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Homogenization of two-phase flows
in porous media with hysteresis

in the capillary relation
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The homogenization problem is considered for the equations of two-phase flow in porous

media with a periodic or random small-scale structure of inhomogeneities. The capillary rela-

tion between saturation and the drop in pressures at microscales accounts for hysteresis and

dynamic memory effects. Homogenized equations are derived, and convergence of solutions to

the solution of the homogenized problem is proved. Properties of averaged capillary relation

are described in the particular case of a two-component porous medium.

1 Introduction

Two-phase flows in porous media can be modelled by the equations (see Collins [11]):

m
∂s

∂t
=

∂

∂x
KW (s)

(
∂pW

∂x
− fW

)
, (1.1 a)

−m∂s
∂t

=
∂

∂x
KN (s)

(
∂pN

∂x
− fN

)
, (1.1 b)

where the indices W and N relate to wetting and nonwetting fluids, pW = pW (x, t) and

pN = pN(x, t) are the corresponding pressures, s = s(x, t) stands for the saturation of the

porous medium with respect to the wetting liquid, m is the porosity, and KW (s) and KN(s)

denote the permeabilities of the phases. The functions fW and fN are given external

forces.

In current models of unsaturated flow (see Coillins [11]), equations (1.1 a) and (1.1 b)

are usually supplemented by a capillary relation that takes the difference in pressures, p

:= pN − pW , to be a single-valued function of saturation at every point of the medium. In

reality, the observed relation between p and s is much more complicated. It demonstrates

memory effects and, in particular, hysteresis. To account for these properties, the following

model of capillary relation has been developed by Beliaev & Hassanizadeh [5]:

∂

∂t
s = Ψ

(
s, pN − pW ) (1.2)

with a function Ψ (s, p) on [s−, s+] × R which monotonically decreases with respect to
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62 A. Beliaev

p ∈ (−∞,+∞) and equals zero in the zone Pc
im(s) 6 p 6 P c

dr(s), where P c
dr(·) and P c

im(·)
are two different functions of saturation, which are called the capillary pressures for the

processes of drainage and imbibition, respectively (see Fig. 1).

Equation (1.2) implies that all equilibrium states in the s–p plane occupy the zone

between the curves p = P c
im(s) and p = P c

dr(s). Processes with saturation increasing in

time (imbibition) can be represented in this plane by various curves below the graph

of P c
im(s), and processes with ṡ < 0 (drainage) are all above the curve p = Pc

dr(s) (see

Fig. 2). Passages from drainage to imbibition (and vice versa) are described by so-called

‘scanning curves’ in the same plane. In the model (1.2) of the capillary relation, all these

intermediate processes occur with constant saturation and can be represented by vertical

straight lines. This kind of relation between s and p is known as ‘play-type’ hysteresis (see

Visintin [17]). More precisely, if s = S
(L)
t (s0, {p(·)}) stands for the solution of the equation

Lṡ = Ψ (s, p(t))

with initial saturation s0 and given p = p(t), then the limit of S (L)
t as L→ 0+ is a memory-

dependent operator (s0, p(t)) 7→ s(t) which is called play-type hysteresis. In this limit, all

the continuous curves (s(t), p(t)) in the s–p plane occupy the zone {(s, p) : Ψ (s, p) = 0}, and

trajectories with ṡ > 0 (resp., ṡ < 0) coincide with the curve p = Pc
im(s) (resp., p = P c

dr(s)).

The operator S (L)
t with L > 0 corresponds to play-type hysteresis coupled with dynamic

memory effects. The porous medium equation with non-hysteretic but memory-dependent

capillary relation has been considered recently by Cuesta et al. [4] in view of properties

of particular solutions. Dynamic effects have been described there by equation (1.2) with

a linear function of p in place of Ψ .

Since the limit L → 0+ is not considered in this paper, we have posed L = 1 in (1.2)

without loss of generality. It should be noted that the value of L is usually negligible in

applications, but passing to the limit L → 0 with rigorous justification is not a trivial

task. Moreover, the limit problem is much more difficult from the mathematical point of

view than the ‘regularized’ one. On the other hand, as shown by Beliaev & Schotting [6],

a small non-zero value of L is desirable for numerical studies of the equations; hence it

is reasonable to keep this damping coefficient in the capillary relation.

If the porous medium is inhomogeneous, then the porosity, the permeabilities and the

capillary function Ψ depend explicitly upon spatial variable x. Homogenization theory

deals with the case when the spatial scale of inhomogeneities in the medium, ε, is much

smaller than the size of the porous domain. The small-scale structure is usually represented

by periodic or stochastic dependence of the coefficients in equations on the ‘fast’ variable

ξ = x/ε. Then the solutions of equations (1.1 a), (1.1 b) and (1.2) with appropriate

initial data and boundary conditions depend on the scaling parameter ε. The aim of

homogenization is to find the leading term of the asymptotics for the solutions as ε→ 0.

The main result of the paper is a rigorous justification of the following homogenized

equations for the leading terms of the pressures, pN∗ and pW∗ , and saturation s∗:

m∗
∂

∂t
s∗ =

∂

∂x
KW∗

(
∂

∂x
pW∗ − fW

)
, (1.3 a)

−m∗ ∂
∂t
s∗ =

∂

∂x
KN∗

(
∂

∂x
pN∗ − fN

)
, (1.3 b)
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where the homogenized porosity m∗ is a constant or, in macroscopically inhomogeneous

media, a fixed function of the spatial variables, but s∗, KN∗ and KW∗ are memory-dependent

on p∗ = pN∗ − pW∗ .

The homogenization problem for two-phase flows in porous media with traditional

capillary relation had been considered, from the mathematical point of view, by Mikelić

[15] in periodic case and by Bourgeat et al. [7] for random structures. The resulting

homogenized problem turns out to be of the same kind as the original one. It includes

(1.3 a) and (1.3 b) with some effective single-valued capillary relation. In the case of highly

contrasting local properties of the porous medium, different homogenized models are

available. In particular, a memory-dependent capillary relation in homogenized system

has been obtained as a result of homogenization for a specially chosen range of porous

medium parameters and ε (see, for instance, papers by Bourgeat et al. [8] or by Bourgeat

& Panfilov [10]).

The homogenization problem for two-phase porous flows, either with capillary hysteresis

or without it, is complicated by the fact that the range of saturation is bounded from

above and below, and the coefficients of the equations become degenerate as the saturation

value approaches each of its bounds. This results in difficulties with well-posedness of the

problem for fixed ε; hence the taking of the scaling parameter to zero is a formal procedure

and does not, in general, have a rigorous justification. The existence of weak solutions

for two-phase flows with single-valued capillary relation has been established (see, for

instance, Antontsev et al. [3], Kröner & Luckhaus [13] and Alt & Di Benedetto [2]), but

uniqueness is not proved yet, except in some particular cases. If hysteresis is included, the

situation with well-posedness is no better.

To avoid those troubles with the well-posedness of the problem under consideration,

we impose a restriction on the initial saturation and assume that it lies in some interval

[s−, s+] which is uniformly separated from the unphysical values. In this interval, it

may be assumed that the coefficients are not degenerate. This provides a possibility of

proving local-in-time existence and uniqueness of the solution until the instance when

saturation attains a bounding value somewhere in the porous domain. As a result, the

homogenization procedure is justified for some interval of time that does not depend

upon ε but may depend upon the initial data and parameters of the medium.

The structure of the paper is the following. First, we prove well-posedness of the problem

under consideration for a fixed value of ε (§ 2). Then, in § 3, we prove a homogenization

theorem for periodic inhomogeneous media. This is done by means of an approach based

on the notion of two-scale convergence which has been developed by Nguetseng [16]

and Allaire [1] for media with a periodic structure. For the sake of simplicity we deal

with one-dimensional case, and only briefly discuss generalization of the results to multi-

dimensional problems. After this, in § 4, the same homogenized equations are introduced in

a particular case of two-component porous medium, to obtain simple explicit expressions

and to get a feel for the properties of the model. Finally, in § 5, the homogenization

is done for a randomly inhomogeneous porous medium. In contrast with the periodic

case, where space dimension is not too important, the generalization of the ‘stochastic’

proof for multi-dimensional spaces is not straightforward, and we present a proof of

homogenization theorem in one dimension only.
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2 Results on the solvability of the problem

For the sake of definiteness, we consider (1.1 a), (1.1 b) and (1.2) on the interval ]−l, +l[⊂ R

and impose Dirichlet boundary conditions at x = ±l for both pressures:

pN
∣∣
x=±l = qN± (t), pW

∣∣
x=±l = qW± (t). (2.1)

We also assume that the saturation is given at initial instant:

s(x, 0) = s0(x). (2.2)

Before presenting any results on the asymptotic behaviour of solutions, we should

be convinced that the solution of this problem exists for any fixed value of the scaling

parameter ε. Below we introduce assumptions on the functions and parameters from this

problem which are sufficient for its solvability. The assumptions read

(i) m(·) is measurable on [−l,+l], and 0 6 m(·) 6 δ for some δ > 0 everywhere on

[−l,+l];
(ii) the functions KN(·, s) and KW (·, s) are measurable on [−l,+l] for any s, Lipschitz

continuous with respect to s on some fixed interval s− 6 s 6 s+ for any x with

uniformly bounded Lipschitz constant and, for some δ > 0, 1/δ > KN(W ) > δ on

[−l,+l]× [s−, s+];

(iii) the functions Ψ (·, s, p) are measurable on [−l,+l] for any s and p, bounded and

Lipschitz continuous with respect to s and p on [s−, s+]×[−M, +M] for any M > 0

uniformly over range of x, and monotonically decreasing with respect to p for all s

and x;

(iv) s0(·) is measurable, and s0(x) ∈ [s− + δ, s+ − δ] for some δ > 0 almost everywhere

on [−l, +l];

(v) the external forces fN and fW are continuous functions of t > 0 with values in

L2([−l, +l]); boundary data qN± and qW± are also continuous with respect to t > 0.

We outline the formal way of solving this problem. Equations (1.1 a)–(1.1 b) can be

re-written as follows:

mΨ =
∂

∂x
KW

(
∂pW

∂x
− fW

)
, (2.3 a)

−mΨ =
∂

∂x
KN

(
∂pN

∂x
− fN

)
, (2.3 b)

where the time derivatives of the saturation have been replaced by the capillary function

Ψ due to equality (1.2). For any given field of saturation s(·, t), these two equations

with Dirichlet boundary condition (2.1) provide an elliptic problem for the two unknown

pressures.

The solution of this elliptic problem, pN(W ) = PN(W )(x, {s}), depends non-locally on the

saturation profile. Then the pressures are eliminated from Equation (1.2) which can be

written as an ordinary differential equation with respect to the field of saturation in some

Banach space. It reads

∂s

∂t
= A({s}), (2.4)
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where the spatially non-local operator s 7→ A({s}) is formally defined by the expression

A({s})(x) := Ψ
(
s(x), PN(x, {s})− PW (x, {s})) . (2.5)

Finally, (2.4) with the initial condition (2.2) determines the evolution of the saturation in

time.

Assumptions (i)–(iii) provide well-posedness of the elliptic problem (2.3 a)–(2.3 b) with

boundary conditions (2.1) for any given measurable function s(·) with values in the

interval [s−, s+]. The weak formulation of the problem reads: find pN,W ∈ W 1,2([−l, +l])

obeying (2.1) and satisfying the following equality for any two test functions ϕN , ϕW ∈
C∞0 ([−l, +l]):

+l∫
−l

{
m(·)Ψ (·, ·, pN − pW )

(
ϕW − ϕN)+KW (·, ·)

(
∂pW

∂x
− fW

)
∂ϕW

∂x

+KN(·, ·)
(
∂pN

∂x
− fN

)
∂ϕN

∂x

}
dx = 0. (2.6)

Note that KN(W )(x, s) and Ψ (x, s, p) are Carathéodory functions and, consequently,

KN(W )(x, s(x)) and Ψ (x, s(x), p(x)) are measurable in x. This makes all terms of the

identity (2.6) correctly defined.

Properties of solution of this problem are outlined in the following.

Proposition 2.1 (A priori estimates). Let conditions (i)–(iii) be satisfied, and the saturation

s = s(x) in the elliptic problem (2.3 a)–(2.3 b) with boundary conditions (2.1) be an arbitrary

measurable function, such that s− 6 s(·) 6 s+ a.e. Then solution pN(W ) = PN(W )(x, {s}) of

this problem satisfies the estimate∥∥∥∥∂PN(x, {s})
∂x

∥∥∥∥ +

∥∥∥∥∂PW (x, {s})
∂x

∥∥∥∥+ max
x
|PN(x, {s})|

+ max
x
|PW (x, {s})| 6M, (2.7)

where ‖ · ‖ stands for the norm in L2([−l, +l]), and the positive constant M does not depend

upon s. It is also independent of the boundary data and external forces within the set ‖fN‖
+ ‖fW‖ + |qN− | + |qW− | + |qN+ | + |qW+ | 6M1 for a fixed M1 > 0.

Furthermore, if pN,W1 = PN,W (·, {s1}) and p
N,W
2 = PN,W (·, {s2}) are solutions of the el-

liptic problem under consideration with input data (s1, f
N
1 , f

W
1 , q

N
1±, qW1±) and (s2, f

N
2 , f

W
2 ,

qN2±, qW2±), respectively, then∥∥∥∥∂(pN1 − pN2 )

∂x

∥∥∥∥ +

∥∥∥∥∂(pW1 − pW2 )

∂x

∥∥∥∥+ max
x
|pN1 − pN2 |+ max

x
|pW1 − pW2 |

6 C

(
|qN1+ − qN2+|+ |qN1− − qN2−|+ |qW1+ − qW2+|+ |qW1− − qW2−|

+ ‖fN1 − fN2 ‖+ ‖fW1 − fW2 ‖+ ess sup
x
|s1 − s2|

)
, (2.8)

where the constant C is also independent of s, the boundary data and the external forces

within the above set.
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The proof is given in the Appendix. As a consequence of this proposition, we get

Theorem 2.2 Under assumptions (i)–(v), there exists a unique local-in-time solution(
pN, pW , s

)
satisfying (2.1)–(2.4) on some interval of time [0, T ], and this solution possesses

the following properties:

(1) s ∈ C1(0, T ; L∞([−l, +l]));

(2) pN , pW ∈ C(0, T ; W 1,2([−l, +l])) ⊂ C([−l, +l]× [0, T ]).

Proof of Theorem 2.2 The operator s 7→ A({s}) defined by (2.5) in L∞([−l,+l]) is Lipschitz

continuous with respect to s and continuous with respect to time t which enters in A

via boundary data and external forces. The continuity conditions (v) provide the estimate

‖fN‖ + ‖fW‖ + |qN+ | + |qW+ | + |qN− | + |qW− | 6 M1 for a fixed M1 and for all t in some

interval [0, T1]. Due to the first part of Proposition 2.1, the drop in pressures, P (·, {s})
= PN(·, {s}) − PW (·, {s}), has to be also bounded by some M; then properties (iii) of

the capillary function Ψ provide that the Lipschitz constant of A({s}) can be chosen

independently of s(·) and t ∈ [0, T1]. Then, starting with initial saturation s0(x) that

satisfies condition (iv) and looking for a solution of the ordinary differential equation

(2.4) in L∞([−l,+l]), we refer to standard results on existence and uniqueness of local-

in-time solution, which exists at least until s(x, t) ∈ [s−, s+] for all x. The existence time

T can be estimated from below by min{T1, 1/C1, δ/C2} where C1 is an upper bound for

the Lipschitz constant of A with respect to s, δ is the minimal distance from s0 to the

boundaries of the interval [s−, s+] and C2 is the upper bound of |̇s| which is not greater

than upper bound of |Ψ (·, s, p)| over all s ∈ [s−, s+] and p ∈ [−M,+M]. Obviously, s(·, ·)
∈ C1(0, T ; L∞([−l, +l])) and pN(W ) ∈ C(0, T ; W 1,2([−l, +l])). q

Remark 2.3 If a family of functions KN(M), Ψ and s0 is considered, and assumptions

(i)–(iv) are satisfied for representatives of this family uniformly, then the constants M and

C from Proposition 2.1 and time T from Theorem 2.2 can be chosen independently of the

representative. As a result, the norms of solutions s, pN and pW in corresponding spaces

are uniformly bounded.

Remark 2.4 Theorem 2.2 and Proposition 2.1 hold if the problem (2.1)–(2.4) and con-

ditions (i)–(iv) are generalized so that the function s(x, t) takes its values in a bounded

subset of Banach space instead of interval [s−, s+]. The only problem is measurability of

KN(W )(x, s(x)) and Ψ (x, s(x), p(x)) in x that is needed for the correct weak formulation of

the elliptic problem with respect to the pressures. If, for instance, the above Banach space

is separable or the function x 7→ s(x) is continuous, then measurability holds.

Remark 2.5 If Neumann boundary conditions are employed instead of (2.1), then the

pressure fields pN and pW do not possess the Lipschitz property with respect to the

profile of saturation and, moreover, they may be non-unique because of the nonstrict

monotonicity of the capillary function. Nevertheless, the operator s 7→ A({s}) is Lipschitz

continuous, although the proof of this fact is not straightforward. Thus, Theorem 2.2

https://doi.org/10.1017/S0956792502004965 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792502004965


Homogenization of two-phase flows 67

can be generalized to the case of a Neumann boundary value problem. For a particular

example of the capillary function Ψ , this has been done by Beliaev & Schotting [6].

Remark 2.6 The multi-dimensional generalization of Proposition 2.1 and Theorem 2.2 is

trivial. The only trouble is the proof of continuity of the pressures in the spatial variable

x because W 1,2 is not embedded in the space of continuous functions C if the dimension

is greater than 1. Then, in order to prove continuity of the pressures, one may use

regularity results for elliptic partial differential operators (see the book by Ladyzhenskaya

& Ural’tseva [14, Theorem 13.1, p. 199]).

3 Homogenization of periodic structures

Small-scale periodicity of a porous medium implies that its constitutive functions m, KN ,

KW and Ψ depend periodically on the variable ξ = x/ε. Let Π = [0, 1] be the periodicity

cell with respect to ξ. Of course, these functions could have different periods, but this

quasi-periodic situation is, in some sense, included in more general theory of stochastic

homogenization which will be considered later. Concerning the initial saturation, we

assume that it depends upon both variables, x and ξ, and the dependence on ξ is Π-

periodic. In the case of macroscopically inhomogeneous media, an explicit dependence

of m, KN , KW and Ψ on x, in addition to ξ, would also be possible, but we ignore it.

Generalization of all further results for this case is straightforward.

Thus, the problem under consideration consists of (1.1 a), (1.1 b), (1.2), boundary con-

ditions (2.1) and initial condition (2.2), where m = m(x/ε), KN(W ) = KN(W )(x/ε, s),

Ψ = Ψ (x/ε, s, pN − pW ) and s0 = s0(x, x/ε) are Π-periodic with respect to x/ε. We

assume that representatives of this family satisfy conditions (i)–(iv) for any ε > 0. Then

Theorem 2.2 provides existence and uniqueness of solution pNε , pWε , sε of the problem on

some interval of time independent of ε.

In addition to (i)–(v), we require that the initial saturation s0(·, ·) ∈ C([−l,+l]; L∞(Π)).

Our reason for this restriction is the need for weak convergence of functions x 7→ φ(x, x/ε)

to the mean value of φ(x, ·) over the periodicity cell Π . As shown by Allaire [1] (Lemmas

5.5 and 5.6, p.1514), functions φ = φ(x, ξ) from the Banach space C([−l,+l]; L∞(Π))

satisfy this property.

As soon as the solution is determined for all ε > 0, we are able to investigate its

asymptotic behaviour for ε→ 0. In this respect, the following results hold:

Theorem 3.1 Under the given set of assumptions, there exist functions pN∗ , pW∗ : [−l,+l] ×
[0, T ] → R and σ: [−l,+l]× [0, T ]×Π → R such that

(1) sε(x, t)− σ(x, t, x/ε) converges to 0 in C1(0, T ; L∞([−l, +l])) strongly;

(2) pNε and pWε converge to pN∗ and pW∗ , respectively, in C([−l, +l]× [0, T ]) strongly;

(3) σ satisfies the equation (3.1) below with the initial condition σ(x, 0, ξ) = s0(x, ξ);

(4) pN∗ and pW∗ satisfy the homogenized equations (3.2 a)–(3.2 b) with the same Dirichlet

boundary conditions (2.1),

where the system of homogenized equations includes an ordinary differential equation for
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the local saturation σ

∂

∂t
σ(x, t, ·) = Ψ (·, σ, p∗(x, t)) , p∗ := pN∗ − pW∗ , (3.1)

and two elliptic equations for the limiting pressures coupled by lower-order terms:

m∗Ψ ∗
({σ(x, t, ·)}, p∗(x, t)) =

∂

∂x
KW∗

({σ(x, t, ·)})(∂pW∗
∂x
− fW

)
, (3.2 a)

−m∗Ψ ∗ ({σ(x, t, ·)}, p∗(x, t)) =
∂

∂x
KN∗

({σ(x, t, ·)})(∂pN∗
∂x
− fN

)
, (3.2 b)

where

m∗ = 〈m(·)〉 :=

∫
Π

m(ξ)dξ, (3.3)

Ψ ∗
({σ(x, t, ·)}, p∗) = 〈m(·)〉−1 〈m(·)Ψ (·, σ(x, t, ·), p∗)〉 , (3.4)

and explicit formulas for KN∗ and KW∗ available in one dimension are

K
N(W )
∗

({σ(x, t, ·)}) =
〈(
KN(W ) (·, σ(x, t, ·)))−1

〉−1

. (3.5)

Equations (3.2 a), (3.2 b) and (3.1) are of the same kind as (2.3 a), (2.3 b) and (2.4),

apart the fact that the local saturation σ(x, t, ·) is a continuous function with values in

the Banach space L∞(Π), whereas the saturation s(x, t) takes values in R. Accounting

for Remark 2.4, one may justify conditions (i)–(v) for the homogenized problem, and

conclude that it is also solvable and has a unique solution on the same interval of time

[0, T ].

One may introduce a function

s∗({σ(x, t, ·)}) = 〈m(·)〉−1〈m(·)σ(x, t, ·)〉 (3.6)

for the averaged saturation and transform equations (3.2 a)–(3.2 b) to the traditional form

(1.3 a)–(1.3 b). Since the solution σ of (3.1) depends nonlocally upon p∗ := pN∗ − pW∗ , then

formulae (3.6) and (3.5) determine KN(W )
∗ and s∗ as memory-dependent functions of p∗.

Proof of Theorem 3.1 Since the saturation sε is a differentiable function of t with values

in L∞([−l,+l]), and its derivative is bounded uniformly with respect to ε, then it repre-

sents a sequence of equipotentially continuous functions on [0, T ]. Consequently, using

Proposition 2.1, we conclude that pNε (x, t) and pWε (x, t) are also uniformly bounded and

equipotentially continuous functions of t with values in the Sobolev space W 1,2([−l,+l]).
They are also equipotentially continuous in x because the embedding C([−l,+l]) ⊂
W 1,2([−l,+l]) is compact. By the Arzela theorem, any uniformly bounded and equicon-

tinuous sequence is compact, and we are able to extract a subsequence of pNε , pWε which

converges to some pN∗ , pW∗ ∈ C([−l,+l] × [0, T ]). These two limit functions obviously

satisfy the same boundary conditions (2.1) as the pressures for ε > 0. For any t, the

subsequences pN∗ and pW∗ are also weakly compact in W 1,2([−l, +l]). Therefore, pN∗ , pW∗ ∈
W 1,2([−l, +l]) for any t ∈ [0, T ]. Later on, we shall prove that they are independent of

the subsequence, but now this is not assumed.

Fixing the above subsequence, we define a function σ(x, t, ξ) as the solution of the
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ordinary differential equation (3.1) with the initial condition σ(x, 0, ξ) = s0(x, ξ). The

function sε(x, t) satisfies almost the same equation as (3.1) with x/ε in place of (·) and

pNε (x, t) − pWε (x, t) substituted instead of p∗(x, t). Accounting for the Lipschitz properties

of Ψ (ξ, ·, ·), the proof of item (1) of the theorem is straightforward. It is also easy to prove

that, if s0 ∈ C([−l,+l]; L∞(Π)), then so is σ(·, t, ·) for any t > 0.

We have to prove that the limit pressures satisfy equations (3.2 a) and (3.2 b), and this

will complete the proof because the solution of the homogenized problem is unique and,

therefore, the family of pressures pN(W )
ε has a unique limit point as ε → 0. In doing so,

we take test functions for the integral identity (2.6) in the form ϕN(W )
ε (x) = ϕN(W )(x) +

εφN(W )(x, x/ε) where ϕN(W )(x) and φN(W )(x, ξ) are smooth functions vanishing at x = ±l,
and φN(W )(x, ξ) are Π-periodic in ξ. Then we take the limit ε → 0.

For the first term, we obtain

lim
ε→0

+l∫
−l
m
(x
ε

)
Ψ
(x
ε
, sε(x, t), pNε (x, t)− pWε (x, t)

) (
ϕWε (x)− ϕNε (x)

)
dx

= lim
ε→0

+l∫
−l
m
(x
ε

)
Ψ
(x
ε
, σ
(
x, t,

x

ε

)
, p∗(x, t)

) (
ϕW (x)− ϕN(x)

)
dx

=

+l∫
−l
m∗Ψ ∗

({σ(x, t, ·)}, p∗(x, t)) (ϕW (x)− ϕN(x)
)
dx,

where the first equality holds due to strong convergence of ϕN(W )
ε , pN(W )

ε and sε − σ to

ϕN(W ), pN(W )
∗ and zero, respectively, and the last equality is valid due to above remark on

weak convergence for oscillating functions from C([−l,+l]; L∞(Π)).

The next two terms are quite similar, and one of them reads

lim
ε→0

+l∫
−l
KW

(x
ε
, sε(x, t)

)(∂pWε (x, t)

∂x
− fW

)
∂ϕWε (x)

∂x
dx

= lim
ε→0

+l∫
−l
KW

(x
ε
, σ
(
x, t,

x

ε

))(∂pWε (x, t)

∂x
− fW

)(
∂ϕW (x)

∂x
+
∂φW (x, x

ε
)

∂ξ

)
dx. (3.7)

Here we have come to the central point of the proof. To investigate the asymptotic

behavior of the last integral, we are going to make use of an approach based on the

notion of two-scale convergence. It was introduced by Nguetseng [16] and developed by

Allaire [1] in the framework of homogenization theory of periodic structures. For the

reader’s convenience, we recall the following:

Definition 3.2 (Allaire [1, p. 1485]). A bounded sequence uε ∈ L2([−l,+l]) is called two-

scale convergent to u(·, ·) ∈ L2([−l,+l]×Π) if

lim
ε→0

+l∫
−l
uε(x)φ(x, x/ε)dx =

∫
Π

+l∫
−l
u(x, ξ)φ(x, ξ)dxdξ (3.8)
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for any smooth function φ(x, ξ) which is Π-periodic in ξ.

It should be mentioned that test functions in Definition 3.2 may possess a less regularity.

In particular, if equality (3.8) holds for smooth test functions, then it is also valid on

C([−l,+l]; L∞(Π)) (see Theorem 1.8 by Allaire [1, p. 1488]).

The main result of two-scale approach to homogenization is the compactness property of

bounded sequences in L2 with respect to two-scale convergence. More detailed information,

related to proof of homogenization theorem 3.1, is given in the following.

Proposition 3.3 (Allaire [1, p. 1491]). If uε and ∂uε/∂x are bounded sequences in L2([−l,+l]),
then there exist u ∈W 1,2([−l,+l]), v ∈ L2([−l,+l]; W 1,2

per (Π)) and a subsequence ε→ 0 such

that uε two-scale converges to u and ∂uε/∂x two-scale converges to ∂u(x)/∂x + ∂v(x, ξ)/∂ξ

along this subsequence.

We apply the notion of two-scale convergence and Proposition 3.3 to determine the

limit in (3.7). Since the sequence pWε is bounded in W 1,2([−l,+l]) for any fixed t, then

one may extract a two-scale convergent subsequence for it and its gradient. The two-scale

limit of pWε is, of course, pW∗ . Let QW ∈ L2([−l,+l]; W 1,2
per (Π)) be a function such that the

gradients of pWε two-scale converge to ∂pW∗ /∂x + ∂QW/∂ξ. Therefore, the limit in (3.7)

equals

+l∫
−l

∫
Π

KW (ξ, σ(x, t, ξ))

(
∂pW∗ (x, t)

∂x
− fW +

∂QW

∂ξ

)(
∂ϕW (x)

∂x
+
∂φW (x, ξ)

∂ξ

)
dxdξ

and analogous expression arises from the term for non-wetting phase.

Collecting the above preliminary calculations, we obtain the following integral identity

which is satisfied with all admissible test functions ϕN(W )(x) and φN(W )(x, ξ):

+l∫
−l
m∗Ψ ∗

({σ(x, t, ·)}, pN∗ (x, t)− pW∗ (x, t)
) (
ϕW (x)− ϕN(x)

)
dx

+

+l∫
−l

∫
Π

{
KW (ξ, σ(x, t, ξ))

(
∂pW∗ (x, t)

∂x
− fW +

∂QW

∂ξ

)(
∂ϕW (x)

∂x
+
∂φW (x, ξ)

∂ξ

)

+KN (ξ, σ(x, t, ξ))

(
∂pN∗ (x, t)

∂x
− fN +

∂QN

∂ξ

)(
∂ϕN(x)

∂x
+
∂φN(x, ξ)

∂ξ

)}
dxdξ = 0. (3.9)

Setting here ϕN = ϕW = 0 and taking into account the arbitrariness of test functions φN

and φW , we obtain

∂

∂ξ
KN(W ) (ξ, σ(x, t, ξ))

(
∂pN(W )
∗ (x, t)

∂x
− fN(W ) +

∂QN(W )

∂ξ

)
= 0. (3.10)

For any function σ(x, t, ξ) and for any fixed x and t, these equations provide two

independent elliptic problems in W 1,2
per (Π) for the auxiliary functions QN and QW . In one
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dimension, these problems can be solved explicitly, and the following formula holds:∫
Π

KN(W ) (ξ, σ(x, t, ξ))

(
∂pN(W )
∗ (x, t)

∂x
− fN(W ) +

∂QN(W )

∂ξ

)
dξ

= K
N(W )
∗

({σ(x, t, ·)})(∂pN(W )
∗ (x, t)

∂x
− fN(W )

)
, (3.11)

where KN(W )
∗ is given by equality (3.5). In the multi-dimensional case, an explicit solution

of the auxiliary problem (3.10) is not available in general, and an equality of the same

kind as (3.11) works as a definition of effective permeability tensors.

With formula (3.11), setting φN(W ) = 0 in identity (3.9) and coming back to arbitrary

ϕN(W ), we get the equality

+l∫
−l
m∗Ψ ∗

({σ(x, t, ·)}, pN∗ (x, t)− pW∗ (x, t)
) (
ϕW (x)− ϕN(x)

)
dx

+

+l∫
−l

{
KW∗

({σ(x, t, ·)})(∂pW∗ (x, t)

∂x
− fW

)
∂ϕW (x)

∂x

+ KN∗
({σ(x, t, ·)})(∂pN∗ (x, t)

∂x
− fN

)
∂ϕN(x)

∂x

}
dx = 0. (3.12)

This identity is the integral form of the homogenized elliptic problem (3.2 a)–(3.2 b) for

the limiting pressures. q

4 The particular case of a two-component medium

In the homogenized model of flow in porous medium, the relation between saturation

and drop in pressures includes hysteresis and dynamic memory. This relation is presented

in the form of a memory-dependent operator (s0, p∗) 7→ σ which is defined by means of

the ordinary differential equation (3.1). The total saturation s∗ and effective permeabilities

K
N(W )
∗ are functions of the local saturation field σ. Their dependence on p∗ captures a

partial integral information about the properties of the homogenized system, and one has

to operate with σ for a full description of the system.

Graphically, the homogenized hysteresis in each point x should be represented by

capillary curves in an infinite-dimensional p∗–σ ‘plane’ where the last variable takes values

in some Banach space of periodic functions. The equilibrium states of the system occupy

the zone {(p∗, σ(·, ξ)) : Ψ (ξ, σ(·, ξ), p∗) = 0 ∀ξ ∈ Π}, and capillary curves for equilibrium

processes are all inside this set. External points are accessible to fast processes when the

dynamic effect may not be neglected.

Hysteresis in an infinite dimensional Banach space is not a suitable model in view of

applications, numerical studies and experimental validation of parameters. That is why

we are going to consider a simplified model which corresponds to the case of a two-

component porous medium and allows us to reduce the general homogenized capillary

equation to a relation for a finite number of real-valued variables.

To introduce the two-component structure of the medium, let I and II = R\I be
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Π-periodic subsets of the space, and let us take constitutive functions m(ξ), KN(W )(ξ, ·)
and Ψ (ξ, ·, ·) in the following form:

m(ξ) := mI1I (ξ) + mII1II (ξ),

KN(W )(ξ, s) = K
N(W )
I (s)1I (ξ) +K

N(W )
II (s)1II (ξ),

Ψ (ξ, s, p) = ΨI (s, p)1I (ξ) +ΨII (s, p)1II (ξ),

where 1I and 1II are indicators of I and II . The domains I and II represent two ho-

mogeneous porous materials with different porosities, phase permeabilities, etc., and the

porous medium is a periodic mixture of these two. One may easily generalize this simpli-

fied example to multi-component porous media with any finite number of components.

Looking forward, we should also mention that periodicity of the medium is not essential,

and the same simplification works in the case of random structures.

In addition, we consider the initial function s0(x, ξ) to be of the following particular

type:

s0(x, ξ) = sI0(x)1I (ξ) + sII0 (x)1II (ξ). (4.1)

This restriction allows us to reduce the homogenized problem to a system of equations

with a finite number of dependent variables because the class of piece-wise constant

in ξ functions σ(x, t, ξ) is invariant under the transformations defined by the ordinary

differential equation (3.1) if the capillary function Ψ is piece-wise constant in ξ. In other

words, if the initial local saturation satisfies (4.1) then the solution of (3.1) has the form

σ(x, t, ξ) = σI (x, t)1I (ξ) + σII (x, t)1II (ξ),

and the functions σI and σII satisfy the equations{
∂σI/∂t = ΨI (σI , p∗(x, t))
∂σII/∂t = ΨII (σII , p∗(x, t))

(4.2)

with initial data sI0(x) and sII0 (x). Of course, the functions σI and σII are limiting individual

saturations of materials I and II respectively.

As a result, capillary hysteresis for any point x can be represented by curves in a three-

dimensional space with coordinates p∗, σI and σII . If the main drainage and imbibition

curves of both materials look like those in Figure 2, then the equilibrium zone in this space

looks like a ‘caterpillar’ with its head at the point of full saturation p∗ = 0, σI = σII = 1,

and the tail stretched to the completely dry state p∗ = +∞, σI = σII = 0. (In fact, one

should use irreducible values of saturation instead of 1 and 0, but we neglect these details

for the sake of brevity).

We introduce the volume fractions of components by the formulae cI = 〈1I (·)〉 and

cII = 〈1II (·)〉. Then the constitutive parameters in the homogenized equations (3.2 a) and

(3.2 b) are represented by the following equalities:

m∗ = cImI + cIImII ,

K
N(W )
∗ = K

N(W )
∗ (σI , σII ) =

K
N(W )
I (σI )K

N(W )
II (σII )

cIIK
N(W )
I (σI ) + cIK

N(W )
II (σII )

, (4.3)
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Ψ ∗ = Ψ ∗(σI , σII , p∗) =
cImIΨI (σI , p∗) + cIImIIΨII (σII , p∗)

cImI + cIImII
,

and the total saturation s∗ is defined by the relation

s∗ =
cImIσI (x, t) + cIImIIσII (x, t)

cImI + cIImII
. (4.4)

In applications, capillary curves are usually plotted in the plane of total saturation

versus drop in pressures. In order to describe qualitative behaviour of these curves, we

restrict the observation to trajectories of equilibrium processes. We also suppose that the

main drainage and imbibition capillary pressures for both components of the porous

medium, P I(II)
dr and P

I(II)
im , are monotonic functions of the individual saturations and

introduce inverse functions σI(II) = Γ
I(II)
dr (p∗) and σI(II) = Γ

I(II)
im (p∗). In terms of these

functions, the range of admissible individual saturations for a fixed p∗ is the rectangle[
ΓI
im(p∗), Γ I

dr(p∗)
] × [ΓII

im (p∗), Γ II
dr (p∗)

]
in the plane (σI , σII ). Then the set of equilibrium

values of the total saturation, in accordance with formula (4.4), is determined by the

inequalities

cImIΓ
I
im(p∗) + cIImIIΓ

II
im (p∗)

cImI + cIImII
6 s∗ 6

cImIΓ
I
dr(p∗) + cIImIIΓ

II
dr (p∗)

cImI + cIImII
.

This set is shown in Fig. 3. The individual capillary curves of the components are

plotted on the same picture in order to make clear the sense of formula (4.4). For every

internal point (p∗, s∗) of the hysteretic zone on the p∗–s∗ plane, one may find different

admissible pairs of individual saturations σI and σII providing the same value of the

total saturation. The boundaries of the zone correspond to the case when the individual

states of both materials, (p∗, σI ) and (p∗, σII ), are uniquely defined. If, for instance, an

equilibrium drainage process occurs in both materials, then the point (p∗, s∗) on the plane

p∗ versus s∗ moves to the left along the upper boundary of the homogenized hysteretic

zone, and vice versa.

In contrast with the simplest model of hysteresis in the original problem, the scanning

curves in the p∗–s∗ plane are not represented by vertical straight lines, although each

scanning curve has a vertical part. We illustrate this property of the homogenized model

by an example shown in Fig. 3. There the total drainage is interrupted at some instance,

and p∗ begins to decrease in time. At the beginning, the point (p∗, s∗) leaves the total

drainage curve and moves downward vertically because both individual saturations are

constant until the passage from drainage to imbibition, and their arithmetic mean, s∗, is

also constant. When p∗ reaches the largest value of two individual capillary pressures,

P I
im(σI ) or P II

im (σII ), the intermediate process in one of the components is replaced by

imbibition, and the corresponding individual saturation will begin to increase while the

other is still fixed. Then the total saturation s∗ increases, and the scanning curve on the

p∗–s∗ plane becomes inclined. As soon as p∗ reaches the imbibition capillary pressure

of the other material, the point (p∗, s∗) reaches the total imbibition curve and moves

along it after this. Thus, the scanning curves in the homogenized model are vertical at

the beginning only, and thereafter have a finite slope. Passages from total imbibition

to drainage occur in a similar way; hence scanning curves in homogenized model are

irreversible.

The slope and irreversibility of scanning curves make the model much more acceptable
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Figure 1. Capillary function for play-type hysteresis.

Figure 2. Capillary curves for the simple model of hysteresis.

in view of real capillary properties of porous media than the simple model with vertical

scanning curves. The only serious complication is the need to operate with an additional

dependent variable, because both individual saturations should be involved, but this is a

necessary cost if we are to get a more detailed description of the physical system.

An important peculiarity of homogenized hysteresis relates to the range of admissible

individual saturations. For each point x, this range is the projection of the hysteretic

zone in the three-dimensional space (p∗, σI , σII ) onto the plane (σI , σII ). This projection

does not cover the whole square [0, 1] × [0, 1] and does not have a rectangular shape.
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Figure 3. Capillary hysteresis for two-component porous media.

Therefore, the individual saturations σI and σII are not completely independent. (This

conclusion relates to the case when the dynamic effect is neglected and the system

is in equilibrium at every point x. The set of non-equilibrium states is not restricted

by the hysteretic zone, and, if the dynamic terms are included, all the points of the

square are admissible.) The intersection of the hysteretic zone with a plane p∗ = const

is the rectangle
[
ΓI
im(p∗), Γ I

dr(p∗)
] × [ΓII

im (p∗), Γ II
dr (p∗)

]
; hence the same set of admissible

individual saturations may be obtained as the union of all these rectangles with p∗ varying

from 0 to +∞. The result is shown in Fig. 4. The range of admissible saturations is the

’lens’ between the curves P I
dr(σI ) = P II

im (σII ) and P I
im(σI ) = P II

dr (σII ).

For any point of this lens there exists p∗ such that the point (p∗, σI , σII ) belongs to

the hysteretic zone. Of course, this p∗ is not unique. Its range is max
{
P I
im(σI ), P

II
im (σII )

}
6 p∗ 6 min

{
P I
dr(σI ), P

II
dr (σII )

}
. If p∗ increases (decreases) and leaves this range, then

one of individual saturations or both of them begin to decrease (increase). This results

in a displacement of the point (σI , σII ) in some direction. Therefore, each point in the

lens of admissible saturations may be supplemented with two arrows to indicate possible

directions of the displacement for increasing and decreasing drop in pressures p∗ as shown

in Fig. 4.

An interesting property of the set of admissible saturations is the existence of trapping

domains. The minimal of these is bounded by the curves P I
dr(σI ) = P II

dr (σII ) and P I
im(σI ) =

P II
im (σII ). Once being captured there, a point will never go out.

5 Homogenization theorem for random structures

To define random statistically homogeneous fields in place of coefficients of the problem

under consideration, we utilize an approach that is usual in the homogenization theory.

This approach is sufficiently generic, and it provides a way to describe periodic and

https://doi.org/10.1017/S0956792502004965 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792502004965


76 A. Beliaev

Figure 4. Equilibrium states for two-component porous media.

quasi-periodic structures as particular examples. In this respect, we are following the book

by Jikov et al. [12, 10, ch. VII and VIII], where one can find proofs omitted here and

informative examples.

Let (Ω, B, µ) be a probability space with σ-algebra B of measurable subsets and

probability measure µ. Then random functions of x ∈ R are functions on Ω×R. Statistical

homogeneity implies that there exists a family of mappings Tx : Ω 7→ Ω, x ∈ R, conserving

the measure µ on Ω and obeying the following group property: for any x′, x ∈ R and

ω ∈ Ω
Tx′ ◦ Txω = Tx′+xω, T0ω ≡ ω.

This family is supposed to be measurable on Ω × R, and the functions ω 7→ Txω are

assumed measurable on Ω for any x ∈ R. A measurable function q on Ω × R is called a

statistically homogeneous random field if it has a form q = Q(Txω).

Let us illustrate this property with a trivial example. To this end, consider the interval

[0, 1] with Borel σ-algebra of measurable subsets and standard Lebesgue measure on it as

the probability space Ω. Then define the mappings Tx by the formula Txω = x+ω(mod 1).

In this case, realizations of homogeneous functions x 7→ Q(Txω) have to be periodic

functions of x ∈ R with period 1. The randomness of these periodic functions is that their

phase shift ω is not fixed but is distributed uniformly over the periodicity cell.

The family of mappings Tx on Ω is a dynamical system with ‘time variable’ x. We are

supposing ergodicity of this system in the following sense: any function Q ∈ L1(Ω, µ) and

bounded domain D ⊂ R are assumed to satisfy a.s. (almost surely) the equality

lim
ε→0

1

|D|
∫
D

Q(Tx/εω)dx =

∫
Ω

Q(ω)µ(dω), (5.1)

where |D| is the volume of D. In the framework of the homogenization theory, the

ergodicity is not a necessary condition. It is introduced here in order to simplify the
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formulation of our results. The general approach to homogenization of partial differential

equations with non-ergodic random coefficients has been done by Bourgeat et al. [9].

Thus, to introduce small-scaled random structure for the porous medium, we take the

family of constitutive functions in the form m = m(Tx/εω), KN(M) = KN(M)(Tx/εω, s) and

Ψ = Ψ (Tx/εω, s, p). In order to get a well-posed problem, we suppose that properties (i)–(v)

are satisfied uniformly over ranges ε and ω. A special remark should be made with respect

to measurability of these functions in x. From the definition of statistically homogeneous

field and Fubini’s theorem, it follows that realizations Q(Txω) of homogeneous functions

Q ∈ Lp(Ω), p > 1, are measurable in x and belong to Llocp (R) for almost all ω. Consequently,

measurability of the constitutive functions in x may be assumed for all ω except for a set

of zero measure on the probabilistic space Ω. It is shown by Bourgeat et al. [9, proof of

Proposition 3.2, p. 31]; see also the more detailed proof for the periodic case by Allaire

[1, Lemma 5.6, p. 1514]) that, due to continuity of KN(M) and Ψ in the other variables,

this set can be chosen independently of s and p. Concerning the initial saturation, we

assume that s0 = s0(x, Tx/εω) and s0(·, ·) ∈ C([−l,+l]; L∞(Ω)). Then the function x 7→
s0(x, Tx/εω) is measurable a.s. due to Proposition 3.2 by Bourgeat et al. [9]. Therefore, the

well-posedness of the problem (2.1)–(2.4) for every ε > 0 and almost all ω ∈ Ω is provided

by Theorem 2.2. The main result on homogenization of this problem is the following.

Theorem 5.1 If assumptions (i)–(v) for random coefficients, boundary data, external forces

and initial conditions hold uniformly over ranges of ε and ω, then there exist functions pN∗ ,

pW∗ : [−l,+l]× [0, T ] 7→ R and σ: [−l,+l]× [0, T ]×Ω 7→ R such that, with probability 1,

(1) sε(x, t)− σ(x, t, Tx/εω) converges to 0 in C1(0, T ; L∞([−l, +l])) strongly;

(2) pNε and pWε converge to pN∗ and pW∗ , respectively, in C([−l, +l]× [0, T ]) strongly;

(3) σ, pN∗ and pW∗ satisfy the homogenized equations (3.1), (3.2 a) and (3.2 b) with initial

saturation σ(x, 0, ω) = s0(x, ω) and boundary conditions (2.1), where the homogenized

constitutive functions are again defined by (3.3)–(3.5), but angle brackets in these

formulae stand now for the integral over Ω with measure µ instead of the mean value

over the periodicity cell.

Proof of Theorem 5.1 Making use of a priori estimates in the same way as for the periodic

case, we conclude that the family of functions x, t 7→ pN(W )
ε is uniformly bounded and

equipotentially continuous over ranges of the scaling parameter ε and, up to a subset

of zero measure, the probabilistic variable ω. Then we are able to extract a uniformly

convergent subsequence. The limit functions, pN∗(ω)(x, t) and pW∗(ω)(x, t), may depend upon

the probabilistic variable ω. Being a pointwise limit of measurable functions, the limit

pressures are also measurable in ω. Later on, we shall prove that they are independent

of ω almost everywhere on Ω, but for now this may not be assumed. This is, in fact,

the main cause of the difference between periodic and random cases. Otherwise we could

make use of the notion of two-scale stochastic convergence in the mean by Bourgeat et

al.[9] and the proof would be quite similar to the periodic one.

To determine the leading limiting term of the saturation, we consider the solution of

the ordinary differential equation (3.1) with the function s0(x, ·) as initial condition. The

parameter ω is involved in this initial value problem in the variables of Ψ and s0 explicitly
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and, via the limit pressures, implicitly. We are going to distinguish between these different

types of dependencies. Thus, we take two different probabilistic variables, ω and ω̃, and

set s0 = s0(x, ω̃), Ψ = Ψ (ω̃, σ, p∗(ω)(x, t)) with p∗(ω)(x, t) : = pN∗(ω)(x, t) − pW∗(ω)(x, t). Then the

solution of equation (3.1) depends on both ω ’s. We denote the solution by σ(ω) (x, t, ω̃).

A more detailed notation, which indicates that the solution depends on initial data and

input function p∗(ω), reads:

σ(ω) (x, t, ω̃) = St
(
s0(x, ω̃), ω̃, {pN∗(ω)(x, ·)− pW∗(ω)(x, ·)}

)
. (5.2)

The leading term of the saturation is σ(ω)

(
x, t, Tx/εω

)
, and a straightforward generalization

of the proof from § 3 provides the uniform over [−l,+l] × [0, T ] convergence to zero of

sε(x, t) − σ(ω)

(
x, t, Tx/εω

)
and its time derivative.

We need some technical results on measurability and weak convergence for functions

of the form f = f(x, ω, Tx/εω). The natural fact that in the weak limit one has to take

averaged value of f(x, ω, ω̃) over the second probabilistic variable holds, but needs some

assumptions with respect to f. We introduce a class of weakly convergent functions by

the following.

Lemma 5.2 Let K be a compact subset of a Banach space, and F(ω̃, λ) be a function on

Ω × K such that F ∈ C(K; L∞(Ω)). Then, for any measurable mapping λ : R × Ω 7→ K ,

the function x 7→ F
(
Tx/εω, λ(x, ω)

)
is measurable in x with probability 1 and *-weakly

converges in L∞([−l,+l]) to the mean value over the ‘fast probabilistic variable’, i.e. to

〈F(·, λ(x, ω))〉. In particular,

lim
ε→0

l∫
−l
F
(
Tx/εω, λ(x, ω)

)
dx =

∫
Ω

l∫
−l
F (ω̃, λ(x, ω)) µ(dω̃)dx (5.3)

for almost all ω ∈ Ω.

The proof is given in the Appendix.

The function σ(ω)

(
x, t, Tx/εω

)
is of the same class as introduced by Lemma 5.2. Indeed,

the family of functions t 7→ p∗(ω)(x, t) is equipotentially continuous and bounded uniformly

over ranges of x and ω. Thus, for any fixed t it occupies a compact subset Kt of the

Banach space C([0, t]). An explicit description of this subset is available in terms of

Lipschitz constants for the constitutive functions and the continuity parameters of the

external forces and boundary data. Consider the pair x and p∗(ω)(x, ·) as a measurable

function λ = λ(x, ω) with values in K := [−l,+l] × Kt; then the memory-dependent

operator St from (5.2) can be taken as the function F(ω̃, λ). Its continuity in λ is beyond

any doubt. Thus the leading term of saturation satisfies the conditions of Lemma 5.2, and

weakly converges to the mean value over the ‘fast probabilistic variable’.

The functions KN(W )
(
Tx/εω, σ(ω)(x, t, Tx/εω)

)
and Ψ

(
Tx/εω, σ(ω)(x, t, Tx/εω), p∗(ω)(x, t)

)
are also of the same kind, and Lemma 5.2 can be applied to them. Let us denote the

corresponding ∗-weak limits by s∗, KN(W )
∗ and Ψ ∗. In accordance with Lemma 5.2, the

same weak limits can be determined by formulae (3.4)–(3.6) where angle brackets stand

for averaging over the ‘fast’ probabilistic variable. The last one coincides with the normal

probabilistic expectation if the functions under consideration are independent of the ‘slow’
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probabilistic variable. Otherwise, the effective permeabilities KN(W )
∗ , averaged saturation s∗

and homogenized capillary function Ψ ∗ may depend, besides x and t, on the probabilistic

variable ω which had arise from the limit pressures and limit saturation σ(ω). As soon as

the pressures are proved independent of ω, we are able to conclude that our temporary

definition of the homogenized parameters is the same as that claimed by the theorem.

The last step of proof is the derivation of equations for the limit pressures. To this end,

we pass to a subsequence for ε tending to zero in the integral identity (2.6) where the test

functions have to be specially constructed. At this step we are essentially making use of

the fact that the space dimension is 1. For any ϕN(W ) ∈ C∞0 ([−l,+l]), let us take as test

functions the solutions ϕN(W )
ε (x) of the following equations:

∂2

∂x2
ϕN(W )
ε =

∂

∂x

(
K
N(W )
∗

({σ(ω)(x, t, ·)})
KN(W )

(
Tx/εω, σ(ω)(x, t, Tx/εω)

) ∂ϕN(W )

∂x

)
with ϕN(W )

ε (±l) = 0. These equations can be solved explicitly and, accounting for the

above weak convergence results, one may easily check that the functions x 7→ ϕNε and x

7→ ϕWε are bounded in W 1,2([−l,+l]) and uniformly convergent to ϕN and ϕW . Also, the

following formula holds:

∂

∂x
ϕN(W )
ε =

K
N(W )
∗

({σ(ω)(x, t, ·)})
KN(W )

(
Tx/εω, σ(ω)(x, t, Tx/εω)

) ∂
∂x
ϕN(W ) + α(ε, t, ω), (5.4)

where the last term in the right-hand side is independent of x and goes to zero as ε→ 0.

Passing to the limit in (2.6), we first take into account the uniform convergence of

pressures and saturation. This allows us to replace sε and pN(W )
ε , the arguments of KN(W )

and Ψ , by the limit fields σ(ω) and pN(W )
∗(ω) . We obtain

lim
ε→0

l∫
−l

{
m (·)Ψ (·, σ(ω), p∗(ω)

) (
ϕWε − ϕNε

)
+ KW

(·, σ(ω)

)(∂pWε
∂x
− fW

)
∂ϕWε
∂x

+ (W → N)

}
dx = 0. (5.5)

Then formula (5.4) provides the way to conclude that the terms with pressure gradients

in (5.5) can be represented as products of weakly and strongly convergent factors.

Therefore, passing to the limit yields the integral identity (3.12) which is equivalent to

the homogenized equations (3.2 a) and (3.2 b). Since the homogenized problem has a

unique solution and the probabilistic variable is not involved in it explicitly, then the limit

pressures are independent of the subsequence and ω. q

6 Concluding remarks

In this paper we have presented a study of a model for two-phase flow in porous media

which includes (1.2) for the capillary relation between the saturation and the drop in

phase pressures. This equation takes into account a simple sort of hysteresis coupled

with dynamic memory effects. The porous medium is endowed with a heterogeneous

microstructure. This is described by periodic or stochastic dependence of the model

coefficients on x/ε where ε is a small parameter.
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The result of homogenization is the system of equations (1.3 a) and (1.3 b) coupled with

a homogenized capillary relation. The latter is expressed in terms of auxiliary variable σ

which is called the local saturation. It is a function of x and t with values in some Banach

space that depends on the type of microstructure. In the homogenized system (1.3 a)–

(1.3 b), the total saturation s∗ is a function of σ defined by formula (3.6), and the phase

permeabilities, KN∗ ({σ}) and KW∗ ({σ}), are given by formula (3.5) for the one-dimensional

case. The local saturation satisfies (3.1), so this ordinary differential equation provides a

memory-dependent relation between σ and the drop in limiting pressures pN∗ − pW∗ .

Convergence of saturation and phase pressures to the solution of the homogenized

problem is proved on the basis of the two-scale convergence approach for periodic porous

media (Theorem 3.1). In the case of porous media with random microstructure, results on

convergence are presented in Theorem 5.1. Convergence with probability 1 is established

for one-dimensional flows. Properties of the homogenized model are described in the

particular case of a two-component porous medium which allows us to reduce the range

of local saturation σ to a two-dimensional subset of Banach space. Then the dynamic

capillary relation (3.1) can be replaced by the two ordinary differential equations (4.2) for

two real-valued functions. This relation demonstrates more or less realistic behaviour of

the capillary curves. In particular, it accounts for the slope and irreversibility of scanning

curves within the hysteretic zone in the plane of total saturation versus the drop in

pressures.

Appendix

Proof of Proposition 2.1 With boundary conditions (2.1), equations (2.3 a) and (2.3 b)

present an elliptic problem for both pressures. The time variable t is involved in this

problem via the saturation s(x, t), external forces fN,W , and boundary data. Set qN(W )(x) :=

q
N(W )
− +(x+ l)(2l)−1(qN(W )

+ −qN(W )
− ). Then take test functions ϕN(W ) for the integral identity

(2.6) in the form ϕN := pN − qN and ϕW := pW − qW . After some trivial transformations,

this results in

+l∫
−l

{
m(·) (Ψ (·, ·, pN − pW )−Ψ (·, ·, qN − qW )

) ((
qN − qW )− (pN − pW ))

+KW (·, ·)
(
∂pW

∂x

)2

+KN(·, ·)
(
∂pN

∂x

)2
}
dx

=

+l∫
−l

{
m(·)Ψ (·, ·, qN − qW )

((
pN − pW )− (qN − qW ))−KW (·, ·)fW ∂q

W

∂x

− KN(·, ·)fN ∂q
N

∂x
+KW (·, ·)

(
fW +

∂qW

∂x

)
∂pW

∂x
+KN(·, ·)

(
fN +

∂qN

∂x

)
∂pN

∂x

}
dx.

The term with Ψ on the left-hand side of this equality is non-negative due to the

monotonicity of the capillary function. The value of Ψ (·, ·, qN − qW ) on the right is

estimated by a constant which is independent of x and s due to condition (iii). It
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depends, however, upon |qN± − qW± |. Therefore, we get the inequality

∥∥∥∥∂pW∂x
∥∥∥∥2

+

∥∥∥∥∂pN∂x
∥∥∥∥2

6 C1max
∣∣pN − qN − pW + qW

∣∣+ C2

(∥∥∥∥∂pN∂x
∥∥∥∥+

∥∥∥∥∂pW∂x
∥∥∥∥)+ C3,

where C1, C2 and C3 depend on qN± , qW± , ‖fN‖ and ‖fW‖. The values of the functions

pN − qN and pW − qW on the right may be estimated by the L2-norm of their derivatives

due to the following version of Poincaré inequality:

max|φ(x)| 6 min|φ(x)|+√2l

∥∥∥∥∂φ∂x
∥∥∥∥ ,

where φ := pN − qN or pW − qW , and min|pN − qN | = min|pW − qW | = 0 due to the

boundary conditions at x = ±l. This is followed by estimates (2.7).

Now let (pN1 , p
W
1 ) and (pN2 , p

W
2 ) satisfy the integral identity (2.6) for settings (s1, f

N
1 , f

W
1 ,

qN1±, qW1±) and (s2, f
N
2 , f

W
2 , q

N
2±, qW2±) respectively. Subtracting the identities from each other

and posing ϕW := pW2 − pW1 − qW2 + qW1 , ϕN := pN2 − pN1 − qN2 + qN1 , we get the equality

+l∫
−l

{
m(·) (Ψ (·, s1, pN2 − pW2 )−Ψ (·, s1, pN1 − pW1 )

) (
pN1 − pW1 − pN2 + pW2

)
+ KW (·, s1)

(
∂(pW2 − pW1 )

∂x

)2

+KN(·, s1)

(
∂(pN2 − pN1 )

∂x

)2
}
dx

=

+l∫
−l

{
m(·) (Ψ (·, s2, pN2 − pW2 )−Ψ (·, s1, pN1 − pW1 )

) (
qW2 − qW1 − qN2 + qN1

)
+ m(·) (Ψ (·, s1, pN2 − pW2 )−Ψ (·, s2, pN2 − pW2 )

) (
pW2 − pW1 − pN2 + pN1

)
+
(
KW (·, s1)−KW (·, s2)

)(∂pW2
∂x
− fW2

)(
∂(pW2 − pW1 )

∂x
− ∂(qW2 − qW1 )

∂x

)
+
(
KN(·, s1)−KN(·, s2)

)(∂pN2
∂x
− fN2

)(
∂(pN2 − pN1 )

∂x
− ∂(qN2 − qN1 )

∂x

)
+ KW (·, s1)

(
fW2 − fW1 +

∂(qW2 − qW1 )

∂x

)
∂(pW2 − pW1 )

∂x

+ KN(·, s1)

(
fN2 − fN1 +

∂(qN2 − qN1 )

∂x

)
∂(pN2 − pN1 )

∂x

− KW (·, s1)
(
fW2 − fW1

) ∂(qW2 − qW1 )

∂x
−KN(·, s1)

(
fN2 − fN1

) ∂(qN2 − qN1 )

∂x

}
dx.

Here again the term with Ψ on the left-hand side is non-negative due to the monotonicity

of Ψ . To estimate the terms on the right, we make use of the Lipschitz property of KN ,
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KW and Ψ . Supposing that the a priori estimate (2.7) holds for both solutions, we obtain∥∥∥∥∂(pW2 − pW1 )

∂x

∥∥∥∥2

+

∥∥∥∥∂(pN2 − pN1 )

∂x

∥∥∥∥2

6 CΨ
(
ess sup|s2 − s1| ·

∣∣qN2 − qN1 − qW2 + qW1
∣∣

+ max
∣∣pN2 − pN1 − pW2 + pW1

∣∣ · ∣∣qN2 − qN1 − qW2 + qW1
∣∣

+ ess sup|s2 − s1| ·max
∣∣pN2 − pN1 − pW2 + pW1

∣∣)
+ CK ess sup|s2 − s1| ·

(∥∥∥∥∂(pW2 − pW1 )

∂x

∥∥∥∥+

∥∥∥∥∂(pN2 − pN1 )

∂x

∥∥∥∥
+

∥∥∥∥∂(qW2 − qW1 )

∂x

∥∥∥∥+

∥∥∥∥∂(qN2 − qN1 )

∂x

∥∥∥∥)+ C

(∥∥fW2 − fW1 ∥∥ · ∥∥∥∥∂(pW2 − pW1 )

∂x

∥∥∥∥
+

∥∥∥∥∂(qW2 − qW1 )

∂x

∥∥∥∥ · ∥∥∥∥∂(pW2 − pW1 )

∂x

∥∥∥∥+
∥∥fW2 − fW1 ∥∥ · ∥∥∥∥∂(qW2 − qW1 )

∂x

∥∥∥∥
+
∥∥fN2 − fN1 ∥∥ · ∥∥∥∥∂(pN2 − pN1 )

∂x
+

∥∥∥∥+

∥∥∥∥∂(qN2 − qN1 )

∂x

∥∥∥∥ · ∥∥∥∥∂(pN2 − pN1 )

∂x

∥∥∥∥
+
∥∥fN2 − fN1 ∥∥ · ∥∥∥∥∂(qN2 − qN1 )

∂x

∥∥∥∥) ,
where the numbers CΨ and CK relate to the Lipschitz constants of Ψ and KN,W ,

respectively. Then, making use of the Poincaré inequality, we obtain relation (2.8). Thus

the proof of Proposition 2.1 is completed. q

Proof of Lemma 5.2 Assumption (5.1) implies that, for any f ∈ Lp(Ω), the functions x 7→
f(Tx/εω) converge with probability 1 weakly in Llocp (R), as ε→ 0, to the expectation of f

(see Jikov et al. [12]). Some wider classes, in relation to functions f = f(x, Tx/εω), have

been considered by Bourgeat et al. [9] and, in the framework of periodic homogenization,

by Allaire [1]. Lemma 5.2 is a natural generalization of their results.

We choose a ‘representative’ of F such that, for any ω from a set of full measure

Ω′ ⊂ Ω, the function λ → F(ω, λ) is continuous on K . The existence of this representative

is proved by Allaire [1, Lemma 5.6, p. 1514] for subsets of Euclidean spaces in place of

Ω and K , and one needs nothing but change in notations for the generalization. Then,

for any natural n, we consider a partition of K into a finite number of measurable sets

∆i ⊂ K of maximal diameter n−1. Let us pose

Ai = {(x, ω) ∈ [−l,+l]× Ω : λ(x, ω) ∈ ∆i}
and choose a point (xi, ωi) ∈ Ai for each non-empty Ai. Then we introduce a function fn :

[−l,+l]× Ω × Ω → R by formula

fn(x, ω, ω̃) =
∑
i

F (ω̃, λ(xi, ωi)) 1Ai(x, ω)

where 1A is the indicator of the set A. Due to continuity F(·, λ) with respect to λ, the

sequence fn converges to F(ω̃, λ(x, ω)) as n→ ∞ for all x ∈ [−l,+l], ω ∈ Ω and ω̃ ∈ Ω′,
and this convergence is uniform over ranges of x and ω.

The sets Ai are measurable; hence the indicators of these sets are measurable functions

on [−l,+l] × Ω. Fubini’s theorem results in their measurability in x almost everywhere
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on Ω. Therefore, there exists a subset Ω′′ ⊂ Ω of full measure such that the functions

fn(x, ω, ω̃) are measurable in x for any ω ∈ Ω′′ (and any ω̃ ∈ Ω′). Being a pointwise

limit of measurable functions, F(ω̃, λ(x, ω)) is also measurable in x everywhere on Ω′′ ×
Ω′. Furthermore, the statistically homogeneous functions x 7→ F(Tx/εω̃, λ(xi, ωi)) are

measurable and weakly converge to the expectation over the range of ω̃ a.s., and we are

able to extract a subset Ω′′′ ⊂ Ω, independent of n and i, of full measure such that the

measurability and convergence hold for any ω̃ ∈ Ω′′′.
To prove (5.3), let us take an arbitrary ω ∈ Ω′ ∩ Ω′′ ∩ Ω′′′ and consider the integral

Jε :=

l∫
−l
F
(
Tx/εω, λ(x, ω)

)
dx−

∫
Ω

l∫
−l
F (ω̃, λ(x, ω)) µ(dω̃)dx

=

l∫
−l

(
F
(
Tx/εω, λ(x, ω)

)− fn (x, ω, Tx/εω)) dx (:= J1
ε )

+

l∫
−l
fn
(
x, ω, Tx/εω

)
dx−

∫
Ω

l∫
−l
fn (x, ω, ω̃) µ(dω̃)dx (:= J2

ε )

+

∫
Ω

l∫
−l

(fn (x, ω, ω̃)− F (ω̃, λ(x, ω))) µ(dω̃)dx (:= J3
ε ).

Here we take ε to zero first, and take the limit as n → ∞ after this. The term J2
ε goes

to zero for any fixed n due to weak convergence property for statistically homogeneous

functions because each term of the function fn
(
x, ω, Tx/εω

)
is a product of measurable

in x indicator 1Ai(x, ω) and weakly convergent factor F(Tx/εω, λ(xi, ωi)). The term J3
ε is

independent of ε and tends to zero as n→∞ because the expression under the integral is

bounded and converges to zero uniformly with respect x and ω for almost every ω̃. For

the term J1
ε , we obtain

∣∣J1
ε

∣∣ 6 l∫
−l

supx′ ,ω′
∣∣F (Tx/εω, λ(x′, ω′))− fn (x′, ω′, Tx/εω)∣∣ dx.

Here the expression under the integral is a homogeneous function of Tx/εω, and by the

ergodic property (5.1), we get

lim
n→∞ lim

ε→0

∣∣J1
ε

∣∣ 6 lim
n→∞

l∫
−l

∫
Ω

supx′ ,ω′
∣∣F (ω, λ(x′, ω′))− fn (x′, ω′, ω)∣∣ µ(dω)dx = 0.

Therefore, equality (5.3) is established. To prove *-weak convergence of F(Tx/εω, λ(x, ω))

in L∞([−l,+l]), it is sufficient to note that (5.3) holds for any [x1, x2] ⊂ [−l,+l] in place

of [−l,+l]. q
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[13] Kröner, D. & Luckhaus, S. (1984) Flow of oil and water in a porous medium. J. Diff.

Equations, 55, 276–288.

[14] Ladyzhenskaya, O. A. & Ural’tseva, N. N. (1968) Linear and Quazilinear Elliptic Equations.

Academic Press.
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