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An inner-scaled, shear stress-driven flow is considered as a model of independent
near-wall turbulence as the friction Reynolds number Reτ → ∞. In this limit, the
model is applicable to the near-wall region and the lower part of the logarithmic
layer of various parallel shear flows, including turbulent Couette flow, Poiseuille flow
and Hagen–Poiseuille flow. The model is validated against damped Couette flow
and there is excellent agreement between the velocity statistics and spectra for the
wall-normal height y+ < 40. A near-wall flow domain of similar size to the minimal
unit is analysed from a dynamical systems perspective. The edge and fifteen invariant
solutions are computed, the first discovered for this flow configuration. Through
continuation in the spanwise width L+z , the bifurcation behaviour of the solutions
over the domain size is investigated. The physical properties of the solutions are
explored through phase portraits, including the energy input and dissipation plane,
and streak, roll and wave energy space. Finally, a Reynolds number is defined in
outer units and the high-Re asymptotic behaviour of the equilibria is studied. Three
lower branch solutions are found to scale consistently with vortex–wave interaction
(VWI) theory, with wave forcing localising around the critical layer.

Key words: Turbulent flows, nonlinear dynamical systems

1. Introduction
There is an ever-growing body of experimental and numerical work on the scaling

of the velocity statistics and spectra of wall-bounded turbulent flow, in both channel
and pipe geometries as well as the flat-plate boundary layer. Closest to the wall, where
viscous effects are dominant, the kinematic viscosity ν and local shear stress define
the friction velocity uτ and the viscous length scale δν . One of the key observations
concerning the dynamics of the near-wall region is that of the regeneration mechanism
(Hamilton, Kim & Waleffe 1995) or the self-sustaining process (Waleffe 1997). This
is a quasi-cyclic, interactive process between streaks and quasi-streamwise vortices,
in which the mean streamwise shear drives streak formation through the lift-up effect.
The streaks subsequently break down due to normal mode instability or transient
growth (Hamilton et al. 1995; Schoppa & Hussain 2002; Cassinelli, de Giovanetti
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& Hwang 2017) and the resulting three-dimensional wavy structure regenerates
the vortices via nonlinear mechanisms. The bursting time period of the near-wall
self-sustaining process is T+ ≈ 200–300 (Hamilton et al. 1995; Jiménez et al. 2005),
where the superscript + denotes the viscous scaling. In addition, it has been shown
that there is a lower bound to the streamwise and spanwise dimensions of the
computational domain in which turbulence can be sustained (Jiménez & Moin 1991).
The dimensions of the minimal unit, which also scale in inner units, are λ+x ≈ 250–350
and λ+z ≈ 100, consistent with the characteristic spacing of near-wall streaks (Robinson
1991). Furthermore, it has been observed that the near-wall self-sustaining process
operates independently of the outer flow and survives even when the outer structures
are artificially quashed (Jiménez & Pinelli 1999). The statistics and spectra of the
independent near-wall flow have been compared to that of the global flow in several
previous studies (Jiménez, Del Alamo & Flores 2004; Hwang 2013). In particular, in
the absence of the larger structures, the velocity statistics and spectra scale in inner
units throughout the near-wall region (Hwang 2013).

Above the near-wall region, the flow can be decomposed into the logarithmic
layer and the wake layer, the latter of which is dominated by inertial effects. The
characteristic length scale in the logarithmic layer is y, the distance from the wall.
This scaling argument was formalised in the attached eddy hypothesis (Townsend
1980), in which it was proposed that the size of the coherent structures populating
the entire logarithmic layer was proportional to the distance between the eddy
centre and the wall. Townsend also postulated that these coherent structures were
statistically self-similar with respect to the given length scale. There has been a
growing body of evidence in support of Townsend’s theory, including the linear
growth of the spanwise correlation length scale with distance from the wall (Tomkins
& Adrian 2003), the logarithmic dependence of the turbulence intensities of the
wall-parallel velocity components (Marusic et al. 2013) and the self-similarity of
structures of various spanwise length scales in the logarithmic layer (Hwang 2015).
Above the logarithmic layer, the velocity field structures and statistics scale in outer
units, including large-scale motions (Kovasznay, Kibens & Blackwelder 1970) and
very-large-scale motions (Kim & Adrian 1999). It has been demonstrated that the
coherent structures of the logarithmic and wake layers bear a self-sustaining process
remarkably similar to that of the near-wall region (Hwang & Cossu 2010; Hwang
& Bengana 2016), based on the interaction between streaks and quasi-streamwise
vortices. Therefore, it appears that wall-bounded turbulence is organised into a
hierarchy of self-sustaining coherent structures, each of which is self-similar with
respect to the characteristic inner or outer length scale. Furthermore, it is worth
mentioning that the coherent structures populating the logarithmic and wake layers
reach the near-wall region (Hutchins & Marusic 2007; Mathis, Hutchins & Marusic
2009; Hwang 2013; Talluru et al. 2014; Agostini & Leschziner 2016) and contribute
significantly to the near-wall spectra at long wavelengths through scale interaction
processes (Hwang 2016; Cho, Hwang & Choi 2018). These features, consistent with
Townsend’s theory, breach the inner scaling of the near-wall region (Marusic, Baars
& Hutchins 2017) and result in the logarithmic growth of the near-wall turbulence
intensities of the wall-parallel velocity components with Reynolds number (Marusic
& Kunkel 2003).

The logarithmic layer can be further partitioned into lower and upper parts,
depending on the relative strength of the viscous effects. The lower part, dominated
by the viscous effects of the wall, is often called the ‘mesolayer’ (Long & Chen
1981; Afzal 1982, 1984; Sreenivasan & Sahay 1997; Wei et al. 2005), which has been
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classified using the mean momentum equation. Assuming a logarithmic mean velocity
profile, it has been shown that the inner-scaled wall-normal location of maximum
Reynolds stress scales with the friction Reynolds number as y+∼

√
Reτ (Long & Chen

1981; Sreenivasan & Sahay 1997; Wei et al. 2005), below which the viscous wall
effects are not negligible. The mesolayer can therefore be more generally interpreted
as the layer of fluid above the wall that scales in inner units, encompassing the entire
near-wall region. Furthermore, the extent of the mesolayer increases as the friction
Reynolds number increases and the flow variables scale in inner units at longer and
longer wavelengths. This has been corroborated by the examination of the spectra of
high-Re direct numerical simulations and the computation of optimal perturbations
with a linear theory (Hwang 2016). Therefore, if the domain size is fixed in inner
units, all flow variables will also scale in inner units at a sufficiently large value of
Reτ and the near-wall contribution of the structures larger than the given domain size
will be excluded.

In light of this evidence, the aim of the current study is to design and validate a
model of independent near-wall turbulence at infinitely large friction Reynolds number,
with regard to its location within the mesolayer. The Navier–Stokes equations are
rescaled in inner units based on the kinematic viscosity and the friction velocity of
the ‘turbulent state’, denoted by uτ ,r. Consequently, the only model parameters are the
inner-scaled computational domain dimensions (L+x , L+y , L+z ), which remain finite even
as Reτ →∞. At the upper boundary, a horizontally uniform shear stress is applied
to maintain uniform total shear stress across the entire domain, while removing any
structures above this point. At the lower boundary, a no-slip boundary condition
is imposed, the distinguishing feature from previous studies in which near-wall
turbulence was regarded as uniform shear flow turbulence (Lee, Kim & Moin 1990;
Sekimoto, Dong & Jiménez 2016). Indeed, it has been shown recently that the
statistics of near-wall turbulence are considerably different from those of uniform
shear flow turbulence (Yang, Willis & Hwang 2018). The key feature of this model
is that it is applicable to various parallel shear flows at sufficiently large friction
Reynolds number. In this limit, the governing equations of turbulent Couette flow,
Poiseuille flow and Hagen–Poiseuille flow are identical because they are essentially
approximated by wall-bounded shear flow around a linear base flow. For the same
reason, the model would describe the universal dynamics of the mesolayer in the
absence of outer flow, as long as the domain size in all spatial directions is suitably
defined.

