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The present article reports on a formal derivation of a macroscopic model for
unsteady one-phase incompressible flow in rigid and periodic porous media using
an upscaling technique. The derivation is carried out in the time domain in the
general situation where inertia may have a significant impact. The resulting model is
non-local in time and involves two effective coefficients in the macroscopic filtration
law, namely a dynamic apparent permeability tensor, H t, and a vector, α, accounting
for the time-decaying influence of the flow initial condition. This model generalizes
previous non-local macroscale models restricted to creeping flow conditions. Ancillary
closure problems are provided, which allow the effective coefficients to be computed.
Symmetry and positiveness analyses of H t are carried out, showing that this tensor
is symmetric only in the creeping regime. The effective coefficients are functions of
time, geometry, macroscopic forcings and the initial flow condition. This is illustrated
through numerical solutions of the closure problems. Predictions are made on a simple
periodic structure for a wide range of Reynolds numbers smaller than the critical value
characterizing the first Hopf bifurcation. Finally, the performance of the macroscopic
model for a variety of macroscopic forcings and initial conditions is examined in
several case studies. Validation through comparisons with direct numerical simulations
is performed. It is shown that the purely heuristic classical model, widely used for
unsteady flow, consisting of a Darcy-like model complemented with an accumulation
term on the filtration velocity, is inappropriate.
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1. Introduction

Unsteady flow in porous media has been the subject of active research over at least
the past 60 years. One of the main interests has been the propagation of acoustic
waves in porous structures, which has applications in seismic waves, enhanced oil
recovery, ocean bottom interactions and coastal waves, superfluid flow in porous

† Email address for correspondence: didier.lasseux@u-bordeaux.fr
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media, among many others, in addition to the fundamental nature of deriving
appropriate physical models. This was initiated by the pioneering works of Biot
(1956a,b) to analyse effects such as wave speed, attenuation, viscous dissipation and
anisotropy. An overview of the literature on the subject may lead to the classification
of studies into three main groups: studies about elastic media without any fluid
external forcing; studies of time-dependent flow in rigid porous media; and studies
of fluid flow through elastic media. In the present work, the interest is focused
upon incompressible and unsteady single-phase flow through rigid homogeneous
periodic porous media. Existing reported works may be conveniently summarized
by distinguishing those carried out in the time domain from those developed in the
frequency domain. In the following paragraphs, a non-exhaustive literature review of
both branches is presented.

The description of unsteady incompressible one-phase flow in porous media has
been widely reliant on extensions to the steady version of Darcy’s law, or, when
inertia is taken into account, the Darcy–Forchheimer corrected form. To the best of
our knowledge, one of the earliest extensions to account for unsteady effects was
put forward by Polubarinova-Kochina (1962). In this work, an acceleration term on
the filtration velocity was kept in the macroscopic momentum equation as obtained
from a direct analogy with the Stokes (or Navier–Stokes) equation in which the point
velocity is replaced by the average velocity and the external force by the average
friction on the solid surface of the porous matrix, i.e. the Darcy term. Despite its lack
of rigorous formal derivation, this type of approach has been considered as a valid
one and became classical over the past half-century (Rajagopal 2007; Bories et al.
2008; Nield & Bejan 2013). This model will be referred to as the ‘heuristic model’.
It has been widely used, for instance, in numerical simulations (Dogru, Alexander &
Panton 1978), for stability analysis of fluid flow between an impermeable plate and a
porous wall (Hill & Straughan 2008, 2009) or for turbulence in a similar configuration
(Breugem, Boersma & Uittenbogaard 2006) or in a confined porous medium (Jin &
Kuznetsov 2017), as well as for three-dimensional stability analysis of flow between
two parallel porous walls (Tilton & Cortelezzi 2008), for the analysis of forced or
natural convection in porous media (Kuznetsov & Nield 2006), and for the transition
to chaos in natural convection (Vadasz 1999), among many other applications.

A few formal analyses have been dedicated to tentatively derive the heuristic
model and some of them may have been inspired by the development of the steady
macroscopic model of one-phase flow in porous media including inertia by Whitaker
(1996). In fact, in this reference, the acceleration term was kept in a large part of the
development although it was clearly stated, at the final stage, that the steady ancillary
closure problem used to derive the closed average model was only compatible
with a steady version of this model (see § 2.8 in Whitaker (1996)). However, the
unsteady version of this model was used by Tilton & Cortelezzi (2008) with a
reference to Whitaker (1996). Two other works (Teng & Zhao 2000; Breugem et al.
2006) proposed a development yielding the unsteady form of the macroscopic model
developed by Whitaker (1996, equation (2.26)) that, indeed, corresponds to the
heuristic model. However, in these works, the closure procedure is not considered
and the time-scale constraint is not addressed. Nevertheless, in a recent paper, Zhu
et al. (2014) further considered this version of the unsteady model and showed, from
comparison with direct numerical simulation (DNS), that it was inappropriate. For
the sake of keeping the same form of the unsteady model, the acceleration term
was modified by conveniently introducing a time constant obtained by averaging the
energy equation, an idea that was employed by Laushey & Popat (1968) to interpret
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results obtained on model unconfined aquifers. Comparisons with DNS results showed
agreement. However, this time constant requires knowledge of the pore-scale flow
field featuring a non-closed overall model that cannot be used as a predictive one
even under creeping flow conditions.

The approach making use of the heuristic model has also been very popular in
wave dampening models in coastal engineering (Hall, Smith & Turcke 1995; Corvaro
et al. 2010). In this field, however, the lack of accuracy of the approach, compared to
experimental data, led numerous authors to modify the heuristic model by affecting
a pre-multiplying factor, usually called ‘inertial coefficient’, to the accumulation term.
Without any formal derivation, this was justified by an analogous concept of an
added virtual mass force used for modelling flow around an isolated obstacle. This
concept was first introduced by Sollitt & Cross (1972) and many different forms of the
inertial coefficient have been proposed since then (see the short review in Burcharth &
Andersen (1995)). A formal derivation of this modified version of the heuristic model
was attempted (Abderahmane et al. 2002) but the development suffers again, at the
final stage, from a formal identification of the macroscopic model to be obtained with
the microscopic model. The misleading use of the heuristic model was pointed out by
Auriault (1999), indicating that the macroscopic momentum equation should contain
a memory effect expressed by a convolution product between the filtration velocity
and a memory function. The proof of this form was anticipated by the same author
(Auriault 1980), and almost simultaneously by Lions (1981). It was later reconsidered
by Allaire (1992), Mikelić (1994) and, more recently, in Mei & Vernescu (2010)
(the term ‘permeability’ attributed to the memory function in the latter references is
inadequate, as it is dimensionally incorrect). However, as will be commented upon
in the following sections, the reported developments need to be completed, either
by taking into account the initial condition or by explicitly providing the closure
problems yielding the effective coefficients, in particular in the case where inertia
is significant. Upscaling the Navier–Stokes (or Euler) equations was also addressed
using the homogenization technique (Sanchez-Palencia 1980; Masmoudi 1998, 2002;
Lions & Masmoudi 2005). However, as will be further commented upon in § 3.2, no
complete unsteady macroscopic model was reported with this technique. Some other
derivations were reported in the literature, mainly developed in the Fourier domain.

Regarding the literature about unsteady flow modelling in porous media in the
frequency domain, it is worth mentioning that one serious drawback of Biot’s early
theory lies in the lack of providing numerical predictions of the effective-medium
coefficients involved in the macroscale model. This issue was addressed by Auriault,
Borne & Chambon (1985), who used the homogenization technique to derive a
Darcy-law-type model to describe unsteady creeping flow in rigid and deformable
porous media, assuming the fluid to be at rest in the porous matrix as the initial
condition. Predictions of the model were validated with experimental results. This
study is a continuation of previous works by Lévy (1979) and Auriault (1980), where
the homogenization method was used to study flow through elastic porous media. In
the work by Lévy, the resulting expression is also a Darcy-law-type model in the
frequency domain, while the work by Auriault is an extension to include inertial
effects and multiphase flow. This upscaling approach was also used by Sheng &
Zhou (1988) (see also Zhou & Sheng 1989) to predict the dynamic permeability
as a function of frequency for a variety of microstructures in the creeping flow
regime. These authors proposed to scale the predicted dynamic permeability, κ(ω),
by its static value, κ0, in order to produce a universal curve independent of the
microstructure when plotted against a scaled frequency (ωc) that is particular to the
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microscale geometry and flow properties. In this way, these authors proposed the
empirical relationship

κ(ω)

κ0
= f

(
ω

ωc

)
, (1.1)

with f being a so-called universal structure function independent of the microstructure.
Later on, Charlaix, Kushnick & Stokes (1988) reported experimental measurements of
the dynamic permeability on capillary tubes and model porous media made of fused
glass beads and crushed glass of different sizes for conditions in which the flow was
in the transition between the creeping and inertial regimes. These authors found that
their experimental measurements were in agreement with the relationship proposed
by Sheng & Zhou (1988). However, their experiments were performed on samples
featuring a rather narrow range of topology varieties. A little later, Johnson (1989)
proposed an analytical expression for f , which is given in terms not only of ωc, but
also of a parameter M= 8ατκ0/εΛ

2, with ατ , ε and Λ being the tortuosity factor, the
porosity and a characteristic length that was taken to be twice the pore volume to
surface ratio (Johnson, Koplik & Dashen 1987), respectively.

