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Transition to stably stratified states in open
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Direct numerical simulations (DNS) of turbulent stratified flow in an open channel
with an internal heat source following the Beer–Lambert law from the surface are
used to investigate the transition from neutral to strongly stable flow. Our buoyancy
bulk parameter is defined through the ratio of the domain height δ to L , a bulk
Obukhov length scale for the flow. We cover the range λ = δ/L = 0–2.0, from
neutral conditions to the onset of the stable regime, with the Reynolds number range
Reτ =200–800, at a Prandtl number of 0.71. The result is a boundary layer flow where
the effects of stratification are weak in the wall region but progressively stronger in
the outer layer up to the free surface. At λ ' 1 the turbulent kinetic energy (TKE)
budget is in local equilibrium over a region extending from the near-wall region
to a free-surface affected region a distance lν from the surface, with lν/δ ∼ Re−1/2.
In this equilibrium region the flow can be characterised by the flux Richardson
number Rf and the local Obukhov length scale Λ. At higher λ local mixing limit
conditions are observed over an extended region. At λ = 2 the flux Richardson
number approaches critical limit values of Rf ,c ' 0.18 and gradient Richardson
number Ric ' 0.2. At high λ, we obtain a flow field where buoyancy interacts with
the smallest scales of motion and the turbulent shear stress and buoyancy flux are
suppressed to molecular levels. We find that this regime can be identified in terms
of the parameter ReL ,c = L uτ/ν . 200–400 (where uτ is the friction velocity and
ν the kinematic viscosity), which is related to the L∗ parameter of Flores and Riley
(Boundary-Layer Meteorol., vol. 139 (2), 2011, pp. 241–259) and buoyancy Reynolds
number R. With energetic equilibrium attained, the local buoyancy Reynolds number,
ReΛ = Λ〈u′w′〉1/2/ν, is directly related to the separation of the Ozmidov (lO) and
Kolmogorov (η) length scales in the outer boundary layer by ReΛ ' R ≡ (lO/η)

4/3.
The inner wall region has the behaviour R ∼ ReL Reτ , in contrast to stratified
boundary layer flows where the buoyancy flux is non-zero at the wall and R ∼ ReL .

Key words: geophysical and geological flows, mixing and dispersion, stratified turbulence

1. Introduction
We examine turbulent stably stratified open channel flow as a canonical

representation of flow in rivers and to some extent flow in estuaries and continental

† Email address for correspondence: nicholas.williamson@sydney.edu.au
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Transition to stably stratified states in open channel flow 529

shelf seas. Where incident solar radiation penetrates the water column, the transmission
and absorption of the radiation, following the Beer–Lambert law, can produce a stable
thermocline near the free surface, whereas the near-wall region remains relatively
unaffected by stratification. Relating the dynamics of the interior structure in these
flows to known outer bulk parameters is very important. For example, in periods
of drought or below average flow, Australian inland rivers can become thermally
stratified to the extent that algal blooms may occur and oxygen or nutrient transport
can be reduced, adversely affecting river biota and water quality. With reliable
forecasting models these events may be predicted and mitigated against.

Simpson & Hunter (1974) proposed that in continental shelf seas, a constant
fraction of the work done by tidal stresses acting on the seabed is available to mix
the stratified surface layer and that this mechanical work can be compared with
surface heat input to form a critical parameter for the onset of stratification. Similar
interpretations have been proposed as a metric to delineate stratified and non-stratified
flow regimes in estuaries (Holloway 1980), river flows (Bormans & Webster 1997)
and in wind-induced surface mixing in the ocean (Kullenberg 1976; Simpson, Allen &
Morris 1978). The total work input to the domain (Ẇ) and the rate at which potential
energy (Ėp) must be increased to maintain a mixed column in steady conditions can
be written

Ẇ = τwub = u3
bCf

1
2
ρ0 = ρ0u3

τ

√
2
Cf
, Ėp= gβ

Cp
δ2qN, (1.1a,b)

where Cf is the skin friction coefficient, ub is the bulk or volume-average velocity, ρ0
is the fluid density, τw is the wall shear stress, uτ is the friction velocity, g is the
gravitational acceleration, Cp is the specific heat, δ is the domain height, β is the
coefficient of thermal expansion, q(z) is the depth-varying volumetric heat source in
the water column and

qN = 1
δ2

∫ δ

0
(q− q(z))(z− δ)dz, q= 1

δ

∫ δ

0
q(z)dz. (1.2a,b)

Combining (1.1a,b) gives the ratio

Er = Ėp
Ẇ
= gβ
ρ0Cpu3

τ

δ2qN

√
Cf

2
. (1.3)

In the setting shown in figure 1, Is is the radiant heat flux through the surface, α is
the absorption coefficient following the Beer–Lambert law, so

q(z)= Isαe(δ−z)α, (1.4)

and for large αδ, Er can be reduced to

Er ' gβ
ρ0Cpu3

τ

δIs

(
1
2
− 1
δα

)√
Cf

2
. (1.5)

In coastal seas the critical values for the onset of stratification, determined by the
location of seasonal thermal fronts, are typically Erc ' 0.003 (Garrett, Keeley &
Greenberg 1978; Hearn 1985) for tidal mixing. Simpson & Hunter (1974) originally
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FIGURE 1. Schematic of the flow; the domain is periodic in x and y.

found Erc = 0.0037 and Bormans & Webster (1997) reported Erc = 0.0044 in mixing
in a river weir pool. It is not clear how the internal structure of the flow varies with
the outer parameter Er or how general Erc is across other parameters, Reynolds and
Prandtl numbers Re, Pr, or αβ. These effects may be important at the reduced scale
of some small river canals. It is clear that Erc is several orders of magnitude smaller
than limit values of local flux Richardson number Rf , a measure of local mixing
efficiency.

The influence of stratification in the atmospheric surface layer is characterised by
the ratio of the Obukhov length scale L=u3

τ/κb∗, where κ is the von-Kaŕmań constant
and b∗ is the surface buoyancy flux, to a confinement scale which in the surface layer
is z (e.g. Monin 1970; Chung & Matheou 2012). This ratio ζ = z/L indicates that
the flow is affected by stratification for ζ & 1, while for ζ � 1 the flow approaches
neutral conditions. For the current configuration, a bulk stability parameter λ (cf. Er)
can also be defined in terms of bulk Obukhov length scale L and confinement scale
δ consistent with this approach and (1.5):

λ= δ/L , L = u3
τ

gβIs/ρ0Cp

(
1
2
− 1
δα

)−1

. (1.6a,b)

Outside the surface layer the localised Obukhov length scale, Λ(z) (Nieuwstadt 1984;
Sorbjan 1986; Chung & Matheou 2012) can be defined in terms of fluxes as

ζ (z)= ξ/Λ(z), Λ(z)= 〈u′w′〉3/2/〈b′w′〉, (1.7a,b)

where ξ is a local confinement scale such as z, the buoyancy fluctuation is b′= gρ ′/ρ0,
〈 〉 denotes temporal averaging and the prime denotes a perturbation from the mean.
Recent efforts to parameterise the effects of stratification on mixing in turbulent flow
(Ivey & Imberger 1991; Holt, Koseff & Ferziger 1992; Itsweire et al. 1993; Barry
et al. 2001; Shih et al. 2005; Lindborg 2006; Brethouwer et al. 2007; Gonzalez-Juez,
Kerstein & Shih 2011; Chung & Matheou 2012) have demonstrated that multiple
regimes of behaviour exist, which can be related to two non-dimensional parameters:
the buoyancy Reynolds number R (Dillon & Caldwell 1980; Gargett, Osborn &
Nasmyth 1984; Itsweire et al. 1993) and the gradient Richardson number Ri,

R = ε

νN2
=
(

lO

η

)4/3

, Ri= N2

S2
=
(

lC

lO

)4/3

. (1.8a,b)
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Transition to stably stratified states in open channel flow 531

These parameters can be formed out of characteristic length scales in stratified
turbulent flow (Smyth & Moum 2000; Brethouwer et al. 2007; Chung & Matheou
2012): the Ozmidov length scale lO, the length scale above which the effects of
buoyancy are strongly felt; the Kolmogorov length scale η, which characterises the
smallest scales of motion; and the Corrsin scale lC, the length scale characterising
the smallest eddies which interact with background shear,

lC =
(
ε

S3

)1/2

, lO =
(
ε

N3

)1/2

, η=
(
ν3

ε

)1/4

, (1.9a−c)

where N2 = (−g/ρ)(d〈ρ〉/dz), S = (d〈U〉/dz), the turbulent dissipation rate ε =
ν〈(∂u′i/∂xj)

2〉 and ν is the kinematic viscosity.
In the limit Ri → 0, lO � lC, the flow approaches neutral conditions and the

flow is characterised by lC and η (Smyth & Moum 2000). With increasing stability
(decreasing lO), for lO > lC > η, the flow approaches a regime of constant, maximum
mixing efficiency and Ri approaches a critical value Ric ' 0.2–0.25 (Holt et al.
1992; Chung & Matheou 2012). Scales between lO and η are weakly affected by
stratification while those larger than lO are strongly affected, leading to modification
of the classical energy cascade in turbulent flow (Lindborg 2006; Brethouwer et al.
2007). Further, with increasing stability the flow approaches a regime where buoyancy
affects the smallest scales of motions (Brethouwer et al. 2007) and turbulent mixing
is strongly suppressed by buoyancy (Itsweire et al. 1993; Barry et al. 2001; Shih
et al. 2005; Brethouwer et al. 2007; Ivey, Winters & Koseff 2008; Gonzalez-Juez
et al. 2011). Brethouwer et al. (2007) found Rc' 1 a sufficient criterion for the onset
of this behaviour. In the atmospheric surface layer, the collapse of turbulence was
found by Flores & Riley (2011) to be characterised by a related parameter L∗=Luτ/ν
in the terms of the Obukhov length scale, and found a critical limit of L∗,c . 100.