As a first step towards studying the universal mesolayer dynamics, the well-known
minimal unit of near-wall turbulence (Jiménez & Moin 1991) is considered in
the present study, in which the self-sustaining process at the given inner scale is
well isolated. In such a small domain, the turbulent flow is fully correlated in the
streamwise and spanwise directions, and the flow dynamics is largely temporal. This
contrasts with turbulence in extended domains, in which the spatial and temporal
dynamics are important (see Barkley (2016) for this issue in transitional flows).
Therefore, under these circumstances, the most suitable approach to analyse the shear
stress-driven model is with the concepts of dynamical systems theory. The temporal
evolution of a turbulent velocity field, governed by the Navier–Stokes equations, can
be represented by a chaotic trajectory of an infinite dimensional dynamical system.
The dynamical systems approach to turbulence emerged with the computation of
the first relative equilibrium solutions (Nagata 1990; Waleffe 1998, 2001, 2003)
and periodic orbits (Kawahara & Kida 2001) in channel flow. The computation of
invariant solutions and their linear stability analysis allows for the construction of
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the state space of turbulence, within which the turbulent trajectory is confined. The
laminar flow is the trivial equilibrium solution, whose linear stability may depend
on the Reynolds number (Orszag 1971; Romanov 1973). The stability boundary of
the laminar flow, which separates initial conditions that relaminarise from those that
become fully turbulent, is referred to as the edge (Skufca, Yorke & Eckhardt 2006;
Schneider, Eckhardt & Yorke 2007; Schneider et al. 2008) and plays a fundamental
role in structuring the state space of turbulence. The computation of invariant solutions
of the Navier–Stokes equations has allowed for a simplified analysis of a number of
physical processes, including an equilibrium self-sustaining process (Waleffe 1998),
the self-similarity of equilibria localised in the wall-normal direction (Eckhardt &
Zammert 2018) and the high-Re inner-scaling of wall-attached equilibria (Yang,
Willis & Hwang 2019).

In order to study the dynamics of mesolayer turbulence, a near-wall flow domain
similar in size to the minimal unit is analysed from a dynamical systems perspective.
The edge and several invariant solutions are computed, and various phase portraits
explored. While invariant solutions have been reported in previous studies with a
damping technique to isolate the near-wall dynamics (Jiménez & Simens 2001;
Jiménez et al. 2005), most of the solutions presented here are new. In addition, the
invariant solutions of the shear stress-driven model are valid for a multitude of parallel
shear flow configurations at sufficiently large friction Reynolds number. It must also
be pointed out that shear stress-driven flow is employed as a model of wind blowing
over a body of water, resulting in flow structures such as Langmuir circulation (Faller
1971; Leibovich 1983; Thorpe 2004). Hence, the invariant solutions presented here are
also relevant in physical oceanography. The bifurcation behaviour of the solutions over
the domain size is investigated to establish connections between different solutions
and to examine their physical properties. Finally, a Reynolds number is defined in
outer units and the high-Re asymptotic behaviour of the equilibria is analysed to link
to known high Reynolds number theories (Hall & Sherwin 2010).

2. Near-wall turbulence as Reτ→∞

2.1. Model formulation
The flow considered is that of an incompressible fluid in a rectangular domain with
dimensions (Lx, Ly, Lz), where x, y, z or x1, x2, x3 represent the streamwise, wall-
normal and spanwise coordinates, respectively. The corresponding velocity components
are denoted by u, v, w or u1, u2, u3 and time is denoted by t. A solid wall is located
at the lower boundary of the domain at y = 0. Given the kinematic viscosity ν and
the fluid density ρ, the instantaneous wall shear stress is defined as

τw(t)= ρν

〈
∂u
∂y

∣∣∣∣
y=0

〉
x,z

, (2.1)

where 〈 · 〉x,z denotes the average in the streamwise and spanwise directions. The wall
shear stress of the ‘turbulent state’, τw, is subsequently obtained from a full simulation,
where · denotes the average in time while the flow remains turbulent. The reference
friction velocity is defined as uτ ,r=

√
τw/ρ and the viscous length scale is then defined

as δν = ν/uτ ,r. Using δν as the characteristic length scale and uτ ,r as the characteristic
velocity scale, the model is formulated in inner units with the velocity field u+ =
(u+, v+, w+) = (u, v, w)/uτ ,r, spatial coordinates x+ = (x+, y+, z+) = (x, y, z)/δν and
time t+ = tu2

τ ,r/ν. A diagram of the flow geometry is shown in figure 1.
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y+

x+

z+

Ly
+

Lx
+

Lz
+

FIGURE 1. Flow geometry of the shear stress-driven model.

Employing the Reynolds decomposition, the velocity field can be expressed in terms
of the mean and fluctuating components

u+(x+, t+)=U+(y+)+ u
′
+(x+, t+), (2.2)

where U+(y+)= (U+(y+), 0, 0)= (〈u+〉x+,z+, 0, 0) and u′+ = (u′+, v′+,w
′
+). In channel

flows, the turbulent mean and fluctuating velocity components satisfy the equations

dU+

dy+
− 〈u′+v′+〉x+,z+ = 1−

y+

Reτ
, (2.3)

u
′
+

t+ + (U
+
· ∇)u

′
+
+ (u

′
+
· ∇)U+ = −∇p

′
+
+∇

2u
′
+
− (u

′
+
· ∇)u

′
+

+〈(u′+ · ∇)u′+〉x+,z+, (2.4)

where p
′
+ is the pressure fluctuation and the −y+/Reτ term is derived from

the imposed pressure gradient (e.g. Townsend 1980). Within the mesolayer, the
wall-normal coordinate satisfies the relation y+ ∼

√
Reτ (Sreenivasan & Sahay 1997;

Wei et al. 2005). Therefore, as Reτ→∞, the −y+/Reτ term will vanish provided that
L+y ∼

√
Reτ . For parallel wall-bounded flows more generally, any terms in the mean

momentum equation that are associated with the given flow geometry must vanish
in the limit of Reτ →∞. The model is then governed by the following momentum
equations for the turbulent mean and fluctuating components,

dU+

dy+
− 〈u′+v′+〉x+,z+ = 1, (2.5)

u
′
+

t+ + (U
+
· ∇)u

′
+
+ (u

′
+
· ∇)U+ = −∇p

′
+
+∇

2u
′
+
− (u

′
+
· ∇)u

′
+

+〈(u′+ · ∇)u′+〉x+,z+ . (2.6)

At the lower boundary of the domain, a no-slip condition is imposed to represent the
stationary wall,

u+|y+=0 = 0, (2.7)

whereas at the upper boundary, a horizontally uniform shear stress is applied. The
uniform shear stress condition at the upper boundary is implemented such that the bulk
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flow rate across the domain is maintained during simulations. For this purpose, the
instantaneous bulk velocity is defined as U+b (t+)=〈u+(x+, y+, z+, t+)〉x+,y+,z+ (〈·〉x+,y+,z+
denotes the volume average) and the laminar bulk velocity is denoted by U+0 . Then,
the streamwise boundary condition is expressed as

∂u+

∂y+

∣∣∣∣
y+=L+y

(t+)=
〈
∂u+

∂y+

∣∣∣∣
y+=0

〉
x+,z+

(t+)+C+(U+0 −U+b (t
+)), (2.8)

where C+ is a tuning constant that maintains U+b (t+) close to U+0 during simulations.
Given that the fluctuation of U+b (t+) about U+0 is kept to a minimum, the flow is
largely independent of the value of C+ but C+ ≈ 0.28 is the value used throughout
the present study. Since U+b (t+) = U+0 , equation (2.8) implies that the time-averaged
total shear stress (i.e. the sum of molecular and Reynolds stresses) is uniform across
the entire domain as long as the wall-normal velocity at the upper boundary is zero,
ensuring that the mean momentum equation (2.5) is satisfied. During the simulations
of the present study, U+0 −U+b (t+) has indeed been found to be very small, indicating
that only a very small amount of compensation at the upper boundary is required
at each time step to maintain U+b (t+) close to U+0 . This technique is very similar to
that used to maintain constant mass flux in pressure-driven channel flow. At the upper
boundary of the domain, impermeability and stress-free conditions are imposed for the
wall-normal and spanwise velocity components respectively, namely

v+|y+=L+y = 0, and
∂w+

∂y+

∣∣∣∣
y+=L+y

= 0, (2.9a,b)

ensuring zero Reynolds stress at the upper boundary. The upper boundary conditions
of the model may be considered ad hoc, however, such conditions are required to
ensure that the structures of the logarithmic and wake layers are safely removed.
Periodic boundary conditions are imposed in both the streamwise and spanwise
directions. The numerical simulations in this work were performed with the diablo
Navier–Stokes solver (Bewley 2014). This code uses spectral methods with a 2/3
dealiasing rule in the streamwise & spanwise directions and a second-order finite
difference scheme in the wall-normal direction, which has been verified extensively
(e.g. Hwang 2013).

