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Abstract. We prove that neither a prime nor an l-almost prime number theorem holds in the

class of regular Toeplitz subshifts. But when a quantitative strengthening of the regularity

with respect to the periodic structure involving Euler’s totient function is assumed, then

the two theorems hold.

Key words: almost prime numbers, polynomial ergodic theorems, prime number theorem,

Toeplitz systems

2020 Mathematics Subject Classification: 37B10, 37A44 (Primary); 11N05, 11N13

(Secondary)

1. Introduction

Given a topological dynamical system (X, T ), where T is a homeomorphism of a compact

metric space X, one says that a prime number theorem (PNT) holds for (X, T ) if the limit

lim
N→∞

1

π(N)

∑

p<N

f (T px) (1)

(p stands always for a prime number) exists for each x ∈ X, an arbitrary f ∈ C(X)
and π(N) denotes the number of primes up to N . Then, via the Riesz theorem, for all
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f ∈ C(X), we have

lim
N→∞

1

π(N)

∑

p<N

f (T px) =
∫

X

f dνx (2)

for a Borel probability measure νx on X, where νx depends only on x ∈ X.

Let us first consider the cyclic case X = Z/kZ and T x = x + 1. Fix x ∈ X and notice

that (1) indeed holds by the classical prime number theorem in arithmetic progressions,

where νx is the uniform probability measure on the ‘coset’ {a < k : (a, k) = 1} + x.

Hence, a PNT holds in cyclic (and therefore also in finite) systems.

Consider now the procyclic case, that is, assume we are given an odometer system

(H , T ) with

H = liminvt→∞ Z/ntZ, T x = x + (1, 1, . . .)

(here nt |nt+1 for t > 0). In this case, a PNT still holds. Indeed, the spaceH has a sequence

of natural partitionsDt = (Dt0, . . . , Dtnt−1), t > 0, consisting of clopen sets and such that

TDti = Dti+1 mod nt
. It follows that the sets Dti , i 6 nt − 1, have the same diameter which

goes to 0 as t → ∞. Moreover, it is not hard to see that each character of the group H is

constant on the levels of the towers Dt for t sufficiently large. Hence, each f ∈ C(H) can

be approximated uniformly by functions which are constant on the levels of the towers Dt

and a PNT holds because it does in the finite case.

Our main results concern prime number theorems for extensions of odometers. Recall

that odometers are zero-entropy topological systems which are minimal (all T -orbits are

dense) and uniquely ergodic (there is only one T -invariant measure: Haar measure in this

case). Before we describe our results, let us discuss a PNT in the class of uniquely ergodic

systems. First, recall that for all such systems (1) holds almost everywhere with respect

to the unique invariant measure [3, 23]. On the other hand, one can easily construct a

counterexample to the validity of (1) for all x ∈ X. Indeed, denote by P the set of prime

numbers and consider any subset P ⊂ P with no density in P, the left shift S on {0, 1}Z
and the subshift (X1P∪(−P) , S) obtained by the orbit closure of the characteristic function

1P∪(−P). It has a unique invariant measure of zero entropy (which is the Dirac measure at

the fixed point . . . 0.00 . . .) and a PNT fails in it (see, for example, [7] for details). Now,

this particular uniquely ergodic model of the one-point system implies paradoxically that

each ergodic dynamical system has a uniquely ergodic model (X, T ) in which a PNT does

not hold. (Recall that the Jewett–Kreiger theorem says the following. Suppose (Z, κ , R)

is an ergodic measure-theoretic dynamical system. Then there exists a uniquely ergodic

(even strictly ergodic, that is, additionally minimal) topological system (Y , S) with the

unique invariant measure ν such that (Z, κ , R) and (Y , ν, S) are measure-theoretically

isomorphic.) To see this, take any uniquely ergodic model (Y , ν, R) of the given

measure-theoretic dynamical system. Since the one-point system is (Furstenberg) disjoint

with any other system, the product system (X1P∪(−P) × Y , S × R) is still uniquely ergodic,

with the unique invariant measure δ...0.00... ⊗ ν. It is not hard to see that the product system

is still measure-theoretically isomorphic to the original system. Since the new system has

(X1P∪(−P) , S) as its topological factor, a PNT does not hold in (X1P∪(−P) × Y , S × R).

(To illustrate this, consider an irrational rotation Rα on T for which a PNT holds because
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1448 K. Frączek et al.

of Vinogradov’s theorem (prime ‘orbits’ are equidistributed). However, our observation

shows that there is a uniquely ergodic model of Rα in which the eigenfunctions are still

continuous but a PNT fails, that is, some of the prime ‘orbits’ are not equidistributed.)

Hence, if we think about a necessary condition for a PNT to hold, it looks reasonable to

add the minimality assumption to avoid a problem of ‘exotic’ orbits on which a PNT does

not hold (we also recall that a uniquely ergodic system has a unique subsystem which is

strictly ergodic). However, in this class one can still produce counterexamples to a PNT;

see [18] for the first symbolic counterexamples (although their entropy is not determined

in [18]), or [12] for non-symbolic counterexamples. On the other hand, we have quite a

few classes in which a PNT holds, including systems of algebraic origin [10, 22], symbolic

systems [4, 9, 15, 16] or recently [12] in the category of smooth systems, where a PNT has

been proved in the class of analytic Anzai skew products. Finding a sufficient dynamical

condition for a PNT to hold, postulated a few years ago by Sarnak [20] seems to be an

important and difficult task in dynamics; however, we rather expect the following result.

Working Conjecture. Each ergodic and aperiodic (the set of periodic points has measure

zero) measure-theoretic dynamical system has a strictly ergodic model in which a PNT

fails.

If true, this makes Sarnak’s postulate even harder to realize. The present paper should

be viewed as introductory steps in trying to understand the conjecture.

A PNT can be reformulated as the existence of a limit of (1/N)
∑
n<N f (T

nx)3(n),

where 3 stands for the von Mangoldt function: 3(pℓ) = log p for ℓ > 1 and 0 otherwise.

Proving dynamical prime number theorems for zero-entropy systems is closely related to

Sarnak’s Möbius disjointness conjecture [19]:

lim
N→∞

1

N

∑

n<N

f (T nx)�(n) = 0 (3)

for each x ∈ X, f ∈ C(X) in each zero-entropy dynamical system (X, T ) (� stands for

the Möbius function: �(1) = 1, �(p1 · . . . · pk) = (−1)k for different primes p1, . . . , pk ,

and �(n) = 0 for the remaining n ∈ N). Here, the class of systems for which we expect the

positive answer is precisely defined. In fact, in quite a few cases (see [4, 5, 8–10, 15, 16])

one can observe the following principle: once we can prove Sarnak’s conjecture for (X, T )

with a ‘sufficient’ speed of convergence to zero in (3) then a PNT holds in (X, T ).

With all the above in mind, we return to extensions of odometers that we intend to study.

We stay in the zero-entropy category of systems and we assume minimality. Further, we

assume that the systems are almost one-to-one extensions of odometers. (If (H , T ) is a

factor of (X, S) via π : X → H , then (X, S) is called an almost one-to-one extension of

(H , T ) if there is a point h ∈ H such that |π−1(h)| = 1; in fact, in this case the set of points

with singleton fibers isGδ and dense.) We also assume that our systems are symbolic. (We

recall that each zero-entropy system has an extension which is symbolic [2], and clearly if a

PNT holds for a system, it does for a factor.) All these natural assumptions determine, how-

ever, a very precise class of topological systems, namely Toeplitz subshifts (Xx , S), where

x is a Toeplitz sequence over a finite alphabet A; see Downarowicz’s survey [6, §7]. That is,

x ∈ AZ has the property that for every a ∈ Z there is ℓ ∈ N such that x(a) = x(a + kℓ)
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for each k ∈ Z, and Xx is the set of all y ∈ AZ with the property that all subblocks of

y also appear in x. One shows then that there is a sequence nt |nt+1 such that if Pernt (x) :=
{a ∈ Z : x(a) = x(a + knt ) for each k ∈ Z} then

⋃

t>0

Pernt (x) = Z. (4)

Moreover, there is a natural continuous factor map π : Xx → H , where H stands for

the odometer determined by (nt ). In fact, we will restrict our attention to so-called

regular Toeplitz subshifts, whose formal definition is that the density of
⋃M
t=0 Pernt (x)

goes to 1. Regular Toeplitz subshifts are zero-entropy strictly ergodic systems, and

measure-theoretically isomorphic to the rotations given by their maximal equicontinuous

factors. Although in [6] there are four other equivalent conditions for regularity (see [6,

Theorem 13.1]), we will choose a different path. Since π : Xx → H is a continuous and

equivariant surjection,

Et := π−1(Dt ) = (Et0, . . . , Etnt−1) with Etj = π−1(Dtj )

is an S-tower of height nt whose levels are closed (hence clopen). By the minimality of

(Xx , S) there is a unique tower with clopen levels and of fixed height. Let us consider a

metric on AZ inducing the product topology given by

d(x, y) = 2− inf{|n|:x(n) 6=y(n)}.

