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SUMMARY
One of the primary goals of biped locomotion is to generate and execute joint trajectories on a
corresponding step plan that takes the robot from a start point to a goal while avoiding obstacles and
consuming as little energy as possible. Past researchers have studied trajectory generation and step
planning independently, mainly because optimal generation of robot gait using dynamic formulation
cannot be done in real time. Also, most step-planning studies are for flat terrain guided by search
heuristics. In the proposed method, a framework for generating trajectories as well as an overall
step plan for navigation of a 12 degrees of freedom biped on an uneven terrain with obstacles is
presented. In order to accomplish this, a dynamic model of the robot is developed and a trajectory
generation program is integrated with it using gait variables. The variables are determined using a
genetic algorithm based optimization program with the objective of minimizing energy consumption
subject to balance and kinematic constraints of the biped. A database of these variables for various
terrain angles and walking motions is used to train two neural networks, one for real-time trajectory
generation and another for energy estimation. To develop a global navigation strategy, a weighted
A* search is used to generate the footstep plan with energy considerations in sight. The efficacy of
the approach is exhibited through simulation-based results on a variety of terrains.
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1. Introduction
One of the distinct advantages of legged systems is mobility, i.e., their ability of traverse diverse
terrain. They can utilize isolated foothold locations to optimize support and traction.

Development of step plan at a higher level and a local trajectory generation module that can execute
the desired sequence of steps while maintaining balance comprise two major challenges to be overcome
while developing a locomotion strategy for a biped robot. At both the levels of planning, an optimal
solution is desired, the criteria for establishing optimality vary with the application and the desired
system behavior. In this work, these two seemingly independent problems are solved alongside each
other to generate a locomotion scheme. The optimization for trajectory generation is performed using
genetic algorithm (GA), while the step-planning problem is solved using an A* search. Literature
addressing the problems of trajectory generation and step planning are discussed henceforth.

The concept of zero moment point (ZMP) has been widely utilized in generating trajectories for
humanoids. ZMP is defined as that point on the ground at which the net moment of the inertial forces
and the gravity forces has no component along the horizontal axes.1 The validity of using ZMP for
walk on inclined ground has also been shown in ref. [2]. For trajectory generation of a biped robot, two
major approaches have featured in recent works. The first method uses precise dynamic knowledge
of the system, such as the location of the center of masses and inertias of the links and motors for gait
synthesis purpose. Huang et al.3 used this approach to generate foot and hip trajectories in the sagittal
plane to satisfy ZMP requirement. The other approach realizes on limited dynamic information but on
feedback control. One of the most prominent studies belonging to this group is the 3-D linear inverted
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pendulum method used by Kajita et al.4 Trajectory generation for HUBO-35 utilizes simple linear
and sinusoidal curves for trajectory generation of the foot and the pelvis in independent Cartesian
coordinates, and an external control system is called upon to implement the gait online. In the trajectory
planning of biped Lucy,6 angular momentum equations were used to estimate the unactuated upper
body dynamics of the biped, and leg link trajectories were generated using polynomial functions in
order to keep the reference upper body trajectory close to its natural state. More recently, vertical
movement of this point mass has been shown to be effective in achieving a diverse range of step length
as well as better push recovery behavior.7

Many diverse techniques have been attempted to overcome the challenge of walking on uneven
surfaces for biped robots. Takanishi et al.8 introduced the idea of virtual surfaces to develop walking
patterns over uneven surfaces; they presented a method of trunk compensation for generating
dynamically feasible trajectories. Vundavilli and Pratihar9 used inverse dynamics learned, neural
network-based gait planner to negotiate sloping surfaces. Manchester et al.10 used model predictive
control with exponential stabilization to achieve walking on rugged surfaces for a compass gait walker.
A multi-objective gait optimization method for a humanoid robot’s walking on slopes was proposed
in ref. [11], using the robot and slope model an inverted pendulum model was used to parametrize hip
and ankle trajectories. A multi-objective optimization based on speed and energy considerations was
carried out to obtain the walking pattern. In ref. [12], a motion pattern generator for slope walking
in 3-D dynamics using preview control of ZMP is proposed. The future ZMP locations are selected
with respect to known slope gradient, and the trajectory of the center of mass (CoM) of the robot is
generated by using the preview controller to maintain the ZMP at the desired location. Zheng et al.13

use a universal stability criterion that checks whether the resultant of the gravity wrench and the inertia
wrench of a robot lies in the convex cone of the wrenches resulting from contacts between the robot
and the environment and generates a feasible CoM motion to generate walking on slopes.

Over recent years, GA has been the popular choice for trajectory generation of biped robots.
Arakawa and Fukuda14 used hierarchical optimization to determine energy-efficient gait cycles. One
was the GA layer that minimized the power consumption, and the other was the EP layerthat minimized
the configuration of the interpolated points. Sarkar and Dutta15 used GA for generating energy-efficient
trajectories for biped with compliant links for different step lengths and slopes. Lim et al.16 used GA
for generating stair-climbing motion for 12 degrees of freedom (DoF) biped robot using human motion
data. Cardenas-Macial et al.17 used GA for generatic energy optimal walking motion with closed loop
stability for a 3 DoF biped robot. A review of GA based approaches for biped trajectory generation
is presented by Gong et al.18 GA is principally based on Darwin’s theory of natural selection. This
makes it a natural choice for generating biped trajectories in various environments. Also, the dynamic
equations for systems with high DoF are high order, highly coupled, non-linear and involve search in
multi-dimensional and irregular spaces, thereby making the application of gradient-based optimization
very difficult. It is due to these reasons that GA is used in this study as well as several other successful
implementations elsewhere.

Due to the computational challenges of generating optimal gait online, machine-learning techniques
have also gained popularity in trajectory generation of humanoid systems. In the work by Capi et al.,19

results of optimization by GA on joint angles to generate energy-efficient trajectories were used to
train an RBFNN (radial basis function neural network) for different step lengths and step times on
level ground. Nagasue et al.20 used the K-nearest neighbors method for walking trajectory generation
on a slope. Learning theory was applied to improve the database with experience. Ferreira et al.21

used support vector regression and neural-fuzzy network in trunk compensation for balance control
of a biped. Optimal gait was generated for ditch crossing robots by Vundavilli and Pratihar22 using
neural networks and fuzzy logic based gait planners. Liu et al.23 used SVM controller to perform
learning on small datasets for gait control. Using foot and hip trajectories as inputs, trunk trajectories
were predicted using SVM-based controller to generate balanced gaits.

To develop a footstep plan, Chestnutt et al.24 formulated the problem in the form of a search
tree using a discrete set of step transition. An A* search was then performed to develop a globally
optimum navigation strategy. The cost of each step was expressed heuristically using the prospective
location of the step. A tiered planning strategy was developed by Chestnutt and Kuffner,25 at a higher
level, graphs were created manually and a local search was performed to join two vertices on these
graphs. More recently, Huang et al.26 have incorporated energetics in step planning. The cost of
a step, however, was not evaluated using dynamic calculations, rather polynomial functions were

https://doi.org/10.1017/S0263574718000188 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000188


Trajectory generation and step planning 947

Table I. Various biped step planning methods.