Advances in numerical capabilities made possible predictions of the dynamics of
the permeability in more complex geometries than those used before. In this regard,
Chapman & Higdon (1992) solved the unsteady version of the Stokes problem in
several three-dimensional periodic unit cells. The resulting average velocity was
used in the unsteady version of Darcy’s law in the frequency domain to predict
the dynamic permeability. In order to emphasize porosity and frequency effects, the
permeability dependence upon frequency was not represented in the universal curve
suggested above. In the same year, Smeulders, Eggels & Dongen (1992) reported
numerical simulations and experimental measurements that corroborated the universal
relationship proposed by Sheng & Zhou (1988) when more parameters are considered
in the structure function. In addition, these authors rigorously derived the analytical
relationship proposed by Johnson et al. (1987) using the homogenization technique.
Departures from the relationship given in (1.1) were reported by Achdou & Avellaneda
(1992) for microgeometries consisting of corrugated tubes. These authors observed
a slower convergence of the dynamic permeability towards its steady-state value
than that predicted by the empirical relationship. This issue was later addressed by
Cortis et al. (2003), who used DNS to show that the predictions from the relationship
in (1.1) are justified for microchannels with corrugated, and even wedge-shaped, walls.
In the present work, the issue of the universality of the above-mentioned empirical
relation will not be further discussed.

The purpose of this article is to carry out a careful derivation of the macroscopic
unsteady model for one-phase flow in rigid and periodic porous media, including
inertial effects and taking into account the influence of the initial flow condition.
This is achieved by upscaling the unsteady solution of the initial boundary value
problem operating at the pore scale using a short-cut version of the volume averaging
technique, which has the nice feature of leading to a closure scheme for the
prediction of the corresponding effective-medium coefficients. The developments
detailed hereafter are organized as follows. After recalling the pore-scale model in
§ 2, the upscaling procedure is detailed in § 3. The development is performed in the
time domain, yielding the unsteady macroscopic model which involves the time rate
of change of the convolution product between the dynamic apparent permeability
tensor, H t, and the macroscopic pressure gradient, as well as an effective vectorial
term, α, which accounts for the effect of the initial condition. The two effective
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FIGURE 1. (Colour online) (a) Sketch of a porous medium including a sample of the
averaging volume and the characteristic length scales. Here VM denotes the entire domain
composed of the homogeneous part (VMh) and the region near the boundary (I(∂VM)), i.e.
VM = VMh ∪ I(∂VM). (b) Position vectors associated with the averaging volume.

coefficients H t and α can be computed from the solution of two time-dependent
closure problems that are explicitly provided. This general model encompasses the
special case of creeping flow. Symmetry and positiveness properties of the dynamic
apparent permeability tensor are investigated. In addition, illustrative examples of the
dynamics of the effective coefficients are provided. Then, § 4 is dedicated to results
obtained for a model periodic porous structure involving four stiff case studies, which
serve as tests of the performance of the upscaled and heuristic models with respect
to DNS. Concluding remarks are presented in § 5.

2. Pore-scale model
The development starts with the classical mass and momentum Navier–Stokes

equations describing flow of a single Newtonian and incompressible fluid phase β
that saturates the void space of a porous medium whose skeleton is made of a
non-deformable solid phase σ such as the one sketched in figure 1(a). At any point
in the pore space occupied by the β-phase, Vβ,M, and at any instant, these equations
are given by

∇ · vβM = 0, in Vβ,M, t> 0, (2.1a)

ρ

(
∂vβM

∂t
+ vβM · ∇vβM

)
=−∇pβM + ρb+µ∇2vβM, in Vβ,M, t> 0, (2.1b)

where pβM and vβM are the fluid pressure and velocity, respectively; t denotes time,
ρb is the body force per unit volume, b being space-independent (but eventually
time-varying), while ρ and µ represent the density and dynamic viscosity of the
fluid, respectively, which are considered constants. Furthermore, the no-slip boundary
condition is enforced at the fixed solid–fluid interface, Aβσ,M,

vβM = 0, at Aβσ,M, t > 0. (2.1c)
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In addition, the velocity or the pressure at the macroscopic boundaries, Aβ,M, is
assumed to be known and can be expressed as

vβM = vin or pβM = pin, at Aβ,M, t> 0. (2.1d,e)

Finally, the corresponding initial condition is given by

vβM = v0, when t= 0, in Vβ,M. (2.1f )

It is worth mentioning that, in general, measurements of vin (or pin) and v0 are not
easily obtained but, nonetheless, for the development that follows, it is assumed that
this information is available. However, as will be shown in the next paragraphs, not
all of this information is actually required in the final upscaled model.

3. Averaging

On the basis of the above-stated initial boundary value problem, the purpose of the
analysis is to derive a macroscopic unsteady flow model including inertia. To this
end, an upscaling procedure must be applied. Among techniques like homogenization
(Auriault, Boutin & Geindreau 2009) or the thermodynamically constrained averaging
technique (Gray & Miller 2014) and many others (Cushman, Bennethum & Hu 2002),
the method of volume averaging (Whitaker 1999) is retained in this work. In order
to spatially smooth the pore-scale heterogeneities, it is necessary to introduce an
averaging operator, which can be applied to the field of any piecewise continuous
function, ψ , defined everywhere in the β-phase as

〈ψ〉|x,t =
1
V

∫
Vβ (x)

ψ(r, t) dV, (3.1a)

where the position vector x locates the centroid of the averaging domain, whereas y
and r= y + x locate points within the β-phase with respect to x and a fixed coordinate
system, respectively, as indicated in figure 1(b). In the above expression, V denotes the
averaging volume of measure V and radius r0 (see figure 1a). The averaging operator
defined in (3.1a) is usually denoted as the superficial averaging operator (Whitaker
1999), a nomenclature that is employed throughout the article. In addition, the intrinsic
averaging operator is defined as

〈ψ〉β |x,t =
1

Vβ(x)

∫
Vβ (x)

ψ(r, t) dV, (3.1b)

where Vβ(x) represents the volume of the β-phase within V . The superficial and
intrinsic averaging operators are related by the Dupuit–Forchheimer relationship

〈ψ〉|x,t = ε(x)〈ψ〉β |x,t, (3.2)

with ε(x)≡ Vβ(x)/V denoting the porosity, which is a constant due to the rigid and
homogeneous character of the medium. To facilitate the notation, subscripts x and t
will be omitted in the remainder of the article.
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While carrying out the analysis, the general transport theorem (Truesdell & Toupin
1960; Slattery 1999) and the spatial averaging theorem (Howes & Whitaker 1985) will
be employed. They are respectively given by〈

∂ψ

∂t

〉
=
∂〈ψ〉

∂t
−

1
V

∫
Aβσ

n ·wψ dA, (3.3a)

〈∇ψ〉 = ∇〈ψ〉 +
1
V

∫
Aβσ

nψ dA. (3.3b)

In the equations above, n is the unit normal vector at Aβσ directed from the β-
phase towards the σ -phase as indicated in figure 1(a) and w denotes the displacement
velocity of Aβσ . Because the porous medium is assumed to be rigid, w = 0 and,
together with the fact that the structure is homogeneous, the above theorems may be
rewritten in terms of intrinsic averages as follows:〈

∂ψ

∂t

〉β
=
∂〈ψ〉β

∂t
, (3.4a)

〈∇ψ〉β = ∇〈ψ〉β +
1

Vβ

∫
Aβσ

nψ dA. (3.4b)

As for any upscaling technique, a scale hierarchy is assumed as a prerequisite,
namely a separation of characteristic length scales that can be stated as

`β� r0� L, (3.5)

where `β represents the characteristic pore length scale and L the size of the
macroscopic domain.

