique predecessors for 1 < j ≤ n, we say that w is past deterministic
in X. If w is both future and past deterministic in X, we say that w is deterministic in X.

Determinism of w means that any symbol a occurring in w can occur in x ∈ X only
within an occurrence of w. If X is infinite and transitive, then it is easy to see that the
determinism of w implies that all the symbols of w are distinct.

LEMMA 3.4. LetX ⊆ AZ be a subshift and let A′ = {a′ | a ∈ A}. If ψ : X→ X′ ⊆ (A ∪
A′)Z is a surjective morphism and for all x ∈ X, i ∈ Z, a ∈ A we have that ψ(x)[i] ∈
{a, a′} �⇒ x[i] = a (that is,ψ does nothing else in configurations than add some primes
as superscripts), then ψ is a conjugacy. Furthermore, letw = w1 · · · wn ∈ L(X) ∩ L(X′)
and w′ = w′1 · · · w′n. Then also the following hold.
• Assume that wiw′i+1, w′iwi+1 /∈ L(X′) for 1 ≤ i < n. If w is future (respectively, past)

deterministic in X, then w is future (respectively, past) deterministic also in X′.
• Assume that w is a synchronizing word for X which is blocking with respect to ψ in the

sense that for all x, y ∈ CylX(w, 0),

x[0,∞] = y[0,∞] �⇒ ψ(x)[n,∞] = ψ(y)[n,∞] and

x[−∞, n− 1] = y[−∞, n− 1] �⇒ ψ(x)[−∞, −1] = ψ(y)[−∞, −1]

and whose priming is determined either from the right or from the left in the sense that
either

for all x, y ∈ CylX(w, 0) : x[0,∞] = y[0,∞]

�⇒ ψ(x)[0, n− 1] = ψ(y)[0, n− 1] or
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for all x, y ∈ CylX(w, 0) : x[−∞, n− 1] = y[−∞, n− 1]

�⇒ ψ(x)[0, n− 1] = ψ(y)[0, n− 1],

respectively. Then w is a synchronizing word for X′.

Proof. To see that ψ is a conjugacy it suffices to show that ψ is injective, but this is
obvious.

Now assume that w satisfies the assumption in the first item and that w is future
deterministic in X. We show that w is future deterministic in X′. To see that wi (1 ≤
i < n) has a unique successor in X′, let x ∈ X be such that ψ(x)[0] = wi . Then also
x[0] = wi and since w is future deterministic in X it follows that x[0, 1] = wiwi+1 and
ψ(x)[0, 1] ∈ {wiwi+1, wiw′i+1}. Since by assumption wiw′i+1 /∈ L(X′), it follows that
ψ(x)[0, 1] = wiwi+1 and wi+1 is the unique successor of wi in X′. The proof for past
determinism is symmetric.

Now assume that w is a synchronizing word which is blocking and whose priming
is determined from the right. Assume that x ′1, x′2 ∈ X′ both have an occurrence of w
at the origin. To see that w is a synchronizing word of X′, we need to show that
x′1 ⊗ x′2 (the gluing of x′1 and x′2 at the origin) belongs to X′. Let therefore x1, x2 ∈
X be such that ψ(xi) = x′i , so in particular both xi have an occurrence of w at the
origin. Since w is synchronizing in X it follows that y = x1 ⊗ x2 ∈ X. In other words,
y ∈ CylX(w, 0), x1[−∞, n− 1] = y[−∞, n− 1] and x2[0,∞] = y[0,∞]. Since w is
blocking, it follows that ψ(y)[n,∞] = ψ(x2)[n,∞] = x′2[n,∞] and ψ(y)[−∞, −1] =
ψ(x1)[−∞, −1] = x′1[−∞, −1]. Since the priming of w is determined from the right,
it follows that ψ(y)[0, n− 1] = ψ(x2)[0, n− 1] = x′2[0, n− 1] = w. In total, x′1 ⊗ x′2 =
ψ(y) ∈ X′. The case where the priming of w is determined from the left is similar.

LEMMA 3.5. Let X ⊆ AZ be a subshift and let A′ = {a′ | a ∈ A}. Given w =
w1 · · · wn ∈ L(X) with all wi ∈ A distinct, there is a conjugacy ψ : X→ X′ ⊆
(A ∪ A′)Z such that w ∈ L(X′) and w is future deterministic in X′. Moreover, if wZ ∈ X
then wZ ∈ X′, and if w is a synchronizing word of X then w is a synchronizing word of X′.

Proof. Let ψ : X→ (A ∪ A′)Z be a morphism defined by

ψ(x)[i] =

⎧⎪⎪⎨
⎪⎪⎩
x[i]′ when x[i] = wj and x[i, i + n− j ] �= wjwj+1 · · · wn,

for some 1 ≤ j < n,

x[i] otherwise.

By Lemma 3.4, ψ induces a conjugacy between X and X′ = ψ(X). If x ∈ X contains an
occurrence of w at the origin, then ψ(x) also contains an occurrence of w at the origin
and w ∈ L(X′). If wZ ∈ X, we can here choose x = wZ to show that wZ ∈ X′. To see that
wi (1 ≤ i < n) has a unique successor in X′, assume to the contrary that wia ∈ L(X′) for
some a ∈ (A ∪ A′) \ {wi+1}. Then, in particular, there is x ∈ X such that wia occurs in
ψ(x) at position 0. But then by definition of ψ , x[0, n− i] = wiwi+1 · · · wn and ψ(x)
contains an occurrence of wiwi+1 at the origin, contradicting the choice of a. If w is a
synchronizing word of X, then from the second item of Lemma 3.4 it follows that w is a
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synchronizing word of X′ (the priming of w is determined both from the left and from the
right).

LEMMA 3.6. Let X ⊆ AZ be a subshift and let A′ = {a′ | a ∈ A}. Let also w =
w1 · · · wn ∈ L(X) with all wi ∈ A distinct be such that w is future deterministic in
X. Then there is a conjugacy ψ : X→ X′ ⊆ (A ∪ A′)Z such that w ∈ L(X′) and w is
deterministic in X′. Moreover, if wZ ∈ X then wZ ∈ X′, and if w is a synchronizing word
of X then w is a synchronizing word of X′.

Proof. Let ψ : X→ (A ∪ A′)Z be a morphism defined by

ψ(x)[i] =

⎧⎪⎪⎨
⎪⎪⎩
x[i]′ when x[i] = wj and x[i − j + 1, i] �= w1w2 · · · wj ,

for some 1 < j ≤ n,

x[i] otherwise.

By Lemma 3.4, ψ induces a conjugacy between X and X′ = ψ(X). If x ∈ X contains an
occurrence of w at the origin, then ψ(x) also contains an occurrence of w at the origin
and w ∈ L(X′). If wZ ∈ X, we can here choose x = wZ to show that wZ ∈ X′. The first
item in Lemma 3.4 applies to show that w is future deterministic in X′, and the same
argument as in the proof of the previous lemma shows that w is past deterministic. If w is
a synchronizing word of X, then from the second item of Lemma 3.4 it follows that w is a
synchronizing word of X′ (the priming of w is determined both from the left and from the
right).

LEMMA 3.7. Let X ⊆ AZ be a subshift and let w = w1 · · · wn ∈ L(X) with all wi
distinct. There is an alphabet B ⊇ A and a subshift X′ ⊆ BZ which is conjugate to X
such that w ∈ L(X′) and w is deterministic in X′. Moreover, if wZ ∈ X then wZ ∈ X′,
and if w is a synchronizing word of X then it is also a synchronizing word of X′.

Proof. This follows by applying the two previous lemmas.

Definition 3.8. The nth higher power shift X[n] of a subshift X ⊆ AZ is the image of X
under the map βn(x) : X→ (An)Z defined by βn(x)[i] = x[i, i + n− 1] for all x ∈ X,
i ∈ N. All higher power shifts are conjugate to the original subshift.

We are now ready to present the main propositions of this section.

PROPOSITION 3.9. Let X ⊆ AZ be a synchronized subshift and let ™ ∈ L(X) be such that
™Z ∈ X, the minimal period of ™Z is |™| and ™k is synchronizing for some k ∈ N+. Up to
recoding to a conjugate subshift we may assume that ™ is deterministic and synchronizing
and that all symbols of ™ are distinct.

Proof. Denote ™ = 01 · · · 0p (0i ∈ A, p ∈ N+). For sufficiently large n, βn(™Z)[0, |™| −
1] has all symbols distinct and βn(™Z)[0, k|™| − 1] = βn(™Z)[0, |™| − 1]k is a synchroniz-
ing word of X[n], so up to conjugacy we may assume that the symbols of ™ are distinct. By
the previous lemma we may assume up to conjugacy that ™ is deterministic in X.
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Let ψ : X→ (A ∪ A′)Z be a morphism defined by

ψ(x)[i] =
{
x[i]′ when x[i] = 0j and x[i, i + (p − j)+ (k − 1)p] �= 0j · · · 0p™k−1,

x[i] otherwise.

