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We provide motivation for and then study the synthesis of Petri nets. Synthesis can avoid

the state exploration problem by guaranteeing correctness for the Petri net. We propose

conditions to be imposed on a synthesis shared pb-type subnet for systems specified in Petri

nets that ensure the preservation of the liveness and boundedness structural properties.

Specifically, we propose a group of sufficient conditions, or both sufficient and necessary

conditions, for liveness preservation and boundedness preservation. Possible applications of

this synthesis method are illustrated through an example in the form of a flexible

manufacturing system. These results are useful for studying the static and dynamic

properties of Petri nets for analysing the properties of large complex systems.

1. Introduction

Subsystem sharing is a common and basic issue in system design. For example, in

manufacturing engineering, plant and workstations are often shared by several processes

as subsystems. For convenience, we can use the Petri net synthesis method to verify these

subsystems.

Petri net based synthesis is a well-known approach to system design, which provides a

conceptual foundation for synthesising a system from a set of component modules in such

a way that the system can be effectively analysed for design correctness and consistency.

We will begin by giving a brief review of some representative methods in the synthesis of

Petri nets.

Agerwala and Choed-Amphai (1978) defined a kind of ST-net, which, under certain

conditions, can be used to model some systems. Cheung (Krogh and Beck 1986) proposed

a Petri-net-based synthesis methodology to resolve the use-case driven system design

problem. The design objective for a number of concerns related to the sharing of resources,

the finite capacity of system components and the need for system re-initialisation is to
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obtain a robust system that is live, safe and reversible. Lorenz (Koh and DiCesare 1991)

presented an algorithm for synthesising a finite place/transition Petri net (p/t-net) from a

finite set of labelled partial orders (a finite partial language). The refinement and abstract

representation method for Petri nets has been proposed (Badouel and Darondeau 2004),

and is the key method for ensuring the synthesis net preserves well-behaved properties.

Xia investigated the preservation of properties for a type of synthesised Petri net so that,

subject to some constraints, liveness and boundedness are preserved after merging certain

sets of subnets (Cheung et al. 2006).

Lorenz et al. (2008) presented a feedback control synthesis method to provide a

systematic and easily implementable tool for specialists in the DES field. This method has

the advantage of being applicable to both safe and non-safe PN models.

Xia (2006) proposed an approach for modelling Web service composition using Petri nets

and based on OWL-S. In this approach, the boundedness and liveness properties of the

Petri net models are analysed in order to guarantee the correctness of the composite Web

service. An overall system Petri net model is obtained by synthesising individual modules

satisfying system features such as production rates, buffer capacities and machine expected

up, down or idle time (Xia 2008). Xia also investigated the transformation achieved by

merging a set of Petri net subnets beyond asymmetric choice nets, and proposed conditions

for it to preserve structural liveness (Vasiliu et al. 2009).

Kindler presented mining and synthesis algorithms that derive a Petri net model of a

business process from a versioning log of a document management system (Ding et al.

2008). Carmona presented an algorithm for the synthesis of bounded Petri nets from

transition systems (Ding et al. 2008). This algorithm has also been implemented in a tool.

Bergenthum showed that VipTool can synthesise Petri nets from partially ordered runs

and explained how, with the synthesis feature included, VipTool can be used for a stepwise

and iterative formalisation and validation procedure for business process Petri net models

(Tsinarakis et al. 2005).

Xia investigated one type of transformation and its property-preserving approach to

verification (Xia 2005). He proposed a kind of sharing Single-Link subnet synthesis

method, with conditions for preserving structural liveness of the synthesis net. In order

to study the preservation of properties for the synthesis net, in the current paper we

investigate another type of transformation and its property-preserving approach to

verification. We propose a kind of sharing pb-type subnet synthesis method, which,

subject to some conditions, ensures the preservation of the liveness and boundedness

dynamic properties.

1.1. Organisation of the paper

We give basic definitions in Section 2, and then present the refinement and abstract

representation method for Petri nets in Section 3. We obtain conditions that ensure the

synthesis will preserve liveness and boundedness in Section 4, and present an application

of the synthesis method for solving subsystem sharing problems in Section 5. Finally, we

present our conclusions in Section 6.
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2. Basic definitions

In this section, we will give a quick review of some key definitions – a more general

discussion on Petri nets can be found in Murata (1989).

A weighted net is denoted by N = (P , T , F,W ) where:

— P is a non-empty finite set of places;

— T is a non-empty finite set of transitions with

P
⋂

T = φ;

— F is a flow relation satisfying

F ⊆ (P × T ) ∪ (T × P );

— W is a weight function defined on the arcs, that is,

W : F → {1, 2, 3, . . .}.

We say

N = (P1, T1, F1,W1)

is a subnet of N if

P1 ⊂ P

T1 = T

P1 �= �

T1 �= �

F1 = (P1 × T1) ∪ (T1 × P1)

W1 = W | F1 (that is, W1 is the restriction of W on F1).