The diameters of the levels of towers Et do not converge to zero, unless x is periodic.

Moreover, the diameters of different levels are in general different as the shift S is not an

isometry. Let us consider the diameter of the tower Et given by

δ(Et ) :=
∑

06j<nt

diam(Etj ).

It is not hard to see (see Appendix A) that the regularity of a Toeplitz sequence is

equivalent to

lim
t→∞

δ(Et )

nt
= 0. (5)

It is also not hard to see that this property does not depend on the choice of (nt )

satisfying (4). We recall that the Möbius disjointness of subshifts given by regular Toeplitz

sequences has been proved in [1]. Here are two first results of the paper proved in §2 and

§4, respectively.

THEOREM A. A PNT does not hold in the class of minimal almost one-to-one symbolic

extensions of odometers satisfying (5). That is, a PNT need not hold in a strictly ergodic

subshift determined by a regular Toeplitz sequence.
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1450 K. Frączek et al.

THEOREM B. A PNT holds in the class of minimal almost one-to-one symbolic extensions

of odometers in which (5) holds with a speed

lim
t→∞

δ(Et )

ϕ(nt )
= 0, (6)

where ϕ denotes the Euler totient function.

As for all Toeplitz dynamical systems constructed in the proof of Theorem A, we have

0 < lim inf
t→∞

δ(Et )

ϕ(nt )
6 lim sup

t→∞

δ(Et )

ϕ(nt )
< +∞,

which shows that the condition (6) in Theorem B is optimal to have a PNT. The systems

in Theorem B are strictly ergodic and since they all have non-trivial cyclic factors, the

measures νy , y ∈ Xx , in (2) are never S-invariant. (To be compared with the case of

Sturmian systems (see Theorem B.1) in which νy , y ∈ Xα,β , are equal to the unique

S-invariant measure.)

We then turn our attention to an l-almost prime number theorem (PlNT) which is much

less explored than the PNT case and which, for the first time in dynamics, is studied in

[13] (for some smooth Anzai skew products). Recall that for any l > 1 a natural number is

called an l-almost prime if it is a product of l primes. We denote the set of l-almost prime

numbers by Pl . By P
N
l we denote the set of l-almost prime numbers less than or equal to

N and we let πl(N) stand for the cardinality of PNl . A classical result of Landau asserts

that

lim
N→∞

πl(N)

(N/log N)((log log N)l−1/(l − 1)!)
= 1; (7)

see [14, §56].

Analogously to the PNT, we say that a topological dynamical system (X, T ) satisfies a

PlNT if the limit

lim
N→∞

1

πl(N)

∑

n∈PNl

f (T nx)

exists for each x ∈ X and each f ∈ C(X).
In §3 and §5 we provide sketches of proofs of the exact analogues of Theorems A and B

for a PlNT for regular Toeplitz subshifts.

In §6.1 we prove a new polynomial ergodic theorem:

lim
N→∞

1

N

∑

n6N

f (SP(n)x) exists

for monic polynomials P with positive integer coefficients for all symbolic minimal almost

one-to-one extensions of odometers with a modified condition (6). In §6.2 we provide

a regular Toeplitz subshift which does not satisfy the polynomial ergodic theorem for

squares but satisfies a PNT. We refer again to [18] for the first examples of strictly ergodic

systems (of low complexity), where the Birkhoff ergodic averages along squares do not

converge.
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While Theorem A confirms our working conjecture for a subclass of odometers, we

have been unable to confirm it for the whole class of odometers. Confirming our working

conjecture for the class of automorphisms with discrete spectrum seems to be the first

step toward a possible general statement. In Appendix B we provide a simple argument

showing that a PNT holds for all symbolic models of irrational rotations given by Sturmian

sequences. The Sturmian systems are strictly ergodic and are almost one-to-one extensions

of irrational rotations.

2. Regular Toeplitz subshifts which do not satisfy a PNT (proof of Theorem A)

For all K , n ∈ N and a ∈ Z, let

π(K; n, a) = {1 6 p 6 K : p ∈ P, p = a mod n}.

THEOREM 2.1. (PNT in arithmetic progressions; see [21]) For any natural n and any

integer a with (a, n) = 1 we have

lim
K→∞

π(K; n, a)

π(K)
=

1

ϕ(n)
.

We construct a Toeplitz sequence x ∈ {0, 1}Z with the period structure (nt ):

nt+1 = kt+1nt , (kt+1, nt ) = 1, (8)

for each t > 1. We will show that for this x,

lim
t→∞

1

π(nt )

∑

p<nt

F(Spx) does not exist,

where F(y) = (−1)y(0). At stage t , x is approximated by the infinite concatenation of

xt [0, nt − 1] ∈ {0, 1, ?}nt (i.e., we see a periodic sequence of 0, 1, ? with period nt ).

Successive ‘?’ will be filled in the next steps of construction of x. We require that

ϕ(nt )

nt
6

1

2t
, (9)

{0 6 i < nt : xt (i) =?} ⊂ {0 6 j < nt : (j , nt ) = 1}, (10)

#{0 6 i < nt : xt (i) =?} >
(

1 −
t∑

l=1

1

100l

)
ϕ(nt ), (11)

#{p < nt : xt (p) =?} > 1
2
π(nt ). (12)

We choose kt+1 satisfying (8), and

ϕ(kt+1)

kt+1
6

1

2
, (13)

ϕ(kt+1) > 100t+1, (14)

8 log nt+1 6 π(nt+1), 8π(nt ) 6 π(nt+1) (15)
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and for each 0 < a < nt , (a, nt ) = 1, we have

#({a + jnt : j = 0, . . . , kt+1} ∩ P) = π(nt+1; nt , a) 6 2
π(nt+1)

ϕ(nt )
. (16)

To see (13) note that if pi stands for the ith prime then
∑
j>i 1/pj = +∞, whence,

remembering that ϕ(pipi+1 . . . pi+s) = pipi+1 . . . pi+s
∏s
j=0(1 − 1/pi+j ), we have∏s

j=0(1 − 1/pi+j ) → 0, and therefore
∏s
j=0(1 − 1/pi+j ) < 1/2 for s large enough. The

latter we obtain from Theorem 2.1 (remembering that nt is fixed, so the number of a is

known, and we can obtain the accuracy as good as we want by taking kt+1 sufficiently

large).

We need two simple observations. Firstly,

{0 6 k < nt+1 : (k, nt+1) = 1} ⊂
⋃

06a<nt
(a,nt )=1

{a + jnt : j = 0, . . . , kt+1 − 1}. (17)

Then we have the following.

LEMMA 2.2. For every 0 6 a < nt with (a, nt ) = 1, we have

#{0 6 j < kt+1 : (a + jnt , nt+1) = 1} = ϕ(kt+1).

Proof. First note that (a + jnt , nt+1) = 1 if and only if (a + jnt , kt+1) = 1. Indeed,

assume that (a + jnt , kt+1) = 1. If for some prime p we have p|(a + jnt ) and p|nt+1 =
ntkt+1, then p|kt+1. Otherwise, we have p|nt , so p|a. As (a, nt ) = 1, this gives a contra-

diction. Thus (a + jnt , kt+1) = 1 implies (a + jnt , nt+1) = 1. The opposite implication

is obvious. Thus

{0 6 j < kt+1 : (a + jnt , nt+1) = 1} = {0 6 j < kt+1 : (a + jnt , kt+1) = 1}.