By Lemma 3.4,ψ induces a conjugacy between X andX′ = ψ(X). Clearly ™Z = ψ(™Z) ∈
X′, and by Lemma 3.4 the word ™ is deterministic in X′. To see that ™ is synchronizing,
assume that x′1, x′2 ∈ X′ both have an occurrence of ™ at the origin. We need to show that
x′1 ⊗ x′2 (the gluing of x′1 and x′2 at the origin) belongs to X′. Let therefore x1, x2 ∈ X
be such that ψ(xi) = x′i , so in particular both xi have an occurrence of ™k at the origin.
Since ™k is synchronizing in X it follows that y = x1 ⊗ x2 ∈ X, and clearly x′1 ⊗ x′2 =
ψ(y) ∈ X′.
PROPOSITION 3.10. LetX ⊆ AZ be an infinite synchronized subshift and let ™ ∈ L(X) be
such that ™Z ∈ X, ™ is deterministic and synchronizing and all symbols of ™ are distinct.
Up to recoding to a conjugate subshift we may assume there is a word 1 ∈ L(X), |1| ≥ 2,
such that ™ and 1 satisfy the following:
• ™Z ∈ X, ™ is deterministic and synchronizing and all symbols of ™ are distinct;
• none of the symbols of ™ occur in 1;
• ™1∗™ ⊆ L(X);
• |1| ≡ K(mod |™|) where K = gcd(|™|, |1|);
• if w ∈ L(X) is such that ™w™ ∈ L(X), then K divides |w|.
Proof. For any X′ that is conjugate to X and that satisfies the first item it is possible to
define the quantity

K(X′) = min{gcd(|™|, |w|) | w, ™w™ ∈ L(X) \ {λ}, w /∈ A∗™A∗}.
Without loss of generality (up to conjugacy) we may assume in the following thatK(X) =
minX′ K(X′).

There is some w ∈ L(X) \ {λ} such that ™w™ ∈ L(X), ™ is not a subword of w and
gcd(|™|, |w|) = K(X). In the following we fix some such word w ∈ L(X).

Denote ™ = 01 · · · 0p (0i ∈ A, p ∈ N+). Let A′ = {a′ | a ∈ A} and let ψ : X→ (A ∪
A′)Z be a morphism defined by

ψ(x)[i] =
{
x[i]′ when x[i] = 0j and x[i − j − |w| + 1, i] = w0102 · · · 0j ,

x[i] otherwise.

By Lemma 3.4, ψ induces a conjugacy between X and X′ = ψ(X). Clearly ™Z =
ψ(™Z) ∈ X′, and by Lemma 3.4 the word ™ is synchronizing and deterministic in X′
(the priming of ™ is determined from the left). Now denote ™′ = 0′1 · · · 0′p, let u =
w™ and 1′ = w™′. It directly follows that |1′| ≥ 2 and that none of the symbols of ™

occur in 1′. Because ∞™1′™∞ = ψ(∞™u™∞) ∈ X′, we have ™1′™ ∈ L(X′) and K(X′) ≤
gcd(|™|, |1′|) = gcd(|™|, |w|) = K(X) ≤ K(X′), where the last inequality follows because
X was chosen so that K(X) is minimal. Therefore gcd(|™|, |1′|) = K(X′). By choosing
1 = 1′k for a suitable k ∈ N+ we can also get gcd(|™|, |1|) = K(X′) and |1| ≡ K(X′)
(mod |™|). Since ™w™ ∈ L(X) and ™ is synchronizing in X, it follows that ∞™(uk)∗™∞ ⊆
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X, and by applying ψ to these points it follows that ™1∗™ ⊆ L(X′). We may therefore
assume in the following that X satisfies the first four items and that K = K(X) =
minX′ K(X′).

To see that the last item holds, assume to the contrary that there exists v ∈ L(X) such
that ™v™ ∈ L(X) and |v| = nK + r for some n ∈ N, 0 < r < K . We may assume without
loss of generality (by considering some suitable subword of v instead if necessary) that
none of the symbols of ™ occur in v. We may also write |™| = n1K and |1| = n2|™| +K .
Let ψ : X→ (A ∪ A′)Z be a morphism defined by

ψ(x)[i] =
{
x[i]′ when x[i] = 0j and x[i − j − |™v| + 1, i] = ™v0102 · · · 0j ,

x[i] otherwise.

By Lemma 3.4,ψ induces a conjugacy between X andX′ = ψ(X). Clearly ™Z = ψ(™Z) ∈
X′, and by Lemma 3.4 the word ™ is synchronizing and deterministic in X′ (the priming of
™ is determined from the left). By choosing k ∈ N such that n+ k is divisible by n1 and by
denoting u = v™′1k we see that ∞™u™∞ = ψ(∞™v™1k™∞) ∈ X′ and ™u™ ∈ L(X′) (note
that 1k �= v because v is not divisible by K) but

gcd(|™|, |u|) = gcd(n1K , (nK + r)+ (n1K)+ k(n2n1K +K))
= gcd(n1K , (n+ k)K + r) = gcd(n1K , r) < K = K(X),

contradicting K(X) = minX′ K(X′).

We will use the special words in the statement of the previous proposition in conjunction
with Lemma 3.12, which explicitly states the principle that we will use to construct
reversible CAs in the following sections. This principle is known as the marker method
and it has been stated in different sources with varying levels of generality, for example
for full shifts in [7] and for mixing SFTs in [3]. The statement requires the notion of an
overlap.

Definition 3.11. Let u, v ∈ A∗. We say that w ∈ A∗ is an overlap of u and v if w is a suffix
of u and a prefix of v, or if w = u is a subword of v, or if w = v is a subword of u. We say
that w is a trivial overlap if w = ε or w = u = v.

LEMMA 3.12. Let X be a subshift, let u ∈ L(X) and let W be a finite collection of words
such that uWu ⊆ L(X) and each pair of (not necessarily distinct) elements of uWu has
only u as an overlap in addition to the trivial ones. Let π : uWu→ uWu be a permutation
that preserves the lengths and syntactic relation classes of elements of uWu. Then there
is a reversible CA F : X→ X such that for any x ∈ X the point F(x) is obtained by
replacing every occurrence of any element w ∈ uWu in x by π(w).

Proof. The map F is well defined since the elements of uWu can overlap non-trivially only
by u. For the same reason elements of uWu occur in F(x) at precisely the same positions
as in x, and then the reversibility of F follows from the reversibility of π . To see that
F(X) ⊆ X, note first that replacing a single occurrence of a word uwu ∈ uWu in x ∈ X
by π(uwu) yields another configuration from X, because by assumption uwu and π(uwu)
are in syntactic relation. Then an induction shows that after making any finite number of
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such replacements the resulting point is still contained in X. From this F(x) ∈ X follows
by compactness.

4. Constructing glider CAs on (sofic) synchronized shifts
In this section we will construct a cellular automatonGX, whose most important properties
are stated in the following theorem for easier reference. This essentially states that the
behavior of Figure 1 can be replicated by reversible CAs on all infinite transitive sofic
shifts, except that the symbols (0, 1) in Figure 1 would move to the right instead of
remaining stationary.

THEOREM 4.1. Let Y be an infinite transitive sofic subshift and let ™Z ∈ Y be a periodic
configuration containing a synchronizing word and whose minimal period is |™|. Then
there is a conjugacy ψ : Y → X such that ψ(™Z) = ™Z ∈ X, ™ is synchronizing and
deterministic in X, and a reversible CA GX : X→ X such that there are
• words ← , → ∈ L(X) called left- and rightbound gliders ,
• languages of gliders L� = ( ← ™™∗)∗ ⊆ L(X) and Lr = (™∗™ → )∗ ⊆ L(X) and
• glider fleet sets GF� = ∞™L�™

∞ ⊆ X and GFr = ∞™Lr™
∞ ⊆ X (note that in each

element there are only finitely many occurrences of ← and → ), whose elements
are called glider fleets

and for some s ∈ N+, which is a multiple of |™|, GX satisfies
• GX(x) = σ s(x) for x ∈ GF� and GX(x) = σ−s(x) for x ∈ GFr and
• if x ∈ X is a ™-finite configuration, then for every N ∈ N there exist t , N�, Nr , M ∈

N,N�, Nr ≥ N such that GtX(x)[−N�, Nr ] = ™M , GtX(x)[−∞, −(N� + 1)] ∈ ∞™L�
and GtX(x)[Nr + 1,∞] ∈ Lr™∞.

We will see that almost all steps of the construction ofGX work without the assumption
of soficness. Therefore we are also able to construct a family of CAs GX,n on not
necessarily sofic X which shares some of the functionality of the CA GX. We will use
the details of the construction of GX and GX,n in later sections. An alternative would be
to include all the used properties in the statement of Theorem 4.1, but this would make the
statement of the theorem significantly longer and less clear. We leave this modification as
an exercise to the interested reader.