The description of the state of stratified turbulence then requires an outer buoyancy
parameter, such as Ri or λ, and a parameter related to ν, such as R or L∗ (Chung
& Matheou 2012). For the present flow the equivalent definitions of L∗ for bulk and
local parameters can be defined as

ReL =L uτ/ν, ReΛ(z)=Λ〈u′w′〉1/2/ν. (1.10a,b)

We then define our problem, as outlined in figure 1, in terms of the parameter set
(αδ, λ, Reτ , Pr) with the friction Reynolds number Reτ = uτδ/ν, or equivalently the
set (αδ, λ, ReL , Pr) with ReL ≡ Reτ/λ. We have acknowledged a Prandtl number
dependence (Barry et al. 2001; Shih et al. 2005; Gonzalez-Juez et al. 2011) here
but confine our study to fixed Pr = 0.71. The objective of the study is to examine
how local flow character varies with these bulk parameters and in terms of the local
parameters defined in (1.8).

We describe our method in § 2 and in § 3 we show that we are able to attain a
statistically steady flow field over a wide range of stability ratios and, unlike most
previous studies, the near-wall region remains only very weakly affected by buoyancy.
In § 4.1 we show that λ'1 indicates a transition to strongly stratified flow and for λ&
1 the flow is in local energetic equilibrium. In § 4.2 we show that ReL ' 200–400 is
associated with the onset of the weakly turbulent R<Rc regime in the outer boundary
layer and that the onset of local equilibrium conditions allows a direct relationship
between R and ReΛ(z) to be obtained. In § 4.3 we conclude that the parameter set
(λ, ReL ) is more relevant for describing the dynamics of the flow than Er. In § 4.4
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we identify these transition behaviours in terms of the turbulent eddy viscosity km. The
outer extremities of the channel – the near-wall region and the free surface – impose
other length scale restrictions on the flow. In § 5 we examine the scaling for R in the
near-wall region and show that R ∼ ReL Reτ , rather than the R ∼ ReL which holds
in stratified boundary layer flows where the buoyancy flux is non-zero at the wall,
leading to a wider separation of viscous- and buoyancy-affected scales at the wall in
the present configuration. In § 6 we consider the modifications to the scaling for the
length of the near-free-surface affected region under stratified conditions.

2. Problem formulation
We approach this problem by obtaining a numerical simulation of the flow

illustrated in figure 1. The flow is periodic in the horizontal plane and driven by
a constant pressure gradient. A volumetric heat source, following (1.4), is applied to
the flow. In our canonical model we assume no heat is lost through the lower wall or
the stress-free surface, which are taken as adiabatic. After an initial transient period
the flow attains a statistically steady horizontally homogeneous state and the energy
input from the source term is transported across the channel at a constant rate, so
the dimensional temperature field Φ at time T can be decomposed into

Φ(x, T)=Φ ′(x, T)+Φ(T), (2.1)

where Φ ′ is the statistically steady temperature field and the uniform increase in
temperature with time is

∂Φ/∂T = q/ρ0Cp. (2.2)

With this reference frame we obtain a non-dimensional statistically steady temperature
field (φ) and depth-varying heat source (qe) by normalising ΦN = qNδ/ρ0Cpuτ and qN
(defined in (1.2)) respectively,

φ = (Φ −Φ(T))
ΦN

, qe(z)= (q(z)− q)
qN

. (2.3a,b)

With this normalisation we perform direct numerical simulations (DNS) of the Navier–
Stokes equations. We consider an incompressible fluid with the Oberbeck–Boussinesq
approximation for buoyancy. The governing equations for the conservation of mass,
momentum and energy are written in non-dimensional form as

∇ · u= 0, (2.4)
∂u
∂t
+∇ · (uu)=−∇p+ 1

Reτ
∇2u+ ex + λφez, (2.5)

and
∂φ

∂t
+∇ · (uφ)= 1

ReτPr
∇2φ + qe, (2.6)

where ex and ez are the unit vectors in the x and z directions. The Prandtl
number Pr = ν/σ = 0.71, where σ is the scalar diffusivity of the fluid. With this
non-dimensional form, the velocity field is normalised by uτ which is set through the
specified Reτ = uτδ/ν and the constant imposed pressure gradient in the streamwise
direction, ex. The length, time and pressure are made non-dimensional by δ, uτ and
ρ0, a reference density. In specifying the problem, Reτ and λ are given and, together
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with αδ (specified in (1.4)) and Pr, fully describe the problem. In this scheme the
surface flux Is which occurs in (1.4) is a free variable which scales the temperature
field. In presenting the results, we re-normalise the temperature field by either Is or
the bulk temperature difference 1φ = φ1 − φ0, where φ1 and φ0 are the free-surface
and wall temperatures respectively. This gives more meaningful normalisation of
φd = φ/1φ or φi = φ/(Is/δqN).

The boundary conditions for the bottom (z= 0) no-slip adiabatic wall and stress-free
adiabatic top boundary (z= 1) are

z= 0: u= v =w= 0,
∂φ

∂z
= 0, (2.7)

z= 1: ∂u
∂z
= ∂v
∂z
=w= 0,

∂φ

∂z
= 0. (2.8)

2.1. DNS
The equations are solved using the fractional-step finite-volume solver described in
Armfield et al. (2002). The code uses a cell-centred co-located storage arrangement
for flow variables on a regular structured grid, with cell-face velocities calculated
using the Rhie–Chow momentum interpolation. The spatial derivatives are discretised
using second-order central finite differences. A second-order-accurate Adams–
Bashforth time advancement scheme is used for the nonlinear terms and Crank–
Nicolson for the time advancement of the diffusive terms. The pressure correction
equation is solved using a stabilised bi-conjugate gradient solver with an incomplete
Cholesky factorisation pre-conditioner. The momentum and temperature equations are
solved using a Jacobi solver. A Courant number limit of 0.2–0.24 is used to obtain
the time step size.

The simulation parameters are given in table 1. We perform simulations from neutral
(λ= 0) to stable conditions (λ= 0.05–2.0) at Reτ = 395 and αδ = 8. We demonstrate
a sufficient range to determine the transition to a high-λ flow structure where critical
values of Ri are achieved in the channel core and the turbulent kinetic energy (TKE)
balance is in local equilibrium. Additional simulations are performed at higher and
lower Reynolds number Reτ =200–800 and at αδ=32. Unless otherwise stated, results
are for Reτ = 395, αδ = 8.

The Kolmogorov length scale, expressed in viscous wall units η+= Reτη/δ, ranges
over η+= 1.5–4.7 (shown in § 5). At Reτ = 395, the grid size is set at 1x+= 10 (Nx=
256), 1y+= 5 (Ny= 256) for λ= 0–0.5. In the vertical axis, the grid is stretched from
1z+= 0.4 at the wall to 1z+= 3.95 at z= 0.6 and from z= 0.6–1 the grid is uniform
with 1z+= 3.95 (Nz= 110). At λ= 1.0–2.0 the grid was refined to 1x+= 4.68 (Nx=
540) and in the vertical 1z+ = 0.4–4.1 with the grid stretched to 1z+ = 1.1 at the
free surface (Nz = 130). At αδ = 32, this vertical resolution is also used. The single
simulation at Reτ = 800 has 1x+ = 10, 1y+ = 5 and 1z+ = 0.4–4.0. The accuracy of
the results has been verified in neutral conditions against benchmark DNS solutions
of Abe, Kawamura & Matsuo (2001) and Moser, Kim & Mansour (1999) for closed
channel flow at Re= 395.

Initial simulations were performed at neutral conditions. After an initial transient
phase, typically 1t = 30–40 (non-dimensional time units δ/Tuτ ), statistically steady
conditions were judged to have been obtained. This was determined by convergence
of zeroth- and second-order moments of temperature and velocity fluctuations to the
mean values and balance of the transport budget for φ (see (3.1) below) over the
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FIGURE 2. Mean temperature profile, (φ − φ0)/(Is/δqN) at Reτ = 395, αδ = 8 (a) and
Reτ = 200–800, αδ = 8–32 (b).

