
J. Appl. Probab. 59, 652–669 (2022)
doi:10.1017/jpr.2021.82

LOGARITHMIC HEAVY TRAFFIC ERROR BOUNDS IN GENERALIZED
SWITCH AND LOAD BALANCING SYSTEMS

DANIELA HURTADO-LANGE,∗
SUSHIL MAHAVIR VARMA ,∗∗ ∗∗∗ AND
SIVA THEJA MAGULURI,∗∗ Georgia Institute of Technology

Abstract

Motivated by applications to wireless networks, cloud computing, data centers, etc.,
stochastic processing networks have been studied in the literature under various asymp-
totic regimes. In the heavy traffic regime, the steady-state mean queue length is proved
to be �(1/ε), where ε is the heavy traffic parameter (which goes to zero in the limit).
The focus of this paper is on obtaining queue length bounds on pre-limit systems,
thus establishing the rate of convergence to heavy traffic. For the generalized switch,
operating under the MaxWeight algorithm, we show that the mean queue length is
within O(log(1/ε)) of its heavy traffic limit. This result holds regardless of the complete
resource pooling (CRP) condition being satisfied. Furthermore, when the CRP condi-
tion is satisfied, we show that the mean queue length under the MaxWeight algorithm is
within O(log(1/ε)) of the optimal scheduling policy. Finally, we obtain similar results
for the rate of convergence to heavy traffic of the total queue length in load balancing
systems operating under the ‘join the shortest queue’ routeing algorithm.

Keywords: Drift method; state space collapse; MaxWeight; generalized switch; load
balancing
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1. Introduction

Resource allocation and load balancing problems arise frequently in a wide variety of
applications such as wireless networks, data centers, ride hailing systems (e.g. Uber and
Lyft), routeing and congestion control of traffic, manufacturing, telecommunications, etc.
Performance analysis of these systems is frequently addressed by modeling them as stochastic
processing networks (SPNs) [12], and essential performance measures are delay and queue
lengths. Exact analysis of these measures usually becomes intractable, so a common prac-
tice is to study asymptotic regimes. Heavy traffic is a popular regime, where one studies the
behavior of the system as the load grows to the maximum capacity. The heavy traffic limit of
queue lengths and delay provides meaningful insights about the actual performance of the sys-
tems, but an essential question is whether the limiting behavior is close to the behavior in all
traffic. In [2], [4], and [7], Eryilmaz, Hurtado-Lange, Maguluri, and Srikant obtain the heavy
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traffic limit of linear combinations of the expected queue lengths. However, the rate of con-
vergence to this limit is not studied. In other words, they compute error bounds on the queue
lengths that vanish in heavy traffic, but they are not optimized. In this paper we show that these
error bounds grow logarithmically, as opposed to the polynomial bounds obtained in [2], [4],
and [7].

Most of the literature on heavy traffic analysis is for systems that satisfy the so-called com-
plete resource pooling (CRP) condition. Under this condition, the system exhibits state space
collapse (SSC) onto a line, and hence it behaves as a single-server queue in the heavy traffic
limit. There are several methodologies to study systems that satisfy CRP, such as diffusion lim-
its [11], transform methods [5], and Lyapunov drift-based arguments [2]. The latter has also
been used to show that the steady-state mean of a linear combination of the queue lengths is
of the form K1/ε + o(1/ε), where K1 is an appropriately defined constant and ε is a parameter
representing how far away the arrival rate vector is from the boundary of the capacity region.

In this paper we study a generalized switch model, which was first introduced in [11] to
study several SPNs with control on the service process, such as input-queued switches, ad hoc
wireless networks, cloud computing, data centers, etc. We consider the MaxWeight algorithm,
and, using a tighter variant of the drift argument in [2], [4], and [7], we show that MaxWeight
is within K2 log(1/ε) of the optimal policy under the CRP condition (see Corollary 2.1). This
is the first contribution of this paper.

We also study a generalized switch without assuming that the CRP condition is satisfied, and
we improve the bounds presented in [4] without adding any assumption. Specifically, we com-
pute an upper bound of the form K1/ε + K2 log(1/ε) for linear combinations of the expected
queue lengths (see Theorem 2.1). This establishes a logarithmically growing error bound with
respect to the limiting queue length, which is of the form K1/ε. This is the second contribution
of this paper.

In addition to systems where the service is controlled, we look at load balancing systems,
where the control is on the arrivals. We consider the popular ‘join the shortest queue’ (JSQ)
algorithm, which is known to exhibit a one-dimensional SSC [2]. We show that the mean
sum of the queue lengths is K′

1/ε + K′
2 log(1/ε) (see Theorem 3.1) which, in conjunction with

the universal lower bound (ULB) shown in [2], establishes that JSQ is within K′
2 log(1/ε) of

the optimal routeing policy. This is the third contribution of this paper. Similar results can be
obtained for other routeing algorithms, such as power-of-d choices. However, we focus on JSQ
in this paper, for brevity.

1.1. Literature review

The work closest to ours in the literature is that of Meyn [8], who studied a general resource
allocation problem under the CRP condition. Meyn showed that a variation of the MaxWeight
algorithm, called h-MaxWeight, achieves logarithmic optimality. Our result is similar in flavor
but has two main distinctions. Firstly, our result is valid for the non-CRP case as well. Secondly,
in [8] Meyn worked with h-MaxWeight, where h is a function that needs to be computed by
analyzing the first-order approximation of the system. In this paper we use drift-based argu-
ments that are easier to generalize to other SPNs. We showcase this generalization by analyzing
the load balancing system under JSQ. Singh and Stolyar [10] and Sharifnassab, Tsitsiklis, and
Golestani [9] studied systems where the CRP condition is not satisfied. In particular, Singh
and Stolyar [10] also studied a generalized switch operating under the MaxWeight algorithm
in heavy traffic. However, in contrast to the present work, the focus in [10] is to show that the
service provided to each of the queues is smooth across time, i.e. there are not large gaps in
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FIGURE 1. Generalized switch model.

service. This is done by characterizing the deviations of the queue lengths from the region of
SSC. While we also obtain a bound on such deviations, the motivation, technique, and results
are different.

