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Abstract

Objectives: We used multivoxel pattern analysis (MVPA) to investigate neural selectivity for grasp planning within the
left-lateralized temporo-parieto-frontal network of areas (praxis representation network, PRN) typically associated with
tool-related actions, as studied with traditional neuroimaging contrasts. Methods: We used data from 20 participants
whose task was to plan functional grasps of tools, with either right or left hands. Region of interest and whole-brain
searchlight analyses were performed to show task-related neural patterns. Results: MVPA revealed significant contribu-
tions to functional grasp planning from the anterior intraparietal sulcus (aIPS) and its immediate vicinities, supplemented
by inputs from posterior subdivisions of IPS, and the ventral lateral occipital complex (vLOC). Moreover, greater local
selectivity was demonstrated in areas near the superior parieto-occipital cortex and dorsal premotor cortex, putatively
forming the dorso-dorsal stream. Conclusions: A contribution from aIPS, consistent with its role in prospective grasp
formation and/or encoding of relevant tool properties (e.g., potential graspable parts), is likely to accompany the retrieval
of manipulation and/or mechanical knowledge subserved by the supramarginal gyrus for achieving action goals. An
involvement of vLOC indicates that MVPA is particularly sensitive to coding of object properties, their identities and
even functions, for a support of grip formation. Finally, the engagement of the superior parieto-frontal regions as revealed
by MVPA is consistent with their selectivity for transient features of tools (i.e., variable affordances) for anticipatory hand
postures. These outcomes support the notion that, compared to traditional approaches, MVPA can reveal more
fine-grained patterns of neural activity. (JINS, 2018, 24, 1013–1025)
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INTRODUCTION

Our daily activities comprise of numerous actions involving
tools. For these actions to be appropriate for object functions,
quite refined neural processing must be invoked, along with
retrieval of abstract knowledge on tools and their proper
handling (Frey, 2007; Vingerhoets, 2014; see also Orban,
2016; Reynaud, Lesourd, Navarro, & Osiurak, 2016).
Indeed, the activation of relevant tool and action concepts, as
well as all the necessary perceptual processing and visuo-
motor transformations preceding real activities with tools
must be performed, or at least orchestrated, within a specia-
lized network of brain regions, often referred to as the praxis
representation network (PRN; see Frey, 2008; Kroliczak &

Frey, 2009). The temporo-parieto-frontal subdivisions of this
network are commonly associated, respectively, with pro-
cessing of object functionality, its incorporation into action
plans, and conversion of the assembled information into
deliberate motor acts (Andersen & Buneo, 2002; Beurze, de
Lange, Toni, &Medendorp, 2007; Vingerhoets & Clauwaert,
2015). Yet, an often-neglected prerequisite of successful
actions with tools is a proper grasp. The latter requires that
the functional part of an object be distinguished from the
remaining subdivisions of its structure, particularly its han-
dle, whose spatial relation to the acting hand must be also
appropriately computed. Put differently, even such simple
tasks as grasping tools may already require quite sophisti-
cated neural machinery (Przybylski & Kroliczak, 2017; see
also McDowell, Holmes, Sunderland, & Schurmann, 2018).
The majority of earlier studies concerning the role of net-

works underlying skilled actions with functional objects have
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focused almost exclusively on applying whole-brain, voxel-
wise, that is, mass-univariate, analyses to investigating neural
underpinnings of pantomimed and/or real actions with tools,
with the grasp component typically missing (Hermsdorfer,
Terlinden, Muhlau, Goldenberg, & Wohlschlager, 2007;
Johnson-Frey, Newman-Norlund, & Grafton, 2005; Valyear,
Gallivan, McLean, & Culham, 2012; Vingerhoets, Vande-
kerckhove, Honore, Vandemaele, & Achten, 2011; see also
Brandi, Wohlschlager, Sorg, & Hermsdorfer, 2014; Kubiak
& Kroliczak, 2016; Marangon, Kubiak, & Kroliczak, 2016;
Mizelle, Kelly, & Wheaton, 2013).
Notably, even in studies using univariate approaches with

their subtraction of neural signals from control conditions,
region of interest (ROI) analyses of percent signal change
capitalize on neural activity averaged across a vector of voxels.
Nevertheless, an increasing trend has been recently observed
for analyzing neuroimaging data and interpreting their results
in terms of patterns of activity (Fabbri, Stubbs, Cusack, &
Culham, 2016; Gallivan, McLean, Valyear, Pettypiece, &
Culham, 2011; Gertz, Lingnau, & Fiehler, 2017; see also Shay,
Chen, Garcea, & Mahon, 2018). Such approaches provide
additional explanatory power (Quadflieg et al., 2011) and
allow for characterizing neural representations as synchro-
nized signal fluctuations (Haxby, Connolly, & Guntupalli,
2014; Norman, Polyn, Detre, & Haxby, 2006). Namely, while
in univariate analyses each voxel is treated independently,
multivariate analyses typically reveal information encoded in a
distributed manner across many voxels.
Indeed, this technique is known as multivoxel pattern

