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A phonotactic grammar assigns a well-formedness score to all possible surface
forms. This paper considers whether phonotactic grammars should be probabilis-
tic, and gives several arguments that they need to be. Hayes &Wilson (2008) dem-
onstrate the promise of a maximum entropy Harmonic Grammar as a probabilistic
phonotactic grammar. This paper points out a theoretical issue with maxent
phonotactic grammars: they are not guaranteed to assign a well-defined probabil-
ity distribution, because sequences that contain arbitrary repetitions of unmarked
sequences may be underpenalised. The paper motivates a solution to this issue:
include a *STRUCT constraint. A mathematical proof of necessary and sufficient
conditions to avoid the underpenalisation problem are given in online supplemen-
tary materials.

Supercalifragilisticexpialidocious! Even though
the sound of it is something quite atrocious.

Mary Poppins (1964)

1 Introduction

Supercalifragilisticexpialidocious is a made-up word, uttered by the
eponymous character of the Disney musical Mary Poppins when asked
to describe winning a horse race. Although there are many unusual
things about this occurrence, it clearly highlights two important facts: lis-
teners occasionally encounter words they have not heard before, and there
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is no upper bound on how long such novel words can be. Therefore, it
must be the case that listeners’ speech-processing systems are equipped
to recognise and process such novel words without any special advance
warning. As this paper will argue, this fact has important implications
for the architecture and formal character of the PHONOTACTIC GRAMMAR –
a hypothesised mental component that evaluates the well-formedness of
possible words.
The first part of this paper aims to characterise the properties and archi-

tecture that a phonotactic grammar should have, in terms of both the em-
pirical and theoretical needs it serves. One reason to hypothesise such a
component was pointed out by Chomsky & Halle (1965) – speakers have
tacit knowledge of which sequences could be possible words of their lan-
guage. Subsequent research has implicated well-formedness in a variety
of other language behaviours (e.g. Mattys & Jusczyk 2001, Hay et al.
2003, Edwards et al. 2004, Storkel et al. 2006, Coady & Evans 2008).
The empirical finding that well-formedness is gradient (i.e. it has many
degrees, rather than being purely a categorical distinction between licit
and illicit) can be easily accommodated by modelling the phonotactic
grammar as a function that maps possible words to scalar well-formedness
values (see Theorem 1 in the online supplementary materials). However, in
order to link phonotactic well-formedness with speech perception and
other observable behaviours, something stronger is required: the
common ‘language’ of probability theory. This paper offers the novel argu-
ment that the need for a probabilistic phonotactic grammar falls out from
the consensus position that word recognition is probabilistic, together with
the commonsense observation that listeners are able to recognise new
words like supercalifragilisticexpialidocious.
The paper then turns to one particular formalism recently proposed in

the literature, which describes the class of MAXENT PHONOTACTIC

GRAMMARS (Hayes &Wilson 2008). This approach stands out from compet-
itors in that there is a formal proof of learnability in the face of variable
input, which makes it an especially attractive formalism for theoretical
development. The paper demonstrates that words like supercalifragilis-
ticexpialidocious pose a theoretical problem for maxent phonotactic gram-
mars. In a nutshell, the problem is that there is an infinite number of
possible words, but only a finite amount of probability to go around.
One way to handle this is to impose an arbitrary finite upper bound on pos-
sible word length, so that no probability is assigned to any word over some
length k. This is the solution adopted by Hayes & Wilson (2008) in the
software implementation released with their paper. They chose a default
upper limit of ten segments, meaning that their software assigns a prob-
ability of 0 to supercalifragilisticexpialidocious. It is of course possible to
raise the upper limit past the length of supercalifragilisticexpialidocious,
but this is not a principled solution to the problem. The fundamental
issue is that any sufficiently patient and creative speaker of English can
craft a grammatical non-word of arbitrary length.
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The opposite problem arises if the finite upper bound is simply
removed, without doing anything else. In that case, it may sometimes
happen that the grammar fails to sufficiently penalise one or more sub-
sequences, which can be strung together to make arbitrarily long
sequences. In fact, as demonstrated in detail in the body of this paper,
the Wargamay grammar that Hayes & Wilson report assigns a ‘perfect’
well-formedness score to any word of the form ban, where b=[‘bamba],
a=[“bamba] and n means any number of repetitions (e.g. [‘bamba], [‘bam-
ba”bamba], [‘bamba”bamba”bamba], etc.). Since this theory is supposed to
calculate the probability of a form directly from its well-formedness
score, it should assign equal (and comparatively high) probability to all
such words. But there is no way to assign the same positive probability
to an infinite number of distinct items without violating the axioms of
probability. This shows that it is logically possible – and may happen in
practice – that arbitrarily long sequences are underpenalised.
Hayes & Wilson’s choice of the hard upper limit on non-word length

involves sacrificing a few non-words (actually, infinitely many) in order
to ‘save’ the short, high-probability ones. However, careful inspection of
the underlying theory on which Hayes & Wilson’s approach is based
does not actually enforce a hard upper limit (Eisner 2002, Riggle 2004).
It is just that one runs the risk of underpenalisation when words of un-
bounded length are not expressly disallowed.
This paper shows that there is a way to steer between these two out-

comes. There is a principled way to assign a proper probability distribu-
tion over possible non-words without imposing an arbitrary hard upper
limit on word length. The essential problem is that the number of possible
words is exponential in their length; the solution is to impose an equal or
greater length penalty. Within the context of maxent phonotactic gram-
mars, this outcome is naturally achieved by incorporating a *STRUCT con-
straint, which incurs one violation for each overt segment. Theorem 2 in
the online supplementary materials gives sufficient conditions to avoid
the underpenalisation problem: the weight of the *STRUCT constraint
must have a magnitude greater than ln |S| (where |S| is the cardinality
of the segmental alphabet). Theorem 3 gives an exact test to determine
whether a given maxent phonotactic grammar exhibits the underpenali-
sation problem. Finally, the paper motivates the conjecture that under-
penalisation cannot arise as a result of the weight-setting or constraint-
induction steps in Hayes & Wilson’s software. There are two practical
implications of this work for researchers: (i) researchers using the Hayes
& Wilson (2008) learner should always include a *STRUCT constraint in
the grammar, with an initial weight greater than the natural log of the
size of the alphabet; (ii) researchers who seek to implement a maxent
phonotactic grammar should include the underpenalisation test, or force
the grammars to include a *STRUCT constraint as above. In short, the
second part of this paper may be thought of as offering a kind of ‘safety
check’ for maxent phonotactic grammars.
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2 The properties of phonotactic grammars