Sharifnassab, Tsitsiklis, and Golestani [9] studied the more general setting of a multi-hop
switched network with a general arrival process, operating under the MaxWeight scheduling
algorithm. They analyzed the first-order approximation of the system (typically known as the
‘fluid model’) and bounded the gap between the fluid and the stochastic model in terms of the
arrival process. Their results are applicable to a broader class of systems than the current paper,
but they did not study the heavy traffic steady-state behavior.

1.2. Notation

We denote the set of integers from 1 to n by [n]. We denote the set of real and integer
numbers by R and Z, respectively, and we add a subscript + to denote the subset of non-
negative numbers. We define the greatest integer smaller than or equal to x ∈R+ by �x�. All
the vectors in the paper are boldface. The sets of n-dimensional vectors with real components
and non-negative real components are denoted by Rn and Rn+, respectively. We denote the dot
product between two vectors by 〈x, y〉 and the Euclidean norm of a vector by ‖x‖. We denote
the ith canonical vector by e(i), the vector of ones by 1, and the vector of zeros by 0. We denote
the transpose of a matrix by A
, and the Hadamard product between two matrices by A ◦ B. The
expectation and variance of a random variable X are given by E[X] and Var[X], respectively,
and the covariance between two random variables X and Y by Cov(X, Y). The probability of
an event E is denoted by P[E], and the indicator function of an event E by 1{E}. For a set S we
use Int(S) and Bo(S) to denote its relative interior and its relative boundary, respectively.

2. Logarithmic error bounds in the generalized switch

2.1. Model

In this section we present the generalized switch model in detail. Consider n queues oper-
ating in discrete time, with time indexed by k ∈Z+. A pictorial example is presented in
Figure 1.

2.1.1. Arrival process. We define a sequence of i.i.d. random variables {ai(k) : k ∈Z+} for all
i ∈ [n], where ai(k) denotes the number of jobs that arrive at the ith queue at time k. Denote

the mean arrival rate vector by λ
�=E[a(1)] and the covariance matrix of the random vec-

tor a(1) by �a. Assume ai(1) ≤ Amax with probability 1 for all i ∈ [n], where Amax is a finite
constant.
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2.1.2. Service process. Let si(k) be the potential service that can be offered by server i in time
slot k. If there are not enough jobs to serve in the queue, there is unused service in that time
slot, and we denote it by ui(k). Then the actual number of served jobs in queue i at time k is
si(k) − ui(k). We allow interference among the servers, which requires them to satisfy a set of
feasibility constraints in each time slot. The scheduler is allowed to pick any service rate vector
that satisfies these constraints in each time slot. Additionally, the environment of the servers
can affect the interference constraints. We capture this by a sequence of i.i.d. random variables
{M(k) : k ∈Z+}, where M(k) is the ‘channel state’ in time slot k. We assume that the channel
state has a finite state space, denoted by M, and that the interference constraints in time slot

k are completely determined by the value of M(k). Let the pmf of M(1) be ψm
�= P[M(1) = m]

for all m ∈M. Finally, S(m) denotes the set of feasible service rate vectors in channel state m.
Observe that S(m) contains the potential (not necessarily actual) service rates that satisfy the
interference constraints in channel state m and, therefore, for any x ∈ S(m), all the non-negative
vectors that are dominated by x are also feasible. In other words, if 0 ≤ y ≤ x, then y is also
a feasible service rate vector. For simplicity, we only consider maximal feasible service rate
vectors in each set S(m) and their projection on the coordinate axes, and we assume that S(m) is
a finite set for each m ∈M. Thus there exists a finite constant Smax such that si(1) ≤ Smax with
probability 1 for all i ∈ [n].

2.1.3. Queueing process. The following steps are followed in each time slot (in this order).

• Observe the channel state and queue length vector.

• A scheduling problem is solved to determine which queues are served and the service
rates are determined according to the channel state.

• Arrivals occur in the system.

• Jobs are processed according to the selected schedule.

Then the queue dynamics follow the recursion

qi(k + 1) = qi(k) + ai(k) − si(k) + ui(k) for all k ∈Z+, i ∈ [n]. (2.1)

Thus {q(k) : k ∈Z+} is a discrete-time Markov chain with countable state space. If the unused
service is positive, then the queue length at the start of the next time slot should be zero and
vice versa. Thus we have

qi(k + 1)ui(k) = 0 for all k ∈Z+, i ∈ [n]. (2.2)

The scheduling problem is solved using the MaxWeight scheduling algorithm, which selects
the schedule with the maximum total weighted queue length. Mathematically, provided that
M(k) = m, we have

s(k) ∈ arg max
x∈S(m)

〈q(k), x〉, (2.3)

and the ties are broken randomly. Observe that, unless there are ties, the potential service vector
is deterministic after observing the channel state and the queue length vector.

2.1.4. Capacity region. It is proved in [2] that the capacity region of this system is C =∑
m∈M ψm ConvexHull(S(m)). Thus it is a coordinate convex polytope. We describe it as the

intersection of finitely many half-spaces, i.e. we write

C = {
x ∈Rn+ :

〈
c(�), x

〉≤ b(�) , �= 1, . . . , L
}
.
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Without loss of generality, we assume c(�) ≥ 0, ‖c(�)‖ = 1 and b(�) > 0 for all � ∈ [L]. We also

denote the �th facet as F (�) �= {
x ∈ C :

〈
c(�), x

〉= b(�)
}
. In addition, we denote the maximum

c(�)-weighted service rate by b(m,�). Mathematically, we have

b(m,�) = max
x∈S(m)

〈
c(�), x

〉
for all � ∈ [L].

To capture the randomness in the service process due to the channel state, we define a sequence
of i.i.d. random variables {B�(k) : k ∈Z+} (independent of queue lengths and arrival process)
with pmf given by P

[
B�(1) = b(m,�)

]=ψm. Let the covariance matrix of the vector {B�(1)}�∈[L]
be �B.