Let us consider the affine map

Z/kt+1Z ∋ j A7→ a + jnt ∈ Z/kt+1Z.

If J := {0 6 ℓ < kt+1 : (ℓ, kt+1) = 1} then

{0 6 j < kt+1 : (a + jnt , kt+1) = 1} = A−1(J ).

Since (nt , kt+1) = 1, the map A is a bijection. It follows that

#{0 6 j < kt+1 : (a + jnt , kt+1) = 1} = #{0 6 ℓ < kt+1 : (ℓ, kt+1) = 1}
= ϕ(kt+1),

which completes the proof.

We now need to describe which ‘?’ we fill in xt+1[0, nt+1 − 1] and how. This block is

divided into kt+1 subblocks

xt [0, nt − 1]xt [0, nt − 1] . . . xt [0, nt − 1]︸ ︷︷ ︸
kt+1

.
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We fill in all ‘?’ in the first block xt [0, nt − 1] in such a way as to ‘destroy’ a PNT for the

time nt , namely

1

π(nt )

∑

p<nt

F(Spx) =
1

π(nt )

∑

p<nt
p|nt

(−1)x(p)

+
1

π(nt )

( ∑

p<nt
(p,nt )=1
xt (p)=0

1 −
∑

p<nt
(p,nt )=1
xt (p)=1

1 +
∑

p<nt
(p,nt )=1
xt (p)=?

(−1)x(p)
)

.

As the number of the primes dividing nt is bounded by log nt , it is negligible compared to

π(nt ) = nt/ log nt . It follows that
∣∣∣∣

1

π(nt )

∑

p<nt
p|nt

(−1)x(p)
∣∣∣∣ 6

log nt

π(nt )
= o(1),

so the first summand does not affect the asymptotic of the averages in (1). Since the number

of p in the last summand is at least 1
2
π(nt ) in view of (12), we can fill in xt+1 at places

{p < nt : (p, nt ) = 1, xt (p) =?} to obtain a sum completely different than the known

number which we had from stage t − 1.

We fill in (in an arbitrary way) all remaining places between 0 and nt − 1 and all

places a + jnt for 0 6 j < kt+1 such that this number is not coprime with nt+1, so

that (10) will be satisfied at stage t + 1. We must remember that for certain 0 < a < nt

coprime to nt , xt (a) was already defined at previous stages, so along the corresponding

arithmetic progressions a + jnt , 0 6 j < kt+1, these places are also filled in previously.

On the other hand, if xt+1(a + jnt ) 6=? (i.e., xt+1(a + jnt ) = 0 or xt+1(a + jnt ) = 1)

and (a + jnt , nt+1) = 1 for some 0 < j < kt+1 then xt (a) 6=?. In view of (17), this gives

{0 6 i < nt+1 : (i, nt+1) = 1, xt+1(i) 6=?}
⊂ {0 < a < nt : (a, nt ) = 1, xt+1(a) 6=?}

∪
⋃

06a<nt
(a,nt )=1
xt (a) 6=?

{a + jnt : 0 < j < kt+1, (a + jnt , nt+1) = 1}.

By (10), Lemma 2.2, (11) and (14), it follows that

#{0 6 i < nt+1 : (i, nt+1) = 1, xt+1(i) 6=?}
6 ϕ(nt )+ #{0 6 a < nt : (a, nt ) = 1, xt (a) 6=?}ϕ(kt+1)

6 ϕ(nt )+
( t∑

k=1

1

100k

)
ϕ(nt )ϕ(kt+1) =

(
1

ϕ(kt+1)
+

t∑

k=1

1

100k

)
ϕ(nt+1)

6

t+1∑

k=1

1

100k
ϕ(nt+1) 6

1

99
ϕ(nt+1).

In particular, at stage t + 1, (11) is also satisfied.
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Similar arguments show that

{p < nt+1 : xt+1(p) 6=?} ⊂ {p < nt+1 : p|nt+1} ∪ {p < nt : xt+1(p) 6=?}

∪
⋃

06a<nt
(a,nt )=1
xt (a) 6=?

{a + jnt : 0 < j < kt+1, a + jnt ∈ P}.

In view of (16), (11) and (15), it follows that

#{p < nt+1 : xt+1(p) 6=?}

6 log nt+1 + π(nt )+ 2#{0 6 a < nt : (a, nt ) = 1, xt (a) 6=?}
π(nt+1)

ϕ(nt )

6 log nt+1 + π(nt )+
2

99
ϕ(nt )

π(nt+1)

ϕ(nt )
6

1

2
π(nt+1).

Therefore, at stage t + 1, (12) is also satisfied.

Finally, note that

ϕ(nt+1)

nt+1
=
ϕ(nt )

nt

ϕ(kt+1)

kt+1
6
ϕ(nt )

nt

1

2
,

so (9) holds and the resulting Toeplitz sequence is regular.

3. Toeplitz subshifts for which a PlNT does not hold

We now intend to give an example of a (regular) Toeplitz sequence x such that a PlNT

does not hold for the corresponding subshift. In fact,

lim
t→∞

1

πl(nt )

∑

p(l)∈Pntl

F(Sp
(l)

x) does not exist.

For any natural m and 0 6 a < m, let

πl(N ; m, a) := #(PNl ∩ (a +mZ)).

LEMMA 3.1. If (a, m) > 1 then

πl(N ; m, a) = o(πl(N)). (18)

If (a, m) = 1 then

lim
N→∞

πl(N ; m, a)

πl(N)
=

1

ϕ(m)
. (19)

Proof. The proof is by induction on l. If l = 1 and (a, m) > 1 then πl(N ; m, a) 6 1, so

(18) holds. If (a, m) = 1 then (19) is given by Theorem 2.1.

Suppose that (18) and (19) are satisfied for all parameters less than some natural number

l > 2. Assume that (a, m) ∈ Pj for some j > 1. If j > l then πl(N ; m, a) = 0. If (a, m) ∈
Pl then πl(N ; m, a) 6 1, so (18) holds. If p(j) := (a, m) ∈ Pj for some 1 6 j < l
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then

πl(N ; m, a) 6 πl−j ([N/p
(j)]; m/p(j), a/p(j)) = O(πl−j (N))

= O

(
N(log log N)l−j−1

log N

)
= o

(
N(log log N)l−1

log N

)
= o(πl(N)).

Now suppose that (a, m) = 1. Assume that p1 6 p2 6 . . . 6 pl are prime numbers

such that p(l) = p1 · · · pl 6 N , p(l) = a mod m. Then p1 6
l

√
N . Since (p1, m) = 1,

there exists a unique 0 6 a(p1) < m such that p1 · a(p1) = a mod m and (a(p1), m) = 1.

Then

πl(N ; m, a) =
∑

p16
l√
N

πl−1([N/p1]; m, a(p1)).

As p1 6
l

√
N implies N/p1 > N1−1/l , by assumption, for every ε > 0 there exists Nε

such that for all N > Nε and p1 6
l

√
N with (p1, m) = 1, we have

(1 − ε)
πl−1([N/p1])

ϕ(m)
< πl−1([N/p1]; m, a(p1)) < (1 + ε)

πl−1([N/p1])

ϕ(m)
.

Since πl(N) =
∑
p16

l√
N
πl−1([N/p1]), it follows that

(1 − ε)
πl(N)

ϕ(m)
< πl(N ; m, a) < (1 + ε)

πl(N)

ϕ(m)

for every N > Nε, so we have (19).

LEMMA 3.2. For every l > 2, we have

#{p(l) ∈ P
N
l : (p(l), N) > 1} = o(πl(N)). (20)

Proof. Notice that #{p(l) ∈ P
N
l :(p(l), N) > 1} 6

∑
p|N πl−1(N/p). Therefore, using (7),

#{p(l) ∈ P
N
l : (p(l), N) > 1} = O

( ∑

p|N

N/p

log(N/p)

(log log(N/p))l−2

(l − 2)!

)

= O

(
N

log N

(log log(N))l−1

(l − 1)!

(l − 1)

log log N

∑

p|N

log N

p log(N/p)

)
.

So again, by (7), the result will follow by showing that

1

log log N

∑

p|N

log N

p log(N/p)
= o(1).