Tilt Stair Dynamics
Reference ground climbing Cost function considered Planning method

24 Yes Yes Location based (heuristic) No A∗
26 Yes Yes Energy + location (approx. + heuristic) No A∗
27 No No Euclidean No ARA∗/wA∗
28 No Yes Step length based (guided by APF) No Best-First
34 No No – Yes RRT
30 No Yes Orientation + height No A∗
33 No No Time minimization No VG
31 No Yes Euclidean + heuristic No Djikstra + A∗
Current work Yes No Energy based Yes A∗/wA∗

utilized for curve fitting and energy estimation. A gradient cost was estimated heuristically along with
other location-based costs. Hornung et al.27 used Euclidean distance-based cost for each step and
used graph searches such as A*, wA*, R* and ARA* for step planning. The motion primitives were
dynamically expanded to enhance reachability to the goal position. In the work by Li et al.,28 the biped
step planning (BSP) was modeled as a two layered problem. At a global level, best-first planning was
used for performing the graph search, and an artificial potential field was used as heuristic to guide the
search. The path obtained from this greedy search was fed to a local level planner where foot trajectory
was generated online using Bezier curves. Planning in a 2.5-D map was performed with the objective
of step-minimization in a study by Cupec et al.29 Here, a path was generated using depth and time
limited A* search, and this path was then followed by a constrained step plan. The work by Gutmann
et al.30 also utilizes A*-based graph search in a 2-D environment. The cost of movements was set
heuristically in terms of orientation changes, type of movement and terrain location. Candido et al.31

also used a multi-layer planner for BSP. A global planner was used to decompose the workspace
into simpler convex regions. A subgoal planner utilized Dijkstra hierarchical planner for connecting
these regions using edges. Apart from Euclidean costs, transition cost was imposed on the movements
from one region to another. Last, motion primitives were used to follow this path closely. Prasanth
and Sudheer32 discussed an approach for stepping over smaller obstacles using a predetermined step
length and subsequent selection of a suitable trajectory to avoid the obstacle.

Soo-Hyun et al.33 applied a roadmap-based approach using visibility graphs in a 2-D environment
with the goal of minimizing the time, where paths involving a higher number of turns were penalized.
Perrin et al.34 used offline computed swept-volume approximations for quick collision checking during
the planning process. The trajectories were generated using an inverted pendulum model for walking
on level ground. RRT was used for planning the path with a branching factor of 276. A summary of
some of the methods discussed thus far is represented in Table I.

While various groups have developed strategies for step planning, insufficient attention has been
paid toward planning global navigation strategies for biped robotics with the goal of minimizing
energy consumption. On the few occasions when energetics was considered, it was using overly
simplistic approaches. Also, the role of robot dynamics in step planning has largely been ignored.
Trajectory generation and step planning are two imperative aspects of biped locomotion, but work on
these two has almost always been performed in isolation with one another. In this work, a study on
biped dynamics and energetics for a variety of movements has been performed and then utilized for
developing a global planning scheme.

A short overview of the approach is presented in Fig. 1. The main components of the approach are
as follows:

• Kinematics and dynamics: Involves the development of the inverse kinematics and euler-lagrange
formulation for robot manipulators. These are presented in Sections 2 and 3, respectively.

• Optimization using GA: The kinematic and dynamics models are used along with step parameters,
such as slope (m), step-lengths (sl1, sl2), turning angle (α) and swing-foot(s f ) to pose the
optimization problem. This is solved using a GA-based approach in Section 5 and a database
of such solutions is created.
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Fig. 1. Summary of the locomotion strategy.

• Trajectory generation module: A neural network (NN 1) is trained to learn the mapping between
the input parameters (m, α, sl1, sl2, s f ) and the outputs ( fi) for real-time trajectory generation.

• Energy estimation: Another neural network (NN 2) is trained using the same database and the
same inputs to estimate the consumption of the step (E ). This real-time energy estimation is used
as a cost for the step-planner. Details on the two neural networks are available in Section 6.

• Step planner: A graph search is performed using a finite set of transitions represented by
step parameters. These step parameters are a super-set of the parameters used for GA-based
optimization. The search is performed using an A* search. As a final step, the step plan is executed
using NN 1. Graph search is described in Section 7.

2. Inverse Kinematics
The robot has a total of 12 DoF, 6 in each leg. The ankle joint can move in sagittal and frontal planes;
knee joint has 1 DoF, and it can only move in the sagittal plane; and the hip joint has 3 DoF, and it
allows movement in sagittal, frontal as well as transverse planes. The local frame is located on the
ankle joint (P0), with x̂0 pointing in the direction of walking, ẑ0 pointing perpendicularly outward
from the supporting surface and ŷ0 is obtained by using the right-hand thumb rule. Since all the joints
are revolute, ẑi denotes the rotation axis for i ∈ {1 . . . 12} and x̂i is normal to the plane of ẑi and ẑi+1.
Figure 3 illustrates the chosen coordinate frames with the help of a stick diagram. The DH parameters
for all the transformations are listed in Table II; the convention of Craig35 has been used. The joint
angles are depicted in Fig. 2.

For performing the inverse kinematics, the positions and orientations of the reference points on
the two feet (centroid of the supporting surface on the foot) and mid-hip serve as inputs. The rotation
matrix needed to express the orientation of the local reference frame in terms of the global coordinate
frame (global

re f R) is as follows:

global
re f R = Rx,φRy,θRz,ψ (1)

Here φ, θ and ψ are euler angles. Using Eq. (1) and position Xre f of the reference point, the
homogenous transformation matrix global

re f T is obtained. Subsequently, the transformation matrix at
ankle joint can also be obtained.

Figure 3 illustrates the aforementioned coordinate frames clearly. In order to perform the inverse
kinematics, the position of the hip joint Xh is expressed in terms of the base frame located at the ankle
joint. (Using the position and orientation of the mid-hip, the task space coordinates of each hip joint
can be obtained uniquely.)

0Xh = re f
0 T re f Xh (2)
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Table II. Link parameters for biped.

i ai−1 αi−1 di θi

1 0 0 0 θ1

2 0 -π/2 0 θ2

3 l1 0 0 θ3

4 l2 0 0 θ4

5 0 π/2 0 π/2 + θ5

6 0 π/2 0 θ6

7 l3 0 0 θ7

8 0 -π/2 0 π/2 + θ8

9 0 π/2 0 θ9

10 l4 0 0 θ10

11 l5 0 0 θ11

12 0 -π/2 0 θ12

x̂5

x̂6

x̂7

θ6

θ7

θ1

θ5

θ8

θ12 θ2

θ3

θ4
θ9

θ10

θ11

Fig. 2. Joint variable θi in frontal, sagittal and transverse planes.