2.1 Minimal requirements

A phonotactic grammar is a hypothesised mental component which
assesses possible words. This general formulation was already explicit in
Chomsky & Halle (1965), who pointed out that English speakers distin-
guish not only between known words and non-words (e.g. brick vs.
blick), but also between non-words which could be English words and
those which could not (e.g. blick vs. bnick). As will be shown in this
section, what is needed to formalise this concept is an explicit represen-
tation of the set of logically possible words and a set of (ordered) well-
formedness values. The phonotactic grammar is then defined as a
function mapping from possible words to well-formedness values.
One natural property to assume is that the phonotactic grammarmust be

able to compare any pair of possible words. This assumption is motivated
by the fact that human well-formedness judgement tasks often take the
form of determining which of two non-words sounds more like a possible
word of the listener’s language (e.g. Coleman & Pierrehumbert 1997,
Daland et al. 2011). Furthermore, it is reasonable to assume that relative
well-formedness is TRANSITIVE; for example if a listener indicates that lbick
is less well-formed than bnick, and also that bnick is less well-formed than
blick, then the listener would agree that lbick is less well-formed than
blick. Another property comes from the theory of markedness: it is impos-
sible for a sequence of forms to continually increase in well-formedness.
That is, adding a finite amount of material may cause a form to become
more well-formed, but one cannot keep increasing well-formedness by
adding more and more. Formally, this means that every set of forms must
contain a maximally well-formed item. Finally, it is conventional to
assume that possible words are strings over an alphabet S+. Theorem 1
shows that any grammar which is consistent with these four assumptions
can be represented by a SCORE FUNCTION H : S+£ù—, where ù— is the
set of non-positive real numbers. The relative well-formedness of pairs of
words is then indicated with the natural order ≤; e.g. H(bnick)≤H(blick)
means that bnick is equally well-formed as or less well-formed than blick.
Under this formulation, the highest possible well-formedness value is 0,
and it should be assigned to the maximally well-formed item(s) (see also
Smolensky & Legendre 2006: chs 9, 10, 23).
This formulation can be illustrated with reference to Chomsky &Halle’s

proposal. They envisioned a categorical division between ill-formed and
well-formed items. If well-formed items are assigned a score of 0, then
ill-formed items should be assigned a score of —1, yielding a mapping
H : S+£{—1, 0}. Then the relative well-formedness of bnick vs. blick is
indicated by the inequality H(bnick)=…1≤ 0=H(blick).1 Note that

1 Of course, the same well-formedness relationships can be modelled in many other
ways. For example, one could define a score function that maps to non-negative
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because this model only allows a binary distinction in well-formedness, it
predicts that all ill-formed items are equally ill-formed, and all well-formed
items are equally well-formed. For example, it predicts H(lbick)=H(bnick);
H(ba)=H(supercalifragilisticexpialidocious).
As Hayes & Wilson (2008) point out, a binary distinction in well-form-

edness is not adequate for the empirical data:

In the particular domain of phonotactics, gradient intuitions are perva-
sive: they have been found in every experiment that allowed participants
to rate forms on a scale … Gradience is also found in the frequency of
‘repairs’ (such as excrescent vowel insertion) participants make when
asked to utter illegal nonce forms … Gradient intuitions can be found
even among forms that satisfy the categorical phonotactics of the lan-
guage, but contain rare sequences … Thus, we consider the ability to
model gradient intuitions to be an important criterion for evaluating
phonotactic models.

In principle, it is straightforward to account for gradience by extending the
range of possible well-formedness values. For example, one might wish to
distinguish three values of well-formedness. In that case, unambiguously
ill-formed items like bnick would be mapped to —2, marginal items like
bwick or voig would be mapped to —1 and well-formed items like blick
would be mapped to 0. Since the scale is unrestricted, in principle it
allows for an arbitrary number of distinctions, including countably
infinite distinctions.
To recapitulate, the empirical data and standard theoretical assumptions

jointly entail that every phonotactic grammar can be represented by a score
function H : S+£ù—. A score function does not intrinsically define a
probability distribution, but it does provide the ability to account for gra-
dience up to arbitrary degrees of precision. That is, the need to account for
gradience can be met without invoking a PROBABILISTIC model of
phonotactics.

2.2 Arguments for a probabilistic model of phonotactics

The rationale given by Chomsky & Halle was simply to distinguish well-
formed from ill-formed items.2 However, subsequent research has

real numbers, Y : S+£ù+, by Y(w)=—H(w). However, this would have the un-
desirable consequence that H(a){H(b) counterintuitively means that a is more
well-formed than b. Alternatively, one could make the range non-negative, and
also preserve the semantics of £ by defining Y(w)=H(w) +min{H(w)}. This will
work when the grammar makes only a finite number of well-formedness distinc-
tions, but not in the general case. Intuitively speaking, one can generally make a
non-word worse by adding more ill-formed subparts to it. For example, [lr] is ill-
formed, but many phonologists would agree that [lrtb] is worse. By defining score
functions so that they map to non-positive reals, we obtain exactly the formulation
that is used in maximum entropy models, i.e. a unified treatment.

2 I am grateful to Ellen Kaisse for pointing out that Chomsky & Halle (1968: 417) did
in fact consider a gradient model of phonotactics.
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turned up many other uses for phonotactic knowledge. For example,
Coleman & Pierrehumbert (1997) found that a word-form’s average
well-formedness score (from human judgements) was linearly related
to its log probability (according to a probabilistic phonotactic model
they proposed in the same paper). A linear relationship between log
probability (according to the model) and aggregate well-formedness
judgments has since been replicated several times (e.g. Coetzee &
Kawahara 2011, Daland et al. 2011).
Besides the admittedly metalinguistic task of acceptability judgments,