Several notable features of the present model must also be mentioned. Firstly,
equation (2.6) does not seem to contain any explicit control parameter, such as a
Reynolds number. This is essentially because the equations of motion are normalised
by the viscous length scale δν and reference friction velocity uτ ,r. Under this rescaling,
the velocity field is governed by the unit Reynolds number Navier–Stokes equations
(2.6). The inner-scaled flow variables are O(1) quantities even in the limit of Reτ→∞.
However, this does not imply that the equations do not have a control parameter. In
this case, the domain dimensions (i.e. (L+x , L+y , L+z )) are the main control parameters,
as long as they are finite. In particular, the spanwise width of the domain can be used
to determine the expected multiplicity (or levels in the hierarchy) of integral length
scales. For example, if L+z ' 100, it will only include the near-wall energy-containing
structures at a single integral length scale (Jiménez & Moin 1991). If L+z ' 200,
it will include two integral length scales (i.e. λ+z ' 100, 200) due to the spanwise
periodic boundary condition. Secondly, it must be emphasised that (2.5) only governs
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the turbulent mean velocity field. The laminar state (and other invariant solutions)
satisfy

dU+

dy+
− 〈u′+v′+〉x+,z+ =∆

+, (2.10)

where ∆+= dU+/dy+|y+=0 is the wall shear rate of the corresponding solution, which
is smaller than unity in the laminar case. However, the present model ensures that
the base flow is a uniform shear flow – this can be easily checked by setting the
Reynolds stress in (2.10) to zero, with solution U+=∆+y+. The laminar bulk velocity
is then U+0 = ∆+L+y /2 ≈ 13.89. This implies that the model would be valid in the
region close to the wall, where the base flow can be approximated by a uniform
shear flow. This also indicates that the base flow in the mesolayer is a uniform shear
flow, explaining why the description by (2.5) and (2.6) would be universal for any
parallel wall-bounded shear flow. Finally, it is evident that the crucial issue in the use
of the present model is the use of the upper boundary condition (2.8), which could
potentially affect the region that is to be studied. For this reason, the model is first
carefully validated in § 2.2.

2.2. Validation of the shear stress-driven flow model
The shear stress-driven flow model presented in the previous subsection must now
be evaluated, and the velocity statistics and spectra compared to that of independent
near-wall turbulence. The obvious benchmark for the model is near-wall Couette
flow, which exactly satisfies (2.5) and (2.6) at all Reynolds numbers. In order
to isolate the near-wall flow, a damping function is introduced to the system, which
quashes turbulent fluctuations above a fixed wall-normal height. The damping function
employed is

µ+(y+)=
µ+0

2

[
1+ tanh

(
10

((
y+

y+0

)2

− 1

))]
, (2.11)

similar to that used by Jiménez & Pinelli (1999). Here, µ+0 denotes the damping
amplitude and y+0 denotes the damping height, such that µ+(y+) tends to the constant
µ+0 above y+0 and decays rapidly to zero below this point. Above the damping
height, the turbulent fluctuations are damped onto the mean flow, hence the system
is governed by the equations

u+t+ + (u
+
· ∇)u+ =−∇p+ +∇2u+ −µ+(y+)(u+ − 〈u+〉x+,z+). (2.12)

The value of the damping height is chosen to be y+0 ≈ 95 so that the near-wall flow
is unaffected. The value of the damping amplitude must be sufficiently high to kill
all turbulent fluctuations above the damping height and it was found that µ+0 ≈ 0.33
achieves appropriate results. Since the damping function kills Reynolds stresses
above the damping height, the kinematic viscosity must increase in line with the
Fukagata–Iwamoto–Kasagi identity (Fukagata, Iwamoto & Kasagi 2002) to maintain
similar inner-scaled domain dimensions. To compare both flow configurations, a
long streamwise domain length of L+x ≈ 3000 is chosen so that the longest streaky
structures are resolved. However, the spanwise domain width is chosen to be close to
that of the minimal unit, L+z ≈ 110, so as to remove the wider structures of the outer
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FIGURE 2. (Colour online) Mean streamwise velocity, U+(y+), of the shear stress-driven
flow model (red dashed line), plotted against that of damped Couette flow (black solid
line).
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FIGURE 3. (Colour online) Root mean squared velocity of the shear stress-driven flow
model; (a) u+rms (red dashed line), (b) v+rms (green solid line) and (c) w+rms (blue dash-dotted
line), plotted against that of damped Couette flow (black solid lines).

Case L+x L+y L+z Nx Ny Nz y+0
SSDF 2900 87 106 300 105 32 n/a
DCF 3042 146 111 300 161 32 95

TABLE 1. Simulation parameters of the shear stress-driven flow model and damped
Couette flow.

flow. The shear stress-driven flow model is denoted by SSDF and damped Couette
flow by DCF, and the simulation parameters are displayed in table 1. All statistics
presented here were computed over a time period of T+ > 35 000.

The mean streamwise velocity profile of the shear stress-driven flow model
compared to that of damped Couette flow is shown in figure 2. There is excellent
agreement between the two flow configurations for y+< 70 but the shear stress-driven
model slightly overestimates the mean velocity above this point. The viscous sublayer
features the characteristic linear profile, which is also seen near the upper boundary
of the domain. Similar behaviour is observed in the root mean squared velocity
statistics in figure 3. The shear stress-driven model clearly captures the near-wall
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FIGURE 4. For caption see next page.

peak of the streamwise velocity fluctuation at y+ ≈ 12 but again overestimates
the streamwise velocity near the upper boundary. In contrast, the wall-normal and
spanwise velocity fluctuations are underestimated by the shear stress-driven model
near the upper boundary but show excellent agreement closer to the wall. The
premultiplied one-dimensional streamwise and spanwise wavenumber spectra are
shown in figure 4. As seen in the first- and second-order statistics, there is excellent
agreement between the shear stress-driven model and damped Couette flow for
y+< 40. The streamwise wavenumber spectra of the streamwise velocity shows slight
excitation at longer streamwise wavelengths near the upper boundary, consonant
with the previous statistical results. The spectra of the wall-normal and spanwise
velocity components are also underestimated near the upper boundary. In general, the
spanwise wavenumber spectra of the three velocity components and Reynolds stress
show excellent agreement.

3. The state space of near-wall turbulence
Having introduced the shear stress-driven flow model and validated it against

damped Couette flow, the task at hand is to describe near-wall turbulence from
a dynamical systems perspective. To this end, the domain dimensions are fixed
at (L+x = 320, L+y = 90, L+z = 110), slightly larger than the minimal unit in which
turbulence can be sustained (Jiménez & Moin 1991). This reference domain is denoted
by Ω and its parameters are set out in table 2. The Navier–Stokes equations, subject
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FIGURE 4 (cntd). Premultiplied one-dimensional streamwise (a,c,e,g) and spanwise
(b,d, f,h) wavenumber spectra of the shear stress-driven flow model; (a,b) streamwise
velocity, (c,d) wall-normal velocity, (e, f ) spanwise velocity and (g,h) Reynolds stress.
Isocontours of damped Couette flow are superimposed in black.

L+x L+y L+z Nx Ny

320 90 110 32 105

TABLE 2. Simulation parameters of the reference domain, Ω .

to boundary conditions (2.7)–(2.9), are subsequently solved in the shift-reflectional
subspace,