2.1.5. Heavy traffic and state space collapse. In heavy traffic, we take the limit as the vector of
arrival rates approaches the boundary of the capacity region. Formally, we fix a vector ν on the

boundary of C. For ε ∈ (0, 1), we let λ(ε) �= (1 − ε)ν be the mean arrival rate vector, and we take
the limit as ε ↓ 0. Specifically, we analyze a sequence of generalized switches parametrized by
ε and denote the queue length, arrival process, service process, and unused service for the
εth system by

{
q(ε)(k) : k ∈Z+

}
,
{
a(ε)(k) : k ∈Z+

}
,
{
s(ε)(k) : k ∈Z+

}
, and

{
u(ε)(k) : k ∈Z+

}
,

respectively. The parametrization is such that E
[
a(ε)(1)

]= λ(ε). Then the heavy traffic regime
is observed as ε ↓ 0.

For every ε ∈ (0, 1), observe that λ(ε) ∈ Int(C) and therefore the queue length process{
q(ε)(k) : k ∈Z+

}
of the generalized switch operating under MaxWeight is a positive recur-

rent discrete-time Markov chain. Thus the steady-state vector of queue lengths is well-defined.
A proof of positive recurrence is presented in [2]. We denote all the steady-state vectors
with a bar on top of the variable. In particular, q(ε) is a steady-state random vector that
is the limit in distribution of q(ε)(k) as k → ∞. In addition, let a(ε), M, B� be the steady-
state random vector/variable with the same distribution as a(ε)(1), M(1), B�(1), respectively.
We have E

[
a(ε)]= λ(ε), and denote the covariance matrix of a(ε) by �(ε)

a . Also, denote the
steady-state offered service by s(ε) and the steady-state unused service by u(ε). Finally, let(
q(ε))+ �= q(ε) + a(ε) − s(ε) + u(ε) be the vector of queue lengths one time slot after q(ε).

Define the cone K spanned by the normal to the facets F (�) that intersect at ν, i.e. the facets

such that ν ∈F (�). Let P
�= {
� ∈ [L] : ν ∈F (�)

}
. It was shown in [4] that, as ε decreases to zero,

the vector of queue lengths concentrates around the cone K. In other words, it was shown that
the projection of the vector of queue lengths on the cone K approximates the actual vector of
queue lengths, and the error of approximation is bounded by a finite (but unknown) constant.
Therefore this result is a notion of SSC. In Proposition 2.1 we prove an explicit expression for
this upper bound. Observe that the cone K can also be represented as

K =
{

x ∈Rn+ : x =
∑
�∈P

ξ�c(�) , ξ� ≥ 0 for all � ∈ P

}
.

In addition, define H as the affine hull of K, and let P̃ ⊂ P be the maximal set of indices in

P such that
{
c(�) : � ∈ P̃

}
is a set of linearly independent vectors. Let C

�= [
c(�)
]
�∈P̃ be a matrix

with columns c(�) with � ∈ P̃, and observe that H is the column space of C.

2.2. Logarithmic error bounds

In this section we present the main result of this paper. Specifically, we provide error bounds
of linear combinations of the expected queue lengths as ε ↓ 0. After stating the result, we
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discuss two applications of the result. Then in Section 2.3 we prove SSC, which is an essential
step in the proof of Theorem 2.1, and in Section 2.4 we prove the theorem.

Theorem 2.1. Consider a set of generalized switches operating under the MaxWeight schedul-
ing policy, parametrized by the heavy traffic parameter ε ∈ (0, 1) as described in Section 2.1.
Then there exists ε0 ∈ (0, 1) such that for any ε < ε0 and any vector w ∈⋂�∈P F (�), we have

∣∣∣∣E[〈q(ε),w
〉]− 1

2ε
1
(H ◦�(ε)

a

)
1 − 1

2ε
1
((C
C

)−1 ◦�B
)
1

∣∣∣∣≤ β log

(
1

ε

)
, (2.4)

where H
�= C(C
C)−1C
 is the projection matrix into H and β is a constant independent of

ε and w.

A similar result establishing the heavy traffic behavior of a generalized switch when the
CRP condition is not necessarily satisfied, was presented in [4]. The main difference is that
the result in [4] shows that the right-hand side term in (2.4) is o(1/ε), and we obtain a tighter
bound.

Theorem 2.1 presents a logarithmic error bound of the queue length behavior in light traffic
(positive ε) with respect to the heavy traffic behavior. However, the result is not sufficient to
claim optimality of MaxWeight because we are not comparing MaxWeight against any other
scheduling policy in this paper. One way to prove such a result for a scheduling algorithm A
would be to obtain a ULB (i.e. a lower bound for the linear combination of queue lengths that
is satisfied by all scheduling policies), and then prove that this ULB is achieved by the gen-
eralized switch operating under A. One can compute such a ULB for the generalized switch
[4, Proposition 1], but this ULB is not necessarily for the same linear combination of queue
lengths as presented in Theorem 2.1. Hence we cannot conclude optimality of MaxWeight.
Further, there are counterexamples that prove that MaxWeight is not optimal. In [6], Lu et al.
show the existence of a gap between the performance of a 2 × 2 switch (which is a particu-
lar case of the generalized switch) and the ULB computed in [7] (which is a particular case
of the ULB computed in [4]). Specifically, they show that the ULB and the performance of
MaxWeight differ by a multiplicative constant. Hence, in general, MaxWeight need not be
within an additive error of O(log(1/ε)) from the optimal policy.

Such a logarithmic optimality of MaxWeight can be obtained from Theorem 2.1 when the
CRP condition is satisfied and SSC occurs in a one-dimensional subspace. In this case the
heavy traffic limit is known to be the same as the ULB of the scaled expected linear combina-
tion of the queue length. Specifically, if we fix � ∈ [L] and assume ν ∈ Int

(
F (�)

)
, the CRP

condition is satisfied and SSC occurs in the line generated by c(�). Then, as shown in [4,
Proposition 1], for any scheduling algorithm, we have

E
[〈

q(ε), c(�)〉]≥ ULB
�= 1

2εb(�)

((
c(�))
�(ε)

a c(�) + σ 2
B�

)− (1 − ε)bmax

2
,

where bmax
�= maxm∈M,�∈[L]

{
b(m,�)

}
and σ 2

B�

�= (�B)�,�. By Theorem 2.1, we know that
MaxWeight approaches the above lower bound as ε ↓ 0. Thus Theorem 2.1 establishes that
MaxWeight is within O(log(1/ε)) of the optimal policy under the CRP condition. We formally
present this result in the next corollary.
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FIGURE 2. Illustration of queue length vector in input-queued switch.