The joint angle θ1 is then given by

θ1 = atan2(0Xhx ,
0 Xhy ) (3)

Also,

global
1 T =global

0 T 0
1T (4)

Here, 0Xhx ,
0 Xhy are the x, y components of 0Xh, respectively. In �ABC as indicated in Fig. 4, d =√

1x2
h + 1z2

h and γ = cos−1( l2
1 −d2+l2

2
2l1l2

). Therefore,

θ3 = π − γ (5)
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ẑ3

x̂3

ẑ5
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Fig. 3. Biped coordinate frames.

Furthermore, the position of the knee joint can be obtained by drawing two circles {C1,C2} of radii
{l1, l2} at points {A(0, 0), C ((1xh,

1 zh))}, respectively. Note that, 1Xh = global
1 T globalXh. Of the two

possible points of intersection obtained using the above formulation, the desired solution must ensure
that the knee joint should be physically realizable, i.e., θ3 > 0. In order to attain this condition, only
the point of intersection (1xk,

1 zk ), satisfying the inequality, 1zk >1 zh/2 is accepted. Having obtained
the position of the knee joint and taking into account the convention for representing joint angles, we
have

θ2 = atan2(−1zk,
1 xk ) (6)

In order to determine the remaining joint angles, the following equation is used:

3
4T 4

5T 5
6T =global

3 T −1 global
6 T (7)

Note that the right-hand side (RHS) of the above equation is known, say kT (the orientation of the
hip joint is available from Eq. (15)), the angles θ4, θ5, θ6 can now be determined analytically:

3
4R 4

5R 5
6R = kR =

⎡
⎣−cθ4sθ5cθ6 + sθ4sθ6 cθ4sθ5sθ6 cθ4cθ5

−sθ4θ5cθ6 − cθ4sθ6 sθ4sθ5sθ6 − cθ4cθ6 sθ4cθ5

cθ5cθ6 − sθ5sθ6 −cθ5sθ6 + cθ6 sθ5

⎤
⎦ (8)

Therefore,

θ5 = sin−1(kR(3, 3)), −pi/2 < θ5 < pi/2 (9)
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Fig. 4. Inverse kinematics in the sagittal plane.

θ4 = atan2(kR(2, 3)/cθ5,
k R(1, 3)/cθ5) (10)

θ6 = cos−1(kR(3, 1)) − θ5 (11)

In a similar manner, inverse kinematics can also be performed for the other leg. As a result θi, i ∈ [1, 12]
are obtained.

3. Dynamic Modeling
The goal of inverse dynamic calculations is to determine the joint torques needed to generate a given
motion. The Euler–Lagrange approach for robot manipulators36 is used for this purpose:

d

dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= ϕi, i = 1, 2, . . . , n (12)

L = Lagrangian function = Ek − Ep (Kinetic Energy − Potential Energy);
qi = Generalized coordinate of the robot;
ϕi = Non-conservative generalized forces applied at joint i to drive link i.

In this discussion,

ϕi = JT Fci + τi

Here, JT Fci is the term due to external contact forces and τi is the actuator torque. All 12 DoF of the
model are fully actuated.

External forces. In the single support phase (SSP), the swing foot is in the air and hence the ground
reaction force (GRF) on the stance foot can be uniquely determined as Fc = macom − mg. During the
double support phase (DSP), however, the system becomes indeterminate and only an approximate
solution can be obtained. In the current study, the velocity of the swing foot reduces to zero just
before it touches the ground, so do the velocities of all the actuators. Determination of the contact
forces during the double support phase is a field of study in itself. Some authors optimize the stability
margin and internal forces work while treating the contact forces as variables;37 Dai et al.38 framed the
contact forces during the entire gait cycle as variables for the optimal control problem. In this work,
an impact-less linear transition model has been utilized here, i.e., if the right foot is about to land on
the ground, the force ( fr) on the right foot is modeled as fr = λ(macom − mg), where λ varies linearly
from 0 to 1 from the start to end of DSP. More complex and evolved models can be used to determine
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Table III. Biped parameters.

m1 (kg) m2 (kg) m3 (kg) m4 (kg) l1 (m) l2 (m) l3 (m) h f (m) l f (m) w f (m)

0.194 0.079 0.290 0.344 0.111 0.111 0.085 0.032 0.110 0.070

l3

wf

m1

m2

m4 m3m3

m2

m1

(a) Frontal Plane

l1

lf

l2

hf

0.8(l1 + l2)

(b) Sagittal Plane

Fig. 5. Biped parameters (a) Frontal plane. (b) Sagittal plane.

the impact forces during the double support phases, but they do not affect the underlying theme of
this study, and they can simply be plugged in alongside the calculations for the system dynamics.

The standard form of the dynamic equation for rigid biped is derived as

D(θ )θ̈ + B(θ̇ , θ ) + G(θ ) − τext = τ, (13)

D is the 12 × 12 symmetric and positive-definite generalized mass matrix, the vector B regroups
Coriolis and centrifugal terms, G represents gravity terms and τ is the joint torque vector. τext = 0
during SSP and τext = JT Fc12 during DSP where Fc12 is the linearly modeled GRF on the final link
(link 12) and J is the Jacobian. Work done for the rigid-link biped during gait is calculated as

WR =
12∑

i=1

∫ tc

0
|τi.θ̇i|dt (14)

Schematic of biped in frontal and sagittal views is presented in Fig. 5. A lumped mass model has
been used to simulate the biped. The mass m1 is fixed at the ankle joint, m2 is concentrated at the
knee joint, m3 is located at the hip joint and m4 represents the mass at mid-hip. The length of the
shank is l1, thigh is l2, the hip to hip distance is l3, and the length, width and height of the foot are
represented by l f , w f and h f , respectively. The mid-hip height was kept constant at 0.8(l1 + l2); this
has been reported to be close to the optimal hip height during walking.39 The time for each step was
kept constant at 1s. The values of biped parameters are listed in Table III.

4. Trajectory Generation
In this section, a methodology for generating the trajectory for given initial and final states is presented;
this is a per-step procedure. Given the initial and final states of the robot, the goal of trajectory
generation is to generate smooth joint motion that results in a balanced and energetically optimal gait.
The gait cycle has been proposed to begin in the middle of the DSP; in one step, the biped completes
one full cycle and returns to the same phase; also, the gait is considered symmetric about the two legs.
Trajectories have been generated for the swing foot and the mid-hip in the task space (Fig. 6) relative
to a reference frame on the stance foot (Fig. 3).

• t0: Hip starts moving forward and sideways, no movement of either feet.
• td1 : Swing foot starts moving, DSP ends, SSP begins.
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Fig. 6. Trajectory generation for foot and mid-hip.

• tm: Midpoint of the gait cycle, swing foot is at maximum ground clearance.
• ta: Mathematically expressed as (tm + td1 )/2, continuation of SSP.
• tb: Expressed as (tm + td2 )/2, continuation of SSP, similar to ta.
• td2 : Marks the end of SSP, swing foot stops moving.
• t f : Biped comes to momentary rest, completion of single step cycle.