λ Reτ αδ ReL Lx, Ly Nx ×Ny ×Nz : Er × 103 Cf × 103 Rib Riτ Re∗τ
0.0 395 8 0 2π,π 256× 256× 110 : 0.0 6.32 0.0 0 394.68
0.05 395 8 7900 2π,π 256× 256× 110 : 2.79 6.25 0.0029 0.93 395.20
0.1 395 8 3950 2π,π 256× 256× 110 : 5.52 6.10 0.0066 2.16 394.72
0.2 395 8 1975 2π,π 256× 256× 110 : 10.8 5.86 0.0165 5.63 394.80
0.5 395 8 790 2π,π 256× 256× 110 : 25.7 5.27 0.0631 23.9 395.08
1.0 395 8 395 2π,π 540× 256× 130 : 46.5 4.32 0.1725 79.9 395.26
2.0 395 8 197.5 2π,π 540× 256× 130 : 79.5 3.17 0.3693 233 395.46
0.5 200 8 400 4π, 2π 256× 256× 80 : 28.1 6.3 0.0627 20.2 200.20
0.5 800 8 1600 2π,π 512× 512× 220 : 23.0 4.22 0.0618 29.3 800.66
1.0 200 8 200 8π, 4π 512× 512× 80 : 50.3 5.07 0.144 56.8 200.80
0.1 395 32 3950 2π,π 256× 256× 130 : 5.52 6.10 0.0098 3.21 395.24
0.5 395 32 790 2π,π 256× 256× 130 : 25.7 5.28 0.0947 35.9 394.80

TABLE 1. Simulation parameters, and measured flow statistics: Er = λ
√

Cf /2, Cf =
2(uτ/ub)

2, Rib = 1φλδ/u2
b, Riτ = 1φλδ/u2

τ , and Re∗τ is Reynolds number based on the
measured wall friction velocity u∗τ .

height of the domain. The flow was then evolved for a further period, typically 1t=
40–80, with statistics collected. Subsequent higher λ flow conditions were successively
initialised from these converged solution flow fields and computations continued in the
same manner.

3. Temperature stratification profile
A defining feature of this flow is the separation of the stratified outer layer from

the near-wall region so that even at large bulk stability ratio, λ, turbulence production
at the wall remains relatively unaffected by buoyancy. In this section we examine this
flow structure with reference to the vertical profiles of mean flow statistics, obtained
in statistically steady conditions and averaged over a horizontal plane and in time, as
denoted by 〈·〉.

The mean temperature profile normalised by the incident surface flux (Is/δqN) is
shown in figure 2(a) for flow at Reτ = 395, αδ= 8 and λ= 0–2.0 while in figure 2(b)
the results are compared with flow at λ=0.5, αδ=32, (Reτ =395) and flow at λ=0.5,
Reτ = 800. Through the centre of the channel the flow can be separated into a weakly
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FIGURE 3. Mean buoyancy frequency, N(z)δ/uτ at Reτ = 395, αδ = 8.

stratified lower mixed region which is insensitive to λ and an outer layer with a
thermocline extending almost to the surface. With increasing λ, the thermocline rises
more steeply and extends further into the channel. At λ= 1 it extends from z' 0.5 as
indicated by the separation from the low-λ profiles. At higher αδ= 32 at both λ= 0.1
and λ= 0.5 shown in figure 2(b), the near-surface temperature increases significantly
for z & 0.75 as more heat is absorbed in the less turbulent free-surface region. The
normalised Brunt–Väisälä frequency (Nδ/uτ ) shown in figure 3 illustrates the same
structure. The temperature gradient peaks within the water column over z' 0.8–0.97
and goes to zero at the wall and surface as enforced through our adiabatic boundary
conditions (2.7) and (2.8).

The variation in the structure of the flow with height and λ can be visualised
through realisations of the temperature field as shown in figure 4. Here, in random
instances of the flow, φ is depicted in the x–z plane for Reτ = 395 λ = 0.1–2.0. At
λ = 0.1, in near-neutral conditions, the flow is active throughout the outer boundary
layer up to the free surface, with large overturns in φ at the scale of the domain
height. At λ = 1.0 the flow is characterised by a continuously stratified surface
layer deformed by turbulence in the outer boundary layer and diffuse overturns
and elongated diffuse inclined structures. Small-scale overturns in φ are apparent
throughout the core of the flow. The flow at λ= 2.0 has a similar character, but the
near-surface region is almost completely inactive with no overturns in the temperature
field.

In figure 5 the root-mean-square (r.m.s.) temperature fluctuation, 〈φ′φ′〉1/2, is plotted
normalised by (Is/δqN). In the mixed region, 〈φ′φ′〉1/2 is slightly larger at lower λ.
The larger range of scales apparent in the near-wall region as seen in the flow
visualisations in figure 4(c) also indicates this behaviour. In the thermocline, the
increase in stability first increases the temperature fluctuations as turbulence is still
active and works with an increased mean temperature gradient. At large stability for
λ= 0.2–2.0, 〈φ′φ′〉1/2 decreases near the free surface as turbulence is suppressed.

This structure contrasts with the numerous recent studies examining inhomogeneous
stratified flow in a channel-type configuration (Komori et al. 1983; Garg et al. 2000;
Armenio & Sarkar 2002; Nieuwstadt 2005; Taylor, Sarkar & Armenio 2005; Wang
& Lu 2005; Deusebio et al. 2011; Flores & Riley 2011; Garcia-Villalba & del
Alamo 2011; Zonta, Onorato & Soldati 2012) where N typically peaks at the walls.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.711


536 N. Williamson, S. W. Armfield, M. P. Kirkpatrick and S. E. Norris

0 0.25 0.50 0.75

z

z

x

z

1.00(a)

(b)

(c)

–0.05 0.25 0.55 0.85 1.15

–0.1 0.2 0.6 1.31.0 1.7

FIGURE 4. (Colour online) An instantaneous realisation of (φ−φ0)/1φ at Reτ = 395 and
λ= 2.0 (a); λ= 1.0 (b); λ= 0.1 (c). Plot depicts full extent of domain, Lx × Lz = 2π× δ.
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FIGURE 5. Temperature fluctuation normalised as 〈φ′φ′〉1/2/(Is/δqN) at Reτ = 395,
αδ = 8 (a) and Reτ = 200–800, αδ = 8–32 (b).

Komori et al. (1983) performed experiments condensing steam in the free surface
of an open channel. Garg et al. (2000) and Wang & Lu (2005) examined open
channel flow with an isothermal surface and an adiabatic or isothermal lower
boundary condition while Deusebio et al. (2011) examined the same configuration
with constant fixed temperature difference across the channel. The canonical closed
channel flow with a fixed temperature difference between the upper and lower walls
was examined by Armenio & Sarkar (2002) and Garcia-Villalba & del Alamo (2011)
in statistically steady conditions. These studies can be quantitatively related to our
study by converting their Riτ =1ρgδ/ρ0u2

τ to λ using λ= (Nu/2)Riτ/(PrReτ ) where
Nu is the Nusselt number. Garcia-Villalba & del Alamo (2011) cover the range
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FIGURE 6. Variation of instantaneous bulk flow properties over non-dimensional flow time
at Reτ = 395, αδ= 8: (a) skin friction Cf = 2〈uτ/ub〉2 and (b) instantaneous plane-averaged
temperature difference 1φ/〈1φ〉 + A where A is a vertical offset given in the figure.

λ= 0–3.4 at Reτ = 180–550 and Pr = 0.7 (Rib = 0–0.462), while Armenio & Sarkar
(2002) covered Rib = 0–0.297 at Reτ = 180, Pr= 0.71 giving λ= 0–2.4.

Conditions more related to the present study were examined by Taylor et al.
(2005), who used large-eddy simulation (LES) of an open channel flow with a
constant heat flux at the upper stress-free boundary and an adiabatic lower wall
with periodic spanwise and streamwise boundaries. Our configuration approaches
this setting as αδ → ∞. The results of Taylor et al. (2005) can be compared by
converting their Riτ to λ using λ= Riτ/(2PrReτ ) and Er = λ

√
Cf /2. They cover the

range Rib = 0–0.118, λ = 0–0.125 and Er = 0–6.8 × 10−3 at Reτ = 400 and Pr = 5,
indicating that stratification is relatively weak.

There are also numerous studies of the atmospheric surface layer under stable
conditions (e.g. Nieuwstadt 1984, 2005; Grachev et al. 2005; Wiel et al. 2008;
Sorbjan & Grachev 2010; Flores & Riley 2011; Grachev et al. 2013). Unlike the
stable atmospheric boundary layer, where 〈b′w′〉 and 〈u′w′〉 both decrease with height,
in the present open channel configuration 〈b′w′〉 is zero at the wall and increases
over most of the channel height and is non-monotonic. The inner wall region is then
expected to be less susceptible to the transient re-laminarisation events that may be
seen in these flows at low Reynolds number and high λ.

A consequence of our configuration is that we are able to attain statistically steady
flow at relatively minimal domain sizes with regions of strong stratification present in
the flow. The time-varying plane-averaged skin friction coefficient Cf = 2〈uτ/ub〉2, is
given in figure 6(a) for our λ = 0.1, 0.5, 1.0 simulations. The time variation in the
plane-averaged 1φ normalised by time-averaged 〈1φ〉 is illustrated in figure 6(b) for
λ = 0–2.0. In both the time trace of Cf and 1φ there is a range of long-time-scale
oscillations of period 1t ' 5–10, longer than the turnover time t = 1 and the Brunt–
Väisälä period uτ/Nδ . 2 for λ = 0.05. Similar observations were seen the closed
channel flow of Garcia-Villalba & del Alamo (2011). In all cases here, however, the
results converge to a statistically steady fully developed flow. The Reynolds number
based on friction velocity computed directly from the flow field, u∗τ , is displayed in
table 1 as Re∗τ . In all cases the result is within 0.1 % of the nominal Reτ . This is
in contrast to the stratified wall flow of Garcia-Villalba & del Alamo (2011) who
found that much larger domain sizes were required in order to attain well-behaved
statistically steady flow. The behaviour they observed was related to re-laminarisation
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FIGURE 7. Variation of mean streamwise velocity profile u with height in wall units: (a)
for Reτ = 395, αδ = 8 and λ= 0–2.0; and (b) αδ = 8–32.

at the wall and had a Reynolds number and λ dependence, so at λ=3.4 and Reτ =550,
(Lx, Ly)= (8π, 6π) was required. The present results at Reτ = 395 show no signs of
re-laminarisation at the wall or divergence of the flow statistics in time with (Lx,Ly)=
(2π,π) up to our most stable case λ= 2.0.