Note that

∑

p|N

log N

p log(N/p)
=

∑

p|N
p6N1/2

log N

p log(N/p)
+

∑

p|N
p>N1/2

log N

p log(N/p)
,
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and that the second term contains at most one prime p. Moreover, as l > 2 and

(p(l), N) > 1, the number N is not prime, so N/p > 2. Using this, we get

∑

p|N

log N

p log(N/p)
6 2

∑

p|N

1

p
+

1

log 2

log N

N1/2
= O(log log log N),

as
∑
p|N (1/p) = O(log log log N); see, for example, [11]. This finishes the proof.

Now we repeat the scheme of the construction from §2 almost word for word, although

we have to take care how we choose kt+1.

First of all, we require that kt+1 is large enough so that

πl(nt+1; nt , a) 6 2
πl(nt+1)

ϕ(nt )
for every 0 6 a < nt with (a, nt ) = 1, (21)

∑

06a<nt ,(a,nt )>1

πl(nt+1; nt , a) 6
ε

8
πl(nt+1), (22)

#{p(l) ∈ P
nt+1

l , (p(l), nt+1) > 1} = o(πl(nt+1)). (23)

The existence of such kt+1 is guaranteed by Lemmas 3.1 and 3.2.

Next, we replace (12) by

#{p(l) ∈ P
nt
l : xt (p

(l)) =?} > 1
2
πl(nt )

and requiring (instead of (16)) that for (a, nt ) = 1 we have

#({a + jnt : 0 6 j < kt+1} ∩ Pl) 6 2
πl(nt+1)

ϕ(nt )
;

cf. (21). Furthermore, we replace (15) by the requirement that

#{p(l) ∈ P
nt
l : p(l) ≡ a mod nt with (a, nt ) > 1} 6 1

8
πl(nt+1);

cf. (22). To carry over the previous proof, it remains to show that

1

πl(nt )

∑

p(l)∈Pntl ,(p(l),nt )>1

(−1)x(p
(l)) = o(1).

This follows from (23) applied in the previous step of the construction.

4. Regular Toeplitz subshifts which satisfy a PNT (proof of Theorem B)

Let x ∈ AZ be a regular Toeplitz sequence. Then, for every k ∈ N, there is an nk-periodic

sequence xk ∈ (A ∪ {?})Z so that

xk(j) 6=? implies x(j) = xk(j) = xl(j) for all l > k,

and

?k =?k(x) := #{0 6 j < nk : xk(j) =?} = o(nk).

For every Toeplitz sequence x ∈ AZ and natural m, let us consider a new Toeplitz

sequence x(m) ∈ (A2m+1)Z given by

x(m)(j) = (x(j −m), . . . , x(j +m)) for every j ∈ Z.
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If (nt )t>1 is a periodic structure of x, then it is also a periodic structure of x(m). Moreover,

?k(x
(m)) 6 (2m+ 1)?k(x) for every k > 1. (24)

Hence, the regularity of x implies the regularity of x(m).

Theorem B follows directly from Lemma A.1 and the following result.

THEOREM 4.1. Suppose that (Xx , S) is a Toeplitz system such that

?k = o(ϕ(nk)).

Then (Xx , S) satisfies a PNT.

Proof. To show a PNT for (Xx , S), it suffices to show that for every continuous

F : Xx → C and every ε > 0 there exists Nε so that for every N , M > Nε and every

r ∈ Z, we have
∣∣∣∣

1

π(N)

∑

p6N

F(Sp+rx)−
1

π(M)

∑

p6M

F(Sp+rx)

∣∣∣∣ < ε. (25)

Note that the above is stronger than what is needed as it shows that the convergence

in (1) is uniform in y ∈ Xx . We first assume that F : Xx → R depends only on the zero

coordinate, that is, F(y) = f (y(0)) for some f : A → R.

Fix ε > 0. Fix also k > 1 so that

?k <
ε

8
ϕ(nk). (26)

Next choose Nε such that for every N > Nε, we have
∣∣∣∣π(N ; nk , a)−

π(N)

ϕ(nk)

∣∣∣∣ <
ε

8

π(N)

ϕ(nk)
for all a ∈ Z with (a, nk) = 1, (27)

#{p 6 N : p|nk} 6 log nk <
ε

8
π(N). (28)

We will show that for all N > Nε and r ∈ Z we have
∣∣∣∣

1

π(N)

∑

p6N

F(Sp+rx)−
1

ϕ(nk)

∑

06a<nk
(a−r ,nk)=1
xk(a) 6=?

F(Sax)

∣∣∣∣ 6 ε‖F‖sup, (29)

which implies (25).

Recall that xk ∈ (A ∪ {?})Z is an nk-periodic sequence (used to construct x at stage k).

If for some a ∈ Z we have

xk(a) 6= ?,

then

x(a + j · nk) = xk(a) for every j ∈ Z.

This implies that if p 6 N and xk(p + r mod nk) 6= ?, then

F(Sp+rx) = F(Sp+r mod nkx). (30)
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Note that

#{p 6 N : xk(p + r mod nk) = ?}

6
∑

06a<nk
(a−r ,nk)=1
xk(a)=?

#{p 6 N : p = a − r mod nk}

+
∑

06a<nk
(a−r ,nk)>1

#{p 6 N : p = a − r mod nk}.

Assume that N > Nε. By (27) and (28), for every integer v with (v, nk) = 1, we have

#{p 6 N : p = v mod nk} = π(N ; nk , v) 6
(

1 +
ε

8

) π(N)
ϕ(nk)

and

∑

06a<nk
(a−r ,nk)>1

#{p 6 N : p = a − r mod nk} 6 #{p 6 N : p|nk} <
ε

8
π(N), (31)

where the left inequality follows from the fact that if (a − r , nk) > 1 and pa =
a − r mod nk for a prime pa , then (a − r , nk) = pa and

{p 6 N : p = a − r mod nk} = {pa}.

It follows that (use also (26))

#{p 6 N : xk(p + r mod nk) = ?}

6 #{0 6 a < nk : (a − r , nk) = 1, xk(a) =?}
(

1 +
ε

8

) π(N)
ϕ(nk)

+
ε

8
π(N)

6?k

(
1 +

ε

8

) π(N)
ϕ(nk)

+
ε

8
π(N) 6

ε

2
π(N).

Let

PN := {p 6 N : xk(p + r mod nk) 6= ?}.

Then by the above, for every N > Nε,
∣∣∣∣

1

π(N)

∑

p6N

F(Sp+rx)−
1

π(N)

∑

p∈PN

F(Sp+rx)

∣∣∣∣ 6
ε

2
‖F‖sup. (32)

But by (30),

∑

p∈PN

F(Sp+rx) =
∑

06a<nk
xk(a) 6=?

∑

p6N
p≡a−r mod nk

F(Sax)

=
∑

06a<nk
xk(a) 6=?

F(Sax)#{p 6 N , p = a − r mod nk}.
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If (a − r , nk) = 1, then again by (27), we have

∣∣∣∣#{p 6 N , p = a − r mod nk} −
π(N)

ϕ(nk)

∣∣∣∣ =
∣∣∣∣π(N ; nk , a − r)−

π(N)

ϕ(nk)

∣∣∣∣ <
ε

8

π(N)

ϕ(nk)
.

In view of (31), it follows that

∣∣∣∣
1

π(N)

∑

p∈PN

F(Sp+rx)−
1

ϕ(nk)

∑

06a<nk
(a−r ,nk)=1
xk(a) 6=?

F(Sax)

∣∣∣∣

=
∣∣∣∣

∑

06a<nk
xk(a) 6=?

F(Sax)
π(N ; nk , a − r)

π(N)
−

1

ϕ(nk)

∑

06a<nk
(a−r ,nk)=1
xk(a) 6=?

F(Sax)

∣∣∣∣

6
1

π(N)

∑

06a<nk
(a−r ,nk)=1
xk(a) 6=?

|F(Sax)|
∣∣∣∣π(N ; nk , a − r)−

π(N)

ϕ(nk)

∣∣∣∣ +
ε

8
‖F‖sup

6 ‖F‖sup

(
ε

8

#{0 6 a < nk : xk(a) 6=?, (a − r , nk) = 1}
ϕ(nk)

+
ε

8

)
6 ‖F‖sup

ε

2
.

Together with (32), this gives (29), which completes the proof in the case of F depending

only on the zero coordinate.