phonotactic well-formedness has been implicated in various aspects of
speech perception and speech production. For example, Davidson,
Wilson and colleagues have made fairly explicit proposals for a Bayesian
model of native and non-native speech perception that integrates acoustics
and phonotactics (Davidson & Shaw 2012, Wilson & Davidson 2013,
Chodroff & Wilson 2014, Wilson et al. 2014). In Chodroff & Wilson
(2014), the phonotactic grammar plays the role of a ‘prior model’, which
calculates the likelihood of encountering e.g. word-initial [bl] vs. word-
initial [b@l]; this information is integrated into the acoustic model, which
determines how well [bl] matches the observed acoustic sequence vs.
how well [b@l] does. As in all Bayesian models, the ability to integrate
this information depends on being able to express it in the common lan-
guage of probability distributions.
The final argument that will be made here for a probabilistic phonotac-

tic grammar comes from word recognition. The need for a probabilistic
phonotactic grammar in adults is formally entailed by the following
assumptions: (i) word recognition is probabilistic, and (ii) listeners some-
times encounter novel words. The assumption that word recognition is
probabilistic represents a consensus position in modern theories of
word recognition. For example, Norris & McQueen (2008) present a
Bayesian model of word recognition called Shortlist B, and model an im-
pressive array of behavioural data. Even models of word recognition
which do not use overt probabilities in their update equations, such as
the spreading activation model of TRACE (McClelland & Elman
1986), at least implicitly represent a probabilistic formulation in which
the probability of a form is proportional to the exponential of its activa-
tion level (1986: 21). It is possible to find either explicit description of
lexical probabilities or ‘word-activation level’ equations which corre-
spond very closely to them (usually with activation being linearly
related to log probability) in every model of word recognition I am
aware of, including MATCHECK (Baayen & Schreuder 2000), auto-
matic speech-recognition systems (e.g. Scharenborg et al. 2005) and
the word-segmentation models pioneered by Goldwater and colleagues
(e.g. Elsner et al. 2013).
Something special must occur when a novel word is actually encoun-

tered. To see the problem, consider what must occur when a model is pre-
sented with a novel word in context, as in (1).
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(1) [aIlaIkt@’tov]

I like [t@’tov]

The way that these models process normal sentences is by multiplying the
probabilities of all the entries. If the model already had a lexical entry
tatove, than the probability calculation would be something like (2).

(2) Pr(I like tatove | [aIlaIkt@’tov])ÿ
Pr(I)
Pr(I£aI)

Pr(tatove)X
Pr(tatove£t@’tov)

X
X

Pr(like)
Pr(like£laIk)

X
X

(Actually, the calculation would normally be done in the log domain, as a
sum over log probabilities, rather than a product over regular probabil-
ities.) However, since the word tatove does not have a preexisting lexical
representation, the prior probability assigned to this would normally be 0.
In that case, the probability of the parse in (2) would have to be 0 as well,
which means it would be literally impossible to recognise the novel form
tatove. Norris & McQueen (2008: 366) say as much: ‘unknown words
require special treatment … The model has to consider the hypothesis
that the input is not a known word’.
The problem of unseen items has been extensively studied (e.g. Baayen

2001), and the standard approach is to reserve some probability mass,
Pr(wnew), for previously unseen items. In the case of (2), this would
amount to replacing the Pr(tatove) term with a term Pr(wnew), reflecting
the total probability of encountering any new word in this context.
However, this value does not faithfully represent the event that occurred:
it was not just that some previously unseen word was encountered, but also
that the previously unseen word has the form tatove. The probability of the
event should be decomposed into two parts: the probability Pr(wnew) that
some previously unseen item has occurred, as well as the probability Pr
(wnew£t@’tov) that an item has the form tatove, given that it is new. The
revised computation is given in (3).

(3) Pr(I like tatove | [aIlaIkt@’tov])ÿ
Pr(I)
Pr(I£aI)

Pr(wnew)X
Pr(wnew£t@’tov)

Pr(like)
Pr(like£laIk)

X
X

X
X

Note that this latter term is precisely what a probabilistic phonotactic
grammar is supposed to calculate. Furthermore, this equation indicates
a natural meaning for the probabilities output by a phonotactic
grammar: Pr(wnew£t@’tov) represents the probability that the next
nonce word a speaker encounters will have the form [t@’tov]. More gen-
erally, then, the formal architecture of word recognition entails a mental
component which assigns to each possible word w a probability, repre-
senting the probability that the next novel word the listener encounters
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will have the form w. This point has not been forcibly made in the literature
on word recognition, presumably because existing models focus mainly on
modelling psycholinguistic data pertaining to the recognition of existing
words.
In summary, probabilistic phonotactic grammars are needed to link

phonotactic well-formedness with observable speech behaviours such
as speech perception and speech production. This is particularly clear
in the case of word recognition. The consensus position that word recog-
nition is a probabilistic process and the fact that listeners encounter
novel words jointly entail the need for a mental component which
assigns a probability to every logically possible word. This is exactly
what a probabilistic phonotactic grammar is. Formally, a probabilistic
phonotactic grammar can be defined as a phonotactic grammar which
assigns probabilities. That is, F : S+£ù+ (where ù+ is the set of non-
negative real numbers) is a probabilistic phonotactic grammar if and
only if F is a phonotactic grammar, and the sum of the probabilities
that F assigns over every string in S+ totals 1. This definition of prob-
abilistic phonotactic grammars is quite standard in the literature. In
fact, the only novel contribution of this section is the argument from
the theory of word recognition that a probabilistic phonotactic model
is needed – and the interpretation it provides for the probabilities that
such a model assigns.

3 Maximum entropy Harmonic Grammar

While §2 discussed the formal properties that a phonotactic grammar
should have, §3.1 discusses the properties that we desire of a phonological
formalism in general. §3.2 argues that maximum entropy Harmonic
Grammar (maxent HG) is at least as good as all current competitors on
these desiderata, and is superior specifically in terms of learnability and
analytic tractability. Finally, §3.3 discusses how Hayes & Wilson (2008)
adapt maxent HG to handle phonotactic learning; the resulting class of
models will be called maxent phonotactic grammars, to distinguish them
from maxent HGs more generally.