Corollary 2.1. For the generalized switch operating under MaxWeight, as described in
Theorem 2.1, fix � ∈ [L] and assume ν ∈ Int

(
F (�)

)
. Then, for any ε < ε0, we have

ULB ≤E
[〈

q(ε), c(�)〉]≤ ULB + β̃ log

(
1

ε

)
,

where β̃ is a constant independent of ε, which we compute in (A.2). Hence the MaxWeight
algorithm is heavy traffic optimal and the error bound to the optimal value is O(log(1/ε)).

We present the proof of Corollary 2.1 in Appendix A. An immediate corollary of
Theorem 2.1 is to compute the bounds in the case of an input-queued switch. An input-queued
switch is a generalized switch where the number of queues is a perfect square, say n = N2,
the channel state is fixed over time, and the feasibility constraints are known. Specifically, the
input-queued switch can be thought of as an N × N matrix, where the (i, j)th component of
the matrix is the queue of packets at ith input port, waiting to be processed at the jth output
port. Thus rows are queues at input ports and columns are queues at output ports. All jobs
take exactly one time slot to be processed and, in each time slot, at most one input/output pair
can be served in each row and column. Then the set of feasible service rate vectors is the set
of N × N permutation matrices. In Figure 2 we present a pictorial example of a 2 × 2 switch
(Figure 2a) and a 3 × 3 switch (Figure 2b).

Below we present the performance bound for this system under the assumption that the
arrival rate to all of the queues is (1 − ε)/N, and hence all the queues are saturated in the heavy
traffic limit.

Corollary 2.2. For the input-queued switch defined above with independent arrivals, heavy

traffic parameter ε ∈ (0, 1), and
(
σ

(ε)
ai

)2 �=�
(ε)
i,i , there exists a constant β and ε0 ∈ (0, 1) such

that for all ε < ε0 ∣∣∣∣∣E
[

N2∑
i=1

q(ε)
i

]
−
(

1

ε
− 1

2Nε

) N2∑
i=1

(
σ (ε)

ai

)2∣∣∣∣∣≤ β log

(
1

ε

)
.
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The proof involves simplifying the left-hand side of (2.4) and is omitted as it is similar to
[4, Corollary 1].

2.3. State space collapse

We start by introducing some notation. For each ε ∈ (0, 1), let q(ε)
‖K(k) and q(ε)

‖H(k) be the

projection of q(ε)(k) on K and H respectively, and

q(ε)
⊥K(k)

�= q(ε)(k) − q(ε)
‖K(k), q(ε)

⊥H(k)
�= q(ε)(k) − q(ε)

‖H(k).

Finally, we denote the steady-state vectors by q(ε)
‖K, q(ε)

⊥K, q(ε)
‖H, and q(ε)

⊥H, which are the limit in

distribution of q(ε)
‖K(k), q(ε)

⊥K(k), q(ε)
‖H(k), and q(ε)

⊥H(k) as k → ∞, respectively. The steady-state
vectors are well-defined as the above Markov chains are positive recurrent by the definition
of projection and by the fact that

{
q(ε)(k) : k ∈Z+

}
is positive recurrent for all ε ∈ (0, 1) [11,

Proposition 2].
It was proved in [4] that ‖q⊥K‖ has bounded moments, where the bounds do not depend

on ε. Here we explicitly compute a bound, and later we use it to obtain the heavy traffic error
bounds.

Proposition 2.1. For the generalized switch model operating under MaxWeight parametrized
by ε ∈ (0, 1) described in Section 2.1, consider a vector ν ∈ Bo(C). Let δ > 0 be such that

δ ≤ b(�) − 〈
c(�), ν

〉
for all � ∈ [L] \ P if P � [L] and δ = 1 if P = [L]. Let α

�= max{Amax, Smax}.
If ε < δ/(2‖ν‖), then for each r = 1, 2, . . . we have

E
[‖q⊥H‖r]≤E

[‖q⊥K‖r]≤ Rr
�=
(

8nα2

δ

)r

+ (
8
√

nα
)r(8

√
nα+ δ

δ

)r

r!

We present the proof in Appendix B.

2.4. Proof of Theorem 2.1.

The first part of our proof is similar to the proof of [4, Theorem 1], so we omit some steps.
In the second part we show how to obtain logarithmic error bounds with respect to the heavy
traffic limit. These bounds are tighter than the bounds presented in [4, Theorem 1].

Proof of Theorem 2.1. We omit the dependence on ε of the variables for ease of exposition.
It suffices to show the result for w = ν, for the following reason. For any w ∈⋂�∈P F (�), let

w⊥ = w − ν. Then for every � ∈ P we have
〈
c(�),w⊥

〉= 0. Hence, since q‖H =∑
�∈P ξ̃�c

(�) for

some ξ̃� ∈R by definition of the subspace H, we have

〈q,w〉 = 〈q‖H,w〉 = 〈q‖H, ν + w⊥〉 = 〈q‖H, ν〉 = 〈q, ν〉.

We start by defining the Lyapunov function V‖H(q)
�= ‖q‖H‖2. To set the drift of this

Lyapunov function to zero in the steady state, we first verify that E
[‖q‖H‖2

]
<∞. We

omit this step for brevity, but it can be shown using the moment bounds obtained from the
Foster–Lyapunov theorem [3, Proposition 6.16] with Lyapunov function V(q) = ‖q‖2, and
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non-expansivity of the projection onto a convex set. Setting the drift of V‖H(q) to zero in
the steady state, we obtain

0 =E
[‖q+

‖H‖2 − ‖q‖H‖2]
=E

[‖q+
‖H − u‖H + u‖H‖2 − ‖q‖H‖2]

=E
[‖q+

‖H − u‖H‖2 + ‖u‖H‖2 + 2
〈
q+
‖H − u‖H, u‖H

〉− ‖q‖H‖2]
(a)= E

[‖q‖H + a‖H − s‖H‖2 − ‖u‖H‖2 + 2
〈
q+
‖H, u‖H

〉− ‖q‖H‖2]
(b)= E

[‖a‖H − s‖H‖2]︸ ︷︷ ︸
T2

+ 2E
[〈

q‖H, a‖H − s‖H
〉]︸ ︷︷ ︸

−T1

−E
[‖u‖H‖2]︸ ︷︷ ︸

T3

+ 2E
[〈

q+
‖H, u‖H

〉]︸ ︷︷ ︸
T4

, (2.5)

where (a) holds by definition of norm and dot product, and by the queue dynamics in (2.1),
and (b) holds by expanding the first norm square and reorganizing terms. Thus we have

T1 = T2 − T3 + T4. (2.6)

Observe that in the computation of (2.5) we only used properties of the Euclidean norm, the
dot product, and the dynamics of the queues (2.1). Then (2.5) is valid for any SPN that satisfies
(2.1).