A marking of a net N = (P , T , F,W ) is a mapping

M : P → {0, 1, 2, · · · }.

A Petri net is a pair (N,M0), where N is a net and M0 is the initial marking of N. A

place p is said to be marked by M if M(p) > 0. A transition t is enabled or fireable at a

marking M if for every p ∈ t, we have

M(p) � W (p, t).

A transition t may be fired if its enabled firing transition t changes the marking M to a

new marking M
′
, where M

′
is obtained by removing W (p, t) tokens from each p ∈ t and

adding W (t, p) tokens to every p ∈ t∗. This process is denoted by

M[t > M
′
.

If

M[t1 > M1[t2 > M2 > · · ·Mn−1[tn > Mn,

then σ = t1 · · · tn is called a firing sequence leading from M to Mn and is denoted by

M[σ > Mn.
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We write R(M0) to denote the set of all markings reachable from the initial

marking M0.

A transition t is said to be live in (N,M0) if for any M ∈ R(M0), there exists M
′ ∈ R(M)

such that t can be fired at M
′
. We say (N,M0) is live if and only if every transition of N

is live. A place p is said to be bounded in (N,M0) if and only if there exists a constant k

such that M(p) � k for all M ∈ R(M0). We say (N,M0) is bounded if every place of N is

bounded.

Definition 2.1. A net

N0 = (P0, T0, F0,W0)

is said to be a pb-type subnet of N = (P , T , F,W ) if and only if:

(1) N0 is a subnet ofN.

(2) •T0 ∪ T •
0 ∩ (P − P0) = �.

(3) There exists a transition set

TA ⊆ T − T0

such that the subnet generated by P0 and T0 ∪ TA forms a strongly connected state

machine in N.

(4) There exists a directed path from every input place or initially maked place to every

output place within N0.

Definition 2.2. Suppose

N1 = (P1, T1, F1,W1)

N2 = (P2, T2, F2,W2)

are two Petri nets such that

P1 ∩ P2 = P0 �= �

T1 ∩ T2 = �.

Then N = (P , T , F,W ) is said to be a sharing synthesis net of N1 and N2 if

P = P1 ∪ P2

T = T1 ∪ T2

F = F1 ∪ F2.

Definition 2.3. Suppose M10 is the initial marking of N1 and M20 is the initial marking of

N2 such that for all p ∈ P0 we have

M10(p) = M20(p).

Then the initial marking of the sharing synthesis net N is

M0(p) =

{
M10(p) p ∈ P1

M20(p) p ∈ P2.
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The corresponding net system is

Σ1 = (N1,M10)

Σ2 = (N2,M20)

Σ = (N,M0).

Σ is said to be the sharing synthesis net system of Σ1 and Σ2.

Definition 2.4. Suppose

N1 = (P1, T1, F1,W1)

N2 = (P2, T2, F2,W2)

are two Petri nets. Then N = (P , T , F,W ) is said to be a synthesis net of N1 and N2 with

shared pb-type subnets if the following conditions are satisfied:

(1) We have

P0 = P1 ∩ P2 �= �

T0 = T1 ∩ T2 �= �.

(2) We have

P = P1 ∪ P2

T = T1 ∪ T2

F = F1 ∪ F2.

(3) N1 and N2 share the pb-type subnet set N0 defined by

N0 = {Npb1, Npb2, · · · , Npbk},

where Npbi(i = 1, 2, · · · , k) are pb-type subnets.

Definition 2.5. Suppose

Σ1 = (N1,M10)

Σ2 = (N2,M20)

are two Petri net systems, and suppose Σ = (N,M0) is such that

(1) N is a subnet of shared pb-type subnets of N1 and N2;

(2) for all p ∈ P0 with M10(p) = M20(p) we have M0 is defined as

M0(p) =

{
M10(p) p ∈ P1

M20(p) p ∈ P2.

Then Σ is said to be the synthesis net system of the Σ1 and Σ2 shared pb-type subnets.

Definition 2.6. Suppose Σ = (N,M0) is a Petri net system and

P = P1 ∪ P2

P1 ∩ P2 = �.
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Then (pi, pj) is said to be a place ordered pair of Σ = (N,M0) on P1 if the following

conditions are satisfied:

(1) pi, pj ∈ P1 and i �= j.

(2) If there exists M1 ∈ R(M0) such that

M1(pi) = 0

M1(pj) > 0,

then for all σ ∈ (T − p•
j )

∗ we have

M1[σ > M2

M2(pi) = 0.

Definition 2.7. Suppose (pi, pj) is a place ordered pair of Σ1 on P0 and (pj , pi) is a place

ordered pair of Σ2 on P0. Then (pi, pj) is said to be an inter-reciprocal place ordered pair

of Σ1 and Σ2 on P0.

Definition 2.8. Suppose Σ is the sharing synthesis net system of Σ1 and Σ2, and pi, pj ∈ P0.