3.1 Desiderata

Within generative phonology, it is standard to regard the core goal of a
phonological formalism as computing a mapping from lexical representa-
tions to surface representations. For example, one way to account for the
pronunciation of English kisses is that the lexical representation is the con-
catenation of the stem /kIs/ and plural marker /z/, with the grammar com-
puting an epenthesis operation /kIs+z/ √ [kIsIz]. Besides the core
phenomenon of straightforward categorical mappings like these, there
are several properties we might want a phonological formalism to
exhibit, as shown in (4).
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(4) gradience: as discussed abovea.
b. variation: non-determinism in phonological mapping, e.g. t-deletion
c. learning and learnability: various aspects of how a grammar/model

can be identified from a finite amount of data, and the kinds of data
that are available during language acquisition

d. statistical inference: the ability to draw inferences about the grammar
that generated a given set of data, such as whether it justifies
hypothesising a constraint against complex codas

e. analytic tractability: the ease with which and the extent to which a
formalism’s properties can be investigated analytically; for example
whether the log-odds of two outputs be calculated without reference
to other candidates

All of these properties either enable a formalism to account for data or
enable analysts to use the formalism in order to reason about human lin-
guistic knowledge and behaviour.

3.2 Properties of maximum entropy Harmonic Grammar

Harmonic Grammar (Legendre et al. 1990, Smolensky & Legendre 2006)
is a constraint-based formalism which was the historical precursor to
Optimality Theory (McCarthy & Prince 1993, Prince & Smolensky
1993), and which crucially differs in having constraints that are
WEIGHTED rather than strictly ranked. Maxent HG (Goldwater &
Johnson 2003, Jäger 2007, Hayes & Wilson 2008) refers to the natural ex-
tension of Harmonic Grammar to a log-linear (maximum entropy) model
(Jaynes 1983, Jelinek 1997: ch. 13, Manning & Schütze 1999). Thus
maxent HG capitalises on both the theoretically advantageous properties
of constraint-based phonology and the statistically sound learning and
inference properties of log-linear models.
An HG grammar contains a set of constraints {Ck}k=1…K and an asso-

ciated set of weights {wk} k=1…K. Each constraint Ck is a function which
maps input–output pairs to a violation value. The HARMONY of an input–
output pair (x, y) is defined as the weighted sum of its constraint viola-
tions, as in (5).

(5) H(x, y)=%k wkXCk(x, y)

Because violating a constraint is worse than not violating a constraint,
more constraint violations should result in a lower harmony. This can
be achieved in several notationally distinct but mathematically equiva-
lent ways. This paper will use the convention that constraints assign
non-negative values (violation counts), while all weights are non-
positive.
The CANDIDATES of an input x consist of all the input–output pairs

for which x is the input. Formally, this may be indicated by a relation
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R (i.e. xRy means that y is an output candidate for input x), though in
practice it is most common to simply list the candidates in a tableau, as
in (6).

(6)

a.

b.

c.

d.

tra

ta
ra
tera

C1: *Complex
w1=—25

/tra/ H

—25

—20

—20

—5

1

™

C2: Max(C)
w2=—20

1

1

C3: Dep(V)
w3=—5

1

Harmonic Grammar tableaux are similar to OT tableaux, but differ in that
the constraint weights are explicitly indicated, and include an additional
column to indicate the harmony values. The candidate with the greatest
harmony is deemed the winner. (6) illustrates a grammar in which ill-
formed onset clusters are repaired by vowel epenthesis (rather than
cluster simplification).
Maxent HG is a proper extension of Harmonic Grammar. The defini-

tion of harmony in (5) remains the same, but in addition, maxent HG
defines a function that returns WELL-FORMEDNESS VALUES, as in (7).

(7) F(x, y)=eH
(
x, y)

This value represents the well-formedness of the x£y mapping. The
well-formedness value is similar to a probability, except that it is not
required that the sum over all possible items must add up to 1. The
PARTITION FUNCTION for an input x, Z(x) is defined as the sum of the
well-formedness values for the candidates for x, as in (8).

(8) Z(x)=%xRz F(x, z)

As long as the partition function for an input x is finite, it is possible to
define the conditional distribution Pr(y|x) as in (9).

(9) Pr(y|x)=F(x, y)/Z(x)

Thus the probability of a string is directly proportional to its well-formed-
ness value if the partition function is finite, and is not defined if the parti-
tion function is not finite. (The well-formedness value is well-defined
whether the partition function is finite or not.) Therefore, a key question
– the key question addressed in §4 and §5 – is under what circumstances
the partition function is finite.
The workings of a maxent HG grammar can also be illustrated by a

tableau. (10) repeats tableau (6), augmented with F and Pr values.
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(10)

a.

b.

c.

d.

tra

ta
ra
tera

C1: *Complex
w1=—25

/tra/ H

—25

—20

—20

—5

1

C2: Max(C)
w2=—20

1

1

C3: Dep(V)
w3=—5

1

F

e 25

e 20

e 20

e 5

Pr

2·06e−9

3·05e−7

3·05e−7

0·9999994

Just as in (6), *COMPLEX and MAX(C) have much greater weight than DEP

(V). The result is that complex onsets are essentially always repaired by
vowel epenthesis. Note that the formalism does assign a marginal degree
of probability to other candidates; however these probabilities are so low
as to be indistinguishable from the rate of speech errors. In fact,
Goldrick & Daland (2009) propose that speech errors can be modelled
grammatically in just this way, using the closely related formalism of
Noisy Harmonic Grammar. The remainder of this section discusses how
maxent HG satisfies the desiderata outlined earlier; the discussion is
brief, as many of these points have been covered in more detail by Pater
and colleagues in their programme of theory comparison (Pater 2008, to
appear, Coetzee & Pater 2011, Boersma & Pater to appear).

3.2.1 Gradience. In the context of phonotactics, gradience refers to the
fact that listeners distinguish degrees of relative well-formedness even
among phonotactic configurations that are generally judged well-formed
or ill-formed. For example, there are no English words which begin
with rt or bn, so both are ill-formed, but English listeners reliably prefer
the latter over the former when forced to choose, meaning that rt is
more ill-formed than bn (Daland et al. 2011). In maxent HG, this kind
of gradience is straightforwardly predicted by ‘ganging’ of ‘sonority-regu-
lating constraints’ (for detailed exposition see Hayes 2011). For example,
consider two constraints on onset clusters: *#[—syll][—son] punishes all
consonant–obstruent onset clusters (sonority plateaus and sonority falls),
while #[+son][—son] punishes sonorant–obstruent onset clusters (sonority
falls). Now bn violates *#[—syll][—son], while rt violates both constraints.
Since constraint violations are additive in Harmonic Grammar, both vio-
lations count against the probability of rt, while only one violation counts
against the probability of bn. More generally, when form x contains a strict
superset of violations of y (i.e. y HARMONICALLY BOUNDS x), any maxent
HG grammar must assign lower probability to x than y. This is how
maxent HG enforces gradience; analogous mechanisms apply in most
competitor theories.