Now suppose that F : Xx → C depends only on finitely many coordinates. Then there

exist natural m and f : A2m+1 → C such that F(y) = f (y(−m), . . . , y(m)) for every

y = (y(k))k∈Z ∈ Xx . Denote byXx(m) ⊂ (A2m+1)Z the orbit closure of x(m) ∈ (A2m+1)Z.

Then every y(m) ∈ Xx(m) is of the form y(m)(k) = (y(k −m), . . . , y(k +m)) for some

y = (y(k))k∈Z ∈ Xx .

In view of (24), (Xx(m) , S) is a regular Toeplitz shift with ?k(x
(m)) = o(ϕ(nk)). Let

us consider F̄ : Xx(m) → C given by F̄ (y(m)) = f (y(m)(0)) = f (y(−m), . . . , y(m)) for

y(m) ∈ Xx(m) . Since F̄ depends only on the zero coordinate, by (25) applied to x(m) and

the map F̄ , for every ε > 0 there exists Nε such that for N , M > Nε we have

∣∣∣∣
1

π(N)

∑

p6N

F(Sp+rx)−
1

π(M)

∑

p6M

F(Sp+rx)

∣∣∣∣

=
∣∣∣∣

1

π(N)

∑

p6N

F̄ (Sp+rx(m))−
1

π(M)

∑

p6M

F̄ (Sp+rx(m))

∣∣∣∣ < ε.

Thus (25) holds for every F : Xx → C depending only on finitely many coordinates. As

the set of such functions is dense in C(Xx), (25) also holds for every F ∈ C(Xx), which

completes the proof.

As ϕ(n) → ∞ when n → ∞, we obtain the following result.

COROLLARY 4.2. If x is Toeplitz for which the sequence (?k) is bounded then (Xx , S)

satisfies a PNT.
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5. Toeplitz subshifts for which a PlNT holds

THEOREM 5.1. Suppose that (Xx , S) is a Toeplitz system such that

?k = o(ϕ(nk)).

Then, for every F ∈ C(Xx) and y ∈ Xx , the limit

lim
N→∞

1

πl(N)

∑

p(l)∈PNl

F(Sp
(l)

y) exists.

Proof. The proof proceeds along the same lines as the proof of Theorem 4.1. It relies on

the following analogue of (29): for every ε > 0 there exists a natural Nε such that for all

N > Nε and r ∈ Z, we have
∣∣∣∣

1

πl(N)

∑

p(l)∈PNl

F(Sp
(l)+rx)−

1

ϕ(nk)

∑

06a<nk
(a−r ,nk)=1
xk(a) 6=?

F(Sax)

∣∣∣∣ 6 ε‖F‖sup. (33)

In turn, the proof of (29) is based on only two elements: (27) and (31). Their l-almost prime

counterparts follow directly from (19) and (18), respectively. Now we repeat the arguments

of the proof of (29) almost word for word, replacing (27) and (31) by their l-almost prime

counterparts.

Remark 5.2. In view of (29) and (33), under the assumption ?k = o(ϕ(nk)), we have

lim
N→∞

1

πl(N)

∑

p(l)∈PNl

F(Sp
(l)

y) = lim
N→∞

1

π(N)

∑

p<N

F(Spy)

for every F ∈ C(Xx) and y ∈ Xx , so a PNT and a PlNT fully coincide for this class of

regular Toeplitz systems.

6. Ergodic averages along polynomial times

Let P be a monic polynomial of degree d > 1 with non-negative integer coefficients.

The leading coefficient of P equals 1. This assumption is only for simplicity. In fact,

Theorem 6.8 below is true whenever the set of (non-zero) coefficients of P − P(0) is

coprime; see the proof of Corollary 6.3 and the assumptions of the Albis theorem in [17].

Note that, under these assumptions, P(·) is a strictly increasing function on N. For every

n ∈ N, let

RPn := {0 6 a < n : a = P(m) mod n for some m ∈ N} and ψP (n) := #RPn .

For all N , n ∈ N and a ∈ RPn , let

ρP (N ; n, a) = #{1 6 m 6 N : P(m) = a mod n}

and

ρP (n, a) := ρP (n; n, a), ρP (n) := max
a∈RPn

ρP (n; n, a).
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LEMMA 6.1. The function ψP is multiplicative, that is, ψP (n1n2) = ψP (n1)ψ
P (n2) if

(n1, n2) = 1. If a ∈ Z/nZ, n1, . . . , nk are pairwise coprime and n = n1 · · · nk then a ∈
RPn if and only if ai ∈ RPni for i = 1, . . . , k, where 0 6 ai < ni is the remainder of a when

divided by ni (i.e., 0 6 ai < ni and ai = a mod ni). Moreover,

ρP (n, a) =
k∏

i=1

ρP (ni , ai). (34)

Proof. Note that the multiplicativity of ψP follows from the second part of the lemma.

Moreover, note that a ∈ RPn if and only if a = P(m)mod n for some 0 6 m < n.

Indeed, if a = P(m)mod n for some m ∈ N, then a = P(m′)mod n, where 0 6 m′ < n

is the remainder of m when divided by n.

If a ∈ RPn1···nk , that is, a = P(m)mod n1 · · · nk for some 0 6 m < n, then ai = a =
P(m) = P(mi)mod ni for every i = 1, . . . , k, where 0 6 mi < ni is the remainder of m

when divided by ni .

Now, suppose a ∈ Z/nZ, ai = a mod ni and ai ∈ RPni for i = 1, . . . , k. Then, for

every i = 1, . . . , k, there exists 0 6 mi < ni such that ai = P(mi)mod ni . By the

Chinese remainder theorem, there exists a unique 0 6 m < n such that m = mimod ni for

i = 1, . . . , k. It follows that

P(m) = P(mi) = ai = amod ni for all i = 1, . . . , k.

This yields a = P(m)mod n1 · · · nk and a ∈ RPn .

The argument above also shows (34).

Remark 6.2. Note that in the argument above we used the fact that the ai determine a as by

the Chinese remainder theorem there exists only one 0 6 a < n such that a = ai mod ni

for each i = 1, . . . , k.

For any natural n, denote by ω(n) the number of its prime divisors (counted without

multiplicities) and by p(n) the product of its prime divisors.

COROLLARY 6.3. The arithmetic function ρP is multiplicative and ρP (n) 6 (dω(n)/

p(n))n.

Proof. The multiplicativity of ρP follows directly from (34). By the Albis theorem (see

[17, Corollary 3 of Theorem 1.23]), for any prime number we have ρP (pn) 6 dpn−1. (Note

that compared to the notation on [17], we have

ρP (n; n, a) = λP−a(n), ρP (n) = max
a∈RPn

λP−a(n);

the estimate on λP in [17] depends only on the degree of the polynomial.) This result

combined with the multiplicativity of ρP gives the required bound of ρP (n).
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LEMMA 6.4. For all n ∈ N, a ∈ RPn and N > P(n), we have

ρP (n, a)

(
P−1(N)

n
− 1

)
6 #{m ∈ N : 1 6 P(m) 6 N , P(m) = a mod n}

6 ρP (n, a)

(
P−1(N)

n
+ 1

)
.

Proof. Let s := ρP (n, a) and let 1 6 m1 < . . . < ms 6 n be all numbers such that

P(mi) = amod n. Note that a natural number m satisfies P(m) 6 N and P(m) =
amod n if and only ifm = jn+ r with 0 6 j 6 (P−1(N)− r)/n and 0 < r 6 n satisfies

P(r) = amod n. Thus, r = mi for some i = 1, . . . , s. It follows that

ρ := #{m ∈ N : 1 6 P(m) 6 N , P(m) = amod n}

=
s∑

i=1

([
P−1(N)−mi

n

]
+ 1

)
.

Since

P−1(N)

n
− 1 6

P−1(N)−mi

n
<

[
P−1(N)−mi

n

]
+ 1

6
P−1(N)−mi

n
+ 1 <

P−1(N)

n
+ 1,

by summing up, this gives

s

(
P−1(N)

n
− 1

)
6 ρ 6 s

(
P−1(N)

n
+ 1

)
.