In our Re= 200 tests we adopt initially a (Lx, Ly)= (4π, 2π) domain to maintain
the same size (L+x , L+y ) in wall units. For λ= 1.0 at Reτ = 200 (ReL = 200), the flow
had laminar streaks at the wall spanning the length of the domain and statistically
steady conditions were not obtained. The domain size was increased to (8π, 4π) and
the flow remained turbulent across the entire wall region and a statistically steady
fully developed solution was obtained. At λ = 0.5 at Reτ = 200 the laminar streaks
or patches were not observed at (4π, 2π).

With increasing stability λ, the skin friction coefficient, shown in table 1, decreases
as the flow accelerates to a higher mean bulk velocity. The profile of the mean
streamwise velocity is given in figure 7(a,b) with vertical location in wall units
z+ = zuτ/ν. The velocity profiles illustrate that the inner boundary layer, z+ < 40,
is relatively unaffected, even at λ = 2.0 where there is approximately a factor of
two increase in free-surface velocity compared with neutral flow. A clear separation
of the velocity profiles only appears for z+ > 100. This contrasts with the stratified
wall flows of Armenio & Sarkar (2002); Garcia-Villalba & del Alamo (2011) where
differences were clearly apparent in velocity and shear-stress profiles at λ = 2,
Reτ = 550 (Garcia-Villalba & del Alamo 2011) and λ = 1, Reτ = 180 (Armenio &
Sarkar 2002) at z = 0.1. In our Reτ = 800 result, the velocity profile lies close to
the λ= 0.1, Reτ = 395 curve until z+ ' 350, well into the outer layer. The influence
of αδ on the mean velocity profile appears to be relatively weak. In figure 7(b) the
flow at λ = 0.5, αδ = 32 is nearly indistinguishable from the curve at αδ = 8. In
figure 8(a,b), the shear stress 〈u′w′〉 is given for the same flows. As suggested by the
velocity profiles, there is only slight variation from the neutral case over z = 0–0.3,
while at λ= 0.5–2.0 the turbulent shear stress is significantly damped for z> 0.6 and
at λ= 2.0 〈u′w′〉 ' 0 for z> 0.9.

In the statistically steady flow considered here the non-dimensional time-averaged
temperature transport equation is

0=−d〈w′φ′〉
dz

+ 1
ReτPr

d2〈φ〉
dz2
+ qe. (3.1)
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FIGURE 8. Turbulent shear stress, −〈u′w′〉 at Reτ = 395, αδ = 8 (a) and Reτ = 200–800,
αδ = 8–32 (b).
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FIGURE 9. Scalar flux normalised as −〈φ′w′〉/(Is/δqN) at Reτ = 395, αδ= 8 (a) and Reτ =
395–800, αδ = 8–32 (b).

In the laminar limit, it is expected that ∂φ/∂z ∼ PrReτ Is/δqN . These conditions
are approached near the free surface at high λ, resulting in the increase in surface
temperature at λ = 0.5 over Reτ = 200–800. In the limit of 1/ReτPr → 0 we can
integrate over the channel height with the boundary condition 〈φ′w′〉 = 0 at z= 0 to
obtain

−〈φ′w′〉/(Is/δqN)=
(
z− e(z−1)αδ

)
. (3.2)

Plotting this limit for αδ = 8–32 together with profiles of −〈φ′w′〉 in figure 9(a,b)
reveals the extent to which the increased stability has reduced the turbulent heat
flux. Over the mixed region the profiles −〈φ′w′〉 differ only slightly from (3.2),
while through the thermocline the scalar flux is increasingly damped as suggested
by the temperature profiles. Adjacent to the surface at λ = 0.5–2 a region exists
where −〈φ′w′〉 < 0 indicating counter-gradient heat transfer, as has been reported
elsewhere in strongly stratified conditions (see Komori et al. 1983; Gerz, Schumann
& Elghobashi 1989; Holt et al. 1992; Taylor et al. 2005).

It is clear that there is rapid variation in flow stability with z, allowing the influence
of stratification to be examined within a single simulation flow field.
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FIGURE 10. Turbulence kinetic energy transport terms as a ratio of total dissipation: (a)
production P/(ε+B), (b) turbulent diffusion T/(ε+B) and (c) buoyancy flux −B/(ε+B)
or equivalently −Rf .

4. Transition to local energetic equilibrium and turbulence suppression
4.1. Criterion for onset of strong stratification

With the flow being statistically stationary and with homogeneity in the x–y plane, the
TKE transport equations can be written in non-dimensional form as

d
dz
〈w′k〉 + d

dz
〈w′p′〉 − 1

Reτ

d2k
dz2
= P− ε− B, (4.1)

where the TKE is k = 0.5〈u′iu′i〉, the buoyancy flux B = −λ〈φ′w′〉, the turbulence
dissipation rate ε = (1/Reτ )〈(∂u′i/∂xj)

2〉 and the turbulence production term P =
−〈u′w′〉S where S = d〈u〉/dz. The transport terms on the left-hand side of (4.1)
are the turbulent convection (T), pressure transport and viscous diffusion terms
respectively. When the terms on the left-hand side are zero, the flow is in local
equilibrium, with production and dissipation in balance, P− ε − B= 0. The ratio of
the dominant terms P, B and T to the total dissipation ε + B, are shown over the
channel depth in figure 10.

At λ= 0 a region of quasi-equilibrium where P' ε exists over (50 . z+ . 0.5Reτ ).
Above this region, the turbulent convection term increases and the outer layer is a
net sink of turbulence. This compares well with experimental observation in neutral
conditions in open channel flow (Komori et al. 1983; Nezu & Rodi 1986) and DNS
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FIGURE 11. Variation of length scales lO, lC, η normalised by δ with z for (a) λ= 0–2.0
at Reτ = 395 with lines defined in figure 10; (b) Reτ = 200–800 and λ= 0.5–1.0.

of closed channel flow (Moser et al. 1999) over Reτ = 395–640. With increasing λ
the equilibrium region, as indicated by P/(ε+B)∼ 1, extends further towards the free
surface. At λ= 0.5–1.0, this equilibrium region extends to a near-surface region at z'
0.8 above which there is a separate behaviour that we return to in § 6. Normalised in
this form, the buoyancy flux is also known as the generalised flux Richardson number
(Ivey & Imberger 1991),

Rf = B
B+ ε , (4.2)

which has observed limit values of Rf ,c ' 0.17–0.25 (Ellison 1957; Osborn 1980;
Ivey et al. 2008; Garcia-Villalba & del Alamo 2011). With increasing stability, Rf
(figure 10c) rises to peak values in the region z = 0.75–0.85 where the scalar flux
profile decreases rapidly with z (figure 9). At λ = 2.0 over z = 0.5–0.7 the flow
approaches a local energetic mixing limit Rf ,c ' 0.18.

This transition can also be seen in the length scales lC and lO which are shown in
figure 11 with z together with the length scale η. With increasing buoyancy, lC and lO
reduce, while η is relatively unaffected. The variation of the ratio of the outer length
scales Ri = (lC/lO)

4/3 with z is shown in figure 12. In the near-wall region Ri rises
from near-neutral values with height and with increasing flow stability. At λ = 1.0
between z = 0.6–0.77, Ri appears to asymptote to Ric = 0.2 before rising above this
limit at z = 0.77. At λ = 2.0 the asymptote occurs over z = 0.5–0.77. The onset of
limit conditions is similar to that observed for Rf . The relationship between the two
parameters can be formed in equilibrium conditions from definitions as Prt = Ri/Rf
where the turbulent Prandtl number is

Prt = −〈u
′w′〉/S

B/N 2
(4.3)

and N 2 = λd〈φ〉/dz is the non-dimensional Brunt–Väisälä frequency. The profiles of
Prt in figure 13 show that, over the region z< 0.6, with increasing stability the flow
increases from Prt ' 0.8 in neutral conditions to a nearly constant value of Prt = 1.0
at λ= 2.0.

It is clear that λ' 1 represents a transition to local limit conditions for this flow in
terms of Prt→ 1 and P/(ε+ B)∼ 1 and that Ri→ Ric, Rf → Rf ,c over an increasing
portion of the boundary layer height with λ> 1.
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FIGURE 12. Variation of Ri with z for (a) Reτ = 395 with λ= 0.05–1.0 and (b) Reτ =
200–800, αδ = 8–32 and λ= 0.5–1.0.
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FIGURE 13. Prt for λ= 0–2.0.

4.2. R affected regime
With increasing stratification, lO approaches the smallest scales of turbulent motion η.
The ratio R = (lO/η)

4/3 is plotted in figure 14. The parameter varies over four orders
of magnitude across the channel height. In the wall region lO� η, indicating a wide
separation between smallest scales and buoyancy affected scales, while with increasing
z and λ this separation is reduced.

Recent discussion has identified this reduced separation of scales with the transition
to a viscous regime of behaviour (Lindborg 2006; Brethouwer et al. 2007; Flores
& Riley 2011; Chung & Matheou 2012). Shih et al. (2005) examined the mixing
characteristics in homogeneous stratified shear flow and found that Rc . 7 indicated
transition to a molecular diffusive mixing regime. In a similar flow Brethouwer et al.
(2007) showed that Rc= 1 indicates the transition from a classic Kolmogorov energy
cascade to a regime where vertical viscous shearing is important.