4.1. Cartesian coordinates
For planning all the trajectories, time is chosen to be the base variable, i.e., all trajectories will be
generated in terms of time. A (ni + 6)-order polynomial function is used for trajectory generation,
where n is the number of intermediate points considered between the initial and final state; this is done
to ensure that the first- and second-order derivatives vanish at end points. Time-dependent trajectories
are generated in the x, y and z directions independently; the choice of intermediate points is also
highlighted.

Swing foot trajectoy.

• x direction: The bulk of movement takes place in this direction; it necessitates the use of at least
two control points; since the swing foot does not move in DSP, ta and tb are used for this purpose:

xs f ta
= xs ft0

+ ( f1 − 0.5)(xs ft f
− xs ft0

)

xs f tb
= xs ft0

+ (1.5 − f2)(xs ft f
− xs ft0

)

f1 and f2 are variables in [0, 1] to be determined by optimization. The quantities { f1 − 0.5} and
{1.5 − f2} represent the fraction of total distance the swing foot has moved at times ta and tb,
respectively.

• y direction: There is no change in the y-coordinate of swing foot during straight walk; even during
turning, this change is very small; keeping this in consideration, the motion variation is kept linear
in {td1, td2 }.

• z direction: Ground clearance is needed for biped locomotion; this is represented by gcl in Fig. 6
and the point of this clearance is tm.

Mid-hip trajectory.
Mid-hip is the midpoint of the two hip-joints. The path followed by mid-hip is vital in determining

the dynamic balance as well as energy consumption of biped during locomotion; this requires a higher
number of variables to adequately define the motion.

• x direction: For walking on uneven terrain, dynamic balance requires a variety of hip motions.
Pertaining to this requirement, two DoF to hip motion in a way similar to swing foot:

xmhta
= xmht0

+ f3(xmht f
− xmht0

),

xmhtb
= xmht0

+ f4(xmht f
− xmht0

)
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f3 and f4 are optimization variables in the closed interval [0,1] and they represent the fraction of
total distance the mid-hip has moved at times ta and tb, respectively.

• y direction: Sideways tilt of mid-hip is required for maintaining lateral balance; it is also the single
largest contributor to energy consumption, particularly for smaller step lengths. Intermediate points
for polynomial interpolation are selected as td1, td2 and tm. td 1 and td2 mark the beginning and end of
SSP, respectively, and tm is used to ensure that the sideways tilt is not more than what is necessary
as it affects the power consumption. The movement of mid-hip along the y direction is expressed
in terms of initial positions of the stance and swing hips (yst .ht0

, ysw.ht0
).

For a walking motion without turning, yst .ht0
, ysw.ht0

= wt , where wt is trunk width, i.e., if f5 = 1,
it would imply a sideways motion of mid-hip by an amount wt at time tm; it is equivalent to a
tilt of almost 30◦, which is much larger than the typical biped requirements. To avoid undesirable
iterations of the optimization program, the values of f5, f6 and f7 were confined in the interval
[0.0, 0.5]:

ymhtd1
= ymht0

+ f6(yst .ht0
− ysw.ht0

)

ymhtm
= ymht0

+ f5(yst .ht0
− ysw.ht0

)

ymhtd2
= ymht0

+ f7(yst .ht0
− ysw.ht0

)

• z direction: Vertical movement of mid-hip has a little effect on dynamic balance; this movement,
however, is necessary for walking on uneven terrain in an energy-efficient manner. A single
intermediate point tm is used to define this path. Also used are the initial (zmht0

) and final (zmht f
)

heights of mid-hip. �zmhmax is the maximum allowable movement of the hip in vertical direction,
this was set at 2.5 cm:

zmhtm
= max(zmht0

, zmht f
) + ( f8 − 0.5)�zmhmax

Trajectories for various step lengths, terrain slope and turning angles are generated as shown in Fig. 7.
Points used for interpolation have been marked in black; it is these points that determine the trajectory;
they depend on the gait variables ( fi) and will be determined using optimization in Section 5.

4.2. Orientations of feet and mid-hip
Cartesian coordinates of the reference frames located at the two feet and the mid-hip alone, however,
are not sufficient to determine the state of a 12 DoF biped; orientations of the two feet and mid-hip
are also required as inputs, and these orientations are provided in the form of Euler angles in a global
reference frame.

Foot orientation. The foot orientations are kept such that the supporting surface remains parallel to
the ground. In addition, turning is permitted as per the requirement. In Fig. 8(a), the pitch angle of the
stance foot changes from θ0 to (θ0 − θslope), while the orientation of stance foot remains unchanged.
Similarly, in Fig. 8(b), the yaw angle of swing foot changes from ψ0 to (ψ0 + α). In the current work,
gradient is only considered in one direction; hence, the roll angle (φ) is always kept 0. If the orientation
of the swing foot changes from {φ, θ, ψ} to {φ + �φ, θ + �θ, ψ + �ψ} from time td1 to td2 , then
these angles are varied linearly with time in the interval [td1, td−2].

Mid-hip orientation. Generally, a camera is mounted along on top of a biped for navigational purposes;
it is then desired to keep the trunk vertically aligned throughout the motion. The mid-hip is oriented
such that its x-axis (x̂mh) points along the direction joining the two hip joints (Fig. 8(a) and (b)).
Any change in the hip-orientation during motion is also varied linearly with time. Together, these
constraints result in an orientation of the mid-hip that depends only on the yaw angle; it is expressed
as follows:

global
mh R =

⎡
⎢⎣

cos(θst + α/2) − sin(θst + α/2) 0

sin(θst + α/2) cos(θst + α/2) 0

0 0 1

⎤
⎥⎦ (15)
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Fig. 7. Swing foot, stance foot and mid-hip trajectories in the x, y and z directions.
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ẑmhi
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ẑmhf
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ẑglobal

(a) Biped on Uneven Terrain
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(b) Biped During Turning

Fig. 8. Biped movements. (a) Biped on uneven terrain. (b) Biped during turning.

5. Optimization Using GA
For performing the optimization, in addition to the energy cost (WE ), the balance of the biped is also
taken into account. Different authors use different costs as a parameter to assess the quality of motion.
Most commonly used methodologies involve minimizing the actuator work (

∫
τδθ),15 actuator torque

(
∫

τ 2)40 or the mechanical cost of transport (E/mgd)41 or a combination of these.42,43 For a specified
step length and step time (as is the case in this work), minimization of actuator work and the mechanical
cost of transport are equivalent. In this study, actuator work is minimized to generate energy-efficient
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steps. Every walking step is discretized into 50 computational substeps for the purpose of ZMP and
dynamic calculations. For any substep n, two calculations are performed:

WEn =
12∑

i=1

|τn.θ̇n|�t (16)

Here, �t = tstep/50. A function f (n) is defined as follows:

f (n) =
{

0, if zmp(n) ∈ SP
10, otherwise

SP is the support polygon, and zmp(n) is the location of zmp at substep n. Combining the two costs,
the objective function to be minimized is C:

C =
50∑

n=1

(WEn + f (n)) (17)

The optimization variables (xi) are dimensionless for i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. These are the same fi

as introduced in Section 4. Since the penalization on ZMP violation has been included in the objective
function and since the range of variables fi (xi) was chosen appropriately in line with the kinematic
constraints of the biped, no additional constraint is needed for the optimization.