[u+, v+,w+](x+, y+, z+)= [u+, v+,−w+](x+ + L+x /2, y+,−z+), (3.1)

to reduce the dimensionality of the turbulent state space. However, it has been shown
that this symmetry does not significantly alter the statistics and dynamics of the
turbulent trajectory (Hwang, Willis & Cossu 2016) since it captures the sinuous
mode of streak instability, which is the dominant streak breakdown mechanism in the
self-sustaining process (Hamilton et al. 1995; Cassinelli et al. 2017; de Giovanetti,
Sung & Hwang 2017).
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3.1. Edge and invariant solutions
As in the case of Couette flow, the base flow of the shear stress-driven flow model
has a linear velocity profile. However, any perturbations to the base flow are subject
to different boundary conditions than those of Couette flow, namely (2.8) and (2.9),
hence the linear stability of the base flow is not guaranteed. A simple way to verify
the linear stability of the base flow for the parameters chosen is to determine whether
it is possible to compute the edge, the hyper-dimensional manifold that separates
initial conditions that relaminarise from those that become fully turbulent (Skufca
et al. 2006). In this case, the edge of Ω is computed via bisection, in which the
turbulent fluctuations of a random initial condition are rescaled so as to lie between
specific laminar and turbulent thresholds. This modified velocity field is advanced in
time until the transient behaviour has decayed sufficiently, denoted by time t+0 . The
edge is a fundamental feature of the state space of a parallel wall-bounded shear flow.
The turbulent state space is also structured by invariant solutions, including relative
equilibrium solutions and relative periodic orbits, whose stable and unstable manifolds
guide nearby turbulent trajectories. Such invariant solutions are computed using the
Newton–Krylov–Hookstep algorithm (Viswanath 2007, 2009; Willis, Cvitanović &
Avila 2013), which has been verified extensively in Hwang et al. (2016). Given an
initial condition u+0 , this algorithm seeks to minimise the relative error between the
initial condition and its translated time-forward map

r=
||u+0 − τ(sx+, sz+)f T+(u+0 )||

||u+0 ||
, (3.2)

where f denotes the Navier–Stokes propagator and τ represents a translation of
distance sx+ in the streamwise direction and sz+ in the spanwise direction. For
periodic orbits, the value of T+ is updated at each Newton iteration from a good
initial guess and the converged value becomes the time period (up to positive integer
multiplication of the fundamental period). For equilibria, the choice of T+ is arbitrary
but T+≈16 is the value used for those computed here. All invariant solutions reported
in this work satisfy r< 10−8. The eigenvalues of converged solutions are subsequently
computed via Arnoldi iteration.

Defining the streamwise turbulent fluctuation energy as

E+u =
1
2 〈(u

′+)2〉x+,y+,z+, (3.3)

the edge of Ω as a function of time is shown in figure 5. After the transient behaviour
has decayed, the edge initially shows statistically stationary behaviour, from which the
first relative equilibrium solution, EQA1L, was computed. However, this equilibrium
solution is unstable to a gentle relative periodic orbit on the edge. In figure 5, the
edge trajectory leaves the neighbourhood of the equilibrium solution and is pulled
towards the periodic orbit, stabilising at later time. This periodic orbit, titled POA0L,
is stable on the edge and hence it is the edge state. Therefore, the transient visit of
EQA1L in figure 5 is a peculiarity of the initial condition for the bisection, since any
edge trajectory in the neighbourhood of POA0L will approach it monotonically. The
other invariant solutions were computed using initial conditions taken directly from
the turbulent trajectory or via continuation. In total, two relative periodic orbits and
thirteen relative equilibrium solutions were found in Ω . They are distinguished into
three distinct groups (A, B and C) in the following discussion and their properties are
summarised in table 3.
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FIGURE 5. (Colour online) The edge of the reference domain Ω (black solid line),
separating initial conditions that relaminarise (blue dash-dotted lines) from those that
become fully turbulent (red dash-dotted lines). E+u is the streamwise turbulent fluctuation
energy and t+0 is the time by which the initial transient behaviour of the edge has decayed
sufficiently. The inset shows the relative periodic orbit embedded in the edge.

T+ c+x ∆+ I/Il Ep dim(Wu)

POA0L 26.2272 14.0281 0.4053 1.3092 3.3016 1
EQA1L — 16.8070 0.4019 1.1962 4.7462 3
EQA2 — 15.1808 0.3549 1.1325 0.5489 3
EQA3L — 10.3307 0.3979 1.3600 1.8629 3
EQA4L — 14.9931 0.3576 1.1423 0.8946 3

EQB5L — 14.8210 1.0078 2.5056 20.0140 19
EQB3U — 7.0278 0.5453 1.8650 4.0807 8
EQB4U — 14.9599 0.4200 1.3195 2.5399 6
EQB6L — 14.6201 0.6707 2.0041 10.7257 14
EQB6U — 14.3803 0.7864 2.3703 12.6819 17

POC0U 25.7832 12.6168 1.1941 3.9097 14.1242 47
EQC1U — 14.2457 1.5442 4.1139 23.5143 22
EQC5U — 14.1047 1.6692 4.5419 23.9548 25
EQC7L — 12.9620 1.2743 3.8623 10.3416 38
EQC7U — 13.5580 1.6092 4.5532 13.6796 63

TABLE 3. Properties of the invariant solutions in Ω: T+, the time period; c+x , the phase
speed; ∆+, the wall shear rate; I/Il, the energy input normalised by that of the laminar
state; Ep, the kinetic energy deviation from the laminar state; dim(Wu), the dimension of
the unstable manifold. The c+x , ∆+, I/Il and Ep values of POA0L and POC0U are averages
over the period T+.

The Group A solutions are characterised by small cross-streamwise velocity
fluctuations relative to the streamwise velocity fluctuations. Velocity isosurfaces and
second-order statistics are shown in figure 6. Titled POA0L, EQA1L, EQA2, EQA3L and
EQA4L respectively, each solution in this group is a lower branch solution (figure 9).
As previously mentioned, POA0L is the edge state. It is time periodic with T+≈ 26.2,
an order of magnitude shorter than the bursting period of near-wall turbulence
(Hamilton et al. 1995; Jiménez et al. 2005), and its oscillation amplitude is very
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FIGURE 6. For caption see next page.

small (t+ − t+0 ' 20 000 in figure 5). However, its E+u value is significantly different
to that of EQA1L (t+ − t+0 ' 0 in figure 5), which is noticeable in the u+rms profile
near the upper boundary. This periodic orbit might be related to that identified in the
near-wall region of Poiseuille flow by Jiménez & Simens (2001) or to the ‘gentle’
periodic orbit on the edge in Kawahara & Kida (2001) (see also Lustro et al. 2019).
The EQA1L state is the equilibrium solution embedded in the edge. However, it has
a three-dimensional unstable manifold; one dimension representing the instability of
the edge and the other two representing its instability to POA0L. It is dominated by a
pair of strong streaks, flanked by weaker vortical motion. Examination of the velocity
field indicates that this is presumably the stress-driven analogue of Nagata’s lower
branch solution (Nagata 1990), without the shift-rotational symmetry possessed by
Couette flow. If an appropriate computational domain is provided, Nagata’s lower
branch solution also arises as the edge state of Couette flow (Schneider et al. 2008).
The Group A solutions all have wall shear rates well below the turbulent mean but
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FIGURE 6 (cntd). (Colour online) Velocity field visualisation and root mean squared
velocity profiles of the Group A relative periodic orbit and relative equilibrium solutions,
henceforth titled POA0L, EQA1L, EQA2, EQA3L and EQA4L, respectively. The red and blue
surfaces represent high- and low-speed streaks; (a,b,d) u+ − 〈u+〉x+,z+ = ±3, (c,e) u+ −
〈u+〉x+,z+ =±1.5. The yellow and green surfaces are iso-surfaces of wall-normal velocity;
v+ = ±0.12. Red dashed lines, u+rms; green solid lines, v+rms; blue dash-dotted lines, w+rms.
The root mean squared velocity profile of POA0L is an average over the period T+.

EQA2 is the equilibrium solution with the lowest drag in Ω (table 3). In fact, it is
analogous to EQ7 computed by Gibson, Halcrow & Cvitanovi (2009) and is the only
solution to comprise of two pairs of streaks. The EQA3L state is a ‘wall-attached’
solution, showing clear vertical localisation and little activity near the upper boundary.
It too consists of a pair of strong streaks, driven by cross-streamwise motion an
order of magnitude lower. The EQA4L state is the last Group A solution and also
exhibits vertical localisation, this time in the domain centre. The maximum streak
value is similar to that of EQA2, hence it has the second-lowest drag in Ω . Again,
this solution possesses a Couette flow analogue, namely EQ3 computed by Gibson
et al. (2009).