analysis (MVPA) because signals from multiple spatial
locations serve as inputs to (multivariate) models, whereas in
mass-univariate tests information is analyzed for each voxel
separately, and often combined into clusters of activity at the
latest stages of analyses. Therefore, here we tested potential
advantages of MVPA on data from a recent study conducted
in our lab (Przybylski & Kroliczak, 2017), with the latter
based mainly on the outcomes from the univariate, subtrac-
tion method.
Przybylski and Kroliczak (2017) ran an fMRI study to

investigate brain regions involved in processing visual and
visuo-motor signals associated with preparation of functional
grasps of tools. The stimuli were pictures of objects and the
task was to plan and subsequently pantomime a proper grip.
Planning functional grasps of tools was contrasted with
planning grasps for control non-tool wooden objects (such as
rods, sticks, etc.), with exemplars across both categories
matched for their sizes and/or shape complexities.
The obtained results were such that regardless of the hand

involved in planning functional grasps, the activity within the
left-lateralized PRN complex was observed. This was rather
surprising given that PRN is typically associated with the
control of tool use gestures/actions, not the sole functional
grip per se. Notably, such results are consistent with theore-
tical frameworks provided by ecological psychology (Gib-
son, 1977), wherein visuospatial processing of an object,
affordances such as grasp, and action execution are largely
inseparable (cf. Osiurak, Rossetti, & Badets, 2017).

Using Przybylski and Kroliczak’s (2017) data and MVPA,
here we tested where and how neural response patterns
encode grasp planning information, and whether multivariate
analyses corroborate outcomes from the univariate subtrac-
tion technique previously used. After all, it is often suggested
that MVPA provides more “fine-grained” outcomes (Krie-
geskorte, Goebel, & Bandettini, 2006). From a broader per-
spective, especially in the light of the forthcoming brain-
machine interface possibilities, it is essential to study pre-
paratory neural mechanisms preceding common intentional
actions. In this fast-developing field of research and its
applications, an advantage of decoding-based approaches
over measuring differences between means seems indis-
putable (Andersen, Musallam, & Pesaran, 2004; Haynes &
Rees, 2006).

METHODS

Participants

Data from 20 healthy participants identical to those from a
study by Przybylski and Kroliczak (2017) were used in this
report: they were all native Polish-speaking students (10
females; age 19 to 24 years; mean= 22.7; SD= 1.6), right-
handed (Edinburgh Handedness Inventory index: M= 92.9;
SD= 13.9; Oldfield, 1971), with normal or corrected to nor-
mal visual acuity. Written informed consent was obtained
from each individual. After the study participants were
compensated financially for their time and effort, and were
debriefed. All protocols and procedures, which conformed to
the principles of the 2013 WMA Helsinki Declaration, were
approved by the Bio-Ethics Committee at Poznan University
of Medical Sciences.

Stimuli

Photographs of 12 tools were used as stimuli. Each object
was shown in the foreshortened perspective, that is, as if the
viewer was standing in the front of the table on which an
object was laid down. The experimental stimuli were chosen
from kitchen, workshop and garden tools (see examples in
Figure 1A, left panel). Control objects were pictures of 12
wooden pieces, such as parts of the branches or man-made
wooden sticks (see Figure 1A, right panel). Although all the
stimuli were well-known common objects, before the study
participants were familiarized with them and with all the
tasks to be performed during experiment proper. Graspable
parts of tools and control stimuli were matched for size and/or
complexity and were not expected to contribute to the
observed variance as a confounding factor. Each object was
presented in one of three different views (orientations), which
within each category of objects assured no differences in task
difficulty for the grasping hand (left or right). Because in their
original report Przybylski and Kroliczak (2017) demon-
strated that the greater engagement of the parieto-frontal
networks for tools was observed regardless of object
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orientation, the orientation factor was omitted in the current
analyses.

Procedure

On two separate (typically consecutive) days, volunteers
participated in two scanning sessions wherein they performed
the task with their right (dominant) or left (non-dominant)
hands, with the order of the tested hand counterbalanced. In
an event-related paradigm, a varying ISI (0.0, 0.25, 0.5, or
0.75 s) was introduced at the beginning of each trial to jitter
the stimulus onset with respect to the acquisition of a func-
tional volume, therefore, artificially improving temporal
resolution of the fMRI scans (Miezin, Maccotta, Ollinger,
Petersen, & Buckner, 2000). Subsequently, the stimulus
picture was displayed on the screen for 1.5 s, which coincided
with the beginning of the grasp-planning phase, lasting for
additional 1.5, 2.5, or 3.5 s following stimulus offset (3, 4, or
5 s in total).
Then, the “Grasp” cue (green circle) was shown for 1.5 s

and participants’ task was to pantomime the preplanned
grasp, either functional or control, for tools or non-tools,
respectively. A given trial concluded with an inter-trial
interval of 2.5, 3.5, or 4.5 s, or a 10-s rest period. The protocol
schematic is illustrated in Figure 1B. Grasp-planning activity
in both conditions was modeled as the 3-s period beginning
with the onset of the stimulus picture (displayed for 1.5 s) and
lasting through the end of the shortest (1.5-s) delay interval
(an approach inspired by Kroliczak & Frey, 2009).