3.2.2 Variation. Like other probabilistic approaches, maxent HG is nat-
urally suited to modelling variation. As exemplified in (10) above, essen-
tially categorical mappings can be obtained by making the HARMONY

DIFFERENCE be large between the best candidate and the next-best
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competitor. Since maxent HG allows for real-valued weights, the harmony
difference can be controlled to an arbitrary degree of precision, allowing for
close fits between observed and expected probabilities. However, maxent
HG retains many of the restrictive properties of constraint-based gram-
mars; for example, as noted in §3.3, maxent HG must always assign
lower probability to x than y if y harmonically bounds x.

3.2.3 Learning properties. It is particularly in its ability to learn in the
face of variation that maxent HG stands above competitor theories. The
error-driven constraint demotion algorithms employed in classic OT
learning (Tesar & Smolensky 1998) will not generally converge in the
face of variable data. Proposals for handling variation include constraint
strata (Anttila 1997), Stochastic Optimality Theory (Boersma & Hayes
2001), maxent HG (Goldwater & Johnson 2003, Hayes & Wilson 2008)
and Noisy Harmonic Grammar (Goldrick & Daland 2009, Boersma &
Pater to appear). Pater (2008) demonstrates that when Boersma &
Hayes’ (2001) Gradual Learning Algorithm was used with Stochastic
Optimality Theory, it could fail to learn even a categorical pattern,
owing to miscalibration of the constraint rewards/penalties (see also
Magri 2012). With respect to Noisy Harmonic Grammar, Boersma &
Pater (to appear) prove that ‘for any nonvarying target language,
Harmonic Grammar learners are guaranteed to converge to an appropriate
grammar, if they receive complete information about the structure of the
learning data. We also prove convergence when the learner incorporates
evaluation noise’. That is, a formal proof has been given for (Noisy)
Harmonic Grammar learners using the perceptron learning rule (also
known as stochastic gradient ascent) when the learning data do not
include variation (or hidden structure).3 However, to date it has not
been proven that Noisy Harmonic Grammars will converge to a relatively
stable grammar when presented with language data containing variation.
In contrast, it has been known for some time that log-linear models have
a convex parameter space, which means that convergence to an optimal
grammar is guaranteed even if the language to be learned does contain vari-
ation, provided again that the surface forms do not contain hidden struc-
ture (Della Pietra et al. 1997).

3.2.4 Analytic tractability. A case in point is when the analyst wishes
only to compare two candidates out of some larger set; in this case

3 Hidden structure is normally conceived of as structure that is present in the lexical-
surface mapping, but not observable to a listener. For example, the assignment of
accent/stress is often accounted for using metrical structure such as feet, which
are not directly observable (see Tesar et al. 2003, Tesar & Prince 2003, Hayes
2004, Merchant & Tesar 2008, Jarosz 2013, Bowers 2014). For example, banana
[b@‘næn@] has medial stress, but in theories with foot structure, this is consistent
with two different output candidates, the trochaic parse [b@(‘næn@)] and the
iambic one [(b@‘næ)n@]. Perceptual evidence alone does not determine a unique
input–output mapping in many cases, thereby failing to meet the assumptions of
most learning algorithms with convergence proofs.
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maxent HG has the elegant property that the log-odds of two candidates is
the difference between their harmonies. This means that two candidates
can be compared using only their own constraint violations and the asso-
ciated weights. In contrast, Noisy Harmonic Grammar requires computa-
tionally intensive simulations to determine candidate probabilities (cf.
Goldrick & Daland 2009: Table I), so that the log-odds of two candidates
depends not only on their own harmonies, but also on those of all the other
candidates. Relatedly, because the probability of a candidate is uniquely
determined by its constraint violations in maxent HG, it is straightforward
to define a LIKELIHOOD FUNCTION, which expresses the probability of the
data, given the constraint weights. In combination with the convexity
property mentioned in §3.2, this renders maxent HG amenable to
efficient numerical methods for the constraint-weighting operations (pro-
vided that the partition function can be calculated).
In summary, maxent HG is equal or superior to other phonological

formalisms on all five desiderata identified here.

3.3 Maxent phonotactic grammars

As noted earlier, a phonotactic grammar differs from the normal concep-
tion of a phonological grammar. In a ‘normal’ phonological grammar,
we find (11).

(11) The grammar should pair every lexical representation /x/ with one
or more surface representation [y], e.g. by indicating the probability
that /x/ maps to [y].

a.

b.

c.

In practice, the candidate set for a given input /x/ is finite and small:
in theory, the candidates from Gen form an infinite set, but in
published papers, it is customary to include around 2–6 candidates
in any tableau (for discussion and critique see Bane & Riggle 2012).
The well-formedness of an (/x/, [y]) pair is determined by both
markedness and faithfulness constraints.

However, in phonotactic grammars, we have (12).

(12) a.
b.

There is no input, and so there is nothing to be faithful to.
The grammar is supposed to ‘score’ every string in S+, a countably
infinite set.

Thus a phonotactic grammar is quite different from a ‘normal’ phonological
grammar. This section shows that phonotactic grammars fall out as a
special type of phonological grammar, if the perspective offered earlier on
word recognition is adopted. The class of maxent phonotactic grammars
can then be defined by applying this perspective to maxent HG.
Recall that, in order to handle novel words, models of word recognition

need a ‘special’ item wnew (‘<new word>’), and the phonotactic grammar
should distribute the probability of this item across all possible strings.
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This insight allows us to cast a phonotactic grammar as a phonological
grammar in which (i) wnew is the sole lexical representation; (ii) the set of
candidates is the set of all possible words S+. In the remainder of this
section, this perspective is deployed in the context of maxent HG gram-
mars; this is the formal underpinning for what we have been calling
maxent phonotactic grammars.
Equation (9) is the fundamental equation by which maxent HG assigns

probability to a candidate. In (13), subscripts have been added to explicitly
represent a particular set of constraints C and their associated weights w.

(13) PrC,w(y|x)=FC,w(x, y)/ZC,w(x)

Since there is only a single, constant lexical representation (wnew) in phono-
tactic grammars, it can be suppressed. Moreover, since the candidates are
possible words, they are represented as w. Substituting in this way gives
(14), which defines the behaviour of maxent phonotactic grammars.