We compute each Ti for i = 1, 2, 3, 4 separately. The terms T1 and T4 are the bottlenecks
for the optimal error bounds, so we compute them at the end of this proof. We start with T2
and T3, which we borrow from [4].

The term T2 is related to the square of the arrivals and services, and therefore the covariance
matrix of both processes is involved. Also, the arrival and service rate vectors are projected on
H. Then, using the least-squares problem, we can compute the desired norm. The details of
this computation can be verified in [4, equations (38)–(42)], and we omit them for brevity. We
obtain that there exists a constant β1 such that∣∣T2 − 1
(H ◦�(ε)

a

)
1 − 1
((C
C

)−1 ◦�B1
)∣∣≤ β1ε. (2.7)

Now we compute T3. Observe that the unused service vector is bounded, because the poten-
tial service rate vector is also bounded. Additionally, the more loaded the system, the least
unused service we should expect. Translating these intuitions into mathematics yields (2.8),
where β2 is a positive constant. A formal proof can be found in [4, equations (43)–(44)]. We
omit the details for brevity:

|T3| ≤ β2ε. (2.8)

Now we focus on the terms T1 and T4. We start with T1:

T1 = 2E
[〈

q‖H, s‖H − a‖H
〉] (a)= 2εE

[〈
q‖H, ν

〉]+ 2E
[〈

q‖H, s − ν
〉]
,

where (a) follows by first using the orthogonality principle and then substituting E[a] =
(1 − ε)ν and observing that a is independent of q‖H. Observe that the first term is part of
(2.4), which is the expression we want to obtain. Then we only need to bound the second term.
We present the result in Claim 2.1, and we prove it at the end of the section.
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Claim 2.1. Consider the system described in Theorem 2.1. Then there exist ε′0 > 0 and a finite
constant β3 such that

∣∣E[〈q‖H, s − ν〉]∣∣≤ β3ε log

(
1

ε

)
for all ε < ε′0.

For T4 we have the following result.

Claim 2.2. Consider the system described in Theorem 2.1. Then there exist ε′′0 > 0 and a finite
constant β4 such that

T4 ≤ β4ε log

(
1

ε

)
for all ε < ε′′0 .

The proofs of both claims are presented at the end of the section. Now, using (2.7), (2.8),

and Claims 2.1, 2.2 in (2.6), we obtain that for any ε < ε0
�= min{ε′0, ε′′0 }∣∣∣∣E[〈q(ε),w

〉]− 1

2ε
1
(H ◦�(ε)

a

)
1 − 1

2ε
1
((C
C

)−1 ◦�B
)
1

∣∣∣∣≤ β log

(
1

ε

)
,

where β
�= max{β1, β2, β3, β4}. �

Now we prove the claims. The main idea is to use Hölder’s inequality and Proposition 2.1
with the right choice of the parameter r. We additionally use the following result, which is
proved in [4, Lemmas 2 and 3], and we intuitively explain below.

Lemma 2.1. Let � ∈ P and m ∈M.

(i) Then there exists ν(m) ∈ S(m) such that b(m,�) = 〈
c(�), ν(m)

〉
. This implies that, for each

� ∈ P,
b(�) =E

[
B�
]= ∑

m∈M
ψmb(m,�).

(ii) Define π (m,�) �= P
[〈

c(�), s
〉= b(m,�) | M = m

]
. Then 1 − π (m,�) ≤ εb(m,l)/γ (m), where

γ (m) �= min
{
b(m,�) − 〈

c(�), x
〉
:
〈
c(�), x

〉
< b(m,�), � ∈ P, x ∈ S(m)}

is positive and finite.

One difficulty of the generalized switch model is that the vector of potential service rates
obtained from MaxWeight (see (2.3)) does not necessarily belong to the capacity region C.
Given the channel state M = m, we know that the vector of potential service satisfies s ∈ S(m).
However, the capacity region C is a convex combination of the sets ConvexHull(S(m)) for all
m ∈M. Hence there is no guarantee that the feasible service rate vectors belong to C.

The first part of the lemma shows that the location parameter b(�) of each facet of C is a
convex combination of the location parameter of hyperplanes that pass through the boundary of
each set ConvexHull(S(m)), and the weights associated to this convex combinations correspond
to the probability of observing each channel state, i.e. ψm. The second part of the lemma shows
that, given the channel state, the feasible service vector selected by the MaxWeight algorithm
achieves the maximum c(�) weighted service rate, b(m,�), with high probability. These results
are important because in the proof of Theorem 2.1 we work with q‖H, and by definition, q‖H
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is a linear combination of the vectors c(�) with � ∈ P. These two results imply that, intuitively,
the expected vector of potential service rate behaves as if it belonged to the capacity region.

Proof of Claim 2.1. Conditioning on the channel state, we get

E
[〈

q‖H, s − ν
〉] (a)=

∑
m∈M

ψmEm
[〈

q‖H, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]
,

where ν(m) is defined as in Lemma 2.1 and (a) follows from Lemma 2.1 part (i), and
because q‖H is a linear combination of the vectors c(�) with c(�) ∈ P̃. It remains to show that
Em
[〈

q‖H, s − ν(m)
〉
1{〈c(�),s〉�=b(m,�)}

]
is O(ε log(1/ε)).