Group B comprises the equilibria whose wall shear rate values are in the vicinity
of the turbulent mean, specifically 0.41 < ∆+ < 1.01 (table 3). In this sense, these
solutions can be described as ‘moderately turbulent states’. In contrast to Group A,
the equilibria in this group show much greater velocity field diversity, as seen in the
velocity isosurfaces and second-order statistics in figure 7. This is due to the fact that
both lower and upper branch solutions are present. However, the Group B equilibria
are clustered together in state space, as seen in the phase portraits in figures 10 and
11. In particular, the energy input (3.5) of the solutions relative to that of the laminar
state lies in the interval 1.3< I/Il< 2.6. These equilibria are much more unstable than
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FIGURE 7. For caption see next page.

the solutions of Group A, each having an unstable manifold of dimension 6–19. The
EQB5L state is an equilibrium solution that bifurcates away from the EQA1L branch,
just above the turning point (figure 9a). It is very similar structurally to a typical upper
branch solution, with the localisation of the low-speed streak along the wall and high-
speed streak along the upper boundary, except for significantly lower drag. In fact, the
drag of this solution is almost exactly equal to that of the turbulent trajectory in Ω ,
hence it could be argued that EQB5L represents the mean turbulent state. The EQB3U
state is the upper branch of the ‘wall-attached’ solution EQA3L. It consists of two
distinct regions; y+ < 40, where the cross-streamwise velocity fluctuations are of the
same order as the streamwise fluctuations, and y+> 40, where the streamwise velocity
fluctuations dominate. Correspondingly, in the velocity field visualisation (figure 7b),
a pair of near-wall streaks are present together with the sustaining vortical motion,
as well as a pair of energetic streaks along the upper boundary. The EQB4U state is
the upper branch of EQA4L and like its lower branch counterpart, it too is vertically
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FIGURE 7 (cntd). (Colour online) Velocity field visualisation and root mean squared
velocity profiles of the Group B relative equilibrium solutions, henceforth titled EQB5L,
EQB3U , EQB4U , EQB6L and EQB6U , respectively. The red and blue surfaces represent high
and low speed streaks; (a,d,e) u+ − 〈u+〉x+,z+ =±3, (b,c) u+ − 〈u+〉x+,z+ =±2. The yellow
and green surfaces are isosurfaces of wall-normal velocity; (a,d,e) v+ =±0.9, (b,c) v+ =
±0.35. Red dashed lines, u+rms; green solid lines, v+rms; blue dash-dotted lines, w+rms.

localised in the domain centre. Both the low- and high-speed streaks exhibit wavy
behaviour, resembling streak instability, and the wall-normal fluctuations are much
more prominent. However, due to the wall-normal localisation, the wall shear stress
remains relatively low for an upper branch solution, as for its Couette flow analogue
EQ4 (Gibson et al. 2009). The EQB6L and EQB6U states are the last Group B solutions.
A lower and upper branch pair, these equilibria are positioned quite close together
in state space (figures 10 and 11). Consequently, the two solutions are very similar
structurally, the only differences being a shift closer to the wall in the u+rms profile
and a small increase in wall-normal velocity content.

The Group C solutions are characterised by large near-wall peaks in the streamwise
velocity fluctuations, as shown in the velocity isosurfaces and second-order statistics
in figure 8. Consequently, these solutions exhibit very high wall shear rates and can be
described as the ‘high drag states’. In contrast to Group A and B, each of the Group
C solutions has a wall shear rate greater than the turbulent mean, specifically ∆+ >
1.19 (table 3). These solutions are also highly dissipative, with energy dissipation
(3.6) relative to that of the laminar state satisfying D/Dl > 3.8. Unsurprisingly, the
solutions in this group are highly unstable, with unstable manifolds of dimension 22
or greater. The POC0U state is the upper branch of POA0L, the edge state. It is also time
periodic, with T+ ≈ 25.8, and its oscillation amplitude is still quite small (figures 10
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FIGURE 8. For caption see next page.

and 11). In contrast to the stability of its lower branch counterpart, POC0U has a 47-
dimensional unstable manifold, the second most unstable in Ω . It features very strong
streaks along the upper boundary of the domain, resulting in a skewed u+rms profile.
The EQC1U state is the upper branch of EQA1L, the equilibrium solution embedded
in the edge. As seen in the Group B equilibria, the low-speed streak localises along
the wall and the high-speed streak localises along the upper boundary, resulting in a
bimodal u+rms distribution. Again, examination of the velocity field indicates that this
is presumably the stress-driven equivalent to Nagata’s upper branch solution (Nagata
1990). The EQC5U state is the upper branch of EQB5L, the solution that bifurcates
away from the main EQA1L - EQC1U branch (figure 9a). Structurally, it is very similar
to EQC1U, except for small differences in the wall-normal velocity content. In fact,
EQC5U is the solution with the highest drag in Ω (table 3). Finally, EQC7L and EQC7U
are the last Group C solutions. A lower and upper branch pair, both equilibria are
characterised by very ‘turbulent’ velocity fields, containing high-speed streaks near
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FIGURE 8 (cntd). (Colour online) Velocity field visualisation and root mean squared
velocity profiles of the Group C relative periodic orbit and relative equilibrium solutions,
henceforth titled POC0U , EQC1U , EQC5U , EQC7L and EQC7U , respectively. The red and blue
surfaces represent high- and low-speed streaks; u+ − 〈u+〉x+,z+ = ±3.75. The yellow and
green surfaces are iso-surfaces of wall-normal velocity; (a,d) v+=±1.4, (b,c,e) v+=±1.9.
Red dashed lines, u+rms; green solid lines, v+rms; blue dash-dotted lines, w+rms. The root mean
squared velocity profile of POC0U is an average over the period T+.

the upper boundary and strong vortical structures. The root mean squared velocity
profiles of both solutions are quite uneven, the only pair to exhibit such behaviour.
Both equilibria are extremely unstable, possessing 38- and 63-dimensional unstable
manifolds respectively.

3.2. Bifurcation of solutions
Thus far, three distinct groups of invariant solutions of the Navier–Stokes equations
have been presented. In order to establish connections between the different solutions
and to analyse their physical properties, the bifurcation of solutions over the domain
size is investigated. Each periodic orbit and equilibrium solution is continued to
smaller and larger values of the spanwise width L+z using an arc-length continuation
algorithm, while maintaining L+x and L+y the same. Solution curves are traced out
and bifurcation points are identified. The (L+z , ∆

+) bifurcation diagram is shown in
figure 9(a), where ∆+ = dU+/dy+|y+=0 is the wall shear rate of each solution.

In the reference domain Ω , in which L+z = 110, POA0L is the edge state and EQA1L
is the equilibrium solution embedded in the edge, as mentioned previously. Continuing
POA0L to larger values of L+z (in brown), it forms a saddle-node bifurcation at L+z ≈136
(as seen in the inset in figure 9a), beyond which it gains two more real unstable
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FIGURE 9. (Colour online) Wall shear rate of the invariant solutions, ∆+, as a function
of the spanwise width; (a) L+z normalised by uτ ,r, (b) L∗z normalised by uτ ,e. The grey
dashed line represents the width of the reference domain Ω . Brown line, POA0L & POC0U;
black line, EQA1L & EQC1U; gold line, EQA2; blue line, EQA3L & EQB3U; red line, EQA4L
& EQB4U; green line, EQB5L & EQC5U; cyan line, EQB6L & EQB6U; pink line, EQC7L &
EQC7U . The ∆+ values of POA0L and POC0U are averages over the period T+. The inset
shows the subcritical Hopf bifurcation of EQA1L.

eigenvalues. It turns back to smaller values of L+z and at L+z ≈ 111, the periodic orbit
collides with the EQA1L lower branch. Analysing the eigenvalues of EQA1L reveals that
it is stable on the edge for L+z > 111 and unstable on the edge for L+z < 111, indicating
that this is a subcritical Hopf bifurcation. Continuing POA0L to smaller values of L+z
instead, the drag begins to increase and it forms saddle-node bifurcation at L+z ≈ 74.5,
the only solution to exist at this length scale. Above the bifurcation point, the drag
increases substantially and after two further sharp saddle-node bifurcations, it reaches
its maximum at the upper branch periodic orbit POC0U. The EQA1L state (in black)
exhibits similar behaviour at smaller values of L+z , forming a saddle-node bifurcation
at L+z ≈ 75.5. However, at larger values of L+z , the upper branch shows increasingly
erratic behaviour until it turns sharply at L+z ≈ 196. The solution curve continues
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FIGURE 10. (Colour online) Phase portraits of a turbulent trajectory and the invariant
solutions: (a) the (I/Il, D/Dl) plane, where Il and Dl represent the energy input and
dissipation of the laminar state; (b) the (I/Il, Ep) plane, where Ep is the kinetic energy
deviation from the laminar state. Brown square & line, POA0L & POC0U; black square &
triangle, EQA1L & EQC1U; gold square, EQA2; blue square & circle, EQA3L & EQB3U; red
square & circle, EQA4L & EQB4U; green circle & triangle, EQB5L & EQC5U; cyan unfilled
& filled circles, EQB6L & EQB6U; pink unfilled & filled triangles, EQC7L & EQC7U . The
I/Il, D/Dl and Ep values of POA0L are averages over the period T+.

back down to smaller values of L+z , forming the upper branch on which EQB3U exists
(in blue). The drag decreases through the saddle-node bifurcation point at L+z ≈ 82.5
but is largely constant in the neighbourhood of the lower branch solution, EQA3L.
Clearly, there is a relationship between these two pairs of equilibrium solutions. This
is reinforced by the fact that the drag of EQA1L and EQA3L is almost identical over
the interval 90< L+z < 150.