Then (pi, pj) is said to be a sharing place ordered pair if and only if:

(1) For all M ∈ R(M0) we have both

M(pi) > 0

M(pj) > 0.

(2) If M[t
′
> M1 (where t

′ ∈ T1 ∩ p•
i ), then for all

σ ∈ (T − T1 ∩ p•
j )

∗

we have

M1[σ > M2

and for all

t ∈ T ∩ p•
j

we have

¬M2[t > .

3. Refinement and abstract operations

In this section, we present a pb-type subnet refinement operation and a pb-type abstract

operation. The two operations, which preserve boundedness and liveness, will be useful

for proving some theorems in Section 4.

Definition 3.1 (pb-type subnet abstract operation). The Petri net

N
′
=

(
P

′
, T

′
, F

′
,W

′
)

is obtained from the Petri net

N = (P , T , F,W )

https://doi.org/10.1017/S0960129512000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000515


Liveness and boundedness analysis of Petri net synthesis 7

by using a place P0 to replace a pb-type subnet

N0 = (P0, T0, F0,W0),

where:

(1) P
′
= (P − P0) ∪ {p0};

(2) T
′
= T − T0;

(3) F
′
= (F − F0 − ({(t, p), (p, t) | t ∈ T − T0, p ∈ P0} ∩ F))

∪{(t, p0) | t ∈ T − T0, t
• ∩ P0 �= �} ∪ {(p0, t) | t ∈ T − T0, t

• ∩ P0 �= �};
(4) for all

t ∈• P0 ∪ P •
0 − T0 − TA,

we have

W
′
(p0, t) =|• t ∩ P0 |

W
′
(t, p0) =|• t ∩ P0 |;

(5) we have

M
′

0(p0) =
∑
p∈P0

M0(p)

and for p ∈ P
′ − {p0}

M
′

0(p) = M0(p).

Definition 3.2 (pb-type subnet refinement operation). The Petri net

N = (P , T , F,W )

is obtained from the Petri net

N
′
=

(
P

′
, T

′
, F

′
,W

′
)

by using a pb-type subnet

N0 = (P0, T0, F0,W0)

to replace p0. This operation is the inverse transformation of the pb-type subnet abstract

operation, that is, (N
′
,M

′

0) is transformed into (N,M0).

Definition 3.3. The (N
′
,M

′

0) obtained from (N,M0) by a pb-type subnet abstract operation

comprises the net N
′
and the marking M

′

0, where

M
′

0(p) =

⎧⎨
⎩

∑
p∈P0

M(p) p = p0

M0(p) p ∈ P
′ − {p0}.

Lemma 3.1. Suppose (N
′
,M

′

0) is obtained from (N,M0) by a pb-type abstract operation.

If there exist a fireable transition sequence σ
′
and marking M

′
such that

M
′

0[σ
′
> M

′
,
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then there exist a fireable transition sequence σ, corresponding to σ
′
, and marking M such

that

M0[σ > M.

Proof. By the assumption, there exist a fireable transition sequence σ
′
and marking M

′

such that M
′

0[σ
′
> M

′
. Suppose

σ
′
= σ

′

1t1σ
′

2t2, · · · , zjσ
′

i ti, · · · , zj · · · tkσ
′

q,

where every

σ
′

i ∩ (p•
0 ∪• p0) = �,

every zi ∈ •p0 and every zi ∈ p•
0. Then in (N,M0), we have

ti, zi ∈ TA ∪ {•P0 ∪ P •
0 − T0 − TA}.

By Definition 2.1, we have for all

x ∈ (P0 ∩ t•0) ∪ {p ∈ P0 | M0(p) > 0}

and for all

y ∈ •zi ∩ P0, i = 1, 2, · · · n
there exists a path δi from x to y such that δi lies entirely within N0. Since these paths

lie within a connected state machine, they are all fireable sequences at M1 if M1(pδ) > 0,

where pδ ∈ δi and M1 ∈ R(M0), and every firing will preserve the number of tokens within

P0. In particular, some of them are fired so that every place in

•zi, i = 1, 2, · · · n

gets a token eventually in (N,M0). Let σi be such a firing sequence if a sequence in δi is

fired. Then, the sequence

σ = σ
′

1t1σ
′

2t2, · · · , σizjσ
′

i ti, · · · , σjzj · · · tkσ
′

q,

is fireable. Since firing σi preserves the number of tokens, we have M0[σ > M.

Lemma 3.2. Suppose (N
′
,M

′

0) is obtained from (N,M0) by a pb-type abstract operation.

If there exist a fireable transition sequence σ and marking M such that

M0[σ > M,

then there exist a fireable transition sequence σ
′
(corresponding to σ) and marking M

′

such that

M
′

0[σ
′
> M

′
.

Proof.

(1) If σ is the null sequence, it is obvious that M = M0. Then, by Definitions 3.1 and 3.3,

we have σ
′
is the null sequence and M

′
= M

′

0.
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(2) We now assume the proposition holds for every v, where | v |� n, that is, for such v

and M1, we have M0[v > M1 implies M
′

0[v
′
> M

′

1. Let σ = vt and the marking M

satisfy

M0[v > M1[t > M.