In order to derive a model that is expressed only in terms of macroscopic quantities,
it is convenient to introduce the following spatial decomposition (Gray 1975)

ψ = 〈ψ〉β + ψ̃, ψ = v, p. (3.6)

This decomposition is intended to operate a spatial length-scale decoupling as the
deviation field, ψ̃ , is expected to vary at the scale `β while the intrinsic average,
〈ψ〉β , experiences significant variations at the scale L. This contrast can be clearly
established at steady state and, for the dynamic flow process under consideration, it
is assumed that this condition is satisfied at any time. As a consequence of the scale
hierarchy expressed in (3.5), 〈ψ〉β can be treated as a constant at all times within the
averaging volume (Whitaker 1999), with the consequence that

〈ψ̃〉β ' 0. (3.7)

The development of the macroscopic model is now carried out considering that
the porous medium is periodic, which represents a classical hypothesis in upscaling
methods. Under these circumstances, it is sufficient to consider the above-stated
initial boundary value problem (2.1) over a periodic unit cell that will correspond
to the averaging volume V . Here, special attention should be paid to the fact that,
for unsteady flow, this periodic unit cell may not necessarily coincide with the
geometrical one depicted in figure 2. This was highlighted in the study of the first
Hopf bifurcation in model periodic structures in the work by Agnaou, Lasseux &
Ahmadi (2016).
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ı-phase

L

ß -phase

Unit cell

¶

FIGURE 2. (Colour online) Two-dimensional sketch of a periodic structure and a
geometrical periodic unit cell of side length `.

3.1. Formal solution in a unit cell
With the above at our disposal, the analysis can be directed to the homogeneous
part VMh of the entire domain, i.e. excluding the region I(∂VM) near the macroscopic
boundary of the system. A development similar to that reported by Whitaker (1996)
may be followed to reach a macroscopic model involving only the average velocity
and pressure. However, following the idea used in Barrere, Gipouloux & Whitaker
(1992, § 2), a shorter alternative procedure, which basically consists of expressing the
formal solution of the pore-scale initial boundary value problem over a periodic unit
cell in terms of the driving forces, followed by an averaging step, may be adopted to
considerably simplify the development. The use of periodicity is more a convenience
than a necessity, since the same procedure can be adopted without this restriction.
This approach is consistent with the assumption of separation of length scales in the
homogeneous region of the porous medium. With this in mind, the pore-scale problem
in (2.1) is rewritten in a periodic unit cell in terms of the dependent variables v and
p. Unlike v, p is not a periodic field, but the decomposition provided in (3.6) should
be used so that p̃ is periodic, yielding

∇ · v = 0, in Vβ, t> 0, (3.8a)

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p̃+µ∇2v + (−∇〈p〉β + ρb)︸ ︷︷ ︸

source

, in Vβ, t> 0, (3.8b)

v = 0, at Aβσ , t > 0, (3.8c)
v = v0︸︷︷︸

source

, in Vβ, when t= 0, (3.8d)

〈p̃〉β = 0, t> 0, (3.8e)
v(r+ li)= v(r), p̃(r+ li)= p̃(r), t> 0, i= 1, 2, 3, (3.8f )

where Vβ and Aβσ , respectively, designate the region occupied by the β-phase and the
solid–fluid interface within the unit cell of periodic lattice vectors li. Note that (3.8e)
and (3.8f ) replace the external boundary condition in (2.1d,e).

The nonlinear character of the above problem makes a formal solution very difficult
to obtain and, for this reason, a linearization approach is of interest. Indeed, a solution
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at time t can be sought assuming that the convective velocity exists and is available
at a time t −1t, for any small enough value of 1t. Under these circumstances, the
momentum equation (3.8b) can be approximated using a zeroth-order Taylor expansion
in time, leading to the approximation v|t ≈ v|t−1t ≡ v∆. In this way, equation (3.8b)
takes the form

ρ

(
∂v

∂t
+ v∆ · ∇v

)
=−∇p̃+µ∇2v + (−∇〈p〉β + ρb)︸ ︷︷ ︸

source

, in Vβ, t> 0. (3.9)

This type of approximation is a consistent one and is typical in a numerical approach
consisting of a linearization of the convective term that makes use of an explicit form
of the convective velocity. As will be shown later, the information about the time step
and the rest of the terms of the Taylor expansion in time are ultimately not required
in the resulting closure problems. With the momentum balance in the form of (3.9),
the initial and boundary value problem is a linear one for which a formal solution
can be obtained using an integral equation formulation in terms of Green’s functions
as shown by Wood & Valdés-Parada (2013). This solution can be written as

v =
1
µ

(
∂D

∂t
∗· (−∇〈p〉β + ρb)+m0

)
, in Vβ, t> 0, (3.10a)

p̃=
∂d
∂t
∗· (−∇〈p〉β + ρb)+ n0, in Vβ, t> 0. (3.10b)

In these two equations, as in the remainder of the article, the notation ∗· is adopted
to denote the combined convolution and dot products. For two time-dependent tensors
of any order, κ1 and κ2, this product is given by

κ1 ∗· κ2 =

∫ t0=t

t0=0
κ1|t−t0 · κ2|t0 dt0 =

∫ t0=t

t0=0
κ1|t0 · κ2|t−t0 dt0. (3.11)

While writing the representations in (3.10), it is meant that ∂D/∂t (respectively ∂d/∂t)
is the closure variable that maps (−∇〈p〉β + ρb) onto v (respectively p̃) while m0
(respectively n0) is the closure variable that maps v0 onto v (respectively p̃). At this
point, it is worth mentioning that the initial conditions for D and d yield unique
solutions that are driven by the sources, as will be provided later in the derivations.

It must be mentioned that the formal solution given in (3.10) does not correspond,
except when v0 = 0, to the one reported by Lions (1981) (see (5.20) therein), under
creeping flow conditions, and by Mikelić (1994) (see equation (P) therein for the
creeping regime solution and the ‘Proof of Theorem 1.4’ in § 2.4 for the inertial case
solution in the Laplace domain). The difference lies in the fact that these authors
considered the initial condition to be a function only of x as proposed in (5.10) of
chap. 2 in Lions (1981). Note that this assumption is physically questionable and it
is not retained in the present work just as it was not considered by Allaire (1992) for
the study of unsteady creeping flow in porous media.

The macroscopic mass and momentum conservation equations can now be obtained
by applying the superficial averaging operator on (3.8a) and (3.10a), respectively. In
order to obtain the macroscale mass conservation equation, it is also necessary to
make use of the averaging theorem, together with the no-slip boundary condition,
leading to

∇ · 〈v〉 = 0, in VMh, t> 0. (3.12a)
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In addition, the macroscale filtration velocity equation is given by

〈v〉 =−
1
µ

(
∂〈D〉

∂t
∗· (∇〈p〉β − ρb)− 〈m0〉

)
, in VMh, t> 0. (3.12b)

Here, the assumption that ∇〈p〉β can be considered as a constant within V was taken
into account. The effective coefficients 〈D〉 and 〈m0〉 are determined by solving the
closure problems detailed in the following section. Comments about the physics of
the upscaled model and its coefficients are also provided below, together with some
remarks on the existing related literature.

3.2. Closure problems and macroscopic model
Substitution of the formal solution given in (3.10) into the initial boundary value
problem in (3.8) and separating the contributions from the two sources, while
maintaining the convolution product with the volume source, leads to the following
equations for D and d:∫ t0=t

t0=0

(
∇ ·

∂D

∂t

∣∣∣∣
t−t0

)
· (−∇〈p〉β + ρb)t0 dt0 = 0, in Vβ, t> 0, (3.13a)

∫ t0=t

t0=0

[
ρ

µ

(
∂2D

∂t2

∣∣∣∣
t−t0

+ v∆ ·
∂∇D

∂t

∣∣∣∣
t−t0

)
+
∂∇d
∂t

∣∣∣∣
t−t0

−
∂∇2D

∂t

∣∣∣∣
t−t0

− I
dH
dt

∣∣∣∣
t−t0

]
· (−∇〈p〉β + ρb)t0 dt0 = 0, in Vβ, t > 0, (3.13b)∫ t0=t

t0=0

∂D

∂t

∣∣∣∣
t−t0

· (−∇〈p〉β + ρb)t0 dt0 = 0, at Aβσ , t > 0, (3.13c)

where H represents the Heaviside function. These equations are completed with
periodic boundary conditions for D and d and 〈∂d/∂t〉β = 0. Note that, at this point,
the initial condition for the closure variables has not yet been defined.