Data Acquisition

Siemens 3 Tesla MAGNETOM Trio MRI scanner in the
Laboratory of Brain Imaging (http://lobi.nencki.gov.pl) in
Warsaw, Poland, was used to perform imaging with a 32-
channel head coil. For better slice prescriptions, before
functional runs, Auto Align Scout and True FISP sequences
were applied. T2

*-weighted gradient echo sequence was used
to acquire blood-oxygen-level-dependent (BOLD) echo-
planar images: time repetition (TR)= 2000 ms; time to echo
(TE)= 30ms; flip angle (FA)= 90°; 64 × 64 matrix; field of
view (FOV)= 200mm; 34 contiguous axial slices; 3.1-mm
isotropic voxels (each run consisted of 145 such volumes).
We also acquired T1-weighted structural images using

magnetization prepared rapid gradient echo (MP-RAGE)
pulse sequence: TR= 2540ms; TE= 3.32ms; inversion time
(TI)= 1200ms; FA= 7°; 256 × 256 voxel-matrix; FOV=
256mm; 176 contiguous axial slices; 1.0-mm isotropic
voxels. Additionally, to improve registration between native
space (functional echo planar images) and anatomical T1-
weighted scans, T2-weighted structural images were col-
lected: TR= 3200ms; TE= 402ms; FA= 120°; 512 × 512
voxel-matrix; FOV= 256mm; 176 contiguous axial slices;
0.5 × 0.5 × 1.0mm non-isotropic voxels. We converted raw
data to NIfTI-1 format using MRI-Convert software (http://
lcni.uoregon.edu/downloads/mriconvert).

Preprocessing

Functional data were preprocessed using FSL (FMRIB’s
Software Library) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki),
with the following procedures: brain extraction (BET),
motion correction (MCFLIRT), and high-pass filtering
(σ= 50.0 s). No spatial smoothing was used. Because the
main task always consisted of five functional runs per hand,
and the analysis was performed separately for each hand, as
well as compared across subjects and/or hands, all runs were
co-registered (using FLIRT) to common space, i.e., the
middle volume of the first functional run. The very same
reference (i.e., middle) volume was also spatially normalized
(using matrices from the registration of the first run) to the
MNI 152 2-mm standard space trough initial, high-resolution
T2-weighted and standard T1-weighted structural images. All
the operations were performed with either FSL FEAT (FMRI
Expert Analysis Tool) v5.0.9 (Jenkinson, Beckmann, Beh-
rens, Woolrich, & Smith, 2012) or its subcomponents and
commands. The same anatomical data and processing pro-
cedures as in Przybylski and Kroliczak (2017) were used for
spatial registration of the structural (T2- and T1-weighted)
images.

MVPA

Because a fast event-related design was used in this experi-
ment, parameter estimates (PEs) for each trial had to be cal-
culated first. To this end, a general linear model (GLM) was
created separately for each trial using the least squares-separate

Fig. 1. Examples of stimuli and an experimental paradigm
(adapted with permission of Cambridge University Press from
Przybylski & Kroliczak, 2017). (A) The two classes of stimuli and
their orientations. The functional items were simple tools (left
panel) and control stimuli were wooden pieces and branches (right
panel). Each object was presented at three different orientations:
0°, 125°, and 225°. (B) A schematic of an event-related paradigm
used in this study. The grasp-planning phase started with stimulus
onset and lasted for a variable interval of 3, 4, or 5 s.
Subsequently, participants pantomimed the preplanned grasp for
the duration of the “Grasp” cue (1.5 s). A trial was pseudo-
randomly followed by either a variable inter-trial interval (ITI of
2.5, 3.5, or 4.5 s) or a period of 10-s rest.
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approach (LS-S, for details see: Mumford, Turner, Ashby, &
Poldrack, 2012). Each GLM was created for every trial within
each run, every time with two explanatory variables: the first
for the trial of interest, and the second for all the remaining
other trials within a given run. Specifically, as there were 12
trials per condition during one functional run (i.e., 24 trials in
total per run) then 24 GLMs were created to obtain one PE for
each trial (24 × 5 runs, which gives 120 matrices of beta
values altogether). Motion parameters, cerebrospinal fluid, and
white-matter time series were used as additional regressors.
PEs were not normalized before the multivariate analysis. (We
would have considered normalizing PEs if the outcomes just
replicated the univariate results; cf. Misaki, Kim, Bandettini, &
Kriegeskorte, 2010). The two classified conditions were: (1)
planning functional grasps of tools; and (2) planning control
grasps of non-tool objects. In other words, planning of tool-
oriented grasps was always classified against planning grasps
of non-tools.
Subsequently, the n-fold cross-validation method was