Remark 6.5. As P is an increasing function, we can apply the above inequalities to P(N)

instead of N (as P(N) > N). Then P(m) 6 P(N) if and only if m 6 N , and the result of

the lemma implies

ρP (n, a)

(
N

n
− 1

)
6 ρP (N ; n, a) 6 ρP (n, a)

(
N

n
+ 1

)
.

We now focus on the simplest case when P(n) = n2. We continue to write R for RP ,

ψ for ψP and ρ for ρP . In view of [17, Theorems 1.27 and 1.30], we have the following

result.

PROPOSITION 6.6. For every prime number p > 2, for every a ∈ RpN , where N = 2n or

2n+ 1, we have

ρ(pN , a) =





2 if a = a′mod p for a′ ∈ Rp\{0},
2pr if a = p2ra′ and a′ = a′′mod p for a′′ ∈ Rp\{0},
pn if a = 0.

Moreover, we have

ψ(p2n+1) =
p2n+2 + 2p + 1

2(p + 1)
and ψ(p2n) =

p2n+1 + p + 2

2(p + 1)
. (35)
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Furthermore, if p = 2 then

ρ(2, a) = 1 for all a ∈ R2, ρ(4, a) = 2 for all a ∈ R4,

and for any N > 3, where N = 2n or 2n+ 1, for every a ∈ R2N , we have

ρ(2N , a) =





4 if a = 1mod 8,

4 · 2r if a = 22ra′, 2r 6 N − 3, a′ = 1mod 8,

2 · 2r if a = 22ra′, 2r = N − 2, a′ = 1mod 4,

2r if a = 22ra′, 2r = N − 1, a′ = 1mod 2,

2n if a = 0.

Moreover,

ψ(22n) =
22n−1 + 4

3
and ψ(22n+1) =

22n + 5

3
.

Proof. We obtain (35) by using the formulas for the values of ρ and counting the number

of the possibilities in each row, so for N = 2n, we have

ψ(p2n) =
p − 1

2
p2n−1 +

n−1∑

r=1

p − 1

2
p2n−2r−1 + 1

= 1 + p
p − 1

2

n−1∑

r=0

p2(n−r−1) = 1 +
p(p − 1)

2

(p2)n − 1

p2 − 1
=
p2n+1 + p + 2

2(p + 1)
.

COROLLARY 6.7. For every natural n > 2, we have ρ(n) 6 4
√
n. Moreover, if n is

square-free, then ρ(n) 6 2ω(n).

Proof. By a direct inspection of the formulas in Proposition 6.6, we obtain

ρ(2N ) 6 2
√

2N , ρ(3N ) 6 2
√

3N ,

but for all p > 5, we have

ρ(pN ) 6

√
pN .

Indeed, for the cases a = a′ mod p (for a′ ∈ Rp\{0}) and a = 0, this is direct. For the case

ρ(pN , a) = 2pr , we have a = p2ra′ < pN , so 2r 6 N − 1 and then indeed 2pr 6 pN/2.

The second inequality follows directly from ρ(p) 6 2.

For future purposes, we are interested in cases (in Proposition 6.6) which give possibly

smallest values for the function ρ, hence, for every prime number p and any natural n, let

R̃pn :=





{0 6 a < pn : a = a′mod p for a′ ∈ Rp \ {0}} if p > 2,

R2 if pn = 2,

R4 if pn = 4,

{0 6 a < 2n : a = 1mod 8} if n > 3.

By Proposition 6.6, R̃pn ⊂ Rpn.
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Let n = p
m1

1 p
m2

2 · · · pmkk be the canonical representation of n. Let

8 : Z/nZ → Z/p
m1

1 Z × · · · × Z/p
mk
k Z

be the canonical ring isomorphism. Recall (cf. Lemma 6.1 and Remark 6.2) that 8

establishes a one-to-one correspondence between Rn and R
p
m1
1

× · · · × R
p
mk
k

. Set

R̃n := 8−1(R̃
p
m1
1

× · · · × R̃
p
mk
k
)

and

ψ̃(n) := #R̃n.

Then, clearly, ψ̃ is a multiplicative function. Moreover, by Proposition 6.6, for each

a ∈ R̃pN , we have

ρ(pN , a) =





1 if pN = 2,

2 if pN = 2 or p > 2,

4 if p = 2 and N > 3.

Hence, in view of (34), for every a ∈ R̃n, we have

1
2

· 2ω(n) 6 ρ(n, a) 6 2 · 2ω(n). (36)

Moreover, by definition,

ψ̃(pn) :=





pn−1(p − 1)/2 if p > 2,

2 if pn = 2,

2 if pn = 4,

2n−3 if p = 2 and n > 3.

It follows that

1

2

∏

p|n

(
1 −

1

p

)
6

2ω(n)ψ̃(n)

n
6 4

∏

p|n

(
1 −

1

p

)
. (37)

To obtain these inequalities, for n = p
m1

1 p
m2

2 · · · pmkk , write

2ω(n)ψ̃(n)

n
=

k∏

i=1

2ψ̃(p
mi
i )

p
mi
i

and apply the formula above.

6.1. Polynomial ergodic theorem. In the result below P is a monic polynomial of degree

d > 1 with non-negative integer coefficients.
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THEOREM 6.8. Suppose that (Xx , S) is a Toeplitz system such that

?k = o(nk/ρ
P (nk)). (38)

Then, for every continuous map F : Xx → C and y ∈ Xx , the limit

lim
N→∞

1

N

∑

m6N

F(SP(m)y) (39)

exists.

Proof. To show (39), we need to prove that for every ε > 0 there existsNε so that for every

N , M > Nε and every r ∈ Z, we have

∣∣∣∣
1

N

∑

m6N

F(SP(m)+rx)−
1

M

∑

m6M

F(SP(m)+rx)

∣∣∣∣ < ε. (40)

We first assume that F : Xx → R depends only on the zero coordinate, that is, F(y) =
f (y(0)) for some f : A → R.

Fix ε > 0. Choose k > 1 so that

?k <
ε

8

nk

ρP (nk)
. (41)

Next, choose Nε > 8n2
k/ε. Then, in view of Remark 6.5 (and the choice of Nε), for every

N > Nε and a ∈ RPnk , we have

∣∣∣∣ρ
P (N ; nk , a)− ρP (nk , a)

N

nk

∣∣∣∣ < ρP (nk) 6 nk 6
ε

8

N

nk
. (42)

From now on, we write that an integer number v belongs to RPnk if there exists 0 6 v′ <
nk such that v′ = vmod nk and v′ ∈ RPnk . We will show that for all N > Nε and r ∈ Z, we

have
∣∣∣∣

1

N

∑

m6N

F(SP(m)+rx)−
1

nk

∑

06a<nk
a−r∈RPnk
xk(a) 6=?

ρP (nk , a − r)F (Sax)

∣∣∣∣ 6 ε‖F‖sup, (43)

and this implies (40).

Recall that xk ∈ (A ∪ {?})Z is an nk-periodic sequence (used to construct x at stage k).

Note that for every a ∈ Z, we have

xk(a) 6= ? ⇒ x(a + j · nk) = xk(a) for every j ∈ Z.

This implies that if m 6 N and xk(P (m)+ r mod nk) 6= ?, then

F(SP(m)+rx) = F(SP(m)+r mod nkx). (44)

https://doi.org/10.1017/etds.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.3


1466 K. Frączek et al.

Therefore,

#{m 6 N : xk(P (m)+ r mod nk) = ?}

=
∑

06a<nk
a−r∈RPnk
xk(a)=?

#{m 6 N : P(m) = a − r mod nk} =
∑

06a<nk
a−r∈RPnk
xk(a)=?

ρP (N ; nk , a − r).

Assume that N > Nε. By (42), for every integer v ∈ RPnk , we have

ρP (N ; nk , v) 6 2ρP (nk)
N

nk
.

In view of (41), it follows that

#{m 6 N : xk(P (m)+ r mod nk) = ?}

6 #{0 6 a < nk : a − r ∈ RPnk , xk(a) =?}2ρP (nk)
N

nk

6 2?kρ
P (nk)

N

nk
6
ε

4
N .

Let

UN := {m 6 N : xk(P (m)+ rmod nk) 6= ?}.