Applying these limits here suggests the low-R regime is attained over a part of
the domain height for λ& 0.5 at Reτ = 395. The limit Rc = 7 intersects with the R
profiles in figure 14(a) at z= 0.9, 0.8 and 0.7 for λ= 0.5, 1.0 and 2.0 respectively for
Reτ = 395. The onset of a more suppressed regime of turbulent flow is also apparent
in our mean flow statistics. In figure 10(a) the turbulence production term at λ = 2
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FIGURE 14. Variation of R with z at Reτ =395 (a) and Reτ =200–800 (b). In (a) the thin
solid line indicates R=ReΛ estimated from ReΛ= (1− z)2Reτ/λ(z− e(z−1)αδ) at Reτ = 395
and λ= 0.5. Solid horizontal line indicates R = 7.
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FIGURE 15. Streamwise r.m.s. velocity, 〈u′u′〉1/2 at Reτ = 395, αδ = 8 (a) and
Reτ = 395–800, αδ = 8–32 (b).

falls below the λ= 1 curve at z' 0.8 while the λ= 1 curve falls below the λ= 0.5
curve at z'0.9. In figures 8 and 9 the shear stress and buoyancy flux are also reduced
in these regions as are the buoyancy fluctuations in figure 5. The normal stresses are
plotted in figures 15–17. In the neutral case our results are comparable with available
data for open channel flow over Reτ = 134–1280 (Handler et al. 1993; Komori et al.
1993; Handler et al. 1999; Calmet & Magnaudet 2003; Nagaosa & Handler 2003). In
stratified conditions, the wall-normal stress 〈w′w′〉 is suppressed with increasing λ for
z' 0.4. The horizontal stresses 〈u′u′〉 and 〈v′v′〉 are damped with increasing λ above
z' 0.8 but do not go to zero.

Studies of homogeneous sheared stratified turbulence have identified the onset of
a regime of turbulence decay with an increase of Ri above Ric with Ric = 0.2–0.25
(Holt et al. 1992; Smyth & Moum 2000). The condition Ri>Ric has also been shown
to indicate the transient collapse in stable atmospheric boundary layer simulations
(Nieuwstadt 2005) and field measurements (Grachev et al. 2013).

These Ric values correspond approximately to the high-λ asymptote identified
in figure 12; however, in all simulations Ri increases to above Ric near the surface.
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FIGURE 16. Wall-normal r.m.s. velocity, 〈w′w′〉1/2 with lines defined in figure 15.
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FIGURE 17. Spanwise r.m.s. velocity, 〈v′v′〉1/2 with lines defined in figure 15.

At λ= 0.1, the turbulence intensities and shear stresses vary only slightly from neutral
conditions so while Ri > Ric at z ' 0.8 there is no evidence of turbulence collapse.
In this way Ri> Ric is not a sufficient condition for, or indication of, the transition
to collapse of turbulence. This is also observed in the results of Garcia-Villalba &
del Alamo (2011). Both our flow and the configuration of Garcia-Villalba & del
Alamo (2011) are statistically stationary and inhomogeneous in z so turbulence can
be transported vertically across the boundary layer from the region where Ri< Ric to
the outer more stable regions.

The behaviour of the gradient Richardson number at λ = 0.5 is counter-intuitive.
Over z= 0.7–0.8 Ri is higher at λ= 0.5 than at λ= 1.0 and λ= 2.0, implying that
at this location, an increase in buoyancy leads to less stable flow. This behaviour is
also seen in the channel flow results of Garcia-Villalba & del Alamo (2011) between
λ= 0.54 and λ= 2.0. The behaviour is apparently insensitive to Reτ , as our Re= 200
and Re= 800 both have the same transition location to Ri> Ric at z' 0.7.

Comparing the R and Ri profiles and summarising our observations we can identify
regimes of behaviour. For λ= 0–0.2, R� 7 over the entire flow field and Ri<Ric for
z< 0.75. The flow is weakly affected by stratification with the turbulence intensities
and fluxes 〈u′w′〉 and 〈φ′w′〉 showing only slight variation from neutral conditions. For
λ&0.5 local equilibrium behaviour is observed over the outer layer where P/(ε+B)∼
1. Further increasing stability to λ= 1.0–2.0, Rf and Ri are observed to approach limit
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values and Prt ' 1.0 over an extended region of the outer boundary layer. We found
Ri'Ric and R> 7 over z= 0.5–0.7 at λ= 2, while at λ= 1.0 these conditions are met
over z = 0.6–0.77. Over these regions R ' 10–40. The results of Shih et al. (2005)
suggest that the flow in this regime is here is strongly stratified but outside the low
R < 7 regime. Similar behaviour is seen at λ= 0.5 at Reτ = 200 (ReL = 400).

In stratified wall flow, Flores & Riley (2011) identified L∗ as a parameter indicating
transient ‘turbulence collapse’ or re-laminarisation at the wall. Our ReL parameter
is equivalent to their parameter, differing only in the definition of the Obukhov
length scale. Our configuration is quite different, however, and it is not immediately
clear how ReL identifies with the onset the molecular mixing regime, in localised
regions of the flow field, when the near-wall region remains fully turbulent and at
full development.

Since energetic equilibrium is attained before the onset of the diffusive regime,
ReL and ReΛ can be directly interpreted in terms of R. Using the energy balance
approximation P− ε−B= 0, the local parameter R can be re-cast in terms of λ and
Rf with P/ε= 1/(1− Rf ) resulting in a non-dimensional form

R ≡ εReτ
N 2
= 〈u

′w′〉Reτ
B

ε

PrtS
' 〈u

′w′〉2Reτ
B

(1− Rf )

Prt
= ReΛ

(1− Rf )

Prt
. (4.4)

In this way we have a local estimation of the buoyancy parameter R ' ReΛ as (1−
Rf )/Prt ' 1 within the equilibrium region. Using the approximation (1− Rf )/Prt ' 1,
and the high-Reynolds-number approximations for the fluxes 〈u′w′〉 ' u2

τ (1 − z) and
〈φ′w′〉, using (3.2) in (4.4) we can obtain the approximation ReΛ = (1− z)2ReL /(z−
e(z−1)αδ), and which explicitly relates R to ReL . In figure 14(a) this estimate for ReΛ
at λ= 0.5 and Reτ = 395 is given, indicating reasonable agreement outside the near-
wall and near-surface regions. There is also support for the R ∼ReL in figure 14(b),
where flow at λ= 0.5, Reτ = 200 (ReL = 400), and flow at λ= 1.0, Reτ = 395 (ReL =
395) have approximately the same R profile over 0.3< z< 0.8.

If the onset of the diffusive regime can be identified with R it follows that the
critical bulk parameter ReL ,c can also be identified. The R = 7 criterion suggests
transition to a diffusive regime above z ' 0.8 when ReL = 400 or above z ' 0.7
when ReL = 200. Flores & Riley (2011) noted that their scaling L∗ could be justified
in terms of separation of largest (∼L) and smallest (∼ν/uτ ) scales in the dynamic
sub-layer of a stratified boundary layer. Similarly, in the present context the ReL term
is related to separation of lO and η in the outer boundary layer.

4.3. Bulk parameters
The ReL transition is also visible through variation in the bulk Richardson number,
Rib = 1φλδ/u2

b, illustrated in figure 18, with λ, together with results of other
channel flow studies in both open and closed configurations. Over λ = 0.05–1.0
and αδ = 8, our Reτ = 200 and Reτ = 395 results collapse to a single trend line
with an empirical fit of Rib ' 0.16λ4/3. At Reτ = 200, λ = 1.0 (ReL = 200) and
Reτ = 395, λ = 2.0 (ReL = 200) the data points fall slightly below this curve. The
DNS of Garcia-Villalba & del Alamo (2011) appear to asymptote to the same trend
for λ < 1 in their Reτ = 180 and Reτ = 550 flows, notwithstanding the differences
in configuration and Reynolds number. For λ & 1 their data show that Rib increases
with λ at a reduced rate with Reynolds number dependence. Their Reτ = 180 data
appear to depart from our trend line at λ' 0.67 (ReL = 268) while at Reτ = 550 the
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FIGURE 18. Variation of bulk parameter Rib with λ, where the symbols indicate Pr =
0.7–0.71 results:@, Reτ =200;f, Reτ =395; , Reτ =800;E, αδ=32; +, Garcia-Villalba
& del Alamo (2011) Reτ = 180; ♦, Garcia-Villalba & del Alamo (2011) Reτ = 550; A,
Taylor et al. (2005) Reτ = 400, Pr = 5.0 result normalised to Rib (0.71/5.0). Lines are
defined: – – – –, Rib = 0.16λ4/3; ——, Rib = 9λPr/Reτ with Pr= 0.71 and Reτ = 395.

departure occurs at λ ' 2.0 (ReL = 278) consistent with a transition to a molecular
mixing regime dependent on ReL ,c.

We offer no explanation for the Rib ∼ λ4/3 trend but note that, in the laminar limit,
turbulence is entirely suppressed so ub is decoupled from the buoyancy field. In this
case, the exact analytical result can be obtained. Taylor et al. (2005) showed that
with αδ→∞, the dimensional density difference across the channel height is 1ρ =
|dρ/dz|sδ/2. In our setting this becomes 1ρ = Isβδ/2σCp. With Rib =1ρgδ/ρu2

b and
ub/uτ = Reτ/3 (Pope 2000) we obtain Rib = 9λPr/Reτ as shown on figure 18. The
reduced slope of our ReL = 200 simulations also suggests a transition to a more
suppressed regime of scalar transport in agreement with the local observations, with
the same critical limit as observed in § 4.2 of ReL ,c ' 200–400.