If t ∈ T0, we have σ
′
= v.

By Definitions 3.1 and 3.3, we have

M
′
= M

′

1

M
′

0[σ
′
> M

′
.

If t ∈ T − T0, we have σ
′
= vt.

By the above assumption, it is now sufficient to show that t is fireable at M
′
. By

Defnition 3.3,

M
′

1(p0) =
∑
p∈P0

M1(p)

and M
′

1(p) = M1(p) for p ∈ P − {p0}. Since t is fireable at M1 in N, we have

M1(p) � W (p, t)

for all p ∈• t in N. Hence

M
′
(p) � W

′
(p, t)

for all p ∈• t in N
′
. If

p ∈ •t ∪ t• − {p0},
we have

M
′
(p) = M(p)

= M1(p) ± 1

= M
′

1(p) ± 1

M
′
(p0) =

∑
p∈P0

M(p)

= M
′

1(p0) + W (t, p0) − W (p0, t).

If

p ∈ P
′ − (•t ∪ t•),

then

M
′
(p) = M(p) = M1(p) = M

′

1(p).

Hence,

M
′

0[σ
′
> M

′

1[t > M
′
,

which completes the proof.

Theorem 3.1. Suppose (N
′
,M

′

0) is obtained from (N,M0) by a pb-type abstract operation.

Then (N
′
,M

′

0) is bounded if and only if (N,M0) is bounded.
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Proof.

(⇒) Suppose (N
′
,M

′

0) is bounded. For every reachable marking M of (N,M0) we have, by

Lemma 3.2, that M
′
is a reachable marking of (N

′
,M

′

0). Then, by Definition 3.1, for

every place p in N, we have M(p) is bounded by M
′
(p).

(⇐) Suppose (N,M0) is bounded. For every M
′ ∈ R(M

′

0), since within N0 there exists a

directed path from every input place or initially marked place to every output place

(Definition 2.1), we have, by Lemma 3.1, that M
′
(p) is obviously bounded by M(p)

or M(P0).

Theorem 3.2. Suppose (N
′
,M

′

0) is obtained from (N,M0) by a pb-type abstract operation.

Then (N
′
,M

′

0) is live if and only if (N,M0) is live.

Proof.

(⇒) Suppose (N
′
,M

′

0) is live. Then for every σ ∈ L(N,M0) and every t ∈ T , we have, by

Lemma 3.2, that there exists σ ∈ L(N
′
,M

′

0). Since (N
′
,M

′

0) is live, there exists σ
′

1 ∈ T
′∗

such that

σ
′
σ

′

1t ∈ L(N
′
,M

′

0).

Since there exists a directed path from every input place or initially marked place

to every output place within N0 (Definition 2.1), we have, by Lemma 3.1, that there

exists σ1 ∈ T ∗ such that

σσ1t ∈ L(N,M0).

So, (N,M0) is live.

(⇐) Suppose (N,M0) is live. Then for every

σ
′ ∈ L(N

′
,M

′

0)

and every t ∈ T
′
, since there exists a directed path from every input place or initially

marked place to every output place within N0 (Definition 2.1), by Lemma 3.1, there

exists σ ∈ L(N,M0) corresponding to σ
′
. Since (N,M0) is live, there exists σ1 ∈ T ∗

such that

σσ1t ∈ L(N,M0).

By Definition 3.1 and Lemma 3.2, we then have

σ
′
σ

′

1t ∈ L(N
′
,M

′

0).

So (N
′
,M

′

0) is live.

4. Liveness and boundedness preservation of synthesis nets

In this section, we propose some conditions for the liveness preservation and boundedness

preservation of synthesis nets. This is important for the property analysis of complex nets.

Theorem 4.1. Suppose Σ1 and Σ2 are two live and bounded Petri net systems, Σ is the

synthesis net system of Σ1 and Σ2 with shared pb-type subnets. Let Σ
′

1 and Σ
′

2 be obtained

from Σ1 and Σ2, respectively, by pb-type abstract operations, and the corresponding place
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set be P
′

0. Let Σ
′
be the sharing synthesis net of Σ

′

1 and Σ
′

2. If for all p
′

1, p
′

j ∈ P
′

0 we have

(p
′

i, p
′

j) is not an inter-reciprocal place ordered pair of Σ
′

1 and Σ
′

2 on P
′

0, then Σ is live and

bounded.

Proof. Suppose the pb-type subnet set is

N0 = {Np1, Np2, · · · , Npk}.

Let Σ
′

1 and Σ
′

2 be obtained from Σ1 and Σ2, respectively, by pb-type abstract operations.