To begin the construction, we start with an infinite synchronized subshift X ⊆ AZ and
an arbitrary periodic configuration ™Z ∈ X containing a synchronizing word. We will also
assume in the rest of this section that there is a word 1 ∈ L(X) that together with ™

satisfies the statement of Proposition 3.10: this can be done up to conjugacy by combining
Propositions 3.9 and 3.10.

Let p = |™|, q = |1| and K = gcd(p, q). The words

← = ™q1, → = 1p+1

will be the left- and rightbound gliders. The languages of left- and rightbound gliders are

L� = ( ← ™™∗)∗, Lr = (™∗™ → )∗,
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and we define the glider fleet sets

GF� = ∞™( ← ™™∗)∗™∞, GFr = ∞™(™∗™ → )∗™∞.

These definitions cover the first three items in the statement of Theorem 4.1.
We now define reversible CAs P1, P2 : X→ X as follows. In any x ∈ X:

• P1 replaces every occurrence of ™(™q1)™ by ™(1p+1)™ and vice versa;
• P2 replaces every occurrence of ™(1p+1)™ by ™(1™q)™ and vice versa.
Each Pi is defined as in Lemma 3.12 by u = ™, a set Bi of two finite words and non-trivial
permutations πi . In each case the words in uBiu are of equal length and easily verified to
have only trivial overlaps by Proposition 3.10. By Lemma 3.1 both elements in each uBiu
are in syntactic relation, so we conclude that Lemma 3.12 is applicable.

To define the CA P3 let us assume in this paragraph that X ⊆ AZ is a sofic shift, so SX
is a finite set. If ™ = 01 · · · 0p, denote B = A \ {01, . . . , 0p}. Then also

P = {SX(™w) | w ∈ L(X) ∩ (BK)+, ™w ∈ L(X), |w| > q(p + 1)}

is a finite set and we may choose a uniform N1 ∈ N such that for every S ∈ P there is a
word w′S ∈ L(X) ∩ (BK)+ with S = SX(™w′S) and q(p + 1) < |w′S | ≤ N1. The lengths
of the words in (1™)+1+(1p+1™) attain all sufficiently large multiples of K, so we can
fix N ∈ N which is divisible by K such that for every S ∈ P there is a word wS ∈
(1™)+1+(1p+1™)w′S of length N. Furthermore, we assume that N > |1p+1+p/K | (this is
needed in a later paragraph). In particular, ™wS ∈ S by Lemma 3.1. Fix some such wS , let
W ′S = {wS,1, . . . , wS,kS } be the set of those words from L(X) ∩ BN such that ™wS,i ∈ S
for 1 ≤ i ≤ kS , denote WS = W ′S ∪ {wS} and W =⋃

S∈P WS . For applying Lemma 3.12,
let u = ε and let π : ™q+1W → ™q+1W be the permutation that maps the elements of
each ™q+1WS cyclically, that is, ™q+1wS → ™q+1wS,1 → · · · → ™q+1wS,kS → ™q+1wS .
Define the reversible CA P3 : X→ X that replaces occurrences of elements of ™q+1WS

using the permutation π .
For this paragraph fix some integer n > |1p+1+p/K |. We define the CA P4,n that

‘permutes words shorter than n not containing ™’ as follows. For each j ∈ {1, . . . , p/K}
let u′j = 1™q1j (the names of all the words we define in this paragraph should contain
the parameter n in the index, but we suppress it to avoid clutter), and let U ′j ,n =
{u′j ,1, . . . , u′j ,nj } ⊆ L(X) ∩ B+ be the set of non-empty words of length at most n− 1

such that ™u′j ,i™ ∈ L(X), u′j ,nj = 1p+1+j (|u′j ,nj | < n by the choice of n), |u′j ,i | ≡
|u′j | ≡ (j + 1)K(mod p), with the additional restriction that 1, 1p+1 /∈ U ′p/K ,n. Finally,
these words are padded to constant length: let uj = ™cj u′j and uj ,i = ™cj ,i u′j ,i , where
cj , cj ,i ≥ q + 1 are chosen in such a way that all uj , uj ,i are of the same length for
any fixed j. LetUj ,n = {uj } ∪ {uj ,i | 1 ≤ i ≤ nj },Un =⋃p/K

j=1 Uj ,n. For applying Lemma
3.12, let u = ™, let Vj ,n, Vn ⊆ L(X) such that ™Vj ,n™ = Uj ,n™, ™Vn™ = Un™ and let
ρ : ™Vn™→ ™Vn™ be the permutation that maps the elements of each ™Vj ,n™ cyclically,
that is, uj™→ uj ,1™→ · · · → uj ,nj ™→ uj™. Define the reversible CA P4,n : X→ X

that replaces occurrences of elements of Uj ,n™ using the permutation ρ.
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1

1

0

FIGURE 3. The graph of the even shift.

In the case when X is a sofic shift define P4 = P4,N , where N is the number
defined two paragraphs above. In this case we can drop the subscript N from the sets
U ′j ,N , Uj ,N , UN , Vj ,N , VN of the previous paragraph.

The glider CA GX,n : X→ X (with parameter n) is defined as the composition P4,n ◦
P2 ◦ P1. If X is sofic, the diffusive glider CA GX : X→ X is defined as the composition
P4 ◦ P3 ◦ P2 ◦ P1. All statements concerning the CA GX below contain the assumption
that X is sofic.

Example 4.2. We will give the explicit construction of the diffusive glider CAGX : X→
X in the case when X ⊆ {0, 1}Z is the even shift containing those configurations in which
no words from {012n+10 | n ∈ N} occur. More concretely, the configurations of X are
precisely the labels of all bi-infinite paths on the graph presented in Figure 3. Let ™ = 0
and 1 = 11, so p = |™| = 1, q = |1| = 2 and K = gcd(|™|, |1|) = 1. It is easy to verify
that these choices of ™ and 1 satisfy the statement of Proposition 3.10 (note, in particular,
that the determinism of ™ is vacuously true because |™| = 1). The CA P1 replaces every
occurrence of 000110 by 011110 and vice versa, and P2 replaces every occurrence of 011110
by 011000 and vice versa.

For defining the CA P3, P4, note that B = {0, 1} \ {0} = {1} (the set of symbols not in
™) and

P = {SX(0w) | w ∈ 1+, |w| > 4} = {SX(015), SX(016)}.
Denote S0 = SX(0) = SX(016) and S1 = SX(01) = SX(015) and choose w′S0

= 111111,
w′S1
= 11111. Then we can choose

wS0 = 110(11)40w′S0
= 110111111110111111 and

wS1 = 110110(11)30w′S1
= 110110111111011111,

which are of length N = 18. If w ∈ BN then w = 118 and SX(0w) = S0 and therefore
W ′S0
= {wS0,1} = {118}, W ′S1

= ∅ and P3 is the CA that replaces every occurrence of

000wS0 = 000110111111110111111 by

000wS0,1 = 000111111111111111111

and vice versa.
Recall that p = 1, so u′j ,U ′j , etc. need to be defined only for j = 1. Let u′1 = 110011 and

U ′1 = {u′1,i | 1 ≤ i ≤ 6}, where u′1,1 = 116, u′1,2 = 114, u′1,3 = 112, u′1,4 = 110, u′1,5 = 18

and u′1,6 = 16. These are padded to constant length: u1 = 013110011, u1,1 = 03116, u1,2 =
05114, u1,3 = 07112, u1,4 = 09110, u1,5 = 01118 and u1,6 = 01316 are words of length 19.
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FIGURE 4. Action of GX : X→ X on a typical ™-finite configuration of X when X is the even shift. White and
black squares correspond to digits 0 and 1, respectively.

The CA P4 permutes occurrences of 0131100110, 031160, 051140, 071120, 091100, 011180
and 013160 cyclically.

The space-time diagram of a typical finite configuration x ∈ X with respect to GX is
plotted in Figure 4. In this figure it can be seen that x eventually diffuses into two glider
fleets, leaving the area around the origin empty.

Theorem 4.1 predicts that the behavior observed in Figure 4 also happens in general,
thus giving justification for callingGX a diffusive glider CA. The following lemma covers
the fourth item in Theorem 4.1.

LEMMA 4.3. If x ∈ GF� (respectively, x ∈ GFr ), then GX(x) = GX,n(x) = σpq(x)
(respectively, GX(x) = GX,n(x) = σ−pq(x)).
Proof. We present the proof only for GX. Assume that x ∈ GF� (the proof for x ∈ GFr is
similar) and assume that i ∈ Z is some position in x where ← occurs. Then

x[i − p, i + (pq + q)+ p − 1] = ™ ← ™ = ™(™q1)™,

P1(x)[i − p, i + (pq + q)+ p − 1] = ™(1p+1)™,

P2(P1(x))[i − p − pq, i + q + p − 1] = ™q™(1™) = ™ ← ™,

GX(x) = P4(P3(P2(P1(x)))) = P2(P1(x))),

so every glider has shifted by distance pq to the left and GX(x) = σpq(x).
In fact, the previous lemma would hold even if GX and GX,n were replaced by P2 ◦ P1.