In order to satisfy the above equations, valid for any macroscopic forcing
(−∇〈p〉β + ρb) and at any time, D and d must satisfy the following equations,
in general (this may be inferred from considering the particular case in which the
macroscopic forcing is a constant):

∇ ·
∂D

∂t
= 0, in Vβ, t> 0, (3.14a)

ρ

µ

(
∂2D

∂t2

∣∣∣∣
τ

+ v ·
∂∇D

∂t

∣∣∣∣
τ

)
+
∂∇d
∂t

∣∣∣∣
τ

−
∂∇2D

∂t

∣∣∣∣
τ

− I
dH
dt

∣∣∣∣
τ

= 0,

in Vβ, 0 6 τ 6 t, t> 0, (3.14b)
∂D

∂t
= 0, at Aβσ , t> 0, (3.14c)

with τ denoting the elapsed time involved in the convolution product. Note
that (3.14b) is the result of taking the limit 1t → 0, so that v∆ → v. The value
of the time step ∆ and the information from the rest of the terms in the Taylor
expansion in time is hence no longer required.

A subsequent time integration step of (3.14) from τ = 0 to τ = t yields

[∇ · D]τ=t
τ=0 = 0, in Vβ, t> 0, (3.15a)
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ρ

µ

(
∂D

∂t

∣∣∣∣
τ

+ v · ∇D|τ

)
+∇d|τ −∇2D|τ − IH|τ

]τ=t

τ=0

= 0, in Vβ, t> 0, (3.15b)

[D]τ=t
τ=0 = 0, at Aβσ , t> 0. (3.15c)

At this point, initial conditions for D and d are chosen to be zero.
As a consequence, equations (3.15) give rise to the following initial and boundary

value problem for the closure variables D and d:

Problem I

∇ · D = 0, in Vβ, t> 0, (3.16a)
ρ

µ

(
∂D

∂t
+ v · ∇D

)
=−∇d+∇2D + I, in Vβ, t> 0, (3.16b)

D = 0, at Aβσ , t> 0, (3.16c)
D = 0, when t= 0, (3.16d)
〈d〉β = 0, t> 0, (3.16e)

D(r+ li)= D(r), d(r+ li)= d(r), t> 0, i= 1, 2, 3. (3.16f )

Note that in (3.16b), D, d and v are all evaluated at the same time t, which improves
the exactness of the solution. Practically, this is possible because the pore-scale flow
problem in (3.8) (the solution of which provides the field of v at time t) can be solved
independently from the closure problem on D and d. On the basis of this closure
problem, it is readily deduced that the contribution from the remaining source (i.e.
the initial velocity) leads to the following problem for m0 and n0:

Problem II

∇ ·m0 = 0, in Vβ, t> 0, (3.17a)
ρ

µ

(
∂m0

∂t
+ v · ∇m0

)
=−∇n0 +∇

2m0, in Vβ, t> 0, (3.17b)

m0 = 0, at Aβσ , t> 0, (3.17c)
m0 =µv0, when t= 0, (3.17d)
〈n0〉

β
= 0, t> 0, (3.17e)

m0(r+ li)=m0(r), n0(r+ li)= n0(r), t> 0, i= 1, 2, 3. (3.17f )

As expected, closure problems I and II are not intrinsic, as they depend on the
fluid properties and flow conditions or, as will be shown in § 3.4 below, on the
Reynolds number characteristic of the flow. A possible way of resolving this issue
is to follow an approach used in the homogenization theory, at the cost, however,
of making a priori scaling assumptions on the viscosity and velocity so that the
pore-scale Reynolds number can be expressed as a power of the scale ratio `β/L (see
Sanchez-Palencia (1980), chap. 7, § 4, p. 142ff.). This was further investigated by
Bourgeat, Marušić-Paloka & Mikelić (1996) and also by Marušić-Paloka & Mikelić
(2000) in the steady regime, but the procedure could be carried out for a power
on the Reynolds number up to 0 (see also Balhoff, Mikelić & Wheeler 2010). The
approach followed here is quite different and leads to closure problems that depend
on the pore-scale flow field, or more precisely, on the macroscopic forcing, as will
be shown below. Indeed, an alternative formulation of the closure problems I and II
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is possible by substituting the formal solution given in (3.10a) into the convective
terms of the closure problems to obtain

ρ

µ

[
∂D

∂t
+

1
µ

(
∂D

∂t
∗· (−∇〈p〉β + ρb)+m0

)
· ∇D

]
=−∇d+∇2D + I, in Vβ, t> 0,

(3.18a)
ρ

µ

[
∂m0

∂t
+

1
µ

(
∂D

∂t
∗· (−∇〈p〉β + ρb)+m0

)
· ∇m0

]
=−∇n0 +∇

2m0, in Vβ, t> 0.

(3.18b)

These equations are interesting from a fundamental viewpoint because they show
that the closure problems are ultimately functions not of the velocity but of the
macroscopic forcing given by −∇〈p〉β + ρb and the initial field of the velocity, v0.
However, from a practical viewpoint this formulation is not attractive because it
involves the coupled and non-local in time solution of both closure problems, which
have also become nonlinear. For the sake of ease in the computations, the strategy to
follow is: (1) solve the flow problem given by (3.8) and (2) substitute the solution
of the velocity into closure problems I and II written in the form given in (3.16f )
and (3.17f ), which is linear because the numerical solution of v does not require
knowledge of the closure variables. Note that, in both approaches, the inputs are the
macroscopic driving force and the initial flow condition. The dependence on the latter
is lost under steady flow and both functionalities are not present under creeping flow
conditions. In fact, only in this very specific case are the closure problems intrinsic.

Letting

H t = 〈D〉, (3.19a)

α =
〈m0〉

µ
, (3.19b)

the macroscopic momentum equation (3.12b) can finally be written as

〈v〉 =−
1
µ

∂H t

∂t
∗· (∇〈p〉β − ρb)+ α, in VMh, t> 0 (3.20)

or, equivalently,

〈v〉 =−
1
µ

∂

∂t
(H t ∗· (∇〈p〉β − ρb))+ α, in VMh, t> 0, (3.21)

and this represents one of the major results of this work. It clearly shows the existence
of a memory effect expressed by the convolution product that was anticipated by
Auriault (1980) leading to an unsteady macroscopic momentum equation, which does
not resemble the heuristic model given by

ρ
∂〈v〉β

∂t
=−(∇〈p〉β − ρb)−µεH−1

· 〈v〉β, in VMh, t> 0, (3.22)

where H is the steady apparent permeability tensor introduced by Whitaker (1996)
for the average model of steady inertial one-phase flow in homogeneous porous
media. The two models only match under steady conditions. This can be proved, for
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instance, by considering that the macroscopic forcing remains constant after a given
time. Under such conditions, α → 0 in the long-time limit. Moreover, in this time
limit, closure problem I in (3.16f ) conveniently coincides with the one obtained by
Whitaker (1996) for steady inertial flow in homogeneous porous media and H t→ H.
Under these circumstances, the final value theorem applied to (3.20) (or (3.21))
indicates that the average model derived above reduces to the steady form of the
macroscopic inertial momentum equation (3.22) also reported by Whitaker (1996).

In the macroscopic equation (3.20) (or (3.21)), H t is homogeneous to a permeability
and will be referred to as the dynamic apparent permeability tensor, the apparent
character being inherent to its dependence on inertial effects. It should be noted that,
except in the creeping flow regime, the effective coefficient H t depends on the initial
condition and on the macroscopic forcing through the convective inertial term in
closure problem I. In addition, α, which has the unit of a velocity, only contains a
source due to the initial velocity field, v0, and is zero when v0 = 0. However, the
values of α are also driven by the macroscopic forcing by means of the convective
term in problem II. It is important to emphasize this feature and make clear that the
effective coefficients are not functions of the average velocity, which would result in
a misleading macroscale model given in (3.20). Unfortunately, the dependence of the
coefficients on the macroscopic forcing and the initial condition is not trivial and,
as a consequence, an explicit functionality of the seepage velocity with them is not
easily achievable, in general. Under non-inertial conditions, the dependence of the
macroscale velocity on the macroscopic forcing is linear, albeit the dependence on
the initial flow is still not trivial. For steady, creeping flow, the well-known linear
dependence of the velocity on the macroscopic forcing is recovered in the form of
Darcy’s law.