The comparison of the Pr = 5.0 result of Taylor et al. (2005) to the present Pr =
0.71 study is not straightforward. The temperature scale 1φ across their flow is set by
the surface heat flux so d〈φ〉/dz∼Pr. An approximate re-normalisation of their result
is made here to our Pr=0.71 values by Rib×0.71/5.0 as indicated in figure 18. Their
results compare reasonably well apart from λ> 0.1 where, in their study, there is an
increasingly thick diffusive region near the free surface, thereby increasing 1φ across
the channel and hence Rib. Our αδ = 32 results behave in a similar manner.

In terms of Er, the critical values for the onset of stratified conditions, in coastal
flows Er,c' 0.003 and river channels 0.0044 (Bormans & Webster 1997), corresponds
to λ = 0.05–0.1 in the present study, indicating near-neutral flow conditions. The
bulk parameter Er contains an additional Reynolds number dependence through skin
friction coefficient variation in Er = λ(Cf /2)1/2, which is unrelated to the viscous
parameter ReL . In our λ = 0.5 result across Reτ = 200–800 there is variation over
Er = 0.023–0.028 (in table 1) while the behaviour is apparently consistent in terms
of the kinetic energy budgets and turbulence intensities and consistent in terms of
bulk Rib behaviour. We note that in translating critical flow parameter values from
flow in coastal seas, where Re is O(107), to the smaller scale river flow considered
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FIGURE 19. lmδ/RfΛ for Reτ = 395 with λ= 0.05–2.0.

in the present study, where Re is O(105), the choice of parameter Er or λ may lead
to considerable variation in predicted behaviour.

4.4. Parameterisation of turbulent mixing
Transition behaviour can be viewed in terms of turbulent mixing. Recent studies
(Osborn 1980; Shih et al. 2005; Ivey et al. 2008; Gonzalez-Juez et al. 2011; Chung
& Matheou 2012) have suggested that the effects of buoyancy on turbulent mixing
can be parameterised in terms of R. For R <Rc the mixing is reduced to molecular
levels or km→ 0 (Shih et al. 2005). For R >Rc Osborn (1980) showed km 6 ε/N2 or
km/ν ' ΓR where Γ is the mixing efficiency. At large R the dependence of km on
R decreases (Shih et al. 2005) and ultimately becomes independent of R in neutral
conditions (Chung & Matheou 2012).

The local mixing parameters can be re-cast in terms of λ and Rf . The non-
dimensional mixing length

lm = 〈u′w′〉1/2/S (4.5)

can be normalised with the P− ε− B= 0 approximation to

lm

Rf (Λ/δ)
' B+ ε

P
' 1.0. (4.6)

This ratio, presented in figure 19, effectively demonstrates the range where local
equilibrium holds. When Rf ' Rf ,c, then lm ∼Λ/δ, consistent with limit conditions in
Monin–Obukhov similarity models (Businger et al. 1971; Chung & Matheou 2012).
Garcia-Villalba & del Alamo (2011) showed that the local Obukhov length scale can
be used to scale features of the turbulent two-dimensional velocity spectra in channel
flow for κz/Λ & 1, also consistent with our bulk parameter range for equilibrium
λ= δ/L & 1.0. The transition in mixing behaviour can also be seen in terms of the
eddy viscosity ratio km/ν,

km/ν ≡ 〈u′w′〉Reτ/S= PrtBReτ/N 2 ' PrtΓR = Rf ReΛ, (4.7)
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FIGURE 20. Variation of eddy viscosity ratio, km/ν, with R at Reτ = 395 (a) and Reτ =
200–800 (b). Straight solid line indicates km/ν = 0.25R.

where the mixing efficiency is given as Γ = B/ε ≡ Rf /(1 − Rf ). Vertical profiles
of km/ν are given in figure 20 versus local values of R. The transition behaviour
seen here through a sweep across the boundary layer height has the same behaviour
as observed in the single-parameter-set simulations in homogeneous stratified shear
flow of Shih et al. (2005) and Chung & Matheou (2012). The Reτ = 395 results
appear to asymptote to km/ν = 0.25R at R ' 30 while those at Reτ = 800 and Reτ =
200 transition at R = 60 and R = 10–20. At higher R the flow approaches neutral
behaviour with km/ν independent of R. There is an extended transition over R of
O(10) between these limits. In the small-R limit, the asymptote 0.25R indicates R=
4 as a limit for km/ν ' 1 in line with the R = 7 value given by Shih et al. (2005).

5. Near-wall flow
In the near-wall region we have observed Ri � Ric and R � 7, indicating only

weakly stratified flow with wide separation of viscous and buoyancy scales, an
observation reinforced by the very slight variation in the velocity profile, shear stress,
normal stresses (figures 15–17) and TKE budget within this region with increasing λ.
We can quantify this sensitivity (or lack thereof) more precisely by examining the
scaling for the near-wall velocity profiles in the near-wall region with λ and Reτ .

The relation γ = z+du/dz+ is shown in figure 21 with vertical location in wall
units. In a log-law region γ should be a constant 1/κ ' 2.44 in neutral flow. The
profiles correspond across the range of Reynolds numbers and λ for z+ < 30, within
the viscous region, but there is rapid divergence with both quantities above this height.
In the neutral case γ '2.5 over z+=50–75, which is somewhat higher than the closed
channel flow Reτ = 392 result of Moser et al. (1999) but suggests a short region
where the log law holds. In the stratified flows there is a consistent increase in γ
with λ for z+ > 30. It is clear from figure 21 that the inner wall region is influenced
by stratification, albeit significantly less than in previous stratified wall studies such
as Garcia-Villalba & del Alamo (2011) as suggested by their observed near-wall re-
laminarisation events and larger near-wall buoyancy flux.

The λ= 0.5 result at Reτ = 800 lies between the λ= 0 and 0.1 results at Reτ = 395
out to z+ ' 200, considerably lower than the λ = 0.5 result at Reτ = 395. At the
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FIGURE 21. Log-law constant, γ = z+du/dz+. Thin horizontal line indicates 1/κ = 2.44.
Closed channel flow data of Moser et al. (1999) at Re= 392 indicated for comparison.

Reynolds numbers used here, there are expected to be low-Reynolds-number effects
leading to variation in γ even in the neutral case (Moser et al. 1999); however, the
greater part of this variation is due to the differing near-wall scaling of the shear
stress and buoyancy flux profiles. The buoyancy flux B=−λ〈φ′w′〉 profile varies with
z expressed in outer layer units, while by definition the beginning of the apparent
log-law behaviour at z+ ' 50 scales with viscous wall units (z+ = zReτ ). Over the
near-wall region there is a near linear decrease in B to z= 0, B= 0 (figure 9), so at
fixed z+, B is inversely proportional to Reynolds number.

This Reynolds number influence can also be seen in the scaling for R profiles in the
near-wall region. We obtain the scaling R∼ReΛ from (4.4), which holds where there
is energetic equilibrium, including the log-law region as shown in figure 10(a). From
definitions in (1.7b) and (1.10b) we can write in non-dimensional form ReΛ(z) =
−〈u′w′〉2Reτ/λ〈φ′w′〉 and re-arrange to obtain ReΛ(z) = −ReL 〈u′w′〉2/〈φ′w′〉. In the
lower log-law region, say at z+ = 50, 〈u′w′〉 ' uτ ' 1 while the buoyancy flux
−〈φ′w′〉 ' z(Is/δqN) from (3.2). In wall units then −〈φ′w′〉 ' z+(Is/δqN)/Reτ so
ReΛ(z+)∼ ReL Reτ/z+(Is/δqN) and R ∼ ReL Reτ .

This sensitivity is apparent in the R profiles for λ= 0.5 in figure 14(b). At z= 0.05,
at Reτ =200, R'825, at Reτ =395, R'3636 and at Reτ =800, R'13 937, giving a
factor of 4.4 and 3.8 between these values, approximately in line with this scaling. The
λ= 1.0, Reτ = 395 (ReL = 395) and λ= 0.5, Reτ = 200 (ReL = 400) cases converge
at z' 0.3 suggesting the limit of this behaviour in line with the outer extent of the
log-law region in high-Reynolds-number neutral flow (Pope 2000). Similar sensitivity
is also seen in the γ profiles in the near-wall region. The profile of γ at λ = 0.5,
Reτ = 800 is close to that at λ= 0.1 for Reτ = 395, suggesting that halving of Reτ is
equivalent to approximately a five-fold increase in λ.

This scaling contrasts with stratified wall flows where −〈φ′w′〉 ' (Is/δqN), that is
with no z dependence in the outer layer, so R ∼ ReL .
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FIGURE 22. Variation of near-surface profiles of R with (1− z)Re1/2 with vertical line
indicating (1− z)Re1/2 = 0.9.

6. Scaling for free-surface affected region
In neutral conditions, the free surface affects the flow structure over a distance

related to the integral length scale, l∞, below the surface (Hunt & Graham 1978;
Calmet & Magnaudet 2003). Calmet & Magnaudet (2003) estimated l∞/δ ∼ 0.2 and
showed that this region coincides with the diverging near-surface profiles of urms
and wrms. In our neutral flow results, the wall-normal turbulent intensity shown in
figure 16(a), decreases at a faster rate above z' 0.8, indicative of this region.