The role of the part P4 ◦ P3 in GX for sofic X is, for a given finite point x ∈ X, to ‘erode’
non-™ non-glider parts of x from the left and to turn the eroded parts into new gliders.
Similarly, for not necessarily sofic X, the part P4,n can erode non-™ non-glider parts from
the left, but in this case only under the assumption that these parts are shorter than n. We
will formalize this in a lemma, in the proof of which the following structural definitions
will be useful.

Definition 4.4. Let n > |1p+1+p/K |. Assume that x /∈ GF� is a ™-finite element of X not
in O(™Z) and not containing occurrences of words from Bn. Then there is a maximal i ∈ Z

such that

x[−∞, i − 1] ∈ ∞™L�,
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and there is a unique word w ∈ {1™} ∪ {1p+1™} ∪ (⋃p/K

j=1 U
′
j ,n™) such that w is a prefix of

x[i,∞]. Let k = i + |w| − 1. We say that x is of n-left bound type (w, k) and that it has
n-left bound k (note that k > i).

Definition 4.5. Assume that X is a sofic shift and that x /∈ GF� is a ™-finite element of X
not in O(™Z). Then there is a maximal i ∈ Z such that

x[−∞, i − 1] ∈ ∞™L�,

and there is a unique word w ∈ {1™} ∪ {1p+1™} ∪ (⋃p/K

j=1 U
′
j™) ∪ (

⋃
S∈P W ′S) such that w

is a prefix of x[i,∞]. If w ∈ {1™, 1p+1™} or w ∈ U ′j™, let k = i + |w| − 1 and otherwise
let k = i + |1™| − 1. We say that x is of left bound type (w, k) and that it has left bound k
(note that k > i).

We outline a deterministic method to narrow down the word w in the definition of left
bound type in a way that clarifies its existence and uniqueness (the case of n-left bound type
would be similar). First, by the maximality of i it follows that x[i] ∈ B. If x[i, i +N −
1] ∈ BN , then w ∈ W ′SX(™x[i,i+N−1]) directly by the definition of the sets W ′S . Otherwise
x[i, i +N − 1] /∈ BN and there is a unique m < N such that x[i, i +m− 1] ∈ Bm and
x[i +m, i +m+ p − 1] = ™. Then ™x[i, i +m− 1]™ ∈ L(X) and by the last item of
Proposition 3.10 m is divisible by K. Then by the second to last item of Proposition 3.10,
w ∈ U ′j™ for some j ∈ {1, . . . , p/K} unless we have specifically excluded x[i, i +m− 1]
from all the sets U ′j . But this happens precisely if x[i, i +m− 1] ∈ {1, 1p+1}, in which
case w ∈ {1™, 1p+1™}.

The point of this definition is that if x is of left bound type (w, k), then the CA GX and
GX,n will create a new leftbound glider at position k and break it off from the rest of the
configuration.

LEMMA 4.6. Assume that x ∈ X has left bound k. Then there exists t ∈ N+ such that the
left bound ofGtX(x) is strictly greater than k. Moreover, the left bound ofGt

′
X(x) is at least

k for all t ′ ∈ N.

Proof. Let x ∈ X be of left bound type (w, k)withw ∈ {1™} ∪ {1p+1™} ∪ (⋃p/K

j=1 U
′
j™) ∪

(
⋃
S∈P W ′S). The gliders to the left of the occurrence of w near k move to the left at

constant speed pq under the action of GX without being affected by the remaining part of
the configuration.

Case 1. Assume that w = 1p+1™. Then P1(x)[k − (q + 2p)+ 1, k] = ™1™ and we
proceed to Case 4.

Case 2. Assume that w = 1™. Then x[k − (q + 2)p − q + 1, k] �= ™(™q1)™ = ™ ← ™

because otherwise the left bound of x would already be greater than k, so P1(x)[k − 2p −
q + 1, k] = ™1™ and we proceed to Case 4.

Case 3. Assume thatw = u′j ,i™ for 1 ≤ j ≤ p/K , 1 ≤ i ≤ nj . There is a minimal t ∈ N

such that P3(P2(P1(G
t
X(x))))[k − (p + |uj |)+ 1, k] = uj ,i™. Denote y = Gt+nj−i+1

X (x)

so, in particular, y[k − (p + |uj |)+ 1, k] = uj™. If j > 1, then y is of left bound type
(uj−1,i′ , k) for some 1 ≤ i′ < nj−1 and we may repeat the argument in this paragraph with
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a smaller value of j. If j = 1, then P1(x)[k − (q + 2p)+ 1, k] = ™1™ and we proceed as
in Case 4.

Case 4. Assume that P1(x)[k − (q + 2p)+ 1, k] = ™1™. If P1(x)[k − (q + 2p)+
1, k + qp] = ™(1™q)™, then GX(x)[k − (q + 2p)+ 1, k + qp] = P2(P1(x))[k − (q +
2p)+ 1, k + qp] = ™1p+1™, GX(x) is of left bound type (1p+1™, k + qp) and we are
done. Otherwise P2(P1(x))[k − (q + 2p)+ 1, k] = ™1™. Denote y = P3(P2(P1(x))). If
y[k − (q + 2p)+ 1, k] �= ™1™, then GX(x) = P4(y) is of left bound type (wS,1, k) for
some S ∈ P and we proceed as in Case 5. Otherwise y[k − (q + 2p)+ 1, k] = ™1™.
If GX(x)[k − (q + 2p)+ 1, k] = P4(y)[k − (q + 2p)+ 1, k] �= ™1™, then GX(x) is of
left bound type (uj ,1, k′) for some 1 ≤ j ≤ p/K , k′ > k and we are done. Otherwise
GX(x)[−∞, k] ∈ ∞™L�, the left bound of GX(x) is strictly greater than k and we are
done.

Case 5. Assume thatw = wS,i for S ∈ P and 1 ≤ i ≤ kS . Then there is a minimal t ∈ N

such that GtX(x)[k − |1™| + 1,∞] has prefix wS . Since wS has prefix 1™, it follows that
GtX(x)[−∞, k] ∈ ∞™L�. Thus the left bound of GtX(x) is strictly greater than k and we
are done.

The same method can be used to prove the following lemma in the not necessarily sofic
case, but this time Case 5 of the previous proof does not come into play.

LEMMA 4.7. Let n > |1p+1+p/K | and assume that x ∈ X has n-left bound k. Then there
exists t ∈ N+ such that the n-left bound ofGtX,n(x) is strictly greater than k. Moreover, the

n-left bound of Gt
′
X,n(x) is at least k for all t ′ ∈ N.

For the right bounds we have a simpler definition.

Definition 4.8. If x /∈ GFr is a non-zero finite element of X, then there is a minimal k ∈ Z

such that

x[k + 1,∞] ∈ Lr™∞
and we say that x has right bound k.

LEMMA 4.9. Assume that x ∈ X has right bound k. Then there exists t ∈ N+ such that the
right bound ofGtX(x) is strictly less than k. Moreover, the right bound ofGt

′
X(x) is at most

k for all t ′ ∈ N.

Proof. Let us assume to the contrary that the right bound of GtX(x) is at least k for every
t ∈ N+.

Assume first that the right bound of GtX(x) is equal to k for every t ∈ N+. By
Lemma 4.6 the left bound ofGtX(x) is arbitrarily large for suitable choice of t ∈ N+, which
means that for some t ∈ N+ GtX(x) contains only ← -gliders to the left of k + 3pq and
only → -gliders to the right of k. This can happen only if GtX(x)[k + 1, k + 3pq − 1]
does not contain any glider of either type. Then the right bound of Gt+1

X (x) is at most
k − pq, a contradiction.

Assume then that the right bound of GtX(x) is strictly greater than k for some t ∈
N+ and fix the minimal such t. This can happen only if P1(G

t−1
X (x))[k − (p + q)+ 1,
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k + (q + 1)p] = ™1™q™ and then P2(P1(G
t−1
X (x)))[k − (p + q)+ 1, k + (q + 1)p] =

™1p+1™. But neither P3 nor P4 can change occurrences of ™1p+1™ in configurations
(recall, in particular, that |w′S | > |1p+1| for all S ∈ P ) so GtX(x)[k − (p + q)+ 1, k +
(q + 1)p] = ™1p+1™. It follows that the right bound of GtX(x) is at most k − (p + q), a
contradiction.

Similarly one proves the following in the not necessarily sofic case.