The EQB5L and EQC5U states are also related to the above solution pairs, as
mentioned in § 3.1. Just above the bifurcation point of EQC1U, the number and
magnitude of unstable eigenvalues increases significantly, meaning that the upper
branch is highly unstable. A secondary solution curve emerges at L+z ≈ 84 (in green),
namely that of EQC5U, which is the solution with the highest drag in Ω . Just above
L+z ≈ 112, there is a sharp reduction in drag before the solution curve continues
back to smaller values of L+z in the vicinity of the lower branch solution, EQB5L. At
smaller values of L+z again, this solution curve exhibits erratic ‘looping’ behaviour,
before it eventually rejoins the EQC1U branch from which it emerged.

The EQA2 state (in gold) is the only solution without an upper branch counterpart
in Ω . The drag of the lower branch remains almost constant over the interval
100 < L+z < 190 but increases as it approaches the cusp-like saddle-node bifurcation
point at L+z ≈ 83. Along the upper branch, there is a substantial increase in drag
before the solution curve turns again and continues back down to smaller values of
L+z . Below L+z ≈ 80, the residual began to increase above the desired threshold so
further continuation was abandoned. In contrast, the remaining three pairs of equilibria,
EQA4L & EQB4U (in red), EQB6L & EQB6U (in cyan) and EQC7L & EQC7U (in pink),
are all well-defined lower and upper branch pairs. However, the solution curves of
each pair differ significantly. The EQA4L and EQB4U states have a parabolic-shaped
curve, emerging in a saddle-node bifurcation at L+z ≈ 90, even though the difference
in drag between the lower and upper branches is quite small. The EQB6L and EQB6U
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FIGURE 11. (Colour online) Phase portraits of a turbulent trajectory and the invariant
solutions: (a) (Es/Ēs, Er/Ēr, Ew/Ēw) space, where Es, Er and Ew represent the streak, roll
and wave energy respectively, and · denotes the average in time while the flow remains
turbulent; (b) the (Er/Ēr, Ew/Ēw) plane; (c) the (Es/Ēs, Er/Ēr) plane. The symbols are
identical to those used in figure 10.

states possess a unique lemniscate curve, while EQC7L and EQC7U have an almost
rectangular-shaped curve. Another common feature of these three pairs of equilibria
is that they only exist over a very limited interval of L+z , namely 90< L+z < 125.

The bifurcation diagram in figure 9(a) also provides insight into the length scales of
turbulent activity in the near-wall region. The POA0L state is the solution that exists
at the smallest spanwise width, L+z ≈ 74.5, and no solutions exist below this value.
As L+z increases, nearly all of the equilibrium solutions are born through saddle-node
bifurcations, thirteen of which exist in Ω . With the exception of EQB3U, all upper
branch solutions achieve maximum drag in the interval 100<L+z < 120, corresponding
to the characteristic spacing of near-wall streaks (Robinson 1991). While the upper
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branch solutions are much more sensitive to the spanwise width, the lower branch
solutions show little variation in drag and even quasi-constant behaviour over moderate
values of L+z . At the largest values of L+z , only a few lower branch solutions still
exist. As an aside, the (L∗z , ∆

+) bifurcation diagram is shown in figure 9(b), where
L∗z is the spanwise width normalised with the friction velocity of the corresponding
invariant solution, uτ ,e. Under this rescaling, the bifurcation points of the solutions
POA0L, EQA1L, EQA2, EQA3L and EQA4L coincide at L∗z ≈ 55, similar to that of the
high-Re asymptotic state reported by Yang et al. (2019). The slight discrepancy is
likely due to the 2 : 1 aspect ratio of the horizontal computational domain (i.e. Lx : Lz)
maintained in that work.

3.3. Phase portraits
Now that the connections between various invariant solutions have been determined,
an approximation to the state space of near-wall turbulence can be constructed. This
is the ultimate aim of the dynamical systems approach, namely how the position and
stability of invariant solutions guide a chaotic turbulent trajectory through the state
space. A particular phase portrait is usually chosen to exploit the inherent properties
of invariant solutions or to shed light on a specific physical process. For example, if
the total kinetic energy is defined as

E(t+)= 1
2 〈u
+
· u+〉x+,y+,z+, (3.4)

then its time derivative can be expressed as dE/dt+ = I −D, where

I(t+)=

〈
u+

∂u+

∂y+

∣∣∣∣
y+=L+y

〉
x+,z+

, (3.5)

is the energy input and

D(t+)=

〈(
∂u+i
∂x+j

)2
〉

x+,y+,z+

, (3.6)

is the energy dissipation. However, the energy conservation property of invariant
solutions implies that dE/dt+ (or its average over the period T+ in the case of
periodic orbits) is identically zero, hence I and D (or their average over T+) must be
equal quantities. Denoting the energy input and dissipation of the laminar state by Il
and Dl respectively, the (I/Il, D/Dl) phase portrait of a turbulent trajectory and the
invariant solutions is shown in figure 10(a). The invariant solutions are positioned
along the diagonal, while the turbulent trajectory oscillates around it in a chaotic
manner and eventually relaminarises at late time. Introducing the deviation from the
laminar state u+p = u+ − u+l = (u+p , v+p , w+p ), the perturbation kinetic energy may be
defined as

Ep(t+)= 1
2 〈u
+

p · u
+

p 〉x+,y+,z+ . (3.7)

This quantity (or its average over T+) also remains constant for invariant solutions,
thus allowing for the construction of an alternative phase portrait. The (I/Il, Ep)
phase portrait of the same turbulent trajectory and the invariant solutions is shown
in figure 10(b). As expected, the energy input and perturbation kinetic energy of the
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invariant solutions is positively correlated. The A, B and C grouping of solutions
is also clearly visible in both phase portraits. The Group A solutions, represented
by squares, are positioned closest to the laminar state, satisfying I/Il = D/Dl < 1.4
and Ep < 5 (table 3). These solutions form a lower bound to the self-sustaining
turbulent trajectory, consonant with the fact that POA0L is the edge state and EQA1L is
embedded in the edge. In contrast, the Group C equilibria, represented by triangles,
and periodic orbit are closer to the maximum values attained by the turbulent
trajectory, with I/Il =D/Dl > 3.8. The Group B equilibria, represented by circles, fill
in the gap between the other two, closer to the mean turbulent state.

A particular phase portrait may also be chosen to investigate a specific physical
process. In the case of near-wall turbulence, the relevant process is of course the
self-sustaining process (Hamilton et al. 1995). It is therefore of interest to relate
the relative equilibrium solutions and relative periodic orbits to the self-sustaining
process, in order to study the state space dynamics in greater detail. In order to
capture the three distinct stages, the self-sustaining process will be illustrated by a
three-dimensional phase portrait. Following the approach of Lucas & Kerswell (2017),
the kinetic energy of the streak, roll and wave are defined as

Es(t+)= 1
2 〈〈u

+

p 〉
2
x+〉y+,z+, (3.8)

Er(t+)= 1
2 〈〈v

+

p 〉
2
x+ + 〈w

+

p 〉
2
x+〉y+,z+, (3.9)

and

Ew(t+)= 1
2 〈(u

+

p − 〈u
+

p 〉x+)
2
〉x+,y+,z+, (3.10)

respectively, such that Es + Er + Ew = Ep. Since the streak energy is of higher order
than that of the roll and wave, the above quantities are normalised by their mean
turbulent values in the phase portraits in figure 11. The three-dimensional portrait is
shown in figure 11(a), while the two-dimensional (Er/Ēr, Ew/Ēw) and (Es/Ēs, Er/Ēr)
portraits are shown in figures 11(b) and 11(c) respectively. It is immediately obvious
that the invariant solutions are dispersed throughout the phase portrait, indicating that
the solutions have very different dynamics.