Hunt & Graham (1978) treated this region as a ‘source layer’, which supplied
turbulence to an inner viscous sub-layer. This inner layer is characterised by a length
scale lν , which has the scaling lν/l∞ = O(Re−1/2

∞ ), where the Reynolds number can
be defined Re∞ = l∞u/ν (Hunt & Graham 1978; Hunt 1984; Calmet & Magnaudet
2003). Calmet & Magnaudet (2003) showed that the velocity scale can be taken as
the wall friction velocity since the magnitude of the turbulence intensity at the surface
is relatively insensitive to Reynolds number and is O(uτ ). This is seen in our neutral
flow results where the streamwise turbulence intensity at the surface has a value of
〈uu′〉1/2 = 0.91, the same as found by Calmet & Magnaudet (2003) at Reτ = 1280,
and close to uτ = 1.

The Reynolds number sensitivity is suggested in the spanwise and streamwise
turbulence intensity profiles of our neutral flow results shown in figures 15(a) and
17(a). The spanwise stress 〈v′v′〉1/2 reaches a minimum value at z= 0.9 while Calmet
& Magnaudet (2003) reported z = 0.925 at Reτ = 1280 and Handler et al. (1999)
z= 0.83–0.9 at Reτ = 180.

The Reynolds number dependence appears to be maintained even at high levels of
stratification. At λ= 0.5, the intensity 〈v′v′〉1/2 reaches minimum near-surface values
at z = 0.938, 0.955 and 0.968 at Reτ = 200, Reτ = 395 and Reτ = 800 respectively.
There is also little variation in the magnitude of intensities through the near-surface
region with Reynolds number, with the surface values of 〈u′u′〉1/2 being 0.65 and 0.66
at Reτ = 395 and 800 respectively.

Calmet & Magnaudet (2003) found lν ' 2Re−1/2
∞ l∞, determined by locating the near-

surface peak in r.m.s. vorticity. Taking the integral length scale to be l∞/δ∼ 0.2 and
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FIGURE 23. Turbulent kinetic energy production as a ratio of total dissipation P/(ε+ B)
at Reτ = 200–800, with location from free surface (1− z) normalised by Re1/2

τ .

Re∞= Reτ l∞/δ, this scaling indicates lν/δ' 0.04 at Reτ = 395. We examine the near-
surface behaviour of our results using the R profiles in figure 22. We have scaled the
near-surface distance (1− z) with Re1/2. In all the data sets shown, there is a location
of minimum R just below the surface which appears to scale to (1− z)Re1/2=0.9. For
Reτ = 395 this location gives (1− z)= 0.045, approximately the same as the lν/δ '
0.04 estimate.

This Reynolds number influence can also be seen in the energy balance ratio P/(ε+
B) plotted in figure 23(a). Here we show results at λ= 0.5 over the Reynolds number
range Reτ = 200–800. The near-surface (1 − z)Re1/2

τ scaling appears to collapse the
three curves over (1− z)Re1/2

τ ' 0–2. This corresponds to (1− z)' 0.1 at Reτ = 395,
approximately twice the estimated lν in neutral flow, suggesting a wider length over
which the lν scaling is relevant.

Calmet & Magnaudet (2003) argued that the evolution of near-surface vorticity can
be related to the Taylor micro-scale lt, noting that lt/l∞∼Re−1/2

∞ , the same as the lν/l∞
scaling of Hunt & Graham (1978). We can consider the effect of buoyancy on the
near-surface lν scaling through extension of these Taylor micro-scale arguments. Using
dimensional variables, the Taylor micro-scale is defined l2

t = ν〈u2〉/ε, where ε is the
dimensional dissipation rate of TKE. The neutral flow turbulence intensities and the
dissipation rate are nearly constant with Reynolds number in the near-surface region.
In stratified flow, however, ε will vary. In stratified flow we can relate the buoyancy
flux to the dissipation rate with the definition of mixing efficiency, ε = 〈b′w′〉/Γ , to
obtain l2

t = ν〈u2〉Γ/〈b′w′〉.
If we adopt urms as the velocity scale, and note from figure 15(a) that at

the approximate boundary of the source layer z ' 0.8, urms/uτ ' 1, we obtain
l2
t ' νΓ u2

τ/〈b′w′〉. We can use the relations Λ = 〈u′w′〉3/2/〈b′w′〉 and u2
τ ' 〈u′w′〉

to obtain l2
t ' νΓΛ/uτ . Here we are essentially arguing that the flow near the surface

is characterised by the properties of the turbulence, transported into the source layer
from the stratified boundary layer, at z' 0.8.

In non-dimensional form this becomes l2
t /δ

2'ΓΛ/δReτ . The local Obukhov length
scales with Λ/δ ∼ 1/λ so we can obtain the scaling lt/δ ∼ Γ 1/2(Reτλ)−1/2. In this
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relationship Γ is an unknown property of the turbulence. In very stable flow, however,
limit conditions are approached. In figure 10(c) we have seen that Rf→Rf ,c at z' 0.8
for λ& 0.5. This implies Γ →Γc under strong stable conditions so the scaling can be
reduced to lt/δ ∼ (Reτλ)−1/2.

It is clear that in the inner layer the R behaviour does not have this character
in figure 22 but we note that in the spanwise turbulence intensity profile shown in
figure 17(a) there is a location in the surface region where intensity d〈v′v′〉/dz = 0
and that this location has a λ sensitivity, particularly for λ= 0.05–0.2. In these cases,
however, Γ is varying significantly with λ and z at z ' 0.8 (see Rf in figure 10c)
making any comparison unsatisfactory. For λ > 1.0, R <Rc near z ' 0.8 signifying
the onset of the diffusive regime.

In summary we are not able to report convincing evidence for the λ sensitivity of
this scaling but can report that the Reynolds number dependence is maintained in the
same way as seen in neutral flow.

7. Conclusions
We have examined turbulent stratified open channel flow. Our buoyancy bulk

parameter is defined through the ratio of the domain height δ to L , denoted λ, a
bulk Obukhov length scale for the flow, covering the range δ/L = 0–2.0 at Reτ = 395.
We obtain a boundary layer flow where the effects of stratification are weak in the
near-wall region but progressively stronger in the outer layer up to the free surface.

With increasing flow stability, two significant changes occur in the flow. Firstly
the flow becomes local for λ & 0.5, with turbulence production and dissipation in
local equilibrium, P/(ε + B) ∼ 1, extending from the near-wall region, z+ > 50, to
a near-surface limit, which we find is characterised by the same near-surface scaling
as in neutral flow. For fixed λ= 0.5 this length is (1− z)Re1/2

τ ' 2. In this equilibrium
region the flow can be characterised in terms of the flux Richardson number Rf and
the local Obukhov length scale Λ; for example, a mixing length can be defined as lm'
RfΛ/δ. Above λ' 1.0, limit values for flux Richardson number Rf = Rf ,c ' 0.17–0.2
and Ri = Ric ' 0.2 are obtained over a fraction of the channel height. We find that
the critical buoyancy parameter Er,c is not as general as λ as it contains a Reynolds
number dependence in Cf .

At higher λ we obtain a flow field where buoyancy interacts with the smallest
scales of motion. We find that this regime can be identified by the parameter ReL ,c=
L uτ/ν . 200–400, which is related to the L∗ parameter of Flores & Riley (2011).
In the energetic equilibrium, the local buoyancy Reynolds number ReΛ = Λuτ/ν is
related directly to the separation of lO and η in the outer boundary layer by ReΛ '
R ≡ (lO/η)

4/3. We observed that a consequence of the inhomogeneity of this flow
appears to be that regions of Ri� Ric are obtained where the flow is turbulent and
R�Rc.

An interesting feature of this configuration is that statistically steady flow can be
attained in relatively small computational domain sizes, unlike previously reported
stratified boundary layer flows. The apparent difference here is that the near-wall
region appears only subtly affected by stratification with R ∼ ReL Reτ , in contrast to
flows where buoyancy flux is non-zero at the wall and R ∼ ReL .

Acknowledgements
The authors gratefully acknowledge the support of the Australian Research Council

(ARC). The first author was supported by ARC Post-doctoral Research Fellowship
DP110103417.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.711


Transition to stably stratified states in open channel flow 553

REFERENCES

ABE, H., KAWAMURA, H. & MATSUO, Y. 2001 Direct numerical simulation of a fully developed
turbulent channel flow with respect to Reynolds number dependence. Trans. ASME: J. Fluids
Engng 123, 382–393.

ARMENIO, V. & SARKAR, S. 2002 An investigation of stably stratified turbulent channel flow using
large-eddy simulation. J. Fluid Mech. 459, 1–42.

ARMFIELD, S. W., NORRIS, S. E., MORGAN, P. & STREET, R. 2002 A parallel non-staggered
Navier–Stokes solver implemented on a workstation cluster. In Proceedings of the Second
International Conference on Computational Fluid Dynamics (ed. S. Armfield, P. Morgan & K.
Srinivas), pp. 30–45. Springer.

BARRY, M. E., IVEY, G. N., WINTERS, K. B. & IMBERGER, J. 2001 Measurements of diapycnal
diffusivities in stratified fluids. J. Fluid Mech. 442, 267–291.

BORMANS, M. & WEBSTER, I. T. 1997 A mixing criterion for turbid rivers. Environ. Model. Softw.
Environ. Data News 12 (4), 329–333.