used, where n was the number of runs (an approach often
called leave-one-run-out method). We evaluated classifier
performance using the accuracy metric. Because the number
of trials per condition was equal, there was no risk of the
accuracy paradox. As there were 12 trials per condition for
one run, and five runs in total, each fold of the validation
consisted of 96 PEs (12 × 2 × 4; trials × conditions × runs)
for training the classifier and 24 (12 × 2 × 1; trials × con-
ditions × run) PEs to test the accuracy of the classification.
This operation was performed five times, and the classifica-
tion accuracies were averaged (with arithmetic mean). This
way the single accuracy score was obtained per each hand for
each participant in a range of 0.0 to 1.0 (i.e., 0% to 100%).
MVPA classification was performed with the support vector
machine (SVM)-based classifier (linear kernel, C parameter
fixed at 1.0) implemented in Python’s package scikit-learn

(Abraham et al., 2014; http://scikit-learn.org/stable), via the
nilearn module (http://nilearn.github.io).

ROI Selection

Based on previous research, 12 left-hemispheric ROIs were
selected: (1) human intraparietal area 1 (hIP1); (2) dorsal
intraparietal sulcus, anterior division (DIPSA); (3) dorsal
intraparietal sulcus, medial division (DIPSM); (4, 5, and 6)
supramarginal gyrus (its cytoarchitectonic subdivisions: PF,
PFm, and PFt); (7) putative human homologue of the anterior
intraparietal area (phAIP/aIPS); (8) superior parieto-occipital
cortex (SPOC); (9) ventral premotor cortex (PMv); (10)
dorsal premotor cortex (PMd); (11) caudal middle temporal
gyrus (cMTG), and (12) rostral middle frontal gyrus (rMFG).
Additionally, one control (13th) region was included in the
analysis, namely, the right lateral ventricle (rLV). For more
detailed information on the sources of all ROIs, see Table 1.
The borders of the ROIs mapped to the inflated and flat brain
surfaces are shown in Figure 2.
Before MVPA, ROIs were transformed from standard

space (MNI152 2mm) to individual subjects’ native spaces
using FLIRT (with transformation matrices obtained during a
preprocessing step, from the middle volume of the first
functional run, through T2- and T1-weighted images, see the
Preprocessing section). The values from voxels (beta
weights) within the range of respective masks were used for
training and testing the classifier.

ROI t Tests

For the following t test statistical procedures classification
scores were averaged (with arithmetic mean) across valida-
tion folds; hence there were 20 (number of participants)

Table 1. Regions of interest used in the analysis

No. Region Source No. of voxels

1. hIP1 Choi et al., 2006, Durand, Peeters, Norman, Todd, & Orban, 2009 93
2. DIPSA Orban, Van Essen, & Vanduffel, 2004 161
3. DIPSM 203
4. PF Cytoarchitectonic subdivisions of SMG; see Caspers et al., 2006 399
5. PFm 400
6. PFt 236
7. phAIP Binkofski et al., 1998, and Orban et al., 2004 293
8. SPOC Hutchison, Culham, Flanagan, Everling, & Gallivan, 2015 1120
9. PMd Kroliczak & Frey, 2009 660
10. PMv 135
11. cMTG 239
12. rMFG 530
13. rLV Harvard-Oxford Subcortical Atlas from FSL (95% prob. threshold) 50

Note. The number of voxels was calculated for ROIs in MNI 152 brain template. The sizes of the ROIs in individual subjects’ native spaces varied depending on
structural differences. See Figure 2 for the visualization on the brain surfaces.
hIP1= human intraparietal area 1; DIPSA= dorsal intraparietal sulcus, anterior division; DIPSM= dorsal intraparietal sulcus, medial division; PF, PFm,
PFt= supramarginal gyrus (SMG) subdivisions; phAIP= putative human homologue of the anterior intraparietal; SPOC= superior parieto-occipital cortex;
PMv= ventral premotor cortex; PMd= dorsal premotor cortex; cMTG= caudal middle temporal gyrus; rMFG= rostral middle frontal gyrus; rLV= right lateral
ventricle.
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values per ROI. To assess statistical significance of the
decoding within the functional ROIs, a one-sample t test was
run across participants (separately for each hand) with respect
to 50% chance level. This was followed by Bonferroni cor-
rection for multiple comparisons (25 tests in total, i.e., 2 tests
per hand for 12 functional ROIs and 1 for the control site).
Furthermore, to provide more exact information about the