(14) PrC,w(wi)=FC,w(wi)/ZC,w
FC,w(wi)=exp(%k wkXCk(wi))where
ZC,w=%SÊS* FC,w(wi)and

Hayes &Wilson (2008) define PHONOTACTIC LEARNING as the process of iden-
tifying the markedness constraints that are active in distinguishing possible
words from impossible ones, and inferring their weights.4 They then
propose a theory for accomplishing phonotactic learning usingmaxent phono-
tactic grammars. The core of the idea is to regard the existing lexicon‰={w1,
w2,…, wn} as a sample from the phonotactic grammar having constraints C=
{Ck}k=1…m and weights w={wk}k=1…m. The probability of the lexicon is the
product of theprobabilities of generating eachword in it,where theprobability
of a word-form wi is calculated according to (14). Hayes & Wilson (2008)
propose that the ‘best’ grammar (C, w) can be found usingmaximum a poster-
iori estimation, incorporating a ‘prior’ so that the learned grammar reflects a
compromise between making the grammar simple and fitting the data well.
There are two technical obstacles to learning in a completely general way.

The first is that the partition function ZC,w is defined over an infinite string

4 Note that Tesar and colleagues use the term phonotactic learning with a related but
distinct meaning. According to this, phonotactic learning pertains to learning the
pattern of contrast and licensing from the surface forms of a language (e.g.
Merchant & Tesar 2008). This differs from the sense of phonotactic learning used
here in that it involves learning a partial ordering over both markedness and faith-
fulness constraints. An example may serve to illustrate the contrast. In tableau (6)
above, highly prioritised *COMPLEX and MAX drive the mapping /tra/£[tera]. If
the Hayes & Wilson learner were exposed to surface data from this language, it
would learn that #CC sequences do not occur (formalised as a very strong weight
on *COMPLEX). However, a Tesarian learner would learn something stronger:
there is no vowel~zero contrast in the environment #C_C. This crucially
entails that at least one faithfulness constraint (MAX, DEP) is prioritised lower
than *COMPLEX. The Hayes & Wilson learner cannot learn this, because it does
not include faithfulness constraints.
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set, so it cannot be calculated exactly by brute force. The second obstacle is
that there may be billions or even trillions of logically possible markedness
constraints, and it is not computationally feasible to include every one.
Hayes &Wilson (2008) propose to solve the latter problem with an iterative
procedure, in which the learner begins with an ‘empty’ grammar, and then
considers constraints one by one, retaining those which increase probability
sufficiently. The order in which constraints are tried is governed by heuris-
tics, about which more will be said later. For now, this paper focuses on the
first problem, calculating the partition function.
Hayes & Wilson’s method for calculating the partition function makes

use of finite-state Optimality Theory (Eisner 2002, Riggle 2004, 2009).
Each constraint in the grammar is coded as a simple weighted finite-state
machine, and the grammar is constructed by ‘intersecting’ all of the con-
straints (for exposition see Riggle 2004). This results in a very large
finite-state machine, each of whose states represents a violation vector cor-
responding to a (sometimes infinite) class of strings. The expected viola-
tion counts for each constraint in the grammar can be summed using
Eisner’s ‘expectation semi-ring’. From these expected counts it is straight-
forward to compute the partition function.
As an implementational matter, Hayes & Wilson (2008: 389) choose to

impose a finite upper bound on the string set that they sum the partition
function over:

Instead of calculating expected values exactly, we approximate them by
examining only the strings in [S+] that are no longer than the longest
string in the learning data D. This is a finite – albeit exponentially
large – subset of [S+].

In other words, they impose an ‘artificial’ upper limit on how long possible
words can be, assigning a probability of 0 by fiat to all strings over this
limit. However, careful inspection of the original Eisner (2002) reference
reveals that the string set does not need to be finite. Rather, the requirement
is that the partition functionhave afinite value, or equivalently, that the accu-
mulatedweight of all possible paths through themachine be finite. This con-
dition is trivially satisfiedwhen there is a finite upper bound on string length,
since the finite sum of finite values is finite. It is also possible to have a finite
partition function over an infinite string set. However, it is not guaranteed.
This is not just a theoretical problem with maxent phonotactic grammars,
but also one that occurs in practice, as the next section demonstrates.

4 Underpenalisation, or the infinity problem

4.1 Precedents

Infinity has beguiled and bedevilled linguists from the earliest days of gen-
erative grammar. In an early and influential article, Chomsky (1956: 115)
addresses the issue of whether sentences are bounded:
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We might avoid this consequence by an arbitrary decree that there is a
finite upper limit to sentence length in English. This would serve no
useful purpose, however. The point is that there are processes of sen-
tence formation that this elementary model for language is intrinsically
incapable of handling. If no finite limit is set for the operation of these
processes, we can prove the literal inapplicability of this model. If the
processes have a limit, then the construction of a finite-state grammar
will not be literally impossible (since a list is a trivial finite-state
grammar), but this grammar will be so complex as to be of little use
or interest.

Though Chomsky was primarily concerned with the syntactic organisation
of sentences rather than the generation and recognition of new words, the
issue is essentially the same. In some languages, it is in principle possible to
construct an acceptable item that is longer than any given finite bound.
Theories which simply stipulate a finite upper bound are insufficiently
expressive.
The issues discussed in this paper have a close parallel in the history of

the development of probabilistic context-free grammars (PCFGs).
Intuitively, a PCFG may be thought of as a grammar that generates
trees with probabilities. An example tree and the generating grammar
are shown in (15). A PCFG consists of a list of category labels, some ter-
minal labels and a list of rewrite rules with associated probabilities (for in-
depth coverage see Chi & Geman 1998, for applications in laboratory
phonology Coleman & Pierrehumbert 1997 and for a reader-friendly de-
scription Daland et al. 2011).