The model reported in (3.20) generalizes to inertial flow the result reported by
Allaire (1992) for the creeping regime, which was also studied by Lions (1981) and
later by Mikelić (1994). When restricted to this particular type of flow, the macroscale
momentum equation (3.20) matches that reported in the latter two references only
when the initial flow is zero. The discrepancy observed when v0 6= 0 lies in the
fact that, as mentioned above (§ 3.1), a particular form of the initial condition was
considered by Lions (1981) and Mikelić (1994) for the problem in the periodic
unit cell. This special form of the boundary condition was, however, not retained
by Allaire (1992) nor in the present work. In the particular case of creeping flow
and v0 = 0, envisaged by Mei & Vernescu (2010), agreement is also found with
the result of this reference. In Mikelić (1994), both creeping and inertial flows were
considered; unfortunately, no local closure problem was derived for the inertial case.
In the work by Allaire (1992), A therein identifies with ∂K t/∂t and a with α, K t
being the dynamic permeability equivalent to H t under non-inertial flow conditions. It
must be emphasized that A should not be called ‘permeability’ as it is dimensionally
incorrect. This terminology is also improperly used in the works by Mikelić (1994)
and Mei & Vernescu (2010). Without inertia and when v0 = 0, the average model
derived above also corresponds to the one presented by Auriault et al. (1985), Sheng
& Zhou (1988) or Zhou & Sheng (1989) (see also Sahimi 2011) and considered by
Johnson et al. (1987) that was obtained in Fourier space.

Regarding the ancillary closure problems related to the macroscopic models
mentioned above, closure problems I and II, under creeping flow conditions, coincide
with those reported by Allaire (1992). However, under these conditions, closure
problem I does not correspond to the ancillary problems reported by Mikelić (1994)
and by Mei & Vernescu (2010). The closure problems in these two references
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lack compatibility between the initial and boundary conditions, thus leading to a
non-regular solution as admitted by Mikelić (1994). This discrepancy is only technical
and can be solved by an appropriate change of variables in the Laplace domain,
leading to a modification of the initial condition, compatible with the interfacial
boundary condition. Consistently, in the creeping regime, the Laplace-transformed
version of closure problem I is also identical to that given by Sheng & Zhou
(1988), Zhou & Sheng (1989), Mikelić (1994) and Mei & Vernescu (2010) for their
corresponding so-called ‘permeability’.

It should be noted that in Lions & Masmoudi (2005) an attempt to use the
homogenization method to upscale the unsteady Navier–Stokes equations was
presented. Unfortunately, the authors only succeeded to use the two-scale convergence
method for the case of perfect flow (i.e. the unsteady Euler equation) and attributed
their failure to upscale the unsteady incompressible Navier–Stokes equations to the
existence of boundary layers. In fact, in their study no upscaled model or closure
problems were provided. The drawback arising from boundary layers was also
mentioned by Masmoudi (1998) and was later circumvented by the same author for
the case of compressible flow (see Masmoudi 2002). Nevertheless, the development
in this latter reference yields a semi-stationary macroscopic model. The difficulty
encountered by these authors arises from the fact that the solution is sought in a
weak sense. It is not present in the approach followed in the current analysis.

Further considering the very particular case of the creeping regime for which
the initial flow condition is such that v0 obeys a Stokes model, it can be proved
that the macroscopic model derived above can be formulated in such a way that
closure problem I is the only one that needs to be solved. The proof is provided in
the Appendix.

Before illustrating the solution of closure problems I and II with some numerical
results, it is of interest to analyse the symmetry and positiveness properties of H t, and
this is the object of the next section.

3.3. Symmetry properties and positiveness of Ht

The symmetry analysis of H t is carried out following the approach developed in
Lasseux & Valdés-Parada (2017) and the reader is referred to this article for details
of the derivations, in particular § II.A therein. It must be noted that no special
assumption is needed on the pore structure within the periodic unit cell representative
of the material on which closure problem I is to be solved.

The analysis starts by redirecting attention to (3.14b), which is considered at any
value of 0 6 τ 6 t for a given value of t. Pre-multiplication by (∂DT/∂t)|t−τ , together
with a subsequent time integration from τ = 0 to τ = t and the application of the
superficial averaging operator leads to

ρ

µ

∂

∂t
〈MT
∗·M〉 +

ρ

µ
〈MT
∗· v · ∇M〉

=−〈MT
∗· ∇m〉 + 〈MT

∗·∇
2M〉 +

dHT
t

dt
, t> 0, (3.23)

where, for simplicity of notation, M = ∂D/∂t and m= ∂d/∂t. Note that M = 0 at t= 0,
in accordance with (3.16d), given the initial condition for D.

The first term on the left-hand side of (3.23) is clearly symmetric. As shown in
Lasseux & Valdés-Parada (2017), the first term on the right-hand side is zero using
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the solenoidal character of M , the no-slip boundary condition, periodicity and the
averaging theorem. On the same basis, it can also be proved that 〈MT

∗·∇2M〉 =
−〈(∇M)T3

∗: ∇M〉, where the superscript T3 stands for the transpose that permutes the
first and third indices of a third-order tensor and : is the double dot product in the
sense of the nested convention. This last term can be shown to be symmetric. Finally,
the second term on the left-hand side of (3.23) is skew-symmetric. The proof of this
can be carried out on the basis of (12) and (13) in § II.A in the work by Lasseux
& Valdés-Parada (2017), when extended to the case where a convolution product is
involved.

From the above, the time rate of change of the dynamic apparent permeability tensor
can hence be expressed as

∂H t

∂t
=
ρ

µ

∂

∂t

〈
∂DT

∂t
∗·
∂D

∂t

〉
+

〈(
∇
∂D

∂t

)T3

∗:

(
∇
∂D

∂t

)〉
︸ ︷︷ ︸

symmetric part

−
ρ

µ

〈
∂DT

∂t
∗·

(
∇ ·

(
v
∂D

∂t

))〉
︸ ︷︷ ︸

skew-symmetric part

, t> 0, (3.24)

which provides the decomposition of H t into its irreducible parts because the operation
of time integration does not alter the symmetry properties of a tensor. It should be
noted that the skew-symmetric part is only due to the existence of inertial transport,
thus extending the result given in § II.A of the work by Lasseux & Valdés-Parada
(2017) to unsteady conditions. As a corollary, it can be concluded that, in the creeping
regime, K t is a symmetric tensor at all times (and therefore the intrinsic permeability
is also a symmetric tensor).

At this point, the focus should be laid upon the positiveness property of H t and,
for convenience, the analysis is carried out in the Laplace domain. A starting point
of the derivation is the following identity, which holds for any constant but arbitrary
vector λ:

λ · H t · λ= λ · H
T
t · λ, (3.25)

where overlined variables denote the Laplace transform of their temporal counterparts.
This implies that

λ · (H t + H
T
t ) · λ= 2λ · H t · λ. (3.26)

Applying the Laplace transform to (3.24), adding the result to its transpose and pre-
and post-multiplying the ensuing expression by λ while making use of (3.26) yields

λ · H t · λ=
ρ

µ
s2
〈λ · D

T
· D · λ〉 + s〈λ · (∇D)T3

:∇D · λ〉. (3.27)

Here s denotes the symbolic Laplace variable. The first term on the right-hand side
of this expression can be written as

〈λ · D
T
· D · λ〉 = 〈(D · λ) · (D · λ)〉 = 〈(D · λ)2〉, (3.28)
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which is a positive definite quantity. Turning attention to the second average term on
the right-hand side of (3.27) and making use of the Gibbs and Einstein notations, one
can write

〈λ · (∇D)T3
:∇D · λ〉 = 〈λk(∇D)T3

kij (∇D)jilλl〉

= 〈λk(∇D)jik(∇D)jilλl〉

= 〈((∇D)jikλk)
2
〉, (3.29)

which proves that this term is also positive definite. Since s is positive, it can be
concluded that H t is a positive definite tensor. A corollary of the above is that K t is
a symmetric positive definite tensor that hence admits an inverse. However, the proof
provided here does not allow us to conclude that the same applies to H t.

3.4. Closure problem solution
From the above derivations, it follows that closure problems I and II can be solved
using standard unsteady Navier–Stokes solvers. The mathematical structure of these
problems indicates that closure variable D is a time-increasing field because the initial
condition is homogeneous and the source term in the momentum-like equation is a
positive constant. Consequently, the effective coefficient H t should be expected to
exhibit similar dynamics. On the contrary, in problem II, the only source is the initial
condition and therefore both the m0 field and coefficient α can be expected to be
time-decaying.