Margin of stability. The supporting polygon SP for walking is the area of the supporting foot during
the SSP and the convex hull of the two supporting feet during the DSP. At the time of optimization,
however, a margin of stability is introduced as it provides a safety factor as shown in Fig. 9. A1 is the
area of the support foot (SSP is considered), while A2 is the area obtained after taking the margin of
stability into account; b was set to 1 cm. The dynamic equations of the biped robot (Eq. (13)) are 12
coupled non-linear equations and such optimization problems are well suited for GA. The inputs to
the optimization problem were the dimensionless variables ( fi, i = 1 to 8) as described in Section 4.1
and the objective function was the energy consumption for each step, subject to the constraint of ZMP-
based balance. The trajectories were generated for a variety of step lengths, slopes and turn angles.
Optimization was performed for step lengths of {0.05, 0.10, 0.15, 0.20, 0.25}, terrain angles were
{−10◦, −5◦, 0◦, 5◦, 10◦} and turn angles were {−15◦, −5◦, 0◦, 5◦, 15◦}. Furthermore, it is often
required to switch step lengths during walking; for this purpose, optimization was also performed
from stand to walk and walk to stand transitions. These represent the extreme ends of transitions; all
other transitions will lie somewhere in between. The concept is better illustrated in Fig. 10.

Figure 10(a) represents a standard walking case where swing foot moves a total distance of 2sl0.
In this case, the swing foot is initial sl0 distance behind the stance foot and then moves ahead by the
same distance. Repeating this movement will yield a symmetric gait. The upper limit of sl0 was set to
be 0.125 m. Total computations for this case were 5 × 5 = 25 (for five different step lengths and five
different slopes). Figure 10(b) represents a scenario where the biped is transitioning from standing
pose to walking pose. Figure 10(c) represents the case when the transition is from walking pose to
standing pose. Total computations for parts (b) and (c) were also 25 each. Figure 10(d) represents a
general case where the transition is from some initial distance sl1 to some final distance sl2. Lower and
upper bounds for both sl1 and sl2 are 0 and 0.125 m, respectively. The calculations for parts (a)–(c)
were performed for all terrain angles. During non-zero turning angles (−15◦ − 5◦, 5◦, 15◦), only
case (a) was allowed; the computation was performed for sl0 ∈ {0.025, 0.050, 0.075, 0.1, 0.125} m
and all the previously mentioned turn and terrain angles. It should also be noted that turning movement
is not symmetric with respect to the two feet. During turning, the step length of the outer foot is more
than the inner foot. Calculations were performed for both these movements resulting in total turning
computations of 2 × 5 × 5 × 2 = 100. However, for a given turning angles θ and step length sl , the
variables governing the movement of the right foot will be the same as the variables governing the
movement of the left feet for a turning angle of −θ .
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Fig. 9. Balance margin.
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Fig. 10. Possible movements along straight line walk.

Taking into account movements of left and right foot, computation results for all the previously
mentioned cases (a total of 175 × 2 = 350) were stored in a database. The results were the variables
on which trajectory depended ( fi, i ∈ {1 to 8}) and energy consumption (in Joules).

GA parameters. The population size was 50, the crossover probability was set to 0.9, mutation was
0.05 and the GA was terminated at min(tlim, genlim), tlim = 5 h, genlim = 120. Each variable ( fi) was
represented with 6 bits, resulting in a total string length of 6 × 8 = 48.

High-performance computing. The computation was performed on a single node of Xeon E5-2670V
2.5 GHz 2 CPU-IvyBridge (20-cores per node) on HP-Proliant-SL-230s-Gen8 servers with 128 GB
of RAM per node E5-2670v2x10 core 2.5 GHz and took close to 5 h for each run of the GA. Dynamic
calculation of robot manipulators are O(n3) with respect to the number of DoF; for the presented system
with 12 DoF, the calculation is computationally intensive. Parallelization of calculation resulted in a
20-fold increase in speed.

6. Neural Network for Trajectory Generation
GA-based optimization process for trajectory generation is time consuming; this makes the real-time
implementation infeasible. To overcome this challenge, an artificial neural network (NN 1) has been
used for trajectory generation.

6.1. Feature identification
To identify a walking movement, it is reasonable to include the step length, turning angle, terrain
slope and stepping foot (left or right) for trajectory generation. In addition to these, it is also necessary
to determine the current state of the biped. In Fig. 10(d), the biped has a step length of sl = sl1 + sl2,
whereas in Fig. 10(b), the step length is sl0. Consider now a case when sl1 = sl2 = sl0/2. This would
imply that step lengths for parts (b) and (d) are the same, but clearly the two cases represent a very
different type of movement. The dynamics governing the step as shown in (b) would be quite different
compared to the case (d). Similar observation can also be made for case (c); keeping this in mind, the
distance between the two feet before the execution of the step (sl1) and the distance between the two
feet after the step execution (sl2) were identified as separate features. The features used for real-time
trajectory generations were {sl1, sl2, m, s f , α}. Here, m is the slope of the terrain represented by
its value in degrees. s f is used to identify the swing foot, s f = 1 implies right foot swing and s f = 0
implies left foot swing and, α is the turn angle in degrees.
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Table IV. RMSE over test data using NN 1.

f1 f2 f3 f4 f5 f6 f7 f8

0.06 0.08 0.14 0.14 0.04 0.02 0.01 0.02

POi O1

O2

O3S1

S2

Q R

lf lf /2 lf /2

Fig. 11. Transition point.

6.2. Neural network architecture
A feed forward network with two hidden layers was used to model the non-linear mapping between the
inputs {s f , sl1, sl2, m, α} and outputs { f1, f2, f3, f4, f5, f6, f7, f8}. The ANN consists of five input
nodes, two hidden layers with 14 and 10 neurons each and eight output nodes. tansig activation
function was used in the two hidden layers and the output layer was purely linear.

6.3. Data and performance
The total data of 350 input–output mappings was divided into training and test sets. In total, 85%
of total data was randomly selected for training and the remaining was used to test and report the
performance. Table IV represents the root mean square errors (RMSE) for each of the eight predicted
variables reported with test data. The training was less than 6 s, while the prediction time was clse to
4 ms.