BRETHOUWER, G., BILLANT, P., LINDBORG, E. & CHOMAZ, J.-M. 2007 Scaling analysis and
simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343–368.

BUSINGER, J. A., WYNGAARD, J. C., IZUMI, Y. & BRADLEY, E. F. 1971 Flux-profile relationships
in the atmospheric surface layer. J. Atmos. Sci. 28, 181–189.

CALMET, I. & MAGNAUDET, J. 2003 Statistical structure of high-Reynolds-number turbulence close
to the free surface of an open-channel flow. J. Fluid Mech. 474, 355–378.

CHUNG, D. & MATHEOU, G. 2012 Direct numerical simulation of stationary homogeneous stratified
sheared turbulence. J. Fluid Mech. 696, 434–467.

DEUSEBIO, E., SCHLATTER, P., BRETHOUWER, G. & LINDBORG, E. 2011 Direct numerical
simulations of stratified open channel flows. J. Phys. Conf. Ser. 318, 022009.

DILLON, T. M. & CALDWELL, D. R. 1980 The Batchelor spectrum and dissipation in the upper
ocean. J. Geophys. Res. 85 (C4), 1910–1916.

ELLISON, T. H. 1957 Turbulent transport of heat and momentum from an infinite rough plane.
J. Fluid Mech. 2, 456–466.

FLORES, O. & RILEY, J. J. 2011 Analysis of turbulence collapse in the stably stratified surface layer
using direct numerical simulation. Boundary-Layer Meteorol. 139 (2), 241–259.

GARCIA-VILLALBA, M. & DEL ALAMO, J. C. 2011 Turbulence modification by stable stratification
in channel flow. Phys. Fluids 23 (4), 045104.

GARG, R. P., FERZIGER, J. H., MONISMITH, S. G. & KOSEFF, J. R. 2000 Stably stratified turbulent
channel flows. I. Stratification regimes and turbulence suppression mechanism. Phys. Fluids
12 (10), 2569–2594.

GARGETT, A. E., OSBORN, T. R. & NASMYTH, P. W. 1984 Local isotropy and the decay of
turbulence in a stratified fluid. J. Fluid Mech. 144, 231–280.

GARRETT, C. J. R., KEELEY, J. R. & GREENBERG, D. A. 1978 Tidal mixing versus thermal
stratification in the Bay of Fundy and Gulf of Maine. Atmos.-Ocean 16 (4), 403–423.

GERZ, T., SCHUMANN, U. & ELGHOBASHI, S. E. 1989 Direct numerical simulation of stratified
homogeneous turbulent shear flows. J. Fluid Mech. 200, 563–594.

GONZALEZ-JUEZ, E. D., KERSTEIN, A. R. & SHIH, L. H. 2011 Vertical mixing in homogeneous
sheared stratified turbulence: a one-dimensional-turbulence study. Phys. Fluids 23 (5), 055106.

GRACHEV, A. A., ANDREAS, E. L., FAIRALL, C. W., GUEST, P. S. & PERSSON, P. O. G. 2013
The critical Richardson number and limits of applicability of local similarity theory in the
stable boundary layer. Boundary-Layer Meteorol. 147 (1), 51–82.

GRACHEV, A. A., FAIRALL, C. W., PERSSON, P. O. G., ANDREAS, E. L. & GUEST, P. S. 2005
Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol. 116 (2),
201–235.

HANDLER, R. A., SAYLOR, J. R., LEIGHTON, R. I. & ROVELSTAD, A. L. 1999 Transport of a
passive scalar at a shear-free boundary in fully developed turbulent open channel flow. Phys.
Fluids 11, 2607–2625.

HANDLER, R. A., SWEAN, T. F., LEIGHTON, R. I. & SWEARINGEN, J. D. 1993 Length scales and
the energy balance for turbulence near a free surface. AIAA J. 31 (11), 1998–2007.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.711


554 N. Williamson, S. W. Armfield, M. P. Kirkpatrick and S. E. Norris

HEARN, C. J. 1985 On the value of the mixing efficiency in the Simpson-Hunter h/u3 criterion.
Dtsch. Hydrogr. Z. 38 (3), 133–145.

HOLLOWAY, P. E. 1980 A criterion for thermal stratification in a wind-mixed system. J. Phys.
Oceanogr. 10, 861–869.

HOLT, S. E., KOSEFF, J. R. & FERZIGER, J. H. 1992 A numerical study of the evolution and
structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499–539.

HUNT, J. C. R. 1984 Turbulence structure and turbulent diffusion near gas–liquid interfaces. In Gas
Transfer at Water Surfaces (ed. W. Brutseart & G. H. Jirka), Water Science and Technology
Library, vol. 2, pp. 67–82. Springer.

HUNT, J. C. R. & GRAHAM, J. M. R. 1978 Free-stream turbulence near plane boundaries. J. Fluid
Mech. 84 (2), 209–235.

ITSWEIRE, E. C., KOSEFF, J. R., BRIGGS, D. A. & FERZIGER, J. H. 1993 Turbulence in stratified
shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr.
23 (7), 1508–1522.

IVEY, G. N. & IMBERGER, J. 1991 On the nature of turbulence in a stratified fluid. Part I: the
energetics of mixing. J. Phys. Oceanogr. 21, 650–658.

IVEY, G. N., WINTERS, K. B. & KOSEFF, J. R. 2008 Density stratification, turbulence, but how
much mixing? Annu. Rev. Fluid Mech. 40 (1), 169–184.

KOMORI, S., NAGAOSA, R., MURAKAMI, Y., CHIBA, S., ISHII, K. & KUWAHARA, K. 1993
Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas–liquid
interface. Phys. Fluids A 5, 115–125.

KOMORI, S., UEDA, H., OGINO, F. & MIZUSHINA, T. 1983 Turbulence structure in stably stratified
open-channel flow. J. Fluid Mech. 130, 13–26.

KULLENBERG, G. E. B. 1976 On vertical mixing and the energy transfer from the wind to the
water. Tellus 28 (2), 159–165.

LINDBORG, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242.
MONIN, A. S. 1970 The atmospheric boundary layer. Annu. Rev. Fluid Mech. 2, 225–250.
MOSER, R. D., KIM, J. & MANSOUR, N. N. 1999 Direct numerical simulation of turbulent channel

flow up to Re= 590. Phys. Fluids 11, 943–945.
NAGAOSA, R. & HANDLER, R. A. 2003 Statistical analysis of coherent vortices near a free surface

in a fully developed turbulence. Phys. Fluids 15 (2), 375–394.
NEZU, I. & RODI, W. 1986 Open-channel flow measurements with a laser Doppler anemometer.

J. Hydraul. Engng 112 (5), 335–355.
NIEUWSTADT, F. T. M. 1984 The turbulent structure of the stable, nocturnal boundary layer. J. Atmos.

Sci. 41 (14), 2202–2216.
NIEUWSTADT, F. T. M. 2005 Direct numerical simulation of stable channel flow at large stability.

Boundary-Layer Meteorol. 116 (2), 277–299.
OSBORN, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements.

J. Phys. Oceanogr. 10, 83–89.
POPE, S. B. 2000 Turbulent Flows. Cambridge University Press.
SHIH, L. H., KOSEFF, J. R., IVEY, G. N. & FERZIGER, J. H. 2005 Parameterization of turbulent

fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid
Mech. 525, 193–214.

SIMPSON, J. H., ALLEN, C. M. & MORRIS, N. C. G. 1978 Fronts on the continental shelf.
J. Geophys. Res. 83 (C9), 4607–4614.

SIMPSON, J. H. & HUNTER, J. R. 1974 Fronts in the Irish sea. Nature 250, 404–406.
SMYTH, W. D. & MOUM, J. N. 2000 Length scales of turbulence in stably stratified mixing layers.

Phys. Fluids 12, 1327–1342.
SORBJAN, Z. 1986 On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol. 34

(4), 377–397.
SORBJAN, Z. & GRACHEV, A. A. 2010 An evaluation of the flux-gradient relationship in the stable

boundary layer. Boundary-Layer Meteorol. 135 (3), 385–405.
TAYLOR, J. R., SARKAR, S. & ARMENIO, V. 2005 Large eddy simulation of stably stratified open

channel flow. Phys. Fluids 17 (11), 116602.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.711


Transition to stably stratified states in open channel flow 555

WANG, L. & LU, X.-Y. 2005 Large eddy simulation of stably stratified turbulent open channel flows
with low-to high-Prandtl number. Intl J. Heat Mass Transfer 48 (10), 1883–1897.

WIEL, B. J. H., MOENE, A. F., RONDE, W. H. & JONKER, H. J. J. 2008 Local similarity in the
stable boundary layer and mixing-length approaches: consistency of concepts. Boundary-Layer
Meteorol. 128 (1), 103–116.

ZONTA, F., ONORATO, M. & SOLDATI, A. 2012 Turbulence and internal waves in stably-stratified
channel flow with temperature-dependent fluid properties. J. Fluid Mech. 697, 175–203.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.711

	Transition to stably stratified states in open channel flow with radiative surface heating
	Introduction
	Problem formulation
	DNS

	Temperature stratification profile
	Transition to local energetic equilibrium and turbulence suppression
	Criterion for onset of strong stratification
	R affected regime
	Bulk parameters
	Parameterisation of turbulent mixing

	Near-wall flow
	Scaling for free-surface affected region
	Conclusions
	Acknowledgements
	References