actual contribution of the particular region, the performance of
each hand within each ROI was contrasted with the corre-
sponding results for our control ROI (rLV), whose classifica-
tion accuracy was averaged across hands before the t tests. The
comparison was achieved by running 24 Bonferroni-corrected
paired t tests (12 for the dominant hand and 12more for the left
hand). Finally, we opted for determining which of the ROIs
differed in terms of classification accuracies depending on
whether the action was planned for the dominant or non-
dominant hand. Since the accuracy scores within binary
independent variable were tested, p-values were not adjusted
for multiple comparisons in this case.
Before t tests, we conducted two-sigma outlier detection

and normality assessment with Shapiro-Wilk test. All

statistical procedures within this section were carried out with
Python’s SciPy module, v. 0.19.0 (Oliphant, 2007), with
corrections for multiple tests performed with StatsModels, v.
0.6.1 (Seabold & Perktold, 2010).

Searchlight Analysis

In addition to ROI analyses, a whole-brain searchlight proce-
dure was also applied to reveal further nodes of the network
(brain areas specific to the planning of functional grasps of
tools) and/or to validate the results obtained with the ROIs
from earlier analyses. A radius of 5.6mm around the voxel of
interest was the spherical region for each searchlight classifi-
cation (with SVM classifier and C parameter at 1.0). Cross-
validation was the same as for ROI decoding (n-fold cross
validation). The resulting five scores (5 × k matrix) per parti-
cipant and per hand were averaged (arithmetic mean) to create
a single vector of variables, of the length k (where k was the
number of voxels in particular subject’s native space). The
resulting maps (one for each of the 20 participants) were then
spatially transformed with registration matrices from the first
functional run to the MNI152 2-mm standard atlas.
A second-level searchlight analysis was performed by: (1)

combining the first-level brain maps (individual participant’s
results) with one sample t test (null hypothesis being that the
classification is at 50% chance level), for the right and left
hand separately; (2) a direct comparison between the right
and left hand, with a paired t test. The outcomes of both
contrasts were subsequently corrected for multiple compar-
isons with the Bonferroni method.

RESULTS

ROI t Test Results

Significant classifications against chance level for each ROI
and for each hand separately are depicted in Figure 3 as red
asterisks. Except for rLV, the results from all ROIs were
significantly different from chance (α= 0.05). Notably, sig-
nificance levels achieved for the studied regions ranged from
1*10−3 to 5*10−10. The lowest p-values were obtained within
PMd, DIPSM, and phAIP. The least probable effects were
observed in the PMv, PFm, cMTG, rMFG, and hIP1. Using
nonparametric permutation tests (Etzel, 2017) rather than t
tests yielded qualitatively similar results.
When praxis-related ROIs were compared to the reference

area, all but one (rMFG) showed statistically significant dif-
ferences at least at p< .05 (regardless of the hand). These
results are marked with blue asterisks on the graph in
Figure 3. All t test comparisons within ROIs (between hands)
turned out to be statistically non-significant.

Searchlight Analysis Results

This analysis revealed that the information required to decode
planning functional grasps of tools is processed mainly in the

Fig. 2. ROIs shown on: (A) the flattened brain surface, (B) the
partly inflated lateral, and (C) dorsal surface of the left
hemisphere. hIP1, human intraparietal area 1; DIPSA, dorsal
intraparietal sulcus, anterior division; DIPSM, dorsal intraparietal
sulcus, medial division; PF, PFm, PFt, supramarginal gyrus
subdivisions; phAIP, putative human (homologue of the) anterior
intraparietal area; SPOC, superior parieto-occipital cortex; PMv,
ventral premotor cortex; PMd, dorsal premotor cortex; cMTG,
caudal middle temporal gyrus; rMFG, rostral middle frontal gyrus;
rLV, right lateral ventricle. The sizes of the ROIs in individual
subjects’ native spaces varied depending on structural differences.
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left cerebral hemisphere (regardless of the hand). Yet, when
participants were asked to plan grasps with their dominant
hand, the pattern of statistically significant voxels included: (1)
PMd, extending to the superior frontal gyrus (SFG); (2) SPOC
vicinity, extending to the dorsal IPS; (3) small clusters within
SMG (PFt, PF); as well as additional locations in (4) area V3,
LO1 and the ventral lateral occipital complex (vLOC), and (5)
the supplementary motor area (SMA). These effects are
visualized in Figure 4A. Right-hemispheric voxels were loca-
ted mainly in: (1) vLOC; (2) antero-dorsal precuneus; (3)
dorsal IPS (including DIPSA/DIPSM); (4) PF; and (5) three
small clusters in superior frontal cortices (Figure 4B).
For functional grasp planning with the left-hand, the left-