Let

P
′

0 =
{
p

′

01, p
′

02, · · · , p′

0k

}
be obtained from N0 by a pb-type abstract operation. Since Σ1 and Σ2 are two live and

bounded Petri net systems, by Theorems 3.1 and 3.2, Σ
′

1 and Σ
′

2 are two live and bounded

Petri net systems. Since Σ
′

1 and Σ
′

2 are live and bounded, we have:

(1) In Σ
′

1, there exists an integer k1 > 0 for all p
′

1 ∈ P
′

1 and all M
′

11 ∈ R(M
′

10) such that

M
′

11(p
′

1) � k1.

(2) In Σ
′

2, there exists an integer k2 > 0 for all p
′

2 ∈ P
′

2 and all M
′

21 ∈ R(M
′

20) such that

M
′

11(p
′

1) � k2.

In Σ
′
, we have for all p

′ ∈ P
′
that

p
′ ∈ P

′

1 − P
′

0
or

p
′ ∈ P

′

2 − P
′

0
or

p
′ ∈ P

′

0.

Considering these cases in turn:

— If p
′ ∈ P

′

1 − P
′

0, then

M
′ ∈ R

(
M

′

0

)
,M

′
(
p

′
)

� max
M

′
11∈R

(
M

′
10

) M
′

11

(
p

′
)

+
∑
p

′′ ∈P ′
0

max
M

′
21∈R

(
M

′
20

)
(
M21

(
p

′′
))

� k1 + kk2,

(where k is the place number of P
′

0).

— If p
′ ∈ P

′

2 − P
′

0, then for all M
′ ∈ R

(
M

′

0

)
,

M
′
(
p

′
)

� k2 + kk1.

— If p
′ ∈ P

′

0, then for all M
′ ∈ R

(
M

′

0

)
,

M
′
(
p

′
)

� max
M

′
11∈R

(
M

′
10

) M
′

11

(
p

′
)

+ max
M

′
21∈R

(
M

′
20

)
(
M21

(
p

′′
))

� k1 + k2.

Let

k = (k + 1)(k1 + k2).
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Then for all p
′ ∈ P

′
and all M

′∈ R(M
′

0), we have M
′
(p

′
) � k, that is, Σ

′
is bounded.

We will now prove the liveness of Σ
′
= (N

′
,M

′

0). Suppose Σ
′
= (N

′
,M

′

0) is not live. Then

there exist an M
′

1 ∈ R(M
′

0) and a t
′′∈ T

′
for all M

′ ∈ R(M
′

1) such that ¬M
′
[t

′′
>. Now, it

is obvious that

t
′′ ∈

{
t

′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0

}
.

Without loss of generality, we can suppose t
′′ ∈ T

′

1. Since Σ
′

1 is bounded, we have that

there exist M
′

2 ∈ R(M
′

1), p
′

j ∈ P
′

0 and t
′′∈ p

′•
j such that

M
′

2

(
p

′

j

)
= 0,

and for all p
′ ∈• t

′′ ∩ P
′

1,

M
′

2

(
p

′
)

� 1.

It is obvious that the resources of p
′

j are used by Σ
′

2 and not given back to p
′

j . Since Σ
′

2 is

live and bounded and Σ
′

2 has acquired the resources of p
′

j , if for all

t
′ ∈ T

′

2 ∩
{
t

′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0 : p
′ �= p

′

j

}
,

there exists a transition sequence σ
′

1 ∈ (T
′

2)
∗ such that

M
′

2[σ
′

1 > M
′′

M
′′
[t

′
>,

then there exist t
′′′

j ∈• p
′

j ∩ T
′

2 and σ
′

2 ∈ (T
′

2)
∗ such that

M
′′
[σ

′

2 > M
′′′
,

that is,

M
′′′

(
p

′

j

)
� 1.

Hence,

M
′′′
[t

′′
> .

But this contradicts ¬M[t
′′
> for all M

′ ∈ R
(
M

′

1

)
.

So, there exists p
′

i ∈ P
′

0 with p
′

i �= p
′

j for all σ
′ ∈ (T

′

2)
∗ and M

′

2[σ
′
> M

′

3 such that

t
′′′ ∈ T

′

2 ∩ p
′•
i

and

M
′

3[t
′′′
> .

Since for all p
′ ∈• t

′′′ ∩ P
′

2 we have

M
′

3

(
p

′
)

� 1

M
′

3

(
p

′

j

)
= 0,
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the resources of p
′

i are used by Σ
′

1 and not given back to p
′

i, and the resources of p
′

j

are used by Σ
′

2 and not given back to p
′

j . This means that there exist M
′

3 ∈ R(M
′

0) and

p
′

i, p
′

j ∈ P
′

0 such that:

— Σ
′

1, which having used the resources of p
′

i, will give back the resources of p
′

i after it

has used the resources of p
′

j; and

— Σ
′

2, which having used the resources of p
′

j , will give back the resources of p
′

j after it

has used the resources of p
′

i.