7. Step Planning

7.1. Navigation map and classification of obstacles
The step-planning program accepts a height map (M) of the environment with a discretization, dsc =
0.5 cm, along the x and y axes. Using M, a navigation map (NM) is generated. The map is scanned
along the x and y directions to determine the gradients Mx and My, respectively. Using the height
and gradient information, the region is marked as obstacle or free in NM. If the gradient along
any direction is greater than 0.16 (10◦), the grid point is marked as an obstacle. Also, a region of
radius r = slmax/2 (where slmax = 0.25 m) around such a grid-point is also marked as obstacle; such
a bounding cylinder approach provides a quick collision check at planning time. Collision check is
performed for the center of this cylinder with the obstacle region. Furthermore, the gradients of Mx

and My are determined and stored as Mxx and Myy .
The points with non-zero Mxx and Myy values represent transition regions, i.e., the regions where

there is a change in slope. While biped is allowed to traverse such areas, it cannot plant a step in this
region. Consider Fig. 11, P represents a transition from surface S1 to surface S2. The initial position of
the swing foot is denoted by Oi. The final positions O1 and O3 are acceptable as the support area of the
foot lies on a single surface, O2, however, must be discarded as surface contact cannot be established.
While the actual area that must be avoided to ensure a single surface landing for the swing foot also
depends on the biped orientation, in the pre-planning state, regions of length l f /2 around the transition
point are identified and marked separately in the map NM as transition (l f is the length of the foot).
At the time of step planning, a check is performed on the vertices of the landing foot to ensure that
they all lie on the same supporting surface. Similar check will also be performed while crossing over
ditches. A workspace environment comprising of a ramp and some obstacles is presented in Fig. 13.
This represents the height map that is accepted as input to the map development program. The map
is then discretized into individual cells,and classified as obstacle (black), free (white) or transition
(green). After performing the cell classification, the map is obtained as shown in Fig. 14.
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Fig. 12. Allowable foot transitions.

Fig. 13. Workspace for biped robot.
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Fig. 14. Cell classification.
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7.2. State transitions
The problem of step planning is presented as a graph search problem where the aim is to reach from
start state Sstart to an end state Sgoal . Two states are said to be connected directly if the transition from
state S1 to S2 can be accomplished using a single step. It is, therefore, desired to determine a sequence
of actions (Ak, k ∈ {1 . . . n}, where n is the total number of steps), which take the biped from a start
position to the goal position (or within an acceptable distance, ε). The state (S) of the biped for the
purpose of step planning is determined by the positions and orientations of the two feet at any instant.
The complete information regarding the biped can be encoded in a 12-D vector as follows:

S = [xl f , yl f , zl f , φl f , θl f , ψl f , xr f , yr f , zr f , φr f , θr f , ψr f ]

x and y represent the x and y coordinates of the foot, respectively, and z is the height from the ground,
which is available from the height map, z = M(x, y). φ, θ, ψ are the Euler angles defining the
orientation of the foot. In the current study, φ is taken to be zero in the free space, θ is determined
using the gradient map Mx, θ = tan−1(Mx(x, y)) and ψ represents the yaw angle of the foot, which
is associated with turning motion. Subscripts l f , r f correspond to the left and right foot, respectively.
The position Xstate of any state is defined as the average of the positions of the two feet. Xstate =
[ xl f +xr f

2 ,
yl f +yr f

2 ].
The transitions that can be accomplished from a given step in a single step are depicted in Fig. 12.

The initial state of the two feet is displayed using solid lines (red); allowable transitions are displayed
in dashed lines (blue). The state S f of the biped after a transition is dependent on the current state Sc,
the terrain T , the step length sl and turn angle �ψ . The transition from one state to the next occurs in
accordance with the kinematic model of the biped, the action A is the operator that takes the current
state (Sc), transition factors (T , sl and �ψ) as inputs and returns the final state:

S f = A(Sc, T , sl, �ψ ) (18)

Alternatively, it can be stated that the operator A accepts {s f , sl1, sl2, m, �ψ} as inputs and returns
the final state. The operator A has been described in 9. Every permutation of the five step parameters
represents a unique transition t :

S f = A(s f , sl1, sl2, m, �ψ ) (19)

In order to maintain the repeatability and symmetry of the biped gait, change of step-length was not
allowed during turning.

The allowable sl2 ∈ {0, 0.025, 0.05, 0.075, 0.1, 0.125} m and allowable turn angle �ψ ∈
{−15◦, −5◦, 0◦, 5◦, 15◦}.

7.3. Cost of transport
Since the objective of the planner is develop an energetically efficient locomotion scheme, it is
important to have an accurate estimate of cost of each step. While the exact cost for each action A can
only be computed using dynamic calculation, the computation time it takes to perform that calculation
severely limits their use in the planning process. Also, a pre-generation of all such costs is not possible
as the slope of the allowable terrain represents a continuous spectrum from −10◦ to 10◦. Besides, the
combinations of other transition factors are also far too many to be computed in advance. Therefore,
to develop an acceptable and accurate cost estimation system, a neural network was trained in a way
similar to Section 6. The inputs to the network were the transition factors {s f , sl1, sl2, m, �ψ} and
the output W was the energy consumption in Joules. A single hidden layer with 14 neurons was found
to work well for energy estimation purpose; the RMSE on test-data (the same as Section 6.3) was
0.03 J. One major advantage of a trained network NN 2 is that the need for heuristics to predict the
energy cost is eliminated and real-time estimates of step cost are provided with acceptable accuracy.
Therefore, the cost (Ci) of a transition ti can be estimated as follows:

Ci = NN 2(ti) (20)
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In order to guide the search in an A* search, the cost-to-go is defined using the current position and
the goal position. Let the positions of the current and goal states be Xcurrent and Xgoal , respectively. For
this study, the maximum allowable step length slmax is 0.25 m; each of sl10 and sl20 were, therefore,
set to slmax/2. The swing foot s f can be set to either 0 or 1 because there is no difference in energy
consumption for straight walk as the motion is symmetric. The gradient m0 is set to be m0 = (zgoal −
zcurrent )/|(Xgoal − Xcurrent )|; this is a very optimistic estimate of the cost-to-go and thus ensures
optimality in A* search;44 the turning angle �ψ0 is kept 0 to further ensure that the cost-to-go
remains an underestimate of the actual cost. Since, the distance (D) between the current position and
the goal position is D = |Xcurrent − Xgoal |; the minimum number of steps (n) required to reach the goal
is n = 2 ∗ D/slmax. Therefore, the ‘cost-to-go’(h(current, goal )) is estimated as h(current, goal ) =
n ∗ NN 2(1, sl10, sl20, m0, 0).

7.4. Balance considerations
At the time of planning, it needs to be ensured that the step is dynamically executable. In Section
6, a neural network was trained using pre-generated data set to generate trajectories in real time.
The same module is utilized in step planning; for every prospective step that lies in free space such
that sl1 ≥ 0.1 m or sl2 ≥ 0.1 m, a secondary balance check is performed to ensure that the step is
dynamically balanced. This check is only performed for longer step lengths as smaller steps are much
easier to execute and do not require such a check.

7.5. Planning with A* search
The A* planner takes in as input – Start State (Sstart ), a goal position (Sgoal ), height map (M),
navigation map(NM), gradient mapsMx,My, the operatorA, set of all allowable transitions (ti, i ∈
1, 2, . . . , n), trained ANNs (NN 1, NN 2) and a tolerance to the solution, ε = 2.5 cm. If a step
sequence is found, the planner returns an ordered list of transitions ti, i ∈ 1, 2, . . . , k that lead the
biped to the goal; failure is reported otherwise. The function PlanSteps (Algorithm 1) is presented;
after performing the A* search, the sequence of transitions can be obtained to generate the path and
execute the motion.