Before proceeding to the validation of the average model, it is convenient to direct
attention to the solution of the local closure problems I and II so that the dynamics
of the effective coefficients can be examined. To this end, it is worth expressing the
closure problems and the effective coefficients in the following dimensionless forms:

Problem I∗

∇
∗
· D∗ = 0, in Vβ, t∗ > 0, (3.30a)

∂D∗

∂t∗
+ Re v∗ ·∇∗D∗ =−∇∗d∗ +∇∗2D∗ + I, in Vβ, t∗ > 0, (3.30b)

D∗ = 0, at Aβσ , t∗ > 0, (3.30c)
D∗ = 0, when t∗ = 0, (3.30d)
〈d∗〉β = 0, t∗ > 0, (3.30e)

D∗(r∗ + l∗i )= D∗(r∗), d∗(r∗ + l∗i )= d∗(r∗), t∗ > 0, i= 1, 2, 3, (3.30f )

where the dimensionless version of the dynamic apparent permeability tensor is
obtained from

H∗t = 〈D
∗
〉. (3.31)

Problem II∗

∇
∗
·m∗0 = 0, in Vβ, t∗ > 0, (3.32a)

∂m∗0
∂t∗
+ Re v∗ ·∇∗m∗0 =−∇n∗0 +∇

∗2m∗0, in Vβ, t∗ > 0, (3.32b)

m∗0 = 0, at Aβσ , t∗ > 0, (3.32c)
m∗0 = v∗0, when t∗ = 0, (3.32d)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

87
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.878


Macroscopic model for unsteady flow in porous media 299

〈n∗0〉
β
= 0, t∗ > 0, (3.32e)

m∗0(r
∗
+ l∗i )=m∗0(r

∗), n∗0(r
∗
+ l∗i )= n0(r∗), t∗ > 0, i= 1, 2, 3. (3.32f )

The solution of this problem can be used to obtain

α∗ = 〈m∗0〉. (3.33)

The above problems are written in terms of the following definitions:

t∗ =
µt
ρ`2

, x∗ =
x
`
, v∗ =

v

vref
, D∗ =

D

`2
, d∗ =

d
`
, H∗t =

H t

`2
,

m∗0 =
m0

µvref
, n∗0 =

n0`

µvref
, α∗ =

α

vref
, Re=

ρvref `

µ
,

 (3.34)

where ` is the size of the geometrical periodic unit cell (see figure 2). As expected,
the closure problems are dependent on v∗. Consequently, the values of the effective
coefficients are sensitive to the different flow conditions considered in the pore-scale
model. Here and in the rest of this work, it is assumed that the macroscopic driving
force is in the horizontal x-axis direction. In the following section, several case studies
are considered for validation with DNS, for which the predictions of the effective
coefficients corresponding only to case study I (see § 4.1) are shown here for the
purpose of illustration. All the simulations presented in this work were performed
using the commercial finite element software COMSOL Multiphysics 5.2. The direct
MUMPS solver included in the program was used and standard (spatial and temporal)
meshing convergence analyses were carried out in order to ensure that results are
independent of these numerical degrees of freedom. In accordance with the case study
of § 4.1, the dimensionless macroscopic pressure gradient experiences a step change
at t∗ = 0 from 0.1 to 1.0 as expressed in (4.5), while Re, ranging from 103 up to
106, is maintained the same before and after the change of the macroscopic pressure
gradient.

In figure 3, predictions of the dimensionless xx-component of H t (i.e. H∗txx) and of
the x-component of α (i.e. αx), resulting from the closure problem solution in the
unit cell depicted in figure 2, are reported for two porosity values (ε = 0.4 and 0.6).
Values of the Reynolds number were kept smaller than the critical one characteristic
of the first Hopf bifurcation, which, for the structure under consideration, is identified
to be ∼106 for ε = 0.4 and ∼105 for ε = 0.6 (see Agnaou et al. 2016, figure 10).
Consequently, the solution remains time-independent after steady state is reached.
Results on H∗txx, shown in figure 3(a,b), indicate that the influence of inertial transport
is experienced not only at early times (i.e. t∗ < 10−4), but also during intermediate
times (i.e. t∗> 10−3) and until steady state is reached (i.e. Htxx→Hxx). By comparing
the dynamics of the apparent permeability shown in these two panels, it is clear that
porosity plays quite a significant role, because the time at which Htxx reaches Hxx,
for ε = 0.6, is significantly larger than the one for ε = 0.4. In this latter case, it is
worth noticing that the curves of Htxx remain almost unchanged over the whole range
of time for Re 6 104, whereas in figure 3(b) the curves for Re = 103 and Re = 104

can be clearly differentiated. These observations are consistent with those reported by
Lasseux, Abbasian-Arani & Ahmadi (2011) under steady conditions.

The shape of the curves shown in figure 3(a,b) suggests a subsequent normalization
by the steady-state value, Hxx, of Htxx, so that the dependence on the Reynolds number
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FIGURE 3. Dynamics of the xx-component of the apparent permeability tensor (a–c)
and of the x-component of vector α (d) for the flow problem described in § 4.1. The
predictions result from solving the closure problems I and II in the unit cell depicted in
figure 2 taking: (a) ε= 0.4 and (b) ε= 0.6. In (c), results are presented after normalization
with the steady value of the apparent permeability. In (d), results are normalized with the
initial value of αx.

is no longer present. This is indeed the case as reported in figure 3(c), which follows
from the ideas proposed by Sheng & Zhou (1988). The normalized dynamic apparent
permeability may then be represented by a linear combination of exponential linear
functions of time. The same type of normalization can be applied to α∗x , but in
this case with respect to the initial value, since it is the maximum one. Results are
presented in figure 3(d), showing that this normalization yields a master curve for the
dynamics of α for Reynolds numbers as high as 106. The dynamics of α exhibits a
temporal dependence, which can be represented by a Boltzmann-type function. This
contrasts with the purely exponential decay suggested by Mikelić (1994) for periodic
structures.

The master curves for the effective coefficients are distinct for different porosities,
and, for the simple geometry considered here, it appears that the steady state is
reached faster, as the solid phase occupies a larger fraction of the unit cell, which
was also the case for Htxx. These results evidence that the effective coefficients are
bound functions of time and are sensitive to the topology of the unit cell and to the
flow conditions, in general.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

87
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.878


Macroscopic model for unsteady flow in porous media 301

x

y
1 2 n

¶

FIGURE 4. (Colour online) Solution domain for the DNS consisting of an array of n inline
square unit cells of length `.

4. Results
At this point of the analysis, it is pertinent to compare predictions resulting from

the upscaled model with those from solving the pore-scale model, i.e. from DNS.
This comparison is required to validate the macroscale model. To this end, consider
as a solution domain of the pore-scale model an array of n inline unit cells of side
length `, each containing a square obstacle to represent the solid phase, as sketched
in figure 4. For the sake of simplicity and without any loss of generality, body forces
are disregarded for the rest of the analysis, so that the pore-scale momentum transport
equation can be expressed in a dimensionless form as

∂v∗

∂t∗
+ Re v∗ ·∇∗v∗ =−∇∗p∗ +∇∗2v∗, in Vβ, t> 0, (4.1)

where p∗ = p`/(µvref ). In order for the pressure gradient to be unitary at the scale
of the unit cell, the reference velocity was chosen to be vref = `

2
‖∇〈p〉βs ‖/µ, with

‖∇〈p〉βs ‖ being the maximum value of the pressure gradient over the entire time range
of observation of the flow process. In this way, the following boundary conditions can
be applied at the edges of the macroscopic domain:

at x∗ = 0, p∗ = nf (t∗), ∀ y∗, t∗ > 0, (4.2)
at x∗ = n, p∗ = 0, ∀ y∗, t∗ > 0, (4.3)

with f (t∗) being a known function of time that may be applicable to a single unit cell.
In addition, periodic conditions at the horizontal boundaries are applied, i.e.

v∗(x∗, 0)= v∗(x∗, 1), ∀ x∗, t∗ > 0. (4.4)

The dimensionless problem was solved for values of t∗ ranging from 10−11 up to
10 and, in the rest of this section, results are presented only for a porosity value of
0.4. Similar predictions were obtained for other porosity values. In order to determine
the number of unit cells to be considered in the solution domain, so that the results
are collected in VMh for given flow conditions, a criterion was chosen such that the
value of the intrinsic average of the x-component of v∗ located at the (n+ 1)/2 unit
cell (with n being an odd number) does not vary by more than 10−5 % when n is
increased by 2. A value of n= 21 was found appropriate to satisfy this criterion and
was hence used as the size of the macroscopic domain in the remainder of the present
analysis.