Observe that q = q‖H + q⊥H = q‖K + q⊥K, and thus

Em
[〈

q‖H, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]

=Em
[〈

q‖K, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]

(2.9)

+Em
[〈

q⊥K − q⊥H, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]
. (2.10)

Now we show that the terms in (2.9) and (2.10) are O(ε log(1/ε)). From (2.9), we have

Em
[〈

q‖K, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]≤ 0

by the definition of projection on the cone K and by definition of ν(m) and b(m,�) in Lemma 2.1
part (i). Now we have

0 ≥Em
[〈

q‖K, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]

(a)≥ −Em
[〈

q⊥K, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]

(b)≥ −E
[‖q⊥K‖r]1/rEm

[‖s − ν(m)‖p1{〈c(�),s〉�=b(m,�)}
]1/p

(c)≥ −R1/r
r Em

[‖s − ν(m)‖p1{〈c(�),s〉�=b(m,�)}
]1/p

,

where (a) holds because q‖K = q − q⊥K, and because
〈
q, s − ν(m)

〉≥ 0 by the definition of
MaxWeight in (2.3) and since ν(m) ∈ S(m), (b) holds using Hölder’s inequality for some p, r> 1
such that 1/p + 1/r = 1, and (c) holds by SSC in Proposition 2.1. Now, by the definition of Rr,
we have

R1/r
r =

((
8nα2

δ

)r

+ (
8
√

nα
)r(8

√
nα+ δ

δ

)r

r!
)1/r

≤ β5(r!)1/r (a)≤ β5e1/r−1r1+1/2r,

where

β5
�= 8nα2

δ
+ 8

√
nα

(
8
√

nα + δ

δ

)
.

Here (a) follows from Stirling’s approximation for the factorial.
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Now we bound the remaining term Em
[‖s − ν(m)‖p1{〈c(�),s〉�=b(m,�)}

]1/p
as follows:

0 ≤Em
[‖s − ν(m)‖p1{〈c(�),s〉�=b(m,�)}

]1/p
(a)= Em

[‖s − ν(m)‖p | 〈c(�), s
〉 �= b(m,�)]1/p(1 − π (m,�))1/p

(b)≤ n
(
Smax + Vmax

)(
1 − π (m,�))1/p (c)= β6ε

1/p, (2.11)

where (a) holds by definition of π (m,�) in Lemma 2.1 part (ii), (b) holds with Vmax =
maxm∈M,i∈[n] ν

(m)
i , and (c) holds by Lemma 2.1 part (ii) for

β6
�= n
(
Smax + Vmax

)
max

b(m,�)

γ (m)
, 1.

Putting everything together, we obtain

0 ≥Em
[〈

q‖K, s − ν(m)〉1{〈c(�),s〉�=b(m,�)}
]

≥ −β5β6e1/r−1r1+1/2rε1/p

(a)= −β5β6e
1

�log(1/ε)�−1
⌊

log

(
1

ε

)⌋1+1/2�log(1/ε)�
ε
− 1

�log(1/ε)� ε

(b)≥ −2β5β6ε log

(
1

ε

)
for all ε < ε′0,

where (a) holds after choosing r
�= �log(1/ε)�, and (b) follows for ε′0 as defined below, and

because by the definition of floor function we have

lim
ε↓0

e
1

�log(1/ε)�−1
⌊

log

(
1

ε

)⌋ 1
2�log(1/ε)�

ε
− 1

�log(1/ε)�

≤ lim
ε↓0

e
1

log(1/ε)−1 −1
lim
ε↓0

log

(
1

ε

) 1
2 log(1/ε)−2

lim
ε↓0

ε
− 1

log(1/ε) = 1

e
× 1 × e = 1.

By definition of limit, there exists ε′0 > 0 such that for all ε < ε′0 we have

e
1

�log(1/ε)�−1
⌊

log

(
1

ε

)⌋ 1
2�log(1/ε)�

ε
− 1

�log(1/ε)� ≤ 2.

The proof that the term (2.10) is O(ε log(1/ε)) follows similarly by linearity of dot product,
Hölder’s inequality with r = �log(1/ε)� and (2.11). We omit the details for brevity. �

We end this section with the proof of Claim 2.2.

Proof of Claim 2.2. In this proof we use ideas and notation from [2, equation (56)]. For each

� ∈ P, let L(�)
+

�= {
i ∈ [n] : c(�)

i > 0
}

and define

c̃(�) = [
c(�)

i

]
i∈L(�)

+
, q̃

(�) = [
qi

]
i∈L(�)

+
and ũ

(�) = [
ui
]

i∈L(�)
+

.
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Then

0 ≤
∣∣∣∣T4

2

∣∣∣∣= ∣∣E[〈q+
‖H, u‖H

〉]∣∣ (a)= ∣∣E[−〈(̃q(�)
⊥H
)+
, ũ

(�)〉]∣∣ (b)≤ E
[∥∥(̃q(�)

⊥H
)+∥∥r]1/r

E
[∥∥̃u

(�)∥∥p]1/p
,

where (a) follows using the definition of projection on the subspace to substitute

q+
‖H =

∑
�∈P

〈
c(�), q+〉c(�),

then the key property (2.2), and that(̃
q

(�))+ = (̃
q

(�)
‖H
)+ + (̃

q
(�)
⊥H
)+.

Then (b) holds by Hölder’s inequality with p, r> 1 integers such that 1/r + 1/p = 1.
Now we bound each of the terms. For the first term we use Proposition 2.1, and we

obtain

E
[∥∥(̃q(�)

⊥H
)+∥∥r]1/r ≤E

[∥∥q+
⊥H
∥∥r]1/r ≤ R1/r

r

(a)≤ β5e1/r−1r1+1/2r,

where (a) holds by Stirling’s approximation for the factorial. For the second term we obtain

0 ≤E
[∥∥̃u

(�)∥∥p] (a)≤
∑
�∈P

∑
i∈L(�)

+

c̃(�)
i

c̃(�)
i

E
[̃
up

i

] (b)≤ Sp−1
max

c̃min

∑
�∈P

E
[〈̃

c(�), ũ
(�)〉] (c)≤ β7|P|Sp−1

max

c̃min
ε,

where (a) follows as all the terms in the summation are non-negative, (b) holds by defining
c̃min = min�∈P,i∈[n]

{
c̃(�)

i

}
and by definition of dot product, and (c) follows from [4, equation

(43)] for a finite constant β7, using a similar argument to the properties used to obtain (2.8).