7.6. Bounded relaxation and optimality
The admissibility of the algorithm guarantees an optimal solution but it also means that a lot of nodes
have to be expanded. Often some relaxations are provided to speed up the algorithm albeit with a
compromise in optimality. Such relaxations can be bounded to guarantee that the solution would be
no more than (1 + λ) times the optima, where λ is the chosen bound. One such bounding technique
presented in the results is a weighted A* search,45 which uses the cost function:

f (n) = g(n) + (1 + λ)h(n)

The admissible as well as relaxed cases were used for step-planning. The output transitions
ti, i ∈ {1, 2 . . . k} were then fed to the trajectory generation system, which resulted in balanced
energy-efficient locomotion.

8. Simulations and Discussions

8.1. Case I: Gradient avoidance
The environment is depicted in Fig. 15. The green pole denotes the starting position, and the red pole
denotes the goal position. Initially, biped is oriented along the positive x-axis. A ramp is present in
between the start and goal, and the line directly connecting these two positions passes through the
ramp. For this environment, two step-planning approaches were compared. In the first approach, the
objective was to minimize the distance traveled by the biped, and in the second approach, the objective
was energy minimization. For energy minimization, A* search as well as weighted A* search was
performed.
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Algorithm 1: PlanSteps

input : Sstart , Sgoal , M, NM, Mx, My, A, t, NN 1,NN 2, ε

output: A sequence of transitions ti and parent states Si, i ∈ 1, 2...k where Sk = Sgoal

1 closedSet := { } ;
2 openSet := { Sstart } ;
3 transitions := { }, parent : = { } ;
4 gScore := map with default value of Infinity ;
5 gScore{Sstart } := 0;
6 fScore := map with default value of Infinity ;
7 fScore{Sstart } := h(start, goal );
8 while openSet in not emply do
9 current: = the node in openSet having the lowest fScore value ;

10 if |Xcurrent − Xgoal | < ε then
11 return transit ions
12 end
13 openSet.Remove(current);
14 closedSet.Add(current);
15 for i = 1 to n do
16 if Xneighbor ∈ obstacle OR TransitionCheck(Xneighbor) FAILS then
17 continue;
18 else if BalanceCheck(Xcurrent , Xneighbor )FAILS then
19 continue;
20 end
21 neighbor = A(ti) ;
22 // Ignore the neighbor which is already evaluated
23 if neighbor in ClosedSet then
24 continue
25 end
26 gScoretemp := gScore{Scurrent } + N (ti) ;
27 // Discover a new node
28 if neighbor not in openSet then
29 openSet.Add(neighbor)
30 end
31 // This is not a better path
32 if gScoretemp ≥ gScore{neighbor} then
33 continue
34 end
35 // transit factors stored
36 transitions{ Scurrent } = ti ;
37 parent{Sneighbour} = Scurrent ;
38 gScore{neighbour} = gScoretemp ;
39 fScore{neighbour} := gScore{neighbour} + h(neighbour, goal ) ;
40 end
41 return failure ;
42 end

• Distance minimization: The cost of each step (g = |Xnext − Xcurrent |) is the distance traveled by
the biped; similarly, the heuristic guiding the search is the distance between the current position
and the goal position (h = |Xgoal − Xcurrent |). The progression of graph search is presented in Fig.
16(a).
The pink pixel denotes the starting position, the yellow pixel is the goal position, the green area
represents the transition region, the black area defines the obstacles, red pixels denote the open
nodes and blue pixels show the closed nodes.
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Fig. 15. Case I: Biped environment.

• Energy minimization: Algorithm 1 has been implemented for energy minimization. Two cases of
bounded optimality have been presented. λ values of 0 and 0.15 were chosen for comparison. Figure
16(b) and (c) shows the graph progression for these cases and analysis is presented thereafter.

Analysis of graph search progression

• Distance minimiztion: In Fig. 16(a), the node expansion is very sparse; it can be attributed to the
fact that in the case of distance minimization, the best possible path is a straight line connecting
the start and goal positions as no obstacle is present in between; the graph search returns as straight
a line as allowable due to the kinematic constraints of the biped.

• Energy minimization, λ = 0.00: A very dense exploration in Fig. 16(b) is due to the fact that the
search heuristic is an underestimate of the true minima cost-to-go; the penalty for a guaranteed
optima is the computation time. The search also explores the two options (over the ramp and on
the side of the ramp) and selects the most efficient path.

• Energy minimization, λ = 0.15: In Fig. 16(c), graph exploration is sparse; this is because the search
heuristic is a slight overestimate of the actual cost to go. The search progresses rapidly toward the
goal position while successfully avoiding the gradient.

The results of the step plans are available in Fig. 17(a) and (b). Black steps refer to plan generated
by distance minimization, yellow represents the energy minimization with λ = 0.0 and red color
represents energy minimization with λ = 0.15. Performances of the resulting step plans are noted in
Table V. ENN 2 represents the energy as computed by NN 2 directly, whereas NN 1 is the energy as
obtained by the dynamics calculations on the results of NN 2.

The step plan from distance minimization yielded global minima subject to the discretization and
kinematic constraints of the biped. The path, however, traversed some slope prior to reaching the
goal; to traverse changing slope, it also required a large number of smaller steps. Planning with the
objective of energy minimization was able to avoid the ramp albeit with a slightly longer path. It
should, however, be noted that the energy consumption for the two different λ values is comparable.

Optimality and computation. Had the heuristic function guiding the search been able to accurately
estimate the cost-to-go, the solution provided by a weighted A* search would be at worst λ times
more expensive than the optimal solution. In the presented approach, however, the heuristic guiding
the search is, in fact, a conservative underestimate of the cost-to-go; this means that the resulting
solution with weighted A* search would in fact be better than the mathematical guarantee. The extent
to which the solution provided by a weighted search is closer to the true optima will vary from problem
to problem. In general, the more complex the environment is, the closer is the solution of weighted
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Table V. Case I: Comparison of step-planning techniques.

Minimization Weight(1 + λ) ENN 2 (J) ENN 1 (J) Movement (m) Color

Distance 1.0 40.936 42.85 3.45 Black
Energy 1.15 34.244 35.43 3.59 Red
Energy 1.0 33.397 34.02 3.57 Yellow
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(c) Energy Min. (λ = 0.15)

Fig. 16. Case I: Graph search progression (a) Distance min. λ = 0.0. (b) Energy min. (λ = 0.00). (c) Energy
min. (λ = 0.15).

search to the true optima. In the presented case, the solution provided by λ = 0.15 is very close to
the true optima, i.e., λ = 0 and it consumed only a fraction of the time for computation. Henceforth,
energy minimization will only be presented with λ = 0.15.