Simulations of the upscaled model were performed in the following manner. Firstly,
the initial and dimensionless velocity field (say, v∗0) was determined in a single
unit cell from the solution of the steady version of the pore-scale model for a
given initial macroscopic pressure gradient (say ∇∗〈p∗0〉

β) and Reynolds number Re.
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Secondly, the unsteady pore-scale model was solved subject to a desired unsteady
macroscopic pressure gradient, keeping Re the same. The information from the
solution of these two problems was then used to predict the fields of the closure
variables D and m0, for the prescribed value of Re, from which the effective-medium
coefficients, H t and α, were computed. Once these coefficients are available at all
times, they were substituted into the closed upscaled model in order to predict the
dynamics of the macroscopic velocity.

Results are organized in case studies as follows: (I) a step change of the pressure
gradient from the initial condition to its steady value; (II) a smooth time-decaying flow
that leaves the system at rest at steady state; (III) a single pressure gradient pulse; and
(IV) an oscillatory flow.

For completeness of the comparison of the different approaches, it is also pertinent
to compare the DNS results with the predictions arising from the heuristic model
given in (3.22). Note that this model does not require knowledge of the dynamics of
the apparent permeability tensor as it only involves its steady value. For all the case
studies, the value of H∗xx in the heuristic model was computed with the value of Re
of interest and the unitary dimensionless pressure gradient along the horizontal x-axis
(Lasseux et al. 2011).

4.1. Case study I: step change of the pressure gradient
The first two case studies deal with the dynamics from one steady state to another,
which is a physical situation that can be of interest in control engineering or in
measurements of the dynamic apparent permeability, to cite just a few examples. The
goal is to examine the dynamics of the macroscopic velocity and the role played
by the initial flow condition. To this end, the first case study will deal with a step
change of the pressure gradient. In this way, consider the flow at t∗ 6 0 to be steady,
resulting from a dimensionless pressure gradient value of 0.1. Then suddenly, at
t∗ > 0, let this gradient become unitary, i.e.

−
∂〈p∗〉β

∂x∗
=

{
0.1, t∗ 6 0,
1.0, t∗ > 0. (4.5)

In figure 5(a), the response of the system to this forcing is presented in terms of
the predicted evolutions of the macroscale velocity obtained from DNS, together with
those from the volume averaging method (VAM). Simulations correspond to Re= 106

and they match those for Re=103 since results are normalized by the final steady-state
value of the velocity (i.e. 〈v∗x 〉

β
ss). This is consistent with the observations made for Htxx

presented in the previous section. Clearly, the agreement between DNS and VAM is
excellent at all times.

Note that the steady-state regime is reached at t∗ > 0.03. In order to have an
idea of the time span over which the initial condition plays a relevant role in
the macroscale model, predictions are presented for the case in which v0 = 0 (i.e.
∇
∗
〈p∗0〉

β
= 0). Under these conditions, closure problem II is completely homogeneous

and its solution is zero for all x (i.e. α = 0). In this case, it is noted that the
predictions only match those from DNS after t∗ > 0.01, thus illustrating that the
initial condition has a significant effect during almost the entire time range in which
〈v∗x 〉

β is time-dependent. Finally, in figure 5(b), the dynamics of the average velocity
resulting from VAM are compared with those obtained from the heuristic model. The
latter clearly overpredicts the velocity dynamics in a time range that roughly spans
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FIGURE 5. (Colour online) Dynamics of the x-component of the macroscale velocity
vector, normalized by its steady-state value 〈v∗x 〉

β
ss, resulting from the step change on the

pressure gradient given in (4.5). In (a), predictions correspond to DNS and the volume
averaging method with and without inclusion of the initial flow. In (b), a comparison is
shown between predictions from the volume averaging method and the heuristic model.
Simulations correspond to a porosity of 0.4 and Re= 106.

through three orders of magnitude. As expected, the two approaches match at times
close to the initial condition and at steady state. This is consistent with the fact that
both the heuristic and upscaled models depart from the same initial condition and
both converge towards the classical Darcy-like model at sufficiently large time.

4.2. Case study II: time-decaying pressure gradient
As a second case study, consider another change of steady state with two major
differences from the previous one: first, let the maximum flow be settled at t∗ 6 0,
and second, let the macroscopic pressure gradient decay smoothly according to the
following expression:

−
∂〈p∗〉β

∂x∗
=

1−
t∗ sin(ω∗t∗)
t∗m sinω∗t∗m

, 0 6 t∗ 6 t∗m,

0, t∗ > t∗m,
(4.6)

with t∗m and ω∗ representing the dimensionless maximum time at which the pressure
gradient is non-zero and a given non-dimensional frequency, respectively. The value
of t∗m was chosen to be smaller than the dimensionless time at which the initial flow
was observed to be insensitive in the previous case and was fixed to 8 × 10−4. In
order to avoid oscillations, a value of 1000 was chosen for ω∗, yielding the smooth
decaying dynamics of the macroscopic pressure gradient shown in figure 6(a). This
flow condition may correspond to physical situations in which the pumping device is
slowly turned off. Furthermore, for this particular flow condition, H∗txx→K∗xx at steady
state. This is to be expected because both acceleration and convective inertial effects
are no longer present at late times.

In figure 6(b), the comparison of the predictions of 〈v∗x 〉
β resulting from DNS

with those from the upscaled model derived in this work and from the heuristic
model for the flow conditions described above is presented. As in the previous case,
results are represented after normalization with respect to the maximum value of the
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FIGURE 6. (Colour online) (a) Dynamics of the decaying macroscopic pressure gradient
given in (4.6) taking t∗m = 8× 10−4 and ω∗ = 1000. (b) Dynamics of the x-component of
the macroscale velocity vector, normalized by its initial value 〈v∗0,x〉

β , resulting from the
time-decaying macroscopic pressure gradient. Predictions result from performing DNS, and
from the solution of the macroscale model obtained by the volume averaging method and
the heuristic model. Simulations correspond to a porosity of 0.4 and Re= 106.

velocity, which in this case corresponds to the initial condition. As expected, there
is a delay between the time at which the pressure gradient is extinguished and the
time at which the average velocity vanishes. In the particular situation examined in
figure 6(b), this delay is approximately one order of magnitude in t∗. Simulations
reported in figure 6(b) correspond to a Reynolds-number value of 106 and a similar
behaviour was obtained for smaller values of Re.

Once again, predictions from the volume averaging method are in excellent
agreement with those from DNS for all values of t∗, while those from the heuristic
model only match DNS results in the extreme values of t∗. Contrary to the previous
case, the heuristic model underpredicts the velocity dynamics and this occurs over a
time range of roughly three orders of magnitude. Note that, during the early stage of
the process, the values of t∗ for which the heuristic model reproduces DNS roughly
correspond to those for which the macroscopic pressure gradient is not zero. As a
final remark for this case study, it is worth mentioning that the maximum relative
per cent error of the predictions from the heuristic model with respect to DNS is
approximately 60 %, which is highly contrasting with the one for the predictions of
the average model derived here that is below 0.1 %.

4.3. Case study III: pressure gradient pulse
In the two previous cases, the initial flow has been shown to play quite a significant
role for the accuracy of the predictions of the macroscale velocity. The remaining
case studies deal with situations for which the fluid was initially at rest in the porous
medium, while changes of the macroscopic pressure gradient are operated at t∗ > 0.

In the previous case study, a time delay for the final equilibrium to be reached
after the pressure gradient is reduced to zero was highlighted. In the particular case
under concern, the interest is to investigate the response to abrupt changes of the
macroscopic pressure gradient. Therefore, consider the following dynamics of the
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FIGURE 7. (Colour online) Dynamics of the x-component of the macroscale velocity as a
response to a macroscopic pressure gradient pulse given by (4.7). Results from DNS, and
from the solution of the macroscale model obtained by the volume averaging method and
the heuristic model correspond to a porosity of 0.4 and (a) Re= 103 and (b) Re= 106.

macroscopic pressure gradient:

−
∂〈p∗〉β

∂x∗
=

0, t∗ 6 0,
1, 0< t∗ < 10−2,

0, t∗ > 10−2.
(4.7)

In practice, this corresponds to a pressure gradient given as a finite pulse in the
porous medium, which could be of interest, from an experimental point of view, for
potential measurements of the dynamic apparent permeability. In figure 7 predictions
of the dynamics of the dimensionless macroscale velocity are presented for the two
values of the Reynolds number, Re= 103 (figure 7a) and Re= 106 (figure 7b). Note
that the velocity amplitude exhibits a slight decrease as the Reynolds number is
increased. In both situations, agreement between DNS and the average model is
excellent, whereas the heuristic model overpredicts the velocity for t∗ < 10−2 and
underpredicts it for t > 10−2, the largest differences being observed during the first
time range. This is consistent with the behaviour observed in the two previous case
studies. Indeed, the time period to reach steady state is significantly underpredicted
by the heuristic model, compared to DNS or VAM. Finally, it was verified that the
results reported in figure 7(a) match those obtained under creeping flow conditions.
This is consistent with the fact that, for ε = 0.4, H∗txx is not significantly affected by
the Reynolds-number value up to Re= 104.