NP

Kaeli

VP

IP

IP

CPV

(15)

(0·33)

said
(0·5)

(1)

(0·5)

C

that
(1)

(1)

VPNP

Laura
(0·33)

(1)

VPV

likes
(0·5)

(0·5)

goats
(0·34)

Pr(IP£NP VP)=1

Pr(VP£V CP)=0·5
Pr(VP£V NP)=0·5
Pr(CP£C IP)=1

Pr(NP£Kaeli)=0·33
Pr(NP£Laura)=0·33
Pr(NP£goats)=0·34

Pr(V£said)=0·5
Pr(V£likes)=0·5

Pr(C£that)=1

The probability of a derivation is simply the product of the probabilities
of all the rewrite rules used in the derivation. For example, the probability
of the derivation in (15) is 1 ú 0·33 ú 0·5 ú 0·5 ú 1 ú 1 ú 1 ú 0·33 ú 0·5 ú 0·5 ú
0·34= 0·002314125. The probability of a string is the sum of the probabil-
ities of all derivations that yield the string. Since derivation (15) is the only
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one which can yield Kaeli said that Laura likes goats, the probability the
PCFG assigns to this string is also 0·002314125.
As early as 1963, it was noted that probabilistic branching processes

might have a non-zero probability of not terminating (Harris 1963). An
example is given in (16).

(16)

S

a

S

S

S

SS
1/3

2/3

2/3

S

…

2/3

Pr(S£S S)=2/3

Pr(S£a)=1/3

a
1/3

…

In the case of (16), it is more likely than not that a given S will expand to
more than one S daughter. This means the probability that every S will
terminate in a finite number of a’s is less than 1. Put another way, some
of the probability is ‘wasted’ on infinite trees (which cannot be observed).
When the sum over all observable trees is less than 1, the probability dis-
tribution is called INCONSISTENT.
More than a decade later, Grenander (1976) gave a mathematical char-

acterisation of when PCFGs assign a consistent distribution. In essence,
every label needs to derive less than one copy of itself (and other self-
deriving labels) on average. For example, in the grammar in (16), a
given S is expected to give rise to 4/3 immediate S daughters (2X(2/3)
+ 0X(1/3)=4/3), meaning that the number of S’s is expected to grow on
average with every rule application. More formally, Grenander constructs
a matrix whose (i, j) entry indicates the probability that category label jwill
expand into category label i. The PCFG is consistent if and only if a value
called the PRINCIPAL EIGENVALUE is less than or equal to 1. A very similar
condition is shown for maxent phonotactic grammars in Theorem 3.
More than two decades after Grenander’s work, Chi & Geman (1998)

proved that if a PCFG is trained on finite (observable) data according to
the principle of maximum likelihood, the consistency condition will
always be met. The reason for this is relatively simple: in all of the obser-
vable data, each symbol eventually leads to less than one copy of a self-
deriving symbol (otherwise it would give rise to an infinite tree, which
cannot be observed). Maximum-likelihood training causes the estimated
likelihood of a rule expansion to match the observed rate of symbol expan-
sion. In other words, the training data does include infinite trees, so the
PCFG which is learned approximates this property.
The problem of learning maxent phonotactic grammars is conceptually

similar. The first theoretical contribution of this paper is to point out, as
Harris (1963) does for PCFGs, that there is at least the potential for an
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infinity problem with maxent phonotactic grammars. The next theoretical
contribution is to give necessary and sufficient conditions for avoiding the
infinity problem with maxent phonotactic grammars, as Grenander (1976)
does for PCFGs. The final theoretical contribution is to motivate the con-
jecture that the infinity problem will not arise when maxent phonotactic
grammars are trained on observable samples, provided that they are initi-
alised with a *STRUCT constraint that is given sufficient weight; this is
analogous to the proof that Chi & Geman (1998) offer for PCFGs.

4.2 Examples

This section gives three examples of maxent phonotactic grammars in
which the partition function is not finite, with increasing degrees of phono-
logical realism.
The first example is the simplest one, and is included because it illus-

trates the nature of the problem so simply. Suppose the alphabet consists
of a single segment; S={a}. Then S+ consists of strings of the form an,
where n}0. Further, let the grammar be ‘empty’ (the initial state that
Hayes & Wilson 2008 employ in their software implementation). It
follows that the weighted sum of the constraint violations of every form
an is 0, H[an]= 0 for all n. Then the well-formedness measure of each
such an is exp(H[an])= 1. The partition function is the sum of the well-
formedness values over all such strings, Z=%n≥0 exp(H[an])=%n≥0 1.
Clearly, this sum is not finite.
The reader may rightly protest that no natural phonology includes an in-

ventory with only one phoneme. But adding more phonemes makes the
infinity problem worse, not better. To see this, consider an alphabet
with just one more symbol, S={C, V}, but with the same ‘empty’
grammar as in the previous paragraph. Let us define Zk as the ‘partial’
partition function, summing over all strings of length k or less. Clearly,
Zk£Z, as k£≥. Moreover, Zk is equal to the number of such strings
(because the well-formedness measure of each such string is 1). Then cal-
culating Zk is a simple matter of counting strings. The number of strings in
Zk can be counted by dividing them into sets by their length, i.e. the set of
strings of length 0, the set of strings of length 1, the set of strings of length 2,
etc. We use the notation Sj for a set of string of length exactly j; |Sj| is the
cardinality of this set. For example, Z2= |S0|+|S1|+|S2|. Because |Sj|=
|S|j, it follows that Zk is a geometric series with common ratio |S|. This
makes perfect sense – from every string of length j, we can create exactly
|S| strings of length j+1, by simply adding one segment from S. Thus
the total number of strings up to a certain length j should be exponential
in j. From this it follows that Zk£≥, so the partition function is not finite.
The reader may think that these artificial examples have little to do with

real phonology, so the infinity problem would not occur if a maxent HG
were provided with ‘real’ constraints and natural language data. But that
is false, as illustrated by the final example, the Wargamay grammar that
Hayes & Wilson discuss extensively in their paper. With some careful
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inspection, it is possible to show that [‘bamba] is harmonically ‘perfect’
according to this grammar, i.e. is assigned a harmony of 0. Moreover,
the possible words [‘bamba”bamba] and [‘bamba”bamba”bamba] are also
harmonically perfect. The relevant constraints needed to verify this
claim are distributed over several pages and tables, each dealing with or-
thogonal aspects of the grammar (Hayes & Wilson 2008: 414, 416, 417,
419, 432–432). First, the ‘onset’ consonant [b] is unpenalised both in ab-
solute word-initial position and intervocalically. Second, [mb] is among
the 40 medial consonant clusters described as licit both by Hayes &
Wilson and by their reference grammar. Third, the authors explicitly
state (2008: 418) that items of the form (‘ss”ss”ss) incur no pure metrical
penalties; they do not list any constraints that penalise longer
sequences which satisfy the initial main stress trochaic footing system.
Finally, there are numerous constraints regulating the local co-occurrence
of [+high], [—back], [+stressed] and [—stressed) vowels, but none specifi-
cally or generically targets a stressed [a] followed by [mb] and unstressed
[a], or unstressed [a] followed by [b] and stressed [a]. Therefore, every
string consisting of initial [‘bamba] and followed by 0 or more repetitions
of [“bamba] is unpenalised by this grammar. Then every string of the form
ban is assigned a harmony of 0, where b=[‘bamba] and a=[“bamba]. This
example is therefore of the same character as the highly idealised one pre-
sented above: H[ban]= 0 for all n}0, and so the partition function is not
finite. This is in spite of the fact that the alphabet and the markedness con-
straints are derived directly from a natural language phonology.
The essential problem in these three examples is UNDERPENALISATION.