Now pick r
�= �log(1/ε)� to get

0 ≤
∣∣∣∣T4

2

∣∣∣∣
≤ β5β

1/p
7

S1−1/p
max

c̃1/p
min

|P|1/pe1/r−1r1+1/2rε1/p

= β5β
1/p
7 S

1
�log(1/ε)�
max

( |P|
c̃min

)1− 1
�log(1/ε)�

e
1

�log(1/ε)�−1
⌊

log

(
1

ε

)⌋1+ 1
2�log(1/ε)�

ε
− 1

�log(1/ε)� ε

(a)≤ 2β5 max β7, 1
|P|
c̃min

ε log

(
1

ε

)
for all ε < ε′′0 ,

where (a) follows as

lim
ε↓0

S
1

�log(1/ε)�
max

( |P|
ẽcmin

)1− 1
�log(1/ε)�⌊

log

(
1

ε

)⌋ 1
2�log(1/ε)�

ε
− 1

�log(1/ε)�

≤ 1 × |P|
ẽcmin

× 1 × e = |P|
c̃min

.
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Thus there exists ε′′0 > 0 such that for all ε < ε′′0 we have

S
1

�log(1/ε)�
max

( |P|
ẽcmin

)1− 1
�log(1/ε)�⌊

log

(
1

ε

)⌋ 1
2�log(1/ε)�

ε
− 1

�log(1/ε)� ≤ 2|P|
c̃min

. �

The key idea in obtaining a logarithmic error bound is in picking the right exponent r in
Hölder’s inequality while bounding terms T1 and T4. We do this by minimizing the upper
bound over r (for a fixed ε), which gives r = �log(1/ε)�. The idea of optimizing over the
exponent in Hölder’s inequality is motivated by the paper [1].

3. Logarithmic error bounds in the load balancing system

While the generalized switch models many different SPNs with control on the service pro-
cess, there are many systems where the control is on the arrivals, such as the load balancing
system. In this section we show that a similar methodology to the proof of Theorem 2.1 can be
used in load balancing systems. Specifically, we study a load balancing system operating under
‘join the shortest queue’ (JSQ) as an illustrative example. Similar results can be obtained for
other routeing algorithms such as power-of-d choices. We first define the model.

3.1. Load balancing model

Consider an SPN with n queues, each of them with a separate server. Arrivals occur in
a single stream, and a dispatcher routes them according to JSQ (i.e. to the server with the
smallest number of jobs in line). After routeing, jobs cannot commute lines. We model the
system in discrete time, and we track the number of jobs in each queue. Then the service
policy is irrelevant. In each time slot, all the arrivals are routed to the same queue.

Let {a(k) : k ∈Z+} be the arrival process to the system, which is a sequence of i.i.d. ran-
dom variables, and let a(k) be the vector of arrivals to the queues after routeing at time k. By
definition of JSQ, we have

i∗ ∈ arg min
i∈[n]

{qi(k)}, a(k) = a(k)e(i∗).

If there are multiple minimizers, any can be chosen at random. Note that a(k) =∑n
i=1 ai(k)

by definition. The potential service is a sequence of i.i.d. random vectors, which we denote
by {s(k) : k ∈Z+}, and it is independent of the arrival and queue length processes. We assume
there exist finite constants Amax and Smax such that a(1) ≤ Amax and si(1) ≤ Smax for all i ∈ [n]
with probability 1. We use u(k) to denote the unused service vector in time slot k, which is
defined similarly to the generalized switch model. The dynamics of the queues occur according
to (2.1), and (2.2) is satisfied for all i ∈ [n].

Let μ
�=E[s(1)], σ 2

si

�= Var[si(1)] for each i ∈ [n], and let μ�
�=∑n

i=1 μi. We assume
μi > 0 for all i ∈ [n] because otherwise the jobs routed to the server with zero service rate
will never be processed. It is well known that the capacity region of the load balancing
model is C = {λ ∈R+ : λ≤μ�}, and that JSQ is a throughput optimal routeing algorithm
[2, Lemma 2]. Then, to model heavy traffic, we parametrize the arrival process by ε ∈ (0, μ�),

letting λ(ε) �=E
[
a(ε)(1)

]=μ� − ε and
(
σ

(ε)
a
)2 �= Var

[
a(ε)(1)

]
.
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It is also known that SSC occurs in the line where all the queues are equally long.
Specifically, denoting

q(ε)
‖

�=
(

1

n

n∑
i=1

q(ε)
i

)
1 and q(ε)

⊥
�= q(ε) − q(ε)

‖ ,

we have that E
[‖q(ε)

⊥ ‖r
]

is bounded for all r ≥ 1, as proved in [2, Proposition 1]. Recall that we
add a bar on top of the variables to denote steady state.

3.2. Logarithmic error bounds

The goal of this section is to prove the following result.

Theorem 3.1. Consider a set of load balancing systems operating under JSQ, parametrized by
the heavy traffic parameter ε ∈ (0, μ�), as described above. Then there exists a constant βJSQ
and ε0 ∈ (0, μ�) such that for all ε < ε0∣∣∣∣∣E

[
n∑

i=1

q(ε)
i

]
− 1

2ε

((
σ (ε)

a

)2 +
n∑

i=1

σ 2
si

)∣∣∣∣∣≤ βJSQ log

(
1

ε

)
.

Similarly to the generalized switch, an essential step in the proof of Theorem 3.1 is to find
explicit upper bounds for the moments of ‖q(ε)

⊥ ‖. We present them in the next proposition.

Proposition 3.1. For the load balancing system operating under JSQ, parametrized by ε ∈
(0, μ�) as described in Section 3.1, let

μmin = min
i∈[n]

μi, δ ∈ (0, μmin), αJSQ
�= max{Amax, Smax}.

Then, for any choice of ε ∈ (0, (μmin − δ)n), and all r = 1, 2, . . . , we have

E
[‖q(ε)

⊥ ‖r]≤ R(JSQ)
r

�=
(6nα2

JSQ

δ

)r

+ (
8αJSQ

√
n
)r(4αJSQ + δ

δ

)r

r!

The proof of Proposition 3.1 is very similar to the proof of [2, Proposition 1], so we omit it.
The proof of Theorem 3.1 follows from the computation of the upper bound in [2], similarly

to the proof of Theorem 2.1. We include a sketch proof for completeness.