4.4. Case study IV: oscillatory pressure gradient
As a final case study, consider the situation in which the fluid saturating the porous
medium was initially at rest and then, at t∗ > 0, it is subjected to a macroscopic
pressure gradient that obeys the following expression,

−
∂〈p∗〉β

∂x∗
= 0.5[1− cos(ω∗t∗)], (4.8)
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FIGURE 8. (Colour online) Dynamics of the x-component of the macroscale velocity
vector, resulting from a response to an oscillatory change in the macroscopic pressure
gradient according to (4.8). Predictions result from performing DNS, from the solution of
the macroscale model obtained by the volume averaging method and from the heuristic
model. Simulations correspond to a porosity of 0.4 and (a) Re= 103 and (b) Re= 106.

in which w∗ = 1000 as in case study II. This situation is also interesting because it
corresponds to flow in a porous medium induced by, for example, a peristaltic pump
or even a ram pump if the experimental conditions allow a permanent oscillatory
pressure gradient.

The resulting predictions of the macroscale velocity are reported in figure 8
following a similar format as the one used in the previous case study. It is observed
that the velocity does not exhibit a purely oscillatory dynamics up until t∗≈ 0.015 for
the two values of Re considered here (namely Re= 103 and 106). In the permanent,
but time-dependent regime for 〈v∗x 〉

β (i.e. for t∗ > 0.015), the heuristic model is not
likely to succeed even at late times, since the model is never reduced to a Darcy-like
form. This claim is confirmed by the results shown in figure 8. Although the phase
is quite well reproduced, the amplitude of the average velocity is significantly
overpredicted by the heuristic model. Although results are not presented here for the
sake of brevity, it is observed that, for ω∗< 1000, predictions from this model exhibit
a much better performance and reproduce the results from DNS in the permanent
regime. The conclusion is thus that the heuristic model cannot be considered as a
reliable one except in a specific range of frequencies that are likely to depend on the
structure of the porous medium and the frequency spectrum. Conversely, the volume
averaged model is in excellent agreement with DNS at all frequencies.

As an overview of the case studies in this section, it is worth mentioning that the
volume averaged model reproduces the results from DNS whatever the nature of the
flow and initial conditions under consideration. This validates the model developed
in this work. In these stiff cases, the heuristic model presented poor performance, in
general, leading to the conclusion that it is not appropriate.

5. Conclusions

Unsteady flow in porous media is of wide interest for many applications and has
been the subject of active work over the past century. However, the available models
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describing such flows still leave much to be desired, as they are either rather heuristic
or remain incomplete, in particular regarding the consideration of inertial effects and,
to a lesser extent, the flow initial condition. This motivated the work developed in
this article that is dedicated to a formal derivation and analysis of an upscaled model
that includes these features for single-phase unsteady flow in rigid and homogeneous
periodic porous media. To this end, the pore-scale flow model was upscaled using a
short-cut version of the volume averaging method. In this version, the macroscopic
forcing was assumed to be spatially invariant in periodic structures. The resulting
model expresses the macroscale velocity as a function of two terms: the first one
contains the time rate of change of the convolution between a dynamic apparent
permeability tensor and the dynamic macroscopic pressure gradient. The second
term accounts for the time-decaying influence of the initial velocity. The convolution
product holds a memory effect of the flow history. The unsteady upscaled model is
clearly in contradiction with the heuristic model, that consists of an ad hoc correction
to Darcy’s law by simply including an acceleration term of the average velocity.
Moreover, it generalizes a previously reported model that is only applicable under
creeping flow conditions (Lions 1981; Auriault et al. 1985; Sheng & Zhou 1988;
Zhou & Sheng 1989; Allaire 1992; Mei & Vernescu 2010).

Associated with the macroscale model, ancillary closure problems were derived that
allow the determination of the dynamics of the effective coefficients. The dynamic
apparent permeability tensor, H t, was shown to be non-symmetric in general. The
irreducible decomposition of H t was achieved, showing that the skew-symmetric part
is inherent to inertial effects. This further leads to the conclusion that the dynamic
permeability in the creeping regime, K t, is a symmetric tensor. Positiveness was
proved for H t in the Laplace domain, proving that K t is a symmetric positive definite
tensor, although the same is not true for H t.

From the numerical solution of the closure problems, the effective coefficients
were predicted in a particular flow situation in simple representations of the porous
medium geometry and were found to be functions of time and porosity. After proper
normalization, the dependence of the coefficients upon the Reynolds number was
collapsed into master curves that were sensitive to variations only in the porosity
for the given structure. Although beyond the scope of the present work, further
investigations about the extents of this normalization are certainly of interest, as a
natural extension to previous works carried out in the creeping regime.

Through a set of stiff flow and initial test conditions, the model was validated
by comparison with DNS. In all cases, the agreement between the two approaches
was excellent, thus justifying the average model. Conversely, the heuristic model was
shown to poorly perform predictions of the macroscale velocity.

As a final point of discussion, it is worth mentioning that the requirement of
availability of the velocity fields to solve the closure problems, while not mandatory,
does not hinder the value of the macroscale model. The only requirements for the
predictions of the effective coefficients are the macroscopic forcing and the initial flow
field. In fact, beyond the fundamental interest in this formal model, its relevance lies
in the potential use for further upscaling as well as for interpretation of experiments
including inertial effects and the influence of the initial condition. Results from this
work should serve as a motivation for more theoretical and experimental analyses of
unsteady transport phenomena in porous media and many other unsteady processes
in hierarchical systems.
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Appendix A
This appendix is dedicated to a reformulation of the macroscopic momentum

equation in the particular situation of creeping flow when the initial condition, v0,
obeys a Stokes model. It is proved that closure problem I is the only problem that
needs to be solved.

Since in the case under consideration here, the initial flow and the unsteady flow
starting at t= 0, characterized by their velocity and pressure fields (v0, p0) and (v, p),
respectively, obey the Stokes model, velocity and pressure fields u = v − v0 and
P= p− p0 can be defined satisfying the following unsteady Stokes problem within a
periodic unit cell:

∇ · u= 0, in Vβ, t> 0, (A 1a)

ρ
∂u
∂t
=−∇P̃+µ∇2u−∇〈P〉β + ρ(b− b0), in Vβ, t> 0, (A 1b)

u= 0, at Aβσ , t > 0, (A 1c)
u= 0, when t= 0, in Vβ, (A 1d)

〈P̃〉β = 0, t> 0, (A 1e)
u(r+ li)= u(r), P̃(r+ li)= P̃(r), t> 0, i= 1, 2, 3, (A 1f )

where P̃= p̃− p̃0 and b0 = b(t= 0).
Since the initial condition for the problem for u and P is zero, the associated

macroscopic momentum equation can be written as (see (3.21))

〈u〉 =−
1
µ

∂K t

∂t
∗· (∇〈P〉β − ρ(b− b0)), t> 0, (A 2)

where K t is the dynamic permeability in the absence of inertia. In addition, at the
macroscale, the initial steady flow obeys a Darcy-like equation, i.e.

〈v0〉 =−
K

µ
· (∇〈p0〉

β
− ρb0), t= 0, (A 3)

where K is the intrinsic permeability of the medium corresponding to K t at sufficiently
large times. When u and P are replaced by their expressions in terms of v, v0, p and
p0 in (A 2), the unsteady macroscopic form of the momentum equation in the case
under study is given by

〈v〉 =−
1
µ

∂K t

∂t
∗· (∇〈p〉β − ρb)−

1
µ
(K − K t) · (∇〈p0〉

β
− ρb0), t> 0 (A 4)
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or, equivalently,

〈v〉 = −
1
µ

∂K t

∂t
∗· (∇〈p〉β − ρb)+ (I − K t · K

−1) · 〈v0〉, t> 0. (A 5)

This clearly shows that, in this particular case, the only closure problem that needs
to be solved is problem I, yielding K t (and K at sufficiently long time).
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