The (Es/Ēs,Er/Ēr,Ew/Ēw) phase portrait allows for the clearest distinction between
the three groups of solutions. The Group A solutions (squares) possess very little roll
or wave energy, positioned almost at the origin of the (Er/Ēr, Ew/Ēw) plane. They
are positioned almost along the abscissa of the (Es/Ēs, Er/Ēr) plane, with EQA1L (the
equilibrium solution embedded in the edge) showing greatest streak energy and EQA2
(the solution with lowest drag) showing least. On the other hand, the high drag Group
C equilibria (triangles) and periodic orbit possess the greatest roll and wave energy,
corresponding to their high vorticity content. The Group B equilibria (circles) again
bridge the gap, with moderately low values of both roll and wave energy. Interestingly,
the Group B and C solutions are not distinguishable based on streak energy alone,
given that strong streaky structures appear in the velocity field visualisations in both
groups.

The above phase portraits also illustrate the interruption of the self-sustaining
process and the consequent relaminarisation of the flow. At late time, the trajectory
appears to escape from the turbulent state and enters the neighbourhood of the low
energy states on the way to the laminar state. In particular, the trajectory appears
to approach EQB3U then EQA1L, as seen in each of the (I/Il, D/Dl), (I/Il, Ep) and
(Es/Ēs, Er/Ēr, Ew/Ēw) phase portraits. However, EQA1L is the equilibrium solution
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embedded in the edge and other than its instability to the edge state, its only unstable
eigendirection is transversal to the edge. In this case, the turbulent trajectory passes
through the edge along the unstable manifold of EQA1L, exhibiting the characteristic
decay of the roll energy. The turbulent trajectory then approaches the laminar state
along the Es axis, corresponding to the slow decay of the streak energy.

It must be pointed out that each phase portrait provides a limited description of the
infinite-dimensional dynamical system that is turbulence. The dynamics of turbulence
that lies in dimensions orthogonal to a given phase portrait will be omitted, hence
important physical processes may be missed. The (I/Il, D/Dl) and (I/Il, Ep) phase
portraits shown above are not without criticism (Budanur et al. 2017). For example,
the edge is not recognisable as the boundary between the laminar and turbulent
flow regimes. Neither POA0L, the edge state, nor EQA1L, the equilibrium solution
embedded in the edge, have the lowest values of I/Il, D/Dl or Ep and several other
equilibria appear to be positioned between them and the laminar state. In addition,
EQB4U appears to be positioned closer to the Group A solutions, even though its
velocity field is structurally very different to the solutions in that group. In order to
gain a more thorough understanding of the state space of near-wall turbulence, the
construction of phase portraits must be combined with the careful analysis of velocity
fields, solution stability and bifurcation behaviour.

3.4. High-Re asymptotic behaviour of equilibria
Following the model formulation in § 2, all results presented thus far have been scaled
in inner units, where the domain dimensions (L+x , L+y , L+z ) have been the only model
parameters. By the definition of the system, its Reynolds number is of order unity. In
this regime, the asymptotic description should follow Deguchi (2015). Of course, the
same results can be rescaled in outer units for the purpose of studying the asymptotic
behaviour in the limit of vanishing viscosity. In this case, the definition of a Reynolds
number is required. Using the domain height Ly as the characteristic length scale, the
laminar bulk velocity U0 as the characteristic velocity scale and the kinematic viscosity
ν, the Reynolds number can be defined as

Re=
LyU0

ν
. (3.11)

In outer units, the model parameters are therefore the streamwise length of the domain
Lx/Ly, the spanwise width of the domain Lz/Ly and the Reynolds number Re. In the
current configuration, the values of these parameters are Lx/Ly ≈ 3.56, Lz/Ly ≈ 1.22
and Re= 1250. Given the definition of a Reynolds number, it is of interest to study
the asymptotic development of the relative equilibrium solutions at high Re with
Lx/Ly and Lz/Ly fixed as above. In particular, the scaling of the equilibria with Re
will be examined and compared to established theories at high Reynolds number (Hall
& Sherwin 2010), since this will provide valuable information about the asymptotic
structure of the equilibrium solutions in the near-wall computational domain. To
this end, the deviation from the laminar state up = (u − ul)/U0 is reintroduced and
the kinetic energy of the streak and roll are defined analogous to (3.8) and (3.9)
respectively. The wave velocity field is subsequently defined as

(uw, vw,ww)= up − 〈up〉x, (3.12)

and the energy of the first and second streamwise modes of the wave as

Ew1 =
1
2 〈û

2
w(±1, y, 0)+ v̂2

w(±1, y, 0)+ ŵ2
w(±1, y, 0)〉y, (3.13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.472


630 P. Doohan, A. P. Willis and Y. Hwang

0(a) (b)

(c) (d)

-2

-4

-6

-8

-10

-2

-4

-6

-8

-10

-12
2.5 3.0 3.5 4.0 4.5 2.5 3.0 3.5 4.0 4.5

-12
2.5 3.0 3.5 4.0 4.5

0

-2

-4

-6

-8

-10
2.5 3.0 3.5 4.0 4.5

-2

-4

-6

-8

-10

lo
g 1

0 (
E)

lo
g 1

0 (
E)

log10 (Re) log10 (Re)

FIGURE 12. For caption see next page.

and

Ew2 =
1
2 〈û

2
w(±2, y, 0)+ v̂2

w(±2, y, 0)+ ŵ2
w(±2, y, 0)〉y, (3.14)

where ·̂ denotes the Fourier transform.
The scaling of EQA1L, EQA2, EQA3L and EQA4L with Re is shown in figure 12,

together with their upper branch counterparts EQC1U, EQB3U and EQB4U. The streak
and roll energy are shown in (a,c,e,g) and the energy of the first and second
streamwise modes of the wave are shown in (b,d, f,h). The EQA1L, EQA3L and EQA4L
states all exhibit the characteristic vortex–wave interaction (VWI) scaling, where
Es ∼ Re0, Er ∼ Re−2, Ew1 ∼ Re−2 and Ew2 ∼ Re−3 (Hall & Sherwin 2010). This result
is not surprising, given that the Group A solutions possess very little roll or wave
energy relative to streak energy, as seen in figure 11. The EQA2 state exhibits similar
behaviour, except that the energy of the fundamental streamwise mode of the wave is
approximately zero and hence not shown. The upper branch solutions EQC1U, EQB3U
and EQB4U could not be continued to as high values of the Reynolds number due to
the increasing instability of equilibria at high Re. The relative equilibrium solutions
not included in figure 12 either could not be continued or collided in saddle-node
bifurcations at higher values of Re.
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FIGURE 12 (cntd). (Colour online) Scaling of (a,b) EQA1L, (c,d) EQA2, (e, f ) EQA3L and
(g,h) EQA4L with Re; (a,c,e,g) solid lines, Es, dash-dotted lines, Er; (b,d, f,h) solid lines,
Ew1, dash-dotted lines, Ew2. The grey dotted lines represent the VWI scaling; Es ∼ Re0,
Er ∼ Re−2, Ew1 ∼ Re−2 and Ew2 ∼ Re−3.

In addition to the characteristic Reynolds number scaling, VWI states are
distinguishable by their velocity field structure. As shown in Hall & Sherwin (2010),
the roll equations are driven by the Reynolds stresses of the wave, defined as

Fy =−

〈
uw
∂vw

∂x
+ vw

∂vw

∂y
+ww

∂vw

∂z

〉
x

, (3.15)

and

Fz =−

〈
uw
∂ww

∂x
+ vw

∂ww

∂y
+ww

∂ww

∂z

〉
x

. (3.16)

However, in the limit of Re→∞, the wave equations become singular in the critical
layer, where the mean streamwise velocity and phase speed are equal, U(y, z) = cx.
Hence, VWI states exhibit the localisation of the wave forcing, F(y, z)=

√
F2

y + F2
z ,
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FIGURE 13. For caption see next page.

around the critical layer at high Reynolds number. The critical layer position and
wave forcing of EQA1L, EQA2, EQA3L and EQA4L is shown in figure 13, at Re= 1250
(a,c,e,g) and Re = 12500 (b,d, f,h). At lower Reynolds number, the wave forcing
is more spatially extensive, affecting a large area surrounding the critical layer.
Maximum values are attained in the critical layer with gradual spatial decay in the
outer region. However, as the Reynolds number increases, the spatial extent of the
wave forcing decreases and in each case, it is confined to the critical layer in the
limit of Re → ∞. In particular, EQA2 possesses a flat critical layer, like EQ7 in
Gibson et al. (2009) (see also Deguchi, Hall & Walton 2013).