By Definition 2.7, we have that (p
′

i, p
′

j) is an inter-reciprocal place ordered pair of Σ
′

1 and

Σ
′

2 on P
′

0. However, this contradicts the fact that (p
′

i, p
′

j) is not an inter-reciprocal place

ordered pair of Σ
′

1 and Σ
′

2 on P
′

0. Hence, Σ
′
= (N

′
,M

′

0) is live. Let Σ be obtained from Σ
′

by a pb-type refinement operation. In the process, p
′

01, p
′

02, · · · , p′

0k should be replaced by

Np1, Np2, · · · , Npk , respectively.

Finally, since Σ
′

is live and bounded, by Theorems 3.1 and 3.2, Σ is also live and

bounded.

Corollary 4.1. Suppose Σ1 and Σ2 are two live and bounded Petri net systems, and Σ is the

synthesis net system of Σ1 and Σ2 with shared pb-type subnets. Let Σ
′

1 and Σ
′

2 be obtained

from Σ1 and Σ2, respectively, by pb-type abstract operations, and let the corresponding

place set be P
′

0. Let Σ
′
be the sharing synthesis net of Σ

′

1 and Σ
′

2. If Σ
′

1 and Σ
′

2 have the

same place ordered pair on P
′

0, then Σ is live and bounded.

Corollary 4.2. Suppose Σ1 and Σ2 are two live and bounded Petri net systems, and Σ is the

synthesis net system of Σ1 and Σ2 with shared pb-type subnets. Let Σ
′

1 and Σ
′

2 be obtained

from Σ1 and Σ2, respectively, by pb-type abstract operations, and the corresponding place

set be P
′

0. Let Σ
′
be the sharing synthesis net of Σ

′

1 and Σ
′

2. If Σ
′

1 and Σ
′

2 do not have a

place ordered pair on P
′

0, then Σ is live and bounded.

Theorem 4.2. Suppose Σ1 and Σ2 are two live and bounded Petri net systems, and Σ is the

synthesis net system of Σ1 and Σ2 with shared pb-type subnets. Let Σ
′

1 and Σ
′

2 be obtained

from Σ1 and Σ2, respectively, by pb-type abstract operations and the corresponding place

set be P
′

0. Let Σ
′
be the sharing synthesis net of Σ

′

1 and Σ
′

2. If M
′

0

(
p

′)
= 0 for all p

′ ∈ P
′

0,

then Σ is live and bounded.

Theorem 4.3. Suppose Σ1 and Σ2 are two live and bounded Petri net systems, and Σ is the

synthesis net system of Σ1 and Σ2 with shared pb-type subnets. Let Σ
′

1 and Σ
′

2 be obtained

from Σ1 and Σ2, respectively, by pb-type abstract operations, and the corresponding place

set be P
′

0. Let Σ
′
be the sharing synthesis net of Σ

′

1 and Σ
′

2. Then Σ is live and bounded

if and only if t
′
is live for all

t
′ ∈

{
t

′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0

}
.

Proof.

(⇐) Suppose the pb-type subnet set is

N0 = {Np1, Np2, · · · , Npk}.
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Let Σ
′

1 and Σ
′

2 be obtained from Σ1 and Σ2, respectively, by pb-type abstract

operations. Now

P
′

0 =
{
p

′

01, p
′

02, · · · , p′

0k

}
is obtained from N0 by pb-type abstract operations. Since Σ1 and Σ2 are both live

and bounded Petri net systems, by Theorems 3.1 and 3.2, Σ
′

1 and Σ
′

2 are both live and

bounded Petri net systems. Since t
′
is live for all

t
′ ∈

{
t

′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0

}
,

we have for all M
′ ∈ R(M

′

0) that there exists M
′

1 ∈ R(M
′
) such that M

′
[t

′
> . Without

loss of generality, we can suppose

t
′ ∈ T

′

1 − {t′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0} ∩ T
′

1.

Since in Σ
′
, we have

{t′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0}
is live, by Definitions 2.2 and 2.3, we have for all M

′

1 ∈ R(M
′

0) there exists σ
′

1 ∈ T
′∗

such that

M
′

1[σ
′

1 > M
′

2.

Suppose now that M
′

12 is the projection of M
′

2 on Σ
′

1. Then there exists σ
′

2 ∈ T
′∗
1 such

that

M
′

12[σ
′

2 > M
′

3

M
′

3[t
′
> .

Hence, Σ
′
is live and bounded.

Now let Σ be obtained from Σ
′
by pb-type refinement operation. In the process,

p
′

01, p
′

02, · · · , p′

0k

should be replaced by

Np1, Np2, · · · , Npk,

respectively. Since Σ
′
is live and bounded, Σ is also live and bounded by Theorems 3.1

and 3.2.

(⇒) Since Σ is live, it is obvious that t
′
is also live for all

t
′ ∈

{
t

′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0

}
,

which completes the proof.