LEMMA 4.10. Let n > |1p+1+p/K |, assume that x ∈ X does not contain occurrences of
words from Bn and that x has right bound k. Then there exists t ∈ N+ such that the right
bound of GtX,n(x) is strictly less than k. Moreover, the right bound of Gt

′
X,n(x) is at most k

for all t ′ ∈ N.

By inductively applying the previous lemmas we get the following pair of theorems.
Theorem 4.11 covers the fifth item of Theorem 4.1, the last remaining part.

THEOREM 4.11. If x ∈ X is a finite configuration, then for every N ∈ N there exist
t , N�, Nr , M ∈ N,N�, Nr ≥ N such that GtX(x)[−N�, Nr ] = ™M , GtX(x)[−∞, −(N� +
1)] ∈ ∞™L� and GtX(x)[Nr + 1,∞] ∈ Lr™∞.

THEOREM 4.12. Let n > |1p+1+p/K |. If x ∈ X is a finite configuration that does not
contain occurrences of words from Bn, then for every N ∈ N there exist t , N�, Nr , M ∈
N,N�, Nr ≥ N such that GtX,n(x)[−N�, Nr ] = ™M , GtX,n(x)[−∞, −(N� + 1)] ∈ ∞™L�

and GtX,n(x)[Nr + 1,∞] ∈ Lr™∞.

Our construction proves the following theorem on the possible directional dynamics of
reversible CAs on sofic shifts.

THEOREM 4.13. For every infinite transitive sofic shift X there exists a reversible CA F ∈
Aut(X) that has no almost equicontinuous directions.

Proof. We claim that GX : X→ X is such an automaton. To see this, assume to the
contrary that there is an almost equicontinuous direction r/s for coprime integers r and
s such that s > 0. This means that F = σ r ◦GsX is almost equicontinuous and admits a
blocking word w ∈ L(X). Since every word containing a blocking word is also blocking,
we may choose w so that ™w™ ∈ L(X).

Assume first that r ≥ 0. Define x = ∞™.w™∞ and xn = ∞™.w™n ← ™∞ for all n ∈
N+. We claim that for some n ∈ N+ we can choose t ∈ N such that F t(x)[−∞, −1] �=
F t(xn)[−∞, −1], which would contradict w being a blocking word. To see this, we
apply Theorem 4.11 for some sufficiently large N ∈ N so that GtX(x)[−N�, Nr ] =
™M , GtX(x)[−∞, −(N� + 1)] ∈ ∞™L� and GtX(x)[Nr + 1,∞] ∈ Lr™∞ for all t larger
than some t0 ∈ N, where N�,Nr and M are as in the statement of the theorem. Fix
some i ∈ N+ such that Gt0X(x)[|w| + ip,∞] = ™∞ and for j ∈ N+ let nj = j + t0q.
Then xnj = ∞™.w™j+t0q ← ™∞ and by fixing n = ni+k for some sufficiently large
k ∈ N we get Gt0X(xn)[Nr + 1,∞] ∈ Lr™∗™k ← ™∞. It is possible to choose t ′ ≥ t0
so that occr (Gt

′′
X(xn), ← ) ⊆ (−∞, −1] for all t ′′ ≥ t ′. Then | occr (Gt

′′
X(xn), ← )| >
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| occr (Gt
′′
X(x), ← )| for all t ′′ ≥ t ′. Now let t ∈ N such that st ≥ t ′. Then F t(xn) =

σ rt (GstX(xn)) and F t(x) = σ rt (GstX(x)), so | occr (F t (xn), ← )| > | occr (F t (x), ← )|.
Because we assumed that r ≥ 0, it also follows that occr (F t (xn), ← ) ⊆ (−∞, −1] and,
in particular, F t(x)[−∞, −1] �= F t(xn)[−∞, −1].

A symmetric argument yields a contradiction in the case r ≤ 0.

Remark 4.14. The assumption of X being a sofic shift was used in the construction of GX
only in the definition of the map P3. To be more precise, we used the finiteness of the set

P = {SX(™w) | w ∈ L(X) ∩ (BK)+, ™w ∈ L(X), |w| > q(p + 1)}
and we noted that for this it is sufficient that X is sofic. In fact it turns out that the soficness
of X is equivalent to P being finite. To see the other direction, first note that if P is finite
then also V = {SX(™w) | w ∈ L(X), ™w ∈ L(X)} is finite. As in [5], we can construct a
directed labeled graph called the Fischer cover of X. This graph has the vertex set V and an
edge from SX(™w) to S(™wa)with the label a wheneverw ∈ A∗, a ∈ A and ™wa ∈ L(X).
By [5] the set X′ consisting of the labels of bi-infinite paths on this graph is dense in X.
From the finiteness of the graph it follows that X′ is also compact, so X = X′ and X is
sofic.

The assumption of soficness turns out to be even more essential in the context of the
previous theorem. In §6.2 we will present a family of synchronized subshifts on which it
is impossible to carry out any construction analogous to that of GX in the sense that on
these shifts the previous theorem does not hold.

5. Implications related to Ryan’s theorem
In this section we discuss an application of the diffusive glider CA construction presented
above to the study of the structure of the abstract group Aut(X). The centralizer of a set
S ⊆ G (with respect to a group G) is

CG(S) = {g ∈M | g ◦ h = h ◦ g for every h ∈ S}.
In this section we consider centralizers with respect to some automorphism group Aut(X)
and we drop the subscript from the notation CAut(X)(S). The subgroup generated by S ⊆
Aut(X) is denoted by 〈S〉. The following definition is by Salo from [20].

Definition 5.1. For a subshift X, let k(X) ∈ N ∪ {∞, ⊥} be the minimal cardinality of a
set S ⊆ Aut(X) such that C(S) = 〈σ 〉 if such a set S exists, and k(X) = ⊥ otherwise.

It is a theorem of Ryan from [17] that k(AZ) �= ⊥, which he later generalized to
k(X) �= ⊥ whenever X is an infinite transitive SFT in [18]. This result is also presented
in [3, Theorem 7.7] with an alternative proof. Section 7.6 of [20] contains the following
observation concerning the lower bounds of k(X).

THEOREM 5.2. Let X be a subshift. The case k(X) = 0 occurs if and only if Aut(X) = 〈σ 〉.
The case k(X) = 1 cannot occur.

For conjugate subshifts X and Y it necessarily holds that k(X) = k(Y ).
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We will now show that k(X) = 2 for all infinite transitive sofic shifts, the proof of
which uses our diffusive glider CA construction and Lemma 5.7. The lemma was originally
proved in [12], and we will state it (and some associated definitions) in the generality
needed.

Definition 5.3. Given a subshift X ⊆ AZ, a diffusive glider automorphism group is any
tuple (G, ™, ← , → , s) (or just G when the rest of the tuple is clear from the context)
where G ⊆ Aut(X) is a subgroup, ™, ← , → ∈ A+, s ∈ N+ and
• the sets GF� = ∞™( ← ™™∗)∗™∞ and GFr = ∞™(™∗™ → )∗™∞ are characterized by

GF� = {x ∈ X | x is ™-finite and G(x) = σ s(x)} and

GFr = {x ∈ X | x is ™-finite and G(x) = σ−s(x)}
for some G ∈ G;

• for every x ∈ GF� we have that |j − k| ≥ | ← | whenever j , k ∈ occ�(x, ← ) are
distinct, that is, the occurrences of ← do not overlap in any point of GF� (and
similarly for all x ∈ GFr );

• for every ™-finite x ∈ X and every N ∈ N there is a G ∈ G such that for every i ∈ Z,
G(x)[i, i +N] ∈ L(GF�) ∪ L(GFr ).

If G is generated by a single automorphism G ∈ Aut(X), we say that G is a diffusive
glider CA.

Example 5.4. Let Y be an infinite transitive sofic shift. In the previous section we found a
conjugate subshift X on which we constructed the diffusive glider CA GX : X→ X. We
claim that this really is a diffusive glider CA in the sense of Definition 5.3 with an associ-
ated glider automorphism group (〈GX〉, ™, ← , → , pq), where p, q, ™, ← , → and
the fleets GF� and GFr are as in the previous section.

By Lemma 4.3 we know that for i ∈ {�, r} and for δ(�) = 1,δ(r) = −1,

GFi ⊆ {x ∈ X | x is ™-finite and GX(x) = σ δ(i)pq(x)} def= Si .
We prove the other inclusion when i = �, the case i = r being similar. Assume therefore
that x /∈ GF� is ™-finite and apply Theorem 4.11 for sufficiently large M. By Lemma 4.3
the set GF� is invariant under the map GX, so GtX(x) /∈ GF� and GtX(x) contains an
occurrence of → which is shifted to the right by the map GX. Therefore GX(GtX(x)) �=
σpq(GtX(x)) and GtX(x) /∈ S�. Since S� is invariant under the map GX, it follows that
x /∈ S�.

The second item in Definition 5.3 is clear, and the third item follows by Theorem 4.11.