The EQA1L state, which appears to be the analogue of Nagata’s lower branch
solution, has been exemplified as the canonical VWI state (Hall & Sherwin 2010).
However, it has been shown above that two new equilibrium solutions exhibit VWI
scaling and the localisation of wave forcing in the critical layer, namely EQA3L and
EQA4L. Each of these solutions is structurally similar, with small cross-streamwise
velocity fluctuations relative to streamwise velocity fluctuations. This is highlighted
by the position of the Group A solutions close to the origin of the (Er/Ēr, Ew/Ēw)

phase plane in figure 11(b). The primary difference between the three states is their
wall-normal localisation, where EQA3L appears to be fully attached to the wall, EQA4L
in the domain centre and EQA1L along the upper boundary. The VWI states reside
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FIGURE 13 (cntd). (Colour online) Wave-induced forcing, F(y, z), of (a,b) EQA1L, (c,d)
EQA2, (e, f ) EQA3L and (g,h) EQA4L; (a,c,e,g) Re= 1250; (b,d, f,h) Re= 12 500. The white
line represents the critical layer position, U(y, z)= cx.

in the same neighbourhood of the state space of near-wall turbulence. As lower
branch solutions, they are characterised by drag rates well below the turbulent mean,
relatively high phase speeds and low energy input and dissipation rates (table 3). They
are the most stable equilibrium solutions, each possessing three unstable eigenvalues,
consonant with their position within or proximity to the edge. In addition, the VWI
states are among the first solutions to emerge via saddle-node bifurcation in the
(L∗z , ∆

+) bifurcation diagram in figure 9(b). The bifurcation point appears to be
L∗z ≈ 55, below which only the laminar state exists, indicating their relevance to the
transition to turbulence.

However, it must be pointed out that the VWI states only account for a small
subset of the invariant solutions presented above. Since they form a lower bound to
the turbulent trajectory in terms of drag, energy input and perturbation kinetic energy,
the VWI states fail to capture fully turbulent dynamics. The Group B equilibria best
represent the statistics and structure of the mean turbulent state, featuring high- and
low-speed streaks and quasi-streamwise vortices. In particular, EQB5L has wall shear
rate ∆+ ≈ 1 and has a similar velocity profile to that of the reference simulation
(figure 3). Together with EQB6U, it appears close to the mean turbulent values of
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the energy input, dissipation and perturbation kinetic energy in figure 10, and streak
energy in figure 11. The Group C solutions are the most ‘turbulent’, in the sense
that they exhibit highly wavy streaks and significant vortical content. They appear
to form an upper bound to the turbulent trajectory in terms of drag, energy input
and dissipation and roll energy, lying close to the extremal turbulent trajectories in
figures 10(a) and 11(c). Consequently, these invariant solutions are extremely unstable.
For example, EQC7U is the most unstable equilibrium solution in Ω , with an incredible
63-dimensional unstable manifold, and POC0U is the most unstable periodic orbit, with
a 47-dimensional unstable manifold. However, the Group C solutions are the only ones
to attain wave energy values close to the turbulent mean in figure 11(b) and they
also move with phase speeds 12< c+x < 14, comparable with the advection velocity of
the near-wall coherent structures observed in numerical experiments (Kim & Hussain
1993). Clearly, the solutions of Group B and C play an important role in describing
the full dynamics of near-wall turbulence.

4. Conclusion

In this work, a shear stress-driven flow is introduced as a model of independent
near-wall turbulence as Reτ → ∞. The system is governed by the unit Reynolds
number Navier–Stokes equations, which are valid throughout the mesolayer.
A horizontally uniform shear stress is imposed at the upper boundary of the
domain so as to satisfy the mean momentum equation. This model is applicable
to various parallel shear flows, including turbulent Couette flow, Poiseuille flow
and Hagen–Poiseuille flow, provided that L+x , L+y , L+z ∼

√
Reτ . In addition, shear

stress-driven flow is employed as a model of wind blowing over a body of water,
hence the results presented here are also relevant in physical oceanography. The
shear stress-driven flow model is validated against damped Couette flow and there is
excellent agreement between the velocity statistics and spectra for y+ < 40. Above
this point, the mean streamwise velocity and streamwise velocity fluctuations are
slightly overestimated, while the wall-normal and spanwise velocity fluctuations are
slightly underestimated. Therefore, the shear stress-driven flow model can be said to
describe the universal part of near-wall turbulence, which provides a means to study
the flow dynamics and multiple-scale interaction unimpeded by the presence of an
upper wall.

A near-wall flow domain of similar size to the minimal unit is analysed from a
dynamical systems perspective. The edge exhibits both stationary and time-periodic
behaviour, from which a relative equilibrium solution and a relative periodic orbit were
computed. Fifteen invariant solutions are presented in total, which can be divided into
three groups based on their physical properties. Through continuation in the spanwise
width L+z , the bifurcation behaviour of the solutions is investigated and it is found that
most emerge via saddle-node bifurcations in the interval 70< L+z < 100. Furthermore,
the upper branch solutions achieve maximum wall shear rate in the interval 100 <
L+z < 120, corresponding to the characteristic spacing of near-wall streaks. When the
spanwise width is instead normalised by the friction velocity of the computed solution,
the bifurcation points of all Group A solutions coincide at L∗z ≈ 55, similar to the
results obtained by Yang et al. (2019).

The present study is analogous to that of Jiménez & Simens (2001) but with several
key differences. Firstly, the shear stress-driven flow model allows for the simulation
of autonomous near-wall turbulence without the need for damping functions of the
form (2.11). Damped flow simulations require a greater number of grid points, many
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of which support only laminar flow, and the omission of these greatly improves
the computational cost. Furthermore, the flow can be studied without consideration
as to whether the precise form of the damping function will affect the dynamics.
Secondly, the simulations in Jiménez & Simens (2001) were performed with constant
volumetric flux maintained by a pressure gradient, resulting in the −y+/Reτ term
in the mean momentum equation (2.3). Given the simulation parameters, however,
this term is an O(1) quantity and so the results of that study apply more directly to
turbulent Poiseuille flow. Finally, the invariant solution in Jiménez & Simens (2001)
is not computed explicitly and is only identifiable at low values of the mask height
δ+1 . Above δ+1 ≈ 70, only chaotic turbulent flow is observed, in contrast to the fifteen
explicitly computed invariant solutions presented in the current work for wall-normal
domain height L+y = 90.

The computation of the invariant solutions of the shear stress-driven flow model
and their linear stability analysis allows for the construction of the state space of
near-wall turbulence. The chaotic turbulent trajectory and invariant solutions are
visualised in several phase portraits, including the energy input and dissipation plane,
and streak, roll and wave energy space. The Group A solutions, three of which
exhibit the characteristic vortex–wave interaction scaling at high-Re, are characterised
by low energy input and dissipation rates, relatively high phase speeds and few
unstable eigenvalues, consonant with their proximity to the edge. While the Group A
solutions form a lower bound to the turbulent trajectory, the Group B equilibria best
represent the statistics and structure of the mean turbulent state, featuring high- and
low-speed streaks and quasi-streamwise vortices. The Group C solutions appear to
form an upper bound to the turbulent trajectory in terms of drag, energy input and
dissipation and roll energy, and hence are extremely unstable. Though they do not
exist at high values of Re, the Group B and C solutions play an important role in
describing the full dynamics of near-wall turbulence.

The statistical results and invariant solutions presented in this work have all been
computed in minimal (L+z ≈ 110) near-wall (L+y ≈ 90) flow domains, which only allow
for the simulation of near-wall energy-containing structures at a single integral length
scale (Jiménez & Moin 1991). However, the extent of the mesolayer increases as the
friction Reynolds number increases as y+max ∼

√
Reτ , meaning that at extremely high

Reynolds numbers, the mesolayer encompasses a hierarchy of scales – not just one.
Therefore, the governing equations (2.5) and (2.6) are valid for arbitrary values of
the domain dimensions (L+x , L+y , L+z ), under the assumption that the friction Reynolds
number is sufficiently high. Once the spanwise width of the domain exceeds L+z '
200, then energy-containing structures at two integral length scales (λ+z ' 100, 200)
will be present, due to the periodic boundary condition in the spanwise direction. In
such a flow domain, the interaction between the large- and small-scale structures will
alter the turbulent dynamics, in contrast to the isolated single-scale turbulence analysed
here. This study is only the first step in the investigation of multi-scale mesolayer
turbulence.
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