Theorem 4.4. Suppose Σ1 and Σ2 are two live and bounded Petri net systems, and Σ is the

synthesis net system of Σ1 and Σ2 with shared pb-type subnets. Let Σ
′

1 and Σ
′

2 be obtained

from Σ1 and Σ2, respectively, by pb-type abstract operations, and the corresponding place

set be P
′

0. Let Σ
′

be the sharing synthesis net of Σ
′

1 and Σ
′

2. Let (p
′

i, p
′

j) be an inter-

reciprocal place ordered pair of Σ
′

1 and Σ
′

2 on P
′

0. Then, if (p
′

i, p
′

j) and (p
′

j , p
′

i) are sharing

place ordered pairs of Σ
′

1 and Σ
′

2, respectively, then Σ is live and bounded.
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Proof. Suppose the pb-type subnet set is

N0 = {Np1, Np2, · · · , Npk}.

Let Σ
′

1 and Σ
′

2 be obtained from Σ1 and Σ2, respectively, by pb-type abstract operations.

Then

P
′

0 =
{
p

′

01, p
′

02, · · · , p′

0k

}
is obtained from N0 by pb-type abstract operations. Since Σ1 and Σ2 are both live and

bounded Petri net systems, Σ
′

1 and Σ
′

2 are also live and bounded Petri net systems by

Theorems 3.1 and 3.2.

Now, for every inter-reciprocal place ordered pair (p
′

i, p
′

j) of Σ
′

1 and Σ
′

2 on P
′

0, if

t
′′ ∈ p

′•
i ∩ T

′

1

t
′′′ ∈ p

′•
j ∩ T

′

2,

then t
′′

and t
′′′

do not fire for all M
′ ∈ R(M

′

0). By the liveness of Σ
′

1 and Σ
′

1, if there exists

t
′′ ∈ p

′•
i ∩ T

′

1 for all M
′ ∈ R(M

′

0) such that M
′

1[t
′′
> M

′

2, then for all t
′ ∈ p

′•
j ∩ T

′

1, there

exists M
′

3 ∈ R(M
′

0) such that M
′

3[t
′
>, that is, t

′
is live.

For the same reason, if t
′′′ ∈ p

′•
j ∩ T

′

2 and M
′

1[t
′′′
> M

′

2 for all M
′ ∈ R(M

′

0), then t
′
is live

for all t
′ ∈ p

′•
i ∩ T

′

2.

Now, for all p
′

i, p
′

j ∈ P
′

0, if (p
′

i, p
′

j) is not an inter-reciprocal place ordered pair of Σ1 and

Σ2 on P
′

0, by Corollary 4.1, we have t
′
is live for all t

′ ∈ p
′•
k (k = 1, 2). Hence, t

′
is live for

all

t
′ ∈

{
t

′ | t′ ∈ p
′•, ∀p′ ∈ P

′

0

}
.

Hence, by the proofs of Theorems 4.1 and 4.3, Σ
′

is live and bounded. So, let Σ be

obtained from Σ
′
by a pb-type refinement operation. In the process,

p
′

01, p
′

02, · · · , p′

0k

should be replaced by

Np1, Np2, · · · , Npk,

respectively. Since Σ
′
is live and bounded, Σ is also live and bounded by Theorem 3.1 and

Theorem 3.2, and the proof is complete.

5. Applications

In this section, we apply the results of Section 4 to design a flexible manufacturing system

using two other flexible manufacturing systems that share a subsystem.

We consider two manufacturing systems, each of which consists of one machining

centre. The two systems run as follows:

System A: In this case, the intermediate parts are machined by machine M1 in the

machining centre. Each part is fixed to a pallet and loaded into the machine M1 by

robot R. After processing, robot R unloads the final product, releases it from the pallet

and then returns the pallet.
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System B: In this case, the raw parts are machined first by machine M2 and then by

machine M3 . Each part is fixed to a pallet and loaded into the machine by robot R.

After processing, robot R unloads the intermediate part from M2 into buffer B. At

machine M3, the intermediate parts are automatically loaded into M3 and processed.

When M3 has finished processing a part, robot R unloads the final product, releases it

from the pallet and then returns the pallet.

In order to share resources and enhance efficiency, a manufacturing system can be

obtained from system A and system B by a synthesis operation. In order to specify the

manufacturing system using Petri nets, each operation process is abstracted to a single

place and each transition represents the start of and/or completion of a process. We will

first give the Petri-net based models of Systems A and B, respectively, and then a synthesis

net system obtained from Systems A and B by a synthesis operation with a shared pb-type

subnet. Finally, we will analyse the preservation properties of the synthesis operation.

The Petri-net based model Σ1 = (N1,M10) of System A is shown in Figure 1, where the

meanings of the places are:

— p11: pallet and intermediate parts are available;

— p12: request robot R;

— p13: acquire R, and R loads the pallet into machine M1;

— p14: intermediate parts are processed in M1;

— p15: machine M1 is available;

— p16: request robot R;

— p17: robot R unloads a final product and returns the pallet;

— p0i(i = 1, 2, 3): robot R is available;

and the meanings of the tranistions are

— t11: start activity p13;

— t12: complete p13 and start activity p14;

— t13: complete p14 and start activity p17;

— t14: complete p17;

— t0i(i = 1, 2, 3): intermediate processing on a robot before passing it from one process

to another.