We have a similar example on infinite synchronized shifts.

Example 5.5. Let Y be an infinite synchronized shift. In the previous section we found
a conjugate subshift X on which we constructed the glider CA GX,n : X→ X with
parameter n > |1p+1+p/K |. We claim that (〈{GX,n | n > |1p+1+p/K |}〉, ™, ← , → , pq)
is a diffusive glider automorphism group, where p, q, ™, ← , → and the fleets GF� and
GFr are as in the previous section.
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Fix some n > |1p+1+p/K |. By Lemma 4.3 we know that for i ∈ {�, r} and for δ(�) =
1,δ(r) = −1,

GFi ⊆ {x ∈ X | x is ™-finite and GXn(x) = σ δ(i)pq(x)} def= Si .
We prove the other inclusion when i = �, the case i = r being similar. Assume therefore
that x /∈ GF� is ™-finite. If x contains no occurrences of words from Bn, we can use the
same argument as in the previous example by using Theorem 4.12 instead of Theorem 4.11.
If on the other hand x contains on occurrence of a word from Bn, let k ∈ Z be the maximal
position at which such a word occurs. Then this word also occurs inGX,n(x) at position k,
so GX,n(x) �= σpq(x).

The second item in Definition 5.3 is clear. For the third item, let x ∈ X be ™-finite and
let N ∈ N be arbitrary. Fix some n > |1p+1+p/K | such that x contains no occurrences of
words from Bn. By Theorem 4.12 we can choose t ∈ N such that GtX,n(x)[i, i +N] ∈
L(GF�) ∪ L(GFr ) for every i ∈ N.

We also require the notion of an automorphism that fixes the orbit of a given periodic
point in a given subshift.

Definition 5.6. For a subshift X ⊆ AZ and a word w ∈ A+ such that wZ ∈ X, denote
Aut(X, w) = {F ∈ Aut(X) | F(O(wZ)) = O(wZ)}.

LEMMA 5.7. [12, Lemma 1] Let X ⊆ AZ be a subshift with a diffusive glider automorph-
ism group (G, ™, ← , → , s) such that ™-finite configurations are dense in X. Assume
that there is a strictly increasing sequence (Nm)m∈N ∈ NN and a sequence (Gm)m∈N ∈ GN

such that for any x → ™∞ ∈ GFr , ∞™ ← y ∈ GF� we have:
• x → .™Nm ← y ∈ X;
• Gm(x → .™N ← y) = x → ™.™N™ ← y for every N > Nm such that x → .™N →

y ∈ X;
• Gm(x → .™Nm ← y) = x™ → .™Nm ← ™y.
Then C(G) ∩ Aut(X, ™) = 〈σ 〉.

As earlier, let X be an infinite synchronized shift of the form given in Proposition 3.10
and consider the notation of §4. First we define maps F1, F2 : X→ X as follows. In any
x ∈ X:
• F1 replaces every occurrence of ™ → ™™™ ← ™ by ™ → ™™ ← ™™ and vice versa;
• F2 replaces every occurrence of ™ → ™™ ← ™ by ™™ → ™ ← ™ and vice versa.
It is easy to see that these maps are well-defined automorphisms of X. The automorphism
F : X→ X is then defined as the composition F2 ◦ F1. F has the following properties.
First, it replaces any occurrence of ™ → ™™™ ← ™ by ™™ → ™ ← ™™. Second, if x ∈ X
is a configuration containing only gliders ← and → separated by words from ™+ and if
every occurrence of ← is sufficiently far from every occurrence of → , then F(x) = x.

PROPOSITION 5.8. Let an infinite transitive sofic subshift X ⊆ AZ and GX, F : X→ X

be as above. Then C(〈GX, F 〉) = 〈σ 〉.
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Proof. Let (〈GX〉, ™, ← , → , pq) be the diffusive glider automorphism group from
Example 5.4. If we define G = 〈GX, F 〉, then it directly follows that (G, ™, ← , → , pq)
is also a diffusive glider automorphism group of X. We want to use Lemma 5.7 to show
that C(G) ∩ Aut(X, ™) = 〈σ 〉.

Recall that we denote p = |™|, q = |1|. Using the same notation as in the statement
of Lemma 5.7, let (Nm)m∈N with Nm = 2mq + 3 and (Gm)m∈N with Gm = G−(m+1)

X ◦
F ◦GmX. Let x → ∈ ∞™Lr , ← y ∈ L�™∞ be arbitrary. Fix some m ∈ N. Since ™ is
synchronizing in X, it is clear that x → .™Nm ← y ∈ X and it is easy to verify that:
• Gm(x → .™N ← y) = x → ™.™N™ ← y for N > Nm;
• Gm(x → .™Nm ← y) = x™ → .™Nm ← ™y.
Therefore C(G) ∩ Aut(X, ™) = 〈σ 〉.

Now let H ∈ C(G) be arbitrary. Let us show that H ∈ Aut(X, ™). Namely, assume
to the contrary that H(™Z) = wZ /∈ O(™Z) for some w = w1 · · · wp (wi ∈ A). The
maps Pk in the definition of GX have been defined so that Pk(x)[i] = x[i] whenever
x contains occurrences of ™ only at positions strictly greater than i, so in particular
GX(w

Z) = wZ. Consider x = ∞™. ← ™∞ ∈ GF� with the glider ← at the origin.
Note that H(x)[(i − 1)p, ip − 1] �= w for some i ∈ Z (otherwise H(x) = wZ = H(™Z),
contradicting the injectivity of H) and H(x)[−∞, ip − (jq)p − 1] = · · · www for some
j ∈ N+. By the earlier observation on the maps Pk it follows that GtX(H(x))[−∞, ip −
(jq)p − 1] = · · · www for every t ∈ Z but H(GjX(x))[ip − (j + 1)qp, ip − (jq)p −
1] = H(σ (pq)j (x))[ip − (j + 1)qp, ip − (jq)p − 1] = H(x)[ip − qp, ip − 1] �= wq ,
contradicting the commutativity of H and GX. Thus H ∈ Aut(X, ™).

We have shown that H ∈ C(G) ∩ Aut(X, ™) = 〈σ 〉, so we are done.

THEOREM 5.9. (Finitary Ryan’s theorem) k(X) = 2 for every infinite transitive sofic
shift X.

Proof. Every infinite transitive sofic shift is conjugate to a subshift X of the form given
in Proposition 3.10, so k(X) ≤ 2 follows from the previous proposition. Clearly Aut(X) �=
〈σ 〉, so by Theorem 5.2 it is not possible that k(X) < 2 and therefore k(X) = 2.

Ryan’s result k(X) �= ⊥ can probably be generalized to synchronized subshifts using
the same type of argument as in [18], but we have not seen this stated explicitly in print.
The generalization to transitive sofic shifts has, however, been presented in [22]. We now
outline an alternative proof in the glider CA framework to cover the case of synchronized
subshifts.

PROPOSITION 5.10. Let an infinite synchronized subshift X ⊆ AZ and GX,n, F : X→ X

be as above. Then C(〈{GX,n | n > |1p+1+p/K |} ∪ {F }〉) = 〈σ 〉.

Proof. By using Example 5.4 we see that 〈{GX,n | n > |1p+1+p/K |} ∪ {F }〉 is a diffusive
glider automorphism group. Fix some n > |1p+1+p/K |. We conclude by replacing every
occurrence of GX by GX,n in the proof of Proposition 5.8.

Ryan’s theorem immediately follows.
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THEOREM 5.11. (Ryan’s theorem) k(X) �= ⊥ for every synchronized subshift X.

We end this section with the following remark. The Finitary Ryan’s theorem can
be interpreted as a compactness result saying that, for an infinite transitive sofic shift
X, the group Aut(X) has a finite subset S such that C(S) = 〈σ 〉. One may wonder
whether this compactness phenomenon is more general: in [20, §7.3] the question was
raised whether for a mixing SFT X and for every R ⊆ Aut(X) such that C(R) = 〈σ 〉
there is a finite subset S ⊆ R such that also C(S) = 〈σ 〉. In the same section it was
noted that to construct a counterexample it would be sufficient to find a locally finite
group G ⊆ Aut(X) whose centralizer is generated by σ . A different strategy based on
an ad hoc glider CA construction was used in [12] to construct a counterexample in
the case when X is the binary full shift. We are now in a position to easily generalize
this counterexample to all infinite synchronized subshifts by combining the following
proposition with Proposition 5.10.

PROPOSITION 5.12. Let an infinite synchronized subshift X ⊆ AZ andGX,n, F : X→ X

be as above and let S ⊆ 〈{GX,n | n > |1p+1+p/K |} ∪ {F }〉 be finite. Then C(S) � 〈σ 〉.