Then by the above, for every N > Nε,

∣∣∣∣
1

N

∑

m6N

F(SP(m)+rx)−
1

N

∑

m∈UN

F(SP(m)+rx)

∣∣∣∣ 6
ε

4
‖F‖sup. (45)

But by (44),

∑

m∈UN

F(SP(m)+rx) =
∑

06a<nk
a−r∈RPnk
xk(a) 6=?

∑

m6N
P(m)=a−r mod nk

F(Sax)

=
∑

06a<nk
a−r∈RPnk
xk(a) 6=?

F(Sax)#{m 6 N : P(m) = a − r mod nk}

=
∑

06a<nk
a−r∈RPnk
xk(a) 6=?

F(Sax)ρP (N ; nk , a − r).

By (42), we have

∣∣∣∣ρ
P (N ; nk , a − r)− ρP (nk , a − r)

N

nk

∣∣∣∣ <
ε

8

N

nk
.
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It follows that
∣∣∣∣

1

N

∑

m∈UN

F(SP(m)+rx)−
1

nk

∑

06a<nk
a−r∈RPnk
xk(a) 6=?

ρP (nk , a − r)F (Sax)

∣∣∣∣

=
∣∣∣∣

1

N

∑

06a<nk
a−r∈RPnk
xk(a) 6=?

F(Sax)ρP (N ; nk , a − r)−
1

nk

∑

06a<nk
a−r∈RPnk
xk(a) 6=?

ρP (nk , a − r)F (Sax)

∣∣∣∣

6
1

N

∑

06a<nk
a−r∈RPnk
xk(a) 6=?

|F(Sax)|
∣∣∣∣ρ
P (N ; nk , a − r)− ρP (nk , a − r)

N

nk

∣∣∣∣

6 ‖F‖sup
ε

8

#{0 6 a < nk : xk(a) 6=?, a − r ∈ RPnk }
nk

6 ‖F‖sup
ε

8
.

Together with (45), this gives (43), which completes the proof in the case of F depending

only on the zero coordinate. The rest of the proof runs as in the proof of Theorem 4.1, by

passing to the Toeplitz sequences x(m) ∈ (A2m+1)Z for m > 1.

Remark 6.9. Denote by P(nt ) the set of all prime divisors of elements of the sequence

(nt )t>1. In view of Corollary 6.3, ?t = o(p(nt )/d
ω(nt )) implies (38). Unfortunately, if

P(nt ) is finite then the sequence (p(nt )/d
ω(nt ))t>1 is bounded, so the little “o” argument

does not work and Theorem 6.8 is not applicable. Fortunately, if P(nt ) is infinite then

p(nt )/d
ω(nt ) → +∞ as t → +∞, so Theorem 6.8 applies to a non-trivial class of regular

Toeplitz shifts; in particular, it applies when the periodic sequences xt defining x have a

bounded number of ‘?’.

However, Theorem 6.8 applies to a much wider class of regular Toeplitz shifts when

P(n) = n2. Then, by Corollary 6.7, ?t = o(
√
nt ) implies (38). Here the finiteness or

infinity of the set P(nt ) does not matter.

The assumption (38) about the growth of the sequence (?t )t>1 is the least restrictive

when all nt are square-free. Then, by the second part of Corollary 6.7, ?t = o(nt/2
ω(nt ))

implies (38). Therefore, ?t = O(nt
1−(1/log2 log2 log2 nt )) also implies (38). Indeed, it suf-

fices to show that 2ω(n) = o(n1/log2 log2 log2 n) for square-free numbers n → +∞. Suppose

that ω(n) = k and denote by (pl)l>1 the increasing sequence of all prime numbers. Since

ln n >

k∑

l=1

ln pl > k ln k,

we have

2ω(n)

n(1/log2 log2 log2 n)
=

2k

2(log2 n/log2 log2 log2 n)
6

2k

2(k log2 k/log2 log2(k log2 k))

=
1

2k(log2 k/(log2 log2(k log2 k))−1)
.
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As log2 k/(log2 log2(k log2 k)) → +∞ when k → +∞, this gives 2ω(n) =
o(n(1/log2 log2 log2 n)).

6.2. Counter-examples. We will show that there exists a regular Toeplitz sequence

x ∈ {0, 1}Z with the period structure (nt )t>1 satisfying

nt+1 = kt+1nk with (kt+1, nt ) = 1, nt+1 > 24n2
t and

∑

p∈P(nt )

1

p
< +∞ (46)

and such that

lim
t→∞

1
√
nt

∑

06m<
√
nt

F(Sm
2

x) does not exist,

where F(y) = (−1)y(0). Let

0 < β :=
1

16

∏

p∈P(nt )

p − 1

p
.

By (37), for every t > 1, we have

2ω(nt )ψ̃(nt )

nt
> 8β. (47)

Passing to a subsequence of (nt )t>1 (and remembering that ψ̃(m) → ∞ when m → ∞),

we can assume that
∑

t>1

1

ψ̃(kt )
6

1

2
.

Set

γt :=
t∑

l=1

1

ψ̃(kl)

(
6

1

2

)
.

At stage t , x is approximated by the infinite concatenation of xt [0, nt − 1] ∈ {0, 1, ?}nt
(i.e., we see a periodic sequence of 0, 1, ? with period nt ). Successive ‘?’ will be filled in

the next steps of construction of x. We require that:

{0 6 i < nt : xt (i) =?} ⊂ Rnt ; (48)

#{a ∈ R̃nt : xt (a) =?} > (1 − γt )ψ̃(nt ); (49)

#{0 6 m <
√
nt : xt (m

2) =?} > β
√
nt . (50)

Recall that, in view of Lemma 6.4 (remembering that P−1(nt+1) = √
nt+1), (36) and (46),

for each a ∈ R̃nt , we have (N2 stands for {m2 : m > 0})

#({a + jnt : 0 < j < kt+1} ∩ N
2) > #({m2 = a mod nt : m2 < nt+1})− 1

>

(√
nt+1

nt
− 1

)
ρ(nt , a)− 1 >

(√
nt+1

nt
− 1

)
1

2
2ω(nt ) − 1

>
1

2
2ω(nt )

(√
nt+1

nt
− 2

)
>

1

4
2ω(nt )

√
nt+1

nt
,
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so

#({a + jnt : 0 < j < kt+1} ∩ N
2) >

2ω(nt )

4

√
nt+1

nt
. (51)

By the definition of the sets Rn and R̃n, we have

Rnt+1
⊂

⋃

a∈Rnt

{a + jnt : 0 6 j < kt+1}, (52)

R̃nt+1
⊂

⋃

a∈R̃nt

{a + jnt : 0 6 j < kt+1}. (53)

Moreover, by Lemma 6.1, for every a ∈ R̃nt , we have

#{i ∈ R̃nt+1
: i = a mod nt } = #R̃kt+1

= ψ̃(kt+1). (54)

We need to describe now which ‘?’ we fill in xt+1[0, nt+1 − 1] and how. This block is

divided into kt+1 subblocks

xt [0, nt − 1]xt [0, nt − 1] . . . xt [0, nt − 1]︸ ︷︷ ︸
kt+1

.

We fill in all ‘?’ in the first block xt [0, nt − 1] in such a way as to ‘destroy’ the convergence

of averages in (46) for the time nt , namely,

1
√
nt

∑

06m<
√
nt

F(Sm
2

x) =
1

√
nt

( ∑

m<
√
nt

xt (m
2)=0

1 −
∑

m<
√
nt

xt (m
2)=1

1 +
∑

m<
√
nt

xt (m
2)=?

(−1)x(m
2)

)
.

And, since the number ofm in the last summand is at least β
√
nt in view of (50), we can fill

in these places at stage t + 1 to obtain a sum completely different than the known number

which we had from stage t . We also fill in (in an arbitrary way) the remaining places in

{0, . . . , nt − 1}.
We fill in (in an arbitrary way) all places in {nt , . . . , nt+1 − 1} \ Rnt+1

and only these

places, so that (48) will be satisfied at stage t + 1.

We must remember that for any a ∈ Rnt if xt (a) 6=? then for every 0 6 j < kt+1, we

have xt+1(a + jnt ) = xt (a + jnt ) = xt (a) 6=?. Moreover, for any a ∈ R̃nt if xt (a) =?

then for every 0 < j < kt+1 with a + jnt ∈ R̃nt+1
we have xt+1(a + jnt ) =?. In view

of (53), this gives

#{i ∈ R̃nt+1
: xt+1(i) 6=?}

6 ψ̃(nt )+
∑

a∈R̃nt :xt (a) 6=?