Because S+ contains all strings over S, it contains some which consist of
arbitrary repetitions of relatively well-formed subsequences. In the ab-
sence of any specific constraints (the CV example above), all subsequen-
ces are well-formed. But even in the presence of many constraints
(the Wargamay example above), the infinity problem arises if there is
even one well-formed subsequence that may repeat indefinitely.
However, the CV example above also provides some indication of a solu-
tion. If the number of strings is exponential in their length, perhaps some
penalty can be applied which scales with the length. The next section for-
malises this idea.

5 The solution to the underpenalisation problem

As demonstrated in the previous section, underpenalisation leads to
problems in maxent phonotactic grammars over S+. Relatively well-
formed subsequences can be concatenated to yield relatively well-formed
sequences of arbitrary length – just as supercalifragilisticexpialidocious con-
sists of numerous well-formed subparts. One solution to this problem is
the one adopted by Hayes &Wilson (2008) – the imposition of an arbitrary
maximum word length. However, this solution is empirically inadequate
and theoretically undesirable, for the reasons discussed at the beginning
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of this article. Luckily, it turns out that there is a principled solution to
underpenalisation – one can ensure that long sequences are appropriately
penalised, by incorporating a simple penalty that scales with the length
of a segment.
Prince & Smolensky (1993) discuss a constraint they call *STRUCT,

which incurs one violation mark for each overt segment in an output
form. Thus, the number of *STRUCT violations of a string w is simply
the length of the string |w|. The total contribution of the *STRUCT viola-
tions to w’s harmony is w*StructX|w|, since each violation has a weight
of w*Struct. The effect is to reduce the well-formedness measure of w by
exp(w*StructX|w|). This penalty is geometric in the length of |w|, which
can be seen by rearranging terms following the laws of exponents:
exp(w*StructX|w|)= exp(w*Struct)|w|= p|w| (where p=exp(w*Struct)). Theo-
rem 2 shows that the partition function is guaranteed to be finite if
w*Struct<—ln |S|, or equivalently, if p<1/|S|. Intuitively, this makes
sense: the underpenalisation problem occurs because the number of pos-
sible strings grows geometrically as a function of length, with common
ratio |S|. Underpenalisation can be eliminated by imposing a length
penalty, which reduces the probability ‘more’ for each extra segment,
i.e. by any factor p<1/|S|.
In practical terms, this means that to avoid the underpenalisation

problem, researchers should always include a *STRUCT constraint in
maxent phonotactic grammars, and should give this constraint an initial
weight satisfying the inequality |w*Struct|>ln |S|. Note that Hayes &
Wilson’s software uses positive weight values that are later negated,
while other formulations may just use negative weight values. The next
subsection discusses why Hayes & Wilson’s software never includes the
*STRUCT constraint in the grammar it finds, and then reports several pub-
lished examples where *STRUCT has proved useful in maxent phonotactic
grammars.

5.1 *STRUCT in maxent phonotactic grammars

Recall that Hayes & Wilson (2008)’s learner includes a constraint-induc-
tion procedure, which is distinct from the ‘weight-setting’ procedure.
Weight-setting is a learning process in which, given some constraints,
the best constraint weights are found (where ‘best’ is defined as maximis-
ing the likelihood of observing the lexicon that was actually input to the
model). Constraint induction is the process by which the model searches
a large space of possible constraints.
In Hayes & Wilson’s learner, the constraint-induction process includes

two search biases – constraints are searched in order of accuracy, and
among constraints that are roughly equivalent in accuracy, more
‘general’ constraints are considered earlier (for details see Hayes &
Wilson 2008: 394). The default is for the search process to terminate
after a certain number of constraints have been included in the grammar
(e.g. 100). Clearly, constraints cannot be considered for inclusion in the
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grammar if the search process terminates before it reaches them. Since the
search order is determined by accuracy, the practical effect of the ‘accuracy
bias’ is to ensure that constraints with poor accuracy are never considered.
Hayes & Wilson (2008) define accuracy as the ratio of observed viola-

tions of the constraint in the training lexicon to the number that is expected
according to the preexisting grammar. That is, it favours constraints which
do not penalise the training data, rather than ones which distinguish train-
ing items from untrained items. Since *STRUCT penalises every segment in
the training data, its accuracy value will be among the worst possible.
Therefore, Hayes & Wilson’s software will never consider this constraint
‘early’ in the constraint-search process. In practice, the software might
examine several thousand constraints from a pool of several hundred mil-
lions. The constraint-induction process will always terminate before it
even reaches the *STRUCT constraint, and this fact is independent of
whether the *STRUCT constraint is actually useful. There are numerous
reasons to think it is.
Wilson & Obdeyn (2009) report on a variant of the Hayes &Wilson soft-

ware that differs primarily in the constraint-induction process. Rather than
searching for constraints according to accuracy, Wilson & Obdeyn’s model
uses a criterion they call GAIN. The GAIN of a constraint is defined as the
change in the log-likelihood of the training data when the constraint is
added to the current grammar. Wilson & Obdeyn’s learner induces con-
straints by checking a pool of constraints, and adding whichever one has
the highest GAIN. Colin Wilson (personal communication) indicates that
he is unable to recall a single instance in which the grammar resulting
from running this model did not contain *STRUCT.
It seems likely that the accuracy-first search bias contributes more gen-

erally to an empirical problem with the Hayes & Wilson learner in par-
ticular. Hayes & White (2013) document a phenomenon they call
‘accidentally true constraints’. This concerns the tendency of the Hayes
& Wilson learner to find constraints that happen to be unviolated in
the training data, but which appear not to figure in human