The Petri-net based model Σ2 = (N2,M20) of System B is shown in Figure 2, where the

meanings of the places are:

— p21: pallet and raw parts are available;

— p22: machine M2 loads and processes a part;

— p23: machine M2 is available;

— p24: intermediate parts are available;

— p25: robot R loads an intermediate part into buffer B;

— p26: buffer B is available;

— p27: intermediate parts are available;

— p28: machine M3 processes an intermediate part, R unloads a final product from M3,

releases and returns the pallet;

— p29: macnine M3 is available;
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Fig. 1. Petri net system Σ1 = (N1,M10)

Fig. 2. Petri net system Σ2 = (N2,M20)

and the meanings of the tranistions are

— t21: starts activity p22;

— t22: completes p22 and start activity p24;

— t23: completes p24 and start activity p25;

— t24: completes p25 and start activity p27;

— t25: completes p27 and start activity p28;

— t26: completes p28.

Systems A and B both contain a pb-type subnet N0, which is generated by

{p01, p02, p03, t01, t02, t06}.

In order to save resources (such as the robot) and enhance efficiency, a synthesis net

system Σ = (N,M0) (see Figure 3) can be obtained from System A

Σ1 = (N1,M10)

and System B

Σ2 = (N2,M20)

by a synthesis operation with the shared pb-type subnet. Since Σ1 and Σ2 are live and

bounded net systems, the synthesis net system Σ = (N,M0) is also live and bounded by

Theorem 4.3.
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Fig. 3. The synthesis net system Σ = (N,M0)

6. Conclusions

In this paper, we have investigated the preservation of properties for synthesis Petri nets.

We have proposed a refinement and abstract representation method for Petri nets. Given

some additional constraints, liveness and boundedness are preserved after merging some

sets of pb-type subnets of Petri nets. As a consequence, this result can be usefully applied

to solve some subsystem sharing problems in software engineering and manufacturing

engineering. In comparison to most existing methods, which are only applied to state

machines, marked graphs or AC nets to solve resource-sharing problem, our method is

applicable to a wider class of Petri nets than AC nets to solve subsystem sharing problems.

Further research is needed to determine how to extend the results obtained in this paper

to more general types of nets.

References

Agerwala, T. and Choed-Amphai, Y. (1978) A synthesis rule for concurrent systems. Proceedings of

the 15th Design Automation Conference 305–311.

Badouel, E. and Darondeau, Ph. (2004) Representing control: a study of the CPS transformation.

Information and Computation 193 (2) 117–135.

Cheung, K. S., Cheung, T.Y. and Chow, K.O. (2006) A Petri-net-based synthesis methodology for

use-case-driven system design. The Journal of Systems and Software 79 (7) 772–790.

Ding, Z. J., Wang, J. L. and Jiang, C. J. (2008) An approach for synthesis Petri nets for modeling

and verifying composite web service. Journal of Information Science and Engineering 24 (10)

1309–1328.

Koh, K. and DiCesare, F. (1991) Modular transformation methods for generalised petri nets and

their application to automated manufacturing systems. IEEE Transactions on Systems, Man and

Cybernetics 21 (6) 1512–1522.

https://doi.org/10.1017/S0960129512000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000515


Liveness and boundedness analysis of Petri net synthesis 19

Krogh, B.H. and Beck, C. (1986) Synthesis of place transition nets for simulation and control of

manufacturing systems. In: Geering, H. and Mansour, M. (eds.) Large-Scale Systems: Theory and

Applications, Pergamon Press 583–588.

Lorenz, R., Bergenthum, R., Desel, J. and Mauser, S. (2008) Synthesis of Petri nets from finite

partial languages. 8th International Conference of Concurrency to System Design 170–179.

Murata, T. (1989) Petri nets: properties, analysis and applications. Proceedings of IEEE 77 (4)

541–580.

Tsinarakis, G. J., Tsourveloudis, N.C. and Valavanis, K. P. (2005) An approach for synthesis Petri

nets for modeling and verifying composite web service. Journal of Intelligent manufacturing 16 (1)

67–92.

Vasiliu, A. I., Dideban, A. and Alla, H. (2009) Control synthesis for manufacturing systems using

non-safe Petri nets. CEAI 11 (2) 43–50.

Xia, C. (2005) Structural liveness preservation of Petri synthesis net. Journal of Computational

Information Systems 13 (12) 4485–4492.

Xia, C. (2006) Analysis of properties of Petri synthesis net. Proceedings of the 3rd International

Conference on Theory and Applications of Models of Computation 576–587.

Xia, C. (2008) Property preservation by Petri net synthesis in system design. Proceedings of

International Technology and Environmental System Sciences 6–11.

https://doi.org/10.1017/S0960129512000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000515