Proof of Theorem 3.1. In this proof we omit the dependence on ε of the variables, for ease

of exposition. We set the drift of V‖(q)
�= ‖q‖‖2 to zero. First observe that in the computation

of (2.5) we only use properties of projection and norm, and we did not use properties of the
generalized switch itself. Therefore the same steps can be followed for the load balancing
system. We obtain

0 =E
[‖q+

‖ ‖2 − ‖q‖‖2]
=E

[‖a‖ − s‖‖2]︸ ︷︷ ︸
T2

+ 2E
[〈

q‖, a‖ − s‖
〉]︸ ︷︷ ︸

−T1

−E
[‖u‖‖2]︸ ︷︷ ︸

T3

+ 2E
[〈

q+
‖ , u‖

〉]︸ ︷︷ ︸
T4

.
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We analyze term by term. For T1 we obtain

T1

2
=E

[〈
q‖, s‖ − a‖

〉] (a)= 1

n
E

[
n∑

i=1

qi

]
E

[
n∑

i=1

si − a

]
(b)= ε

n
E

[
n∑

i=1

qi

]
, (3.1)

where (a) follows by definition of the projection, because the total arrivals and the potential
service are independent of the queue lengths, and rearranging terms, and (b) holds by definition
of ε. For T2 we obtain

T2 =E
[‖a‖ − s‖‖2] (a)= 1

n

(
E
[
a2]+E

[(
n∑

i=1

si

)2]
− 2E[a]E

[
n∑

i=1

si

])
(b)= 1

n

((
σ (ε)

a

)2 +
n∑

i=1

σ 2
si

+ ε2

)
, (3.2)

where (a) holds by definition of the projection and Euclidean norm, and (b) holds by the
definition of variance and of ε. For T3 we obtain

|T3| =E
[‖u‖‖2]= 1

n
E

[(
n∑

i=1

ui

)2]
(a)≤ SmaxE

[
n∑

i=1

ui

]
(b)= Smaxε, (3.3)

where (a) holds because, by definition of unused service, we have ui ≤ si ≤ Smax with proba-
bility 1 for all i ∈ [n], and (b) holds because E

[∑n
i=1 ui

]= ε, which can be easily proved by
setting the drift of the function V�(q) =∑n

i=1 qi to zero. A proof of this fact can be found in
[5, Lemma 5].

For the term T4 we follow a similar approach to the proof of Theorem 2.1. We obtain∣∣∣∣T4

2

∣∣∣∣=E
[〈

q+
‖ , u‖

〉] (a)= −E
[〈

q+
⊥, u

〉]
(b)≤ E

[‖q+
⊥‖r]1/rE[‖u‖p]1/p

(c)≤ (
R(JSQ)

r

)1/r
S1/r

maxε
1−1/r, (3.4)

where (a) holds by definition of the projection, and reorganizing terms, (b) holds by Hölder’s
inequality with p, r> 1 integers such that 1/r + 1/p = 1, and (c) holds by Proposition 3.1,
because u ≤ s ≤ Smax1 component-wise with probability 1, and because E

[∑n
i=1 ui

]= ε.
Then, putting (3.1), (3.2), (3.3), and (3.4) together, and letting r = �log(1/ε)�, we obtain the

result. �

4. Conclusions

In this paper we study the performance of generalized switch operating under MaxWeight
both when the CRP condition is satisfied and when it is not. We show that MaxWeight is
within O(log(1/ε)) from its heavy traffic performance. Additionally, when the CRP condition
is satisfied, we show that it is within O(log(1/ε)) from the optimal policy.

We also analyze the load balancing system operating under JSQ and prove that the rate of
convergence of JSQ to the optimal heavy traffic performance under heavy traffic is O(log(1/ε)).
Similar results can be obtained for other routeing algorithms.
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A possible line of future work is to explore if the O(log(1/ε)) error is tight. At this point it
is not known if the log error is an artifact of our proof or if there is indeed a log error in the
heavy traffic prelimit.

Appendix A. Proof of Corollary 2.1

Proof. In this case we have K = {
ξc(�) : ξ ≥ 0

}
, i.e. the cone K is a half-line. This implies

that H is the entire line defined by c(�). Then in Theorem 2.1 we can take w = b(�)c(�), and we
have H = c(�)

(
c(�)
)
 because we assumed ‖c(�)‖ = 1. Then we obtain

E
[〈

q(ε), c(�)〉]≤ 1

2εb(�)

((
c(�))
�(ε)

a c(�) + σ 2
B�

)+ β log

(
1

ε

)
,

where σ 2
B�

�= (�B)�,� and β is a constant that does not depend on ε.
To obtain a ULB, we use [4, Proposition 1]. We obtain that, under any scheduling algorithm

(not necessarily MaxWeight), the expected queue length vector in the steady state satisfies

E
[〈

q(ε), c(�)〉]≥ 1

2εb(�)

((
c(�))
�(ε)

a c(�) + σ 2
B�

)− bmax(1 − ε)

2
�= ULB, (A.1)

where bmax
�= maxm∈M,�∈[L]

{
b(m,�)

}
. Then, putting the two results together, we obtain

E
[〈

q(ε), c(�)〉]≤ ULB +
(

bmax(1 − ε)

2
+ β log

(
1

ε

))
(a)≤ ULB +

(
bmax

2
+ β

)
log

(
1

ε

)
,

where (a) holds because 1 − x ≤ log(1/x) for all x> 0. Therefore, defining

β̃
�= bmax

2
+ β (A.2)

and using (A.1), we obtain

ULB ≤E
[〈

q(ε), c(�)〉]≤ ULB + β̃ log

(
1

ε

)
. �

Appendix B. Proof of Proposition 2.1

Proof of Proposition 2.1. The proof is similar to [4, Proposition 2], so we only present a
sketch. The first inequality holds because K ⊂H and by definition of q⊥K and q⊥H. Now we
bound the second inequality. From the definition of projection, the triangle inequality and the
queue dynamics presented in (2.2), we obtain

|‖q⊥K(k + 1)‖ − ‖q⊥K(k)‖|1{q(k)=q} ≤ 2
√

nα,

with probability 1, and that for all q such that ‖q⊥K‖ ≥ (4nα)/δ we have

E
[‖q⊥K(k + 1)‖ − ‖q⊥K(k)‖ | q(k) = q

]≤ − δ
4

.

Using these results in [7, Lemma 3], we obtain the result. �
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