8.2. Case II: navigating uneven terrain
The environment is depicted in Fig. 18. The green pole denotes the starting position, and the red
pole denotes the goal position. Initially, biped was oriented along the positive x-axis. Start and goal
positions are separated by an uneven surface. Similar to the previously discussed case, two step-
planning approaches were compared – distance minimization and energy minimization. For energy
minimization, weighted A* search was performed with λ = 0.15.

Step plans obtained as a result of the graph searches are depicted in Fig. 19 and Table VI compares
the performance of the two approaches.

As expected, the approach of energy minimization resulted in a plan that consumes less energy
than distance minimization approach.
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Fig. 17. Case I: Foot-step plans (a) 3-dimensional view. (b) Top view.

Fig. 18. Case II: Biped environment.

Fig. 19. Case II: Foot-step plans.

8.3. Case III: Ditch crossing
The environment is presented in Fig. 20; the white region represents ditch locations. While developing
the navigation map, cells of the region around this obstacle are marked as transition; whenever the
foot is in this region, its placement is checked to ensure that it lies entirely on the free surface and
not on the ditch. To ensure placement, in addition to the four vertices, midpoints of the sides of foot
are also checked to lie on the supporting surface. The developed footstep plan with the objective of
energy minimization and λ = 0.15 is presented in Fig. 21.
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Table VI. Case II: Comparison of step-planning techniques.

Minimization Weight (1 + λ) ENN 2 Movement (m) Step color

Distance 1.0 31.33 2.65 Black
Energy 1.15 29.94 2.73 Red

Fig. 20. Case III: Biped environment.

Fig. 21. Case III: Foot-step plans.

9. Conclusion and Future Work
In this study, energy-efficient locomotion scheme was developed for 12 DoF biped robot for walk
on uneven terrain. Kinematic and dynamic modeling of the biped was performed to minimize the
per-step energy consumption of the robot for a variety of step parameters like step length, terrain
slope and turn angle while considering balance and kinematic constraints. A database containing
the gait variables and the energy consumption for various step parameters was utilized to train two
neural networks – one for real-time (5 ms) trajectory generation and another for accurate estimation
of energy consumption. The proposed planning algorithm was implemented in MATLAB and was
able to generate a sequence of 30–50 steps on an uneven surface in a few minutes. Finally, the
trajectory generation module was integrated with the step planner to execute the biped motion. This
approach guarantees step plan, which can be executed in a balanced manner, subject to the level
of discretization in the A* planner. The programs associated with the work are available on github
(https://github.com/ggupta9777/Energator).

Main contributions of this work can be summarized as follows:

• Dynamic considerations in step planning: The proposed scheme considers biped robot dynamics in
step planning, which very few researchers have taken into account. This approach guarantees step
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plan, which can be executed in a balanced manner, if one exists, subject to the level of discretization
in the A* planner.

• State transition model: The state of the biped was defined in terms of the positions and orientations
of the two feet and mid-hip. Given an initial state, the transition model determined the final state
using simple inputs such as step length, terrain map and turning angle. Trajectory generation
between any two successive states was accomplished using a trained neural network in real time.

• Energy efficiency in locomotion: Most researchers have developed step plans without considering
energy consumption; a few researchers who have paid attention to energetics have used overly
simplistic models without explicit dynamic considerations. To the best of our knowledge, this is
the first work that relies on accurate system model for energy estimation during step planning as
well as trajectory generation.

With the proposed approach, step planning as well as trajectory generation was accomplished in
diverse terrains. The framework integrated several aspects of biped locomotion to generate energy-
efficient step plan and trajectory generation module in 3-D environment while considering system
kinematics, dynamics and balance. A major advantage of the proposed scheme is that the need for
approximate search heuristics in step planning is eliminated; also, the balance check and trajectory
generation module ensure that the obtained step plan is executable. Last, the energy estimates are
obtained using the dynamic model of the biped; this assures the energy efficiency in locomotion.
Most researchers, thus far, have largely focussed on either step planning or gait generation, largely
on planar environments. Some major challenges still need to be tackled; currently, step planning
was accomplished in time anywhere between a few seconds to minutes; it was observed to increase
drastically in congested areas and over long-range distances. To overcome that, the possibility of a
tiered planning strategy needs to be explored. This could involve having a roadmap based approach at
a higher level for course planning and a lower level A* search. Another exciting pursuit would be to
develop a framework that accepts an adaptive set of step transitions and not just pre-defined primitives.
The finite set of primitives puts an upper limit to the resolution of the search, minor adjustments in
the step lengths and(or) turning angles can achieve superior performance and optimization.
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Appendix A
The methodology behind the determination of final state for a given initial state using simple step
parameters like step-length (sl) and turn angle (α) is presented here. The cases with α = 0 and α �= 0
will be discussed separately.

A.1. Transition without turning (α = 0)
Given an initial state (Si) of the biped in any general configuration in the environment, if the turning
angle is 0, the final state (S f ) is only a function of step length sl . Instead of giving step-length sl as
input, the desired distance between the two feet along the direction of movement sl2 in the final state
is provided as input (Fig. 22(a)). Due to kinematic and balance constraints, the upper bound of sl1
and sl2 is 0.125 m. In Fig. 22(b), biped moves from slope θ to slope 0 (or any other slope). A tentative
position P′

f is evaluated along the plane of stance foot and its projection on the new plane (in this case,
the plane with slope 0) is taken as the landing position. The foot takes the orientation of the surface
on which it lands.

A.2. Transition with turning (α �= 0)
Turning motion is planned to ensure that the gait remains repeatable, i.e., after turning by a certain
angle α, the biped should be in the same configuration in its local frame as it was prior to the turning
operation. Furthermore, the turning procedure is designed in such a way that after 2π/α rotations, the
biped will return to the same state. Figure 23(b) shows the view of the biped normal to the supporting
surface. The initial state is defined by the coordinate frames attached at Pi and Q. It is assumed that
the two reference points lie on two concentric circles with radii ro and ri. The initial distance between
the two feet along the direction of the movement is sl1. At the time of turning, it is constrained that the
total movement by the swing be 2sl1, i.e., |P1P2| = 2sl1. In other words, no change in step length is
allowed at the time of turning. Repeated motions of step length 2sl1 inscribe a regular polygon inside
the outer circle. This is utilized to give the radius of the circle; a mathematical expression is provided
by the following relation:

ro = sl1
sin(α/2)

(A1)

Furthermore, the radius of the inner circle (ri) is defined to be

r = ro − wh (A2)

where wh is the width of the pelvis. Once the radii of the two concentric circles are known, the current
position of the feet and information regarding sl1 and α suffice in obtaining the center of the circle
and the next step position. Figure 23(a) shows the generated motion for a turning angle α = 30◦ and
sl1 = 0.075 m. The turning was designed carefully using ideas of planar geometry, and this restricts
the use of turning while transitioning from one slope to other.
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Fig. 22. Biped transitions over slopes. (a) Biped transition without turning. (b) Biped transition: Slope change.
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Fig. 23. Turning motion of biped. (a) Normal view of biped turning. (b) Turning methodology.

https://doi.org/10.1017/S0263574718000188 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000188