Proof. Assume to the contrary that C(S) = 〈σ 〉. Since S is finite, it is easy to see that
whenever n ∈ N+ is sufficiently large, the elements of S cannot remove or add occurrences
of the words wi = ™1n+i™ (i ∈ N) in any configuration. Let therefore H ∈ Aut(X) be the
automorphism which, given a point x ∈ X, replaces every occurrence of the pattern

0w30w10w20 by 0w30w20w10

and vice versa (it exists by Lemma 3.12 with the choice u = 0). The elements of S cannot
remove or add occurrences of the words defined above, so H commutes with every element
of S, a contradiction.

6. Restrictions to constructing glider automata
6.1. Example: the choice of ™ in mixing sofic shifts. In §4 we constructed glider
automata on an arbitrary infinite transitive sofic shift X that can diffuse any ™-finite
configuration into two glider fleets. In other words, the diffusion is guaranteed against
the background of the periodic configuration ™Z, but in the construction we required that
the word ™ satisfies the synchronization assumption of Proposition 3.10. One may then
ask whether this assumption is necessary. In particular, if we have a subshift X ∈ AZ and
a symbol 0 ∈ A such that 0Z ∈ X, it would feel the most natural to consider finiteness
with respect to this 1-periodic configuration and ask whether there exists a reversible CA
that can diffuse every 0-finite configuration. We show by an example that sometimes this
cannot be done.

In this subsection we consider the mixing sofic shift X ⊆ {0, 1, a, b, ↓, ↑}Z whose
language L(X) consists of all the subwords of words in L = (L00∗L10∗)∗, where

L0 = 1(ab)∗↑(ab)∗↓(ab)∗1 ∪ 1(ab)∗↓(ab)∗↑(ab)∗1,

L1 = 1(ab)∗↓(ab)∗↓(ab)∗1 ∪ 1(ab)∗↑(ab)∗↑(ab)∗1.

https://doi.org/10.1017/etds.2021.107 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.107


Glider automata on all transitivesofic shifts 3739

The intuition is that words w0 ∈ L0 encode the digit 0 (opposing arrows in w0 negate each
other), words w1 ∈ L1 encode the digit 1 (arrows in the same direction in w1 amplify each
other) and in configurations of X consecutive encodings of the same digit cannot occur.

First let us note that F(0Z) = 0Z and F(O((ab)Z)) = O((ab)Z) for every F ∈ Aut(X),
because 0Z (respectively, (ab)Z) are the only configurations (up to shift) of least
period 1 (respectively, 2) in X. Throughout this subsection let e� = ∞0.1(ab)∞ and
er = ∞(ab)1.0∞.

LEMMA 6.1. If F ∈ Aut(X), then F(e�) = σ i(e�) and F(er) = σ j (er ) for some i, j ∈ Z.

Proof. Let F be a radius-r reversible CA whose inverse also has radius r. We may assume
without loss of generality (by composing F with a suitable shift if necessary) that the
rightmost occurrence of 1 in F(e�) is at position 0. We first claim that F(e�) does not
contain any occurrence of words from L0 ∪ L1 (equivalently, F(e�)[−∞, −1] = ∞0).
Otherwise assume without loss of generality that the leftmost such occurrence is from
L0. Let x = ∞01↑↓103r+1.0∞ (that is, x contains an occurrence of a word from L0).
Its inverse image F−1(x) belongs to X and thus also the gluing F−1(x)⊗ e� belongs to X
because the right-infinite word 1(ab)∞ in e� does not give additional constraints for the left
side of the sequence. But then the configuration F(F−1(x)⊗ e�) contains two consecutive
occurrences of words from L0, contradicting the definition of X.

Now to prove that F(e�) = e� it remains to show that F(e�) cannot contain any arrows,
so we assume to the contrary that F(e�) contains one or two arrows. The possibility that
F(e�) contains two arrows yields a contradiction by the same argument as in the previous
paragraph (for example, if F(e�) contains two opposing arrows, then glue F−1(x)⊗ e�,
in which case F(F−1(x)⊗ e�) contains two consecutive encodings of the digit 0), so
let us assume that F(e�) contains a single arrow (whose distance from the single 1 in
F(e�) is at most r). Let e′� = ∞0.1(ab)2r+1↑(ab)∞. Since F is reversible, it follows that
F(e�) �= F(e′�) and, in particular, F(e′�) contains two arrows. Now we can use the same
argument as above to show that this is not possible, so we conclude that F(e�) = e�.

By symmetry F(er) = σ j (er ) for some j ∈ Z.

For now, if F , i, j are as in the previous lemma, we say that the intrinsic left
(respectively, right) shift of F is equal to i (respectively, equal to j). In the following let
x↑ = ∞(ab).↑(ab)∞ and x↓ = ∞(ab).↓(ab)∞.

LEMMA 6.2. If F ∈ Aut(X) has intrinsic left shift i (respectively, intrinsic right shift i),
then F(x↑) ∈ σ i({x↑, x↓}) and F(x↓) ∈ σ i({x↓, x↑}). In particular, the intrinsic right and
left shift are equal.

Proof. Let F be a radius-r reversible CA whose inverse also has radius r and assume
without loss of generality (by composing F with a suitable shift if necessary) that the
intrinsic left shift is i = 0, the case of the intrinsic right shift i = 0 being symmetric. We
prove the claim for F(x↑), the other case being symmetric. We first claim that F(x↑) ∈
O(x↑) ∪O(x↓). Otherwise F(x↑) contains at least two occurrences of arrows or at least
one occurrence of 1. Denoting y = ∞0.1(ab)2r+1↑(ab)∞, in both cases F(y)[−∞, 2r +
1] = ∞0.1(ab)r by the previous lemma, and going further to the right in F(y) there must
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be two occurrences of arrows after which there may be an occurrence of 1. We will derive
a contradiction in the case that these arrows point in opposing directions, after which it
will be clear that a similar argument yields a contradiction in the case that the arrows
point in the same direction. Let x = ∞01↑↓103r+1.0∞ (that is, x contains an occurrence
of a word from L0). The gluing F−1(x)⊗ y belongs to X because the right-infinite word
1(ab)2r+1↑(ab)∞ in y does not give additional constraints for the left side of the sequence.
But then the configuration F(F−1(x)⊗ y) = x ⊗ F(y) contradicts the definition of X.

Now we prove that F(x↑) ∈ {x↑, x↓}. Otherwise we have that F(x↑)∈{σk(x↑), σk(x↓)}
for k �= 0 and we may assume without loss of generality that 0 < k ≤ r (by considering
instead the CA F−1 if necessary) and that F(x↑) = σk(x↑) (by composing F with the
CA that only flips the direction of every arrow if necessary). Consider the point x =
∞0.1(ab)2r+1↑(ab)∞. None of the configurations F t(x) (t ∈ N) contain an occurrence
of a word from L0 ∪ L1 by the same argument as in the previous paragraph and as in the
proof of the previous lemma. Similarly, none of the F t(x) contain two arrows and the
unique arrow in F t(x) points in the direction ↑. Since F(x↑) = σk(x↑), it follows that for
t > 0 the distance between 1 and ↑ in F t(x) is strictly smaller than in x and, in particular,
F t(x) /∈ O(x). However, from F(x↑) = σk(x↑) it also follows that in each F t(x) the
distance between 1 and ↑ is bounded, so F t

′
(x) = σm(F 2t ′(x)) for some t ′ ∈ N+, m ∈ Z.

Therefore σm(F 2t ′(x)) has two distinct preimages under the map σm ◦ F t ′ (they are F t
′
(x)

and σ−m(x); for distinctness recall that F t(x) /∈ O(x) for t ∈ N+), which contradicts the
reversibility of F.

In the following we say that the intrinsic shift of F ∈ Aut(X) is equal to i if i is its
intrinsic left (or equivalently right) shift. Next we will conclude that for any F ∈ Aut(X)
there are 0-finite configurations with long contiguous segments of non-0 symbols on which
F cannot do anything non-trivial. In fact, this holds for every finitely generated subgroup
of Aut(X).

PROPOSITION 6.3. For all n ∈ N let xn = ∞0.1(ab)n↑(ab)n↑(ab)n10∞, yn = ∞0.1(ab)n

↓(ab)n↓(ab)n10∞ and Zn = O({xn}) ∪O({yn}). For every finitely generated G there is
N ∈ N such that F(Zn) = Zn for all F ∈ G and n ≥ N .

Proof. Let {F1, . . . , Fk} ⊆ Aut(X) be a finite set that generates G. Since the statement
of the proposition concerns the shift-invariant sets Zn, we may assume without loss of
generality (by composing all the Fi by suitable powers of the shift if necessary) that the
intrinsic shift of every Fi is equal to 0. Fix a number r ∈ N such that all the Fi are radius-r
CAs whose inverses are also radius-r CAs. To prove the claim it is sufficient to show that
Fi({xn, yn}) = {xn, yn} for every n ≥ 2r + 1 and for every 1 ≤ i ≤ k. But this conclusion
directly follows from the two previous lemmas.

6.2. Case study: S-gap shifts. One may ask how much it is possible to extend
Theorem 4.13 to more general synchronized subshifts. In this subsection we study a
natural class of synchronized subshifts known as S-gap shifts and we find out that at least
in this class Theorem 4.13 cannot be generalized at all. A similar analysis on beta-shifts is
presented in [13].
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Definition 6.4. A subshift X ⊆ AZ is a coded subshift (generated by a language L ⊆ A+)
if L(X) is the set of all subwords of elements of L∗.

For non-empty S ⊆ N, we define the S-gap shift XS ⊆ �Z

2 as the coded subshift
generated by {01n | n ∈ S}. We may equate S with its characteristic sequence and we write
S(i) = 1 if i ∈ S and S(i) = 0 if i /∈ S (for i ∈ N).

Every XS is synchronized, because 0 is a synchronizing word. By [4, Theorem 3.4] an
S-gap shift is sofic if and only if S is eventually periodic. In particular, S is infinite and
1Z ∈ XS whenever XS is not sofic.

Many XS satisfy an even stronger property.

Definition 6.5. We say that a subshift X is a shift with specification (with transition length
n ∈ N) if for every u, v ∈ L(X) there is a w ∈ Ln(X) such that uwv ∈ L(X).

All shifts with specification are synchronized [1].
By [9, Example 3.4] the subshift XS has the specification property if and only if the

sequence S ∈ �N

2 does not contain arbitrarily long runs of 0s between two 1s and gcd{n+
1 | n ∈ S} = 1.

LEMMA 6.6. If XS is not sofic, then any F ∈ Aut(XS) has 1Z as a fixed point.

Proof. If 0 /∈ S then 1Z is the only fixed point ofXS and we are done. Therefore let 0 ∈ S,
assume to the contrary that F(0Z) = 1Z and F(1Z) = 0Z and consider the sequence of
points xn = ∞10n1∞ ∈ XS (n ∈ N). Clearly the configurations F(xn) contain as subwords
the words 01m0 for all sufficiently large m. But then N \ S would have to be finite,
contradicting the assumption that S is not eventually periodic.

For the rest of this section letXS,� = {x ∈ XS | x[0,∞] = 01∞} andXS,r = {x ∈ XS |
x[−∞, 0] = ∞10}. These sets are non-empty whenever S is infinite.

LEMMA 6.7. Assume that XS is not sofic. For every F ∈ Aut(XS) there exists i ∈ Z such
that F(XS,�) ⊆ σ i(XS,�) and F(XS,r ) ⊆ σ i(XS,r ).

Proof. Let xr ∈ XS,r be arbitrary. Without loss of generality (by composing F with a
suitable power of the shift if necessary) we may assume that F(xr) ∈ XS,r . We will show
that F(XS,�) ⊆ XS,�. Let us therefore assume to the contrary and without loss of generality
(by considering F−1 instead of F if necessary) that there exists x� ∈ XS,� such that
F(x�) ∈ σ i(XS,�) for some i > 0. Since S is not eventually periodic, it follows that there
are arbitrarily large j ∈ N such that S(j) = 1 and S(j + i) = 0. This is a contradiction,
because for sufficiently large such j we have that x = x�[−∞, −1]01j .0xr [1,∞] ∈ XS ,
but from F(x�) ∈ σ i(XS,�) and F(xr) ∈ XS,r it follows that F(x) contains an occurrence
of the forbidden pattern 01j+i0.

Because F(XS,�) ⊆ XS,�, we can use the argument of the previous paragraph to show
that F(XS,r ) ⊆ XS,r .

If F and i are as in the previous lemma, we say that the intrinsic shift of F is equal to i.
If i = 0, we say that F is shiftless.
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COROLLARY 6.8. Assume that XS is not sofic. Let F ∈ Aut(XS) be a shiftless radius-r
automorphism and let f : �2r+1

2 → �2 be a local rule that defines F. For any word w ∈
�r2 we have that f (w01r ) = f (1r0w) = 0, f (w1r+1) = 1 and f (1r+1w) = 1 (whenever
all the words involved are from L(XS)).

COROLLARY 6.9. Assume that XS is not sofic. Let F ∈ Aut(XS) be a shiftless radius-r
automorphism whose inverse is also a radius-r automorphism. If x ∈ XS , i ∈ Z and n ≥
2r , then 01n0 occurs in x at position i if and only if it occurs in F(x) at position i.

Now we can show that Theorem 4.13 does not extend to general synchronized shifts and
not even to general shifts with specification.

THEOREM 6.10. Assume that XS is not sofic. Then every reversible cellular automaton
F : XS → XS has an almost equicontinuous direction.

Proof. Assume that F has intrinsic shift i. Then F ′ = σ−i ◦ F is shiftless. Let r be a
radius for both F ′ and its inverse and choose an arbitrary n ∈ S such that n ≥ 2r . By the
previous corollary the word 01n0 is blocking for F ′ so by Proposition 2.8 F ′ is almost
equicontinuous. Then −i is an almost equicontinuous direction for F.

Corollary 6.9 can also be used to show that Theorem 5.9 (the Finitary Ryan’s theorem)
does not extend to shifts with specification.

THEOREM 6.11. If XS is not sofic, then k(XS) = ∞.

Proof. We argue similarly to the proof of Proposition 5.12. In any case k(XS) �= ⊥ by
Theorem 5.11. To see that k(XS) = ∞, assume to the contrary that R ⊆ Aut(XS) is a set
of cardinality of n ∈ N such that C(R) = 〈σ 〉. By composing the elements of R by suitable
powers of the shift we may assume without loss of generality that all the elements of R are
shiftless. Fix a number r ∈ N+ such that all elements of R are radius-r automorphisms
whose inverses are also radius-r automorphisms.

Let n1 < n2 < n3 ∈ S be three distinct numbers such that ni ≥ 2r . Let wi = 1ni and
let H ∈ Aut(XS) be the automorphism which, given a point x ∈ XS , replaces every
occurrence of the pattern

0w30w10w20 by 0w30w20w10

and vice versa (it exists by Lemma 3.12 with the choice u = 0). In light of Corollary 6.9 it
is evident that the elements of R cannot remove or add occurrences of the patterns defined
above, so H commutes with every element of R, a contradiction.

Combining this with Theorem 5.9 yields the following seemingly strong (but perhaps
not surprising) corollary.

COROLLARY 6.12. If XS is not sofic then Aut(XS) �� Aut(Z) for every transitive sofic Z.
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7. Conclusions
We conclude with some speculations. We guess that whenever X is a transitive subshift for
which Aut(X) is ‘large’ as an abstract group, then k(X) <∞ implies that Aut(X) contains
a reversible CA without almost equicontinuous directions. This would be interesting
because it would connect a group-theoretical property of Aut(X) to the possible CA
dynamics on the subshift X.

The group Aut(X) is large at least when X is an infinite synchronized subshift in the
sense that it contains an isomorphic copy of the free product of all finite groups [6]. If X
is an infinite transitive sofic shift, then, by Theorems 4.13 and 5.9, Aut(X) contains a CA
without almost equicontinuous directions and k(X) = 2. On the other hand, in the previous
subsection we saw examples of subshifts X with the specification property such that every
F ∈ Aut(X) has a direction that admits blocking words, and we used the existence of
blocking words to prove that k(X) = ∞.

The assumption of largeness of Aut(X) is necessary. By [6] for any finite group G there
is a coded subshift X such that Aut(X) � Z⊕ G, where the part Z corresponds to the shift
maps. Then k(X) = 0 whenever CG(G) = {1G} but every element of Aut(X) has an almost
equicontinuous direction.

Problem 7.1. Is k(X) = ∞ for every infinite synchronized subshift X such that every F ∈
Aut(X) admits an almost equicontinuous direction?

We note that there are synchronized non-sofic subshifts that admit CAs with only
sensitive directions. For example, whenever X is mixing, synchronized and non-sofic, so
also isY = X ×X and the CA F : Y → Y defined by F(x1, x2) = (σ (x1), σ−1(x2)) for
x1, x2 ∈ X has only sensitive directions. In the light of examples such as this, it is not clear
what kind of an answer one should expect to the following problem.

Problem 7.2. Characterize the transitive non-sofic subshifts that admit reversible CAs with
only sensitive directions.

We guess that k(Y ) = ∞ at least when Y = XS ×XS for some synchronized non-sofic
S-gap shift XS , which would mean that the existence of reversible CAs with only sensitive
directions is not sufficient to prove a finitary Ryan’s theorem for general synchronized
shifts.

Problem 7.3. Is k(X) = ∞ for every non-sofic synchronized subshift X?

We also ask whether the existence of a reversible CA F : X→ X with only sensitive
directions on a subshift X has a simple dynamical characterization based on X or a simple
combinatorial characterization based on the language L(X) or the syntactic monoid SX.
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