#{a + jnt ∈ R̃nt+1
: 0 < j < kt+1}.

In view of (54) and (49), it follows that

#{i ∈ R̃nt+1
: xt+1(i) 6=?} 6 ψ̃(nt )+ (ψ̃(kt+1)− 1)#{a ∈ R̃nt : xt (a) 6=?}

6 ψ̃(nt )+ (ψ̃(kt+1)− 1)γt ψ̃(nt ) =
(
γt +

1 − γt

ψ̃(kt+1)

)
ψ̃(nt+1) 6 γt+1ψ̃(nt+1).

Therefore, at stage t + 1, (49) is also satisfied.
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A similar argument combined with (51), (49) and (47) shows that

#{0 6 m2 < nt+1 : xt+1(m
2) =?} = #{i ∈ Rnt+1

∩ N
2 : xt+1(i) =?}

>
∑

a∈Rnt :xt (a)=?

#{a + jnt ∈ Rnt+1
∩ N

2 : 0 < j < kt+1}

>
∑

a∈R̃nt :xt (a)=?

2ω(nt )

4

√
nt+1

nt
=

√
nt+1

4nt
2ω(nt )#{a ∈ R̃nt : xt (a) =?}

= (1 − γt )

√
nt+1

4nt
2ω(nt )ψ̃(nt ) > β

√
nt+1.

Therefore, at stage t + 1, (50) is also satisfied. This completes the construction.

Remark 6.10. In view of (48), in the constructed example of Toeplitz system (Xx , S) we

have ?t 6 ψ(nt ). Moreover,ψ(nt ) = o(ϕ(nt )). Indeed, by Proposition 6.6, for every prime

number p we have ψ(pn) 6 pn−1(p + 2)/2. It follows that

ψ(pn)

ϕ(pn)
6

1

2
·
p + 2

p − 1
6

3

4

for all prime p > 7. It follows that

ψ(nt )

ϕ(nt )
= O

((
3

4

)ω(nt ))
= o(1).

Consequently, we have ?t = o(ϕ(nt )). Therefore, in view of Theorem 4.1, (Xx , S) satisfies

a PNT.

A. Appendix. The diameter of a tower

Let x ∈ AZ be a Toeplitz sequence with the periodic structure given by (nt )t>1. Recall

that

Pernt (x) = {a ∈ Z : x(a + jnt ) = x(a) for all j ∈ Z}.

Let Apernt (x) := Z\Pernt (x). Then we define the periodic sequence xt ∈ (A ∪ {?})Z by

xt (k) = x(k) if k ∈ Pernt (x) and xt (k) =? if k ∈ Apernt (x). Note that the density of the

set Apernt (x) is equal to ?t/nt , where

?t = #{0 6 k < nt : xt (k) =?} = #(Apernt (x) ∩ {0, 1, . . . , nt − 1}).

It follows that the regularity of (Xx , S) is equivalent to ?t = o(nt ).

LEMMA A.1. For any Toeplitz sequence x ∈ AZ we have

?t 6 δ(Et ) 6 3?t for every t > 1.

Proof. Note that for every 0 6 j < nt we have

Etj = {y ∈ Xx : y(k − j) = x(k) = xt (k) for all k ∈ Pernt }.

https://doi.org/10.1017/etds.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.3


Prime number theorem for regular Toeplitz subshifts 1471

Moreover, if k ∈ Apernt (x) then we can find y, z ∈ Etj so that y(k − j) 6= z(k − j). It

follows that

diam(Etj ) = 2− inf{|n|:n∈Apernt (x)−{j}}.

Suppose that

Apernt (x) ∩ {0, 1, . . . , nt − 1} = {l1, l2, . . . , ls}

with 1 6 l1 < · · · < ls 6 nt and s =?t . Thus, diam(Etli ) = 1 and if li−1 < j < li (l0 =
ls − nt and ls+1 = l1 + nt ) then diam(Etj ) = 2−min{j−li−1,li−j}. Therefore,

δ(Et ) =
∑

06j<nt

diam(Etj ) >

s∑

i=1

diam(Etli ) = s

and

δ(Et ) =
∑

06j<nt

diam(Etj ) =
s∑

i=1

∑

(li−1+li )/26j<(li+li+1)/2

diam(Etj )

=
s∑

i=1

(
1 +

∑

16j<(li+1−li )/2
2−j +

∑

16j6(li−li−1)/2

2−j
)
6 3s,

which completes the proof.

As the regularity of x is equivalent to ?t = o(nt ), we have the following conclusion.

COROLLARY A.2. A Toeplitz sequence is regular if and only if δ(Et ) = o(nt ).

B. Appendix. Sturmian dynamical systems satisfy a PNT

Let T : T → T (T := R/Z) be an irrational rotation on T by α. For every non-zero β ∈ T,

let {A0, A1} be the partition given by the intervals A0 = [0, β) and A1 = [β, 1). For every

x ∈ T, denote by x̄ ∈ {0, 1}Z the code of x defined by x̄(k) = i if and only if T kx ∈ Ai .
Finally, denote byXα,β ⊂ {0, 1}Z the closure of the set {x̄ ∈ {0, 1}Z : x ∈ T}. SinceXα,β is

an invariant subset for the left shift S on {0, 1}Z, we can focus on the topological dynamical

system S : Xα,β → Xα,β .

THEOREM B.1. For the topological dynamical system S : Xα,β → Xα,β a PNT holds.

Proof. For every y = (y(n))n∈Z ∈ Xα,β the set
⋂
n∈Z Ay(n) ⊂ T has exactly one element

π(y) ∈ T. Moreover, π : Xα,β → T is a continuous map intertwining S and T and there

exists a unique S-invariant probability measure µ on Xα,β . The π -image of µ coincides

with Lebesgue measure on T.

By Vinogradov’s theorem, for any character f (x) = e2πinx , n ∈ Z, we have

lim
N→∞

1

π(N)

∑

p<N

f (T px) =
∫

T

f (x) dx for every x ∈ T. (55)

Since every continuous function f : T → C is uniformly approximated by trigonometric

polynomials, (55) holds also for any continuous f . Moreover, (55) holds for any Riemann
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integrable f : T → R. Indeed, for every ε > 0 there are two continuous functions f−, f+ :

T → R such that f−(x) 6 f (x) 6 f+(x) for every x ∈ T and
∫
T
(f+(x)− f−(x))dx < ε.

It follows that

lim sup
N→∞

1

π(N)

∑

p<N

f (T px) 6 lim
N→∞

1

π(N)

∑

p<N

f+(T
px)

=
∫

T

f+(x) dx <

∫

T

f (x) dx + ε

and

lim inf
N→∞

1

π(N)

∑

p<N

f (T px) > lim
N→∞

1

π(N)

∑

p<N

f−(T
px)

=
∫

T

f−(x) dx >

∫

T

f (x) dx − ε.

As ε > 0 can be chosen freely, this gives (55).

Suppose that f : Xα,β → R depends only on finitely many coordinates. More precisely,

assume that f (y) = g(y(−n), . . . , y(n)) for some g : {0, 1}2n+1 → R. Then there exists

F : T → R such that f = F ◦ π and F is constant on the atoms of the partition∨n
i=−n T

−i{A0, A1} (e.g., if n = 0 and f is the characteristic function of {y ∈ Xα,β :

y(0) = 0} then F is 1A0
). It follows that F is Riemann integrable. Therefore, for every

y ∈ Xα,β , we have

1

π(N)

∑

p<N

f (Spy) =
1

π(N)

∑

p<N

F(T pπ(y)) →
∫

T

F(x) dx =
∫

Xα,β

f dµ.

Since every continuous function f : Xα,β → R is uniformly approximated by functions

depending on finitely many coordinates,

1

π(N)

∑

p<N

f (Spy) →
∫

Xα,β

f dµ for any y ∈ Xα,β ,

holds for every continuous f .

Acknowledgements. Research supported by Narodowe Centrum Nauki grant 2019/33/B/

ST1/00364. A.K. was partially supported by the NSF grant DMS-1956310. We would like

to thank the anonymous referee for suggestions which improved the paper.

REFERENCES
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