hemisphere statistically significant patterns were found in: (1)
PMd; (2) phAIP/aIPS; (3) DIPSA, DIPSM; (4) small clusters
in PFt and PFm; and (5) vLOC. For activity patterns see
Figure 5A. In the right hemisphere, the most important
clusters were located in: (1) DIPSA and DIPSM; (2) PMd;
(3) PFt; and (4) vLOC (see Figure 5B). A direct comparison
between maps for the two hands (treated as dependent
groups) with paired t test revealed no statistically significant
results.
Figure 2, Figure 4, as well as Figure 5 were generated

using the Caret software (https://www.nitrc.org/projects/
caret/; Van Essen et al., 2001). To enable comparisons of our
results with future studies that will use the Connectome
Workbench (a potential standard) in data visualization
(https://www.humanconnectome.org/software/connectome-
workbench; Marcus et al., 2011), in Figure 6, we also mapped
our searchlight patterns onto its inflated (midthickness) and
flat surfaces, emphasizing the associated areas (of the 180
identified and delineated parcellations; Glasser et al., 2016).

Only the surfaces of the left hemisphere, typically associated
with praxis skills, were used to map these results.

DISCUSSION

The outcomes obtained with MVPA are in substantial agree-
ment with earlier studies demonstrating that the control of
praxic skills is primarily left lateralized and involves the
occipito-temporal, as well as parieto-frontal subdivisions of
PRN (Frey, 2008; see also Kristensen, Garcea, Mahon, &
Almeida, 2016; Przybylski & Kroliczak, 2017; Vingerhoets &
Clauwaert, 2015). This network of areas, with SMG as its
central node, is typically associated with representing manip-
ulation knowledge (Buxbaum, 2001; Buxbaum & Kalenine,
2010; cf. Goldenberg, 2017; Lesourd, Osiurak, Navarro, &
Reynaud, 2017) or mechanical knowledge (Goldenberg &
Hagmann, 1998; Osiurak et al., 2009; Osiurak, Jarry, Lesourd,
Baumard, & Le Gall, 2013; see also Lesourd, Budriesi,
Osiurak, Nichelli, & Bartolo, 2017) linked to object function-
ality, and its integration into action plans for programming of
deliberate motor responses (Bernier, Cieslak, &Grafton, 2012;
Fabbri et al., 2016; Gallivan et al., 2011).
The observed left-brain bias, revealed regardless of the

used hand, indicates that PRN contains hand-independent
representations of praxis skills (Kroliczak, Piper, & Frey,
2016). Nevertheless, MVPA exposed greater contributions
from aIPS, an area linked to the control of grasping move-
ments (e.g., Cavina-Pratesi, Goodale, & Culham, 2007;
Kroliczak, McAdam, Quinlan, & Culham, 2008), and vLOC,
associated with encoding visual characteristics of tools, their
concepts, and the retrieval of their function-relevant features

Fig. 3. The results of the ROI analyses. Green bars (left ones) represent mean accuracy scores for the left-hand, and red ones for the right
hand (averaged, with arithmetic mean, across folds and subjects). Red asterisks (upper set) indicate statistically significant differences with
respect to chance level (at 50%) as measured with two-tailed one-sample t tests. The significance against the control region (rLV, the last
bar on the right with thick blue borders) is denoted by blue asterisks (lower set), the results of pairwise t test comparisons. Error bars are
standard errors of measurement. Thick, solid, black horizontal line represents the chance level. Abbreviations as in Figure 2.
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(e.g., Bracci, Cavina-Pratesi, Ietswaart, Caramazza, & Pee-
len, 2012; Garcea & Mahon, 2014; Nastase et al., 2017;
Oosterhof, Wiggett, Diedrichsen, Tipper, & Downing, 2010;
see also Peelen et al., 2013; Wurm & Lingnau, 2015).

Core Areas for Planning Functional Grasps

Praxis-related literature emphasizes the importance of left
aSMG as the core region responsible for the integration of

signals from posterior SMG, IPS, as well as from the tempo-
occipital cortices (e.g., Orban & Caruana, 2014; Peeters,
Rizzolatti, & Orban, 2013), thus playing a critical role in
motor cognition. However, MVPA results obtained here for
functional grasp planning highlight the role of aIPS and
vLOC, the two areas that likely provide prerequisite inputs to
SMG for performing actions with tools. Indeed, these out-
comes are consistent with a notion that manipulation
knowledge is supported by perceptual representations in the

Fig. 4. The results of searchlight analysis for functional grasp planning with the right hand. Specifically, this figure depicts statistically
significant decoding accuracies of planning functional grasps of tools versus non-tools. The unit with the red-yellow bar is a Z-score
(standardized t-score, from one-sample t test across subjects against 50% prior chance decoding accuracy, corrected for multiple
comparisons with Bonferroni method at p< .05) and thresholded at 3.1 value. Names of the ROI borders mapped to the left hemisphere
surface can be found in Figure 2. Right-hemisphere ROIs are shown here for convenience. These are as follows: SPOC (blue; left upmost),
DIPSM, DIPSA, phAIP (white, top to bottom; between SPOC and PF complex); PFm, PF and PFt (green, left to right; bottom cluster of
borders).

Fig. 5. The results of searchlight analysis for functional grasp planning with the left hand. As before (Figure 4), this figure depicts
statistically significant decoding accuracies of planning functional grasps of tools versus non-tools. The units are Z-scores from one-sample
t test against 50% chance level, corrected for multiple comparisons with Bonferroni method at p< .05 and thresholded at 3.1 value. For
ROI names see Figure 2 (left hemisphere) and Figure 4 (right hemisphere).
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ventral stream (e.g., Almeida, Fintzi, & Mahon, 2013;
Mahon, Kumar, & Almeida, 2013; see also Gallivan, Cant,
Goodale, & Flanagan, 2014), and their projections to SMG
interact with manipulation-based action representations
stored or elaborated there (Buxbaum, 2017; cf. Osiurak &
Badets, 2016; Reynaud et al., 2016). In this framework,
vLOC would also contribute to object parsing, including
identification of functional and graspable subdivisions, thus
allowing aIPS to concentrate almost exclusively on proces-
sing object handle(s)/graspable part(s).
It is of note, however, that both our earlier study (Przy-

bylski & Kroliczak, 2017) and the current outcomes indicate
that the traditionally defined cMTG (e.g., Kroliczak & Frey,
2009; see also Garcea, Kristensen, Almeida, &Mahon, 2016;
Vingerhoets, Nys, Honore, Vandekerckhove, & Vande-
maele, 2013) was barely involved in the planning of func-
tional grasps. Indeed, regardless of the hand, the multivoxel
patterns of brain activity were observed only in the nearby
occipital cortex. Yet, overlapping clusters in very similar
locations have been shown to respond both to tools and hands
(Bracci, Ritchie, & de Beeck, 2017; Striem-Amit, Vannus-
corps, & Caramazza, 2017) and were also reported engaged

in some aspects of matching of hand posture to object
orientation (Vingerhoets et al., 2013), a kind of processing
that could be considered a prerequisite of further interactions
with tools. All things considered, planning functional grasps
of tools requires the reasoning about object properties asso-
ciated with activity within vLOC and SMG subdivisions
putatively interacting with it, as well as integrating signals
from aIPS (Chao & Martin, 1999; Grill-Spector & Weiner,
2014; Orban & Caruana, 2014).
Although MVPA reveals some local differences in activity

patterns observed in areas PFt, PF, and PFm between hands
(see Figure 7A–D), a direct between-hands contrast convin-
cingly demonstrates that the neural underpinnings of higher-
order actions should be virtually identical. The results of ROI
analyses (e.g., PFt, PF, and PFm ROIs in Figure 3) are con-
sistent with this notion. Nevertheless, in individuals with
somewhat atypically represented praxic functions this rela-
tionship may change and the extent of neural activity
accompanying the use of the better-trained or the dominant
hand may show closer affinity to the degree and direction of
handedness (e.g., Dassonville, Zhu, Uurbil, Kim, & Ashe,
1997; cf. Drager et al., 2004; Biduła, Przybylski, Pawlak, &

Fig. 6. MVPA results displayed on flat and inflated (midthickness) surfaces from the Connectome Workbench (v. 1.2.3.) visualization
software (Glasser et al., 2016) of the Human Connectome Project (HCP). The borders of 180 areas from the HCP’s parcellation are also
shown, and the critical ones provided with their labels (which are described in details in Supplemental Materials for Glasser et al., 2016).
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Kroliczak, 2017; see also Kroliczak, Buchwald, Potok, &
Przybylski, 2018).
In sum, the current outcomes obtained with MVPA are

consistent with the notion that transformations of object-
related information into goal-directed actions are computed
across a much broader range of brain areas or regions (Gal-
livan & Culham, 2015), even if actions are limited to plan-
ning functional grasps. Nevertheless, it should be mentioned
that the task used here, that is, participants planned and exe-
cuted pantomimed functional grasps, does not necessarily
invoke typical visuomotor (i.e., dorsal stream; Goodale &
Milner, 1992) mechanisms for reach-to-grasp actions direc-
ted at objects under guidance of visual feedback in real time
(Kroliczak, Cavina-Pratesi, Goodman, & Culham, 2007;
Gallivan, McLean, Valyear, & Culham, 2013; Freud et al.,
2018).
Instead, a greater contribution from the ventral stream

would be expected (Goodale, Jakobson, & Keillor, 1994;
Rossit et al., 2011), particularly because pantomimed grasps
resembled manual estimations (Kroliczak, Westwood, &
Goodale, 2006), although taking into account the requisite
hand rotations. Yet, the stimuli were functional objects, and
adaptive behavior in their presence requires contributions of

the dorsal and ventral streams (Goodale, Kroliczak, &
Westwood, 2005), with numerous functional subdivisions of
the former. The remaining clusters will be discussed next.

Remaining regions

MVPA also revealed the involvement of several further
regions in transforming visual information into plans for
functional grasps of tools. Although the greater engagement
of these auxiliary areas in the more demanding actions
incorporating tools is not surprising, it is unlikely that their
contribution to task performance is tool specific.
Neural activity within IPS (namely phAIP, DIPSA, and/or

DIPSM) is consistent with an idea that IPS does not code the
detailed movement kinematics but rather the to-be-obtained
action goals (Hamilton & Grafton, 2008). Yet another reason
for its involvement is the fact that a tool’s handle affords “a
grasp” more noticeably than a corresponding part in the
control (non-tool) object (Vingerhoets, 2014).
Another vicinity revealed with MVPA was PMd, which is

often associated with neural underpinnings of the preparation
and control of visuomotor processes involving task-response
associations and action sequencing (Cross, Hamilton, Cohen,
& Grafton, 2017). PMd also belongs to the dorso-dorsal
stream, composed of the V6/V6A–dorso-medial intrapar-
ietal–PMd circuit (Rizzolatti & Matelli, 2003). A contribu-
tion from all these nodes was revealed by our analysis.
Although it has been speculated that this circuit is involved in
on-line control of actions (Binkofski & Buxbaum, 2013; see
also Milner & Goodale, 2008), the on-line component does
not extend here to the actually performed manual tasks but a
mere preparation for them. This outcome is consistent with
the postulated contribution of the dorso-dorsal stream in
processing variable affordances, that is temporary and/or
transient object characteristics such as changes in their
orientation, size or shape, and the required adjustments of
grip/arm rotation for the task at hand (Kroliczak et al., 2008;
Sakreida et al., 2016).
Notably, while the PMd contribution was substantial, the

SPOC vicinity was underrepresented here. Yet, the stimuli
were not within reach (they were pictures on the screen) and,
again, the mechanisms involved in pantomimed grasp plan-
ning (whether functional or not) can be different from pre-
paration for real reaching and grasping (Gallivan, Cavina-
Pratesi, & Culham, 2009). Furthermore, these objects were
not presented in lower visual fields, which are preferentially
processed for hand actions by SPOC (Rossit, McAdam,
McLean, Goodale, & Culham, 2013). Nevertheless, our
results are quite consistent with recent outcomes revealing
grater connectivity between cMTG/LOC and aIPS (Chen,
Snow, Culham, & Goodale, 2018), with some contribution
from the superior parietal lobule (SPL) in a contrast of tools
versus non-tools (whether elongated or stubby). As in their
study, the SPL activity we observed here, regardless of the
hand used, extended toward SPOC.
SMA, typically associated with the control of visually

guided movements (Picard & Strick, 2003) also contributed

Fig. 7. Subdivisions of left inferior parietal lobule and their
involvement in planning functional grasps as revealed by
traditional (contrast) analyses and MVPA. The outcomes are
shown on flat brain surfaces using Caret software. The outcomes
for the right hand: (A) activity patterns adopted from a study by
Przybylski and Kroliczak (2017) and (B) the multivoxel patterns
of brain activity from the searchlight analysis (MVPA). The
outcomes for the left hand: (C) activity patterns from a study by
Przybylski and Kroliczak (2017) and (D) the multivoxel patterns
of brain activity from the current analysis (MVPA).
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to planning functional grasps of tools. The patterns of neural
activity elicited by such skilled motor acts (including finger
sequencing) are often decoded most accurately within this
area (Wiestler & Diedrichsen, 2013). Although grasp per-
formance was pantomimed (with no further tool-use actions),
the task nevertheless involved internally generated move-
ment plans which also require SMA (Elsinger, Harrington, &
Rao, 2006), whose inputs are critical in the process of pre-
dictive motor planning (cf. Makoshi, Kroliczak, & van
Donkelaar, 2011).

Conclusions

The engagement of the temporo/occipital-parieto-frontal
cortices in processing functional grasps of tools revealed by
MVPA is largely consistent with the outcomes from tradi-
tional subtraction analyses. Nevertheless, the multivoxel
patterns of brain activity, which are obtained with different
theoretical and algorithmic framework from these that
underlie subtraction contrasts, put greater emphasis on grasp
coding in aIPS, the occipito-temporal encoding of visual/
structural and functional features of tools, as well as on sen-
sorimotor, dorso-dorsal preparatory processes, rather than on
the integrative role of aSMG.
The ventral occipital regions may provide auxiliary inputs

for grip formation and the retrieval of critical, tool-related
knowledge on their invariant features, that is, stable affor-
dances, that underlie reasoning about tool properties based on
manipulation and mechanical knowledge most likely stored
in left SMG. All in all, MVPA is a reliable technique that may
greatly enrich our understanding of information processing
preceding any functional interactions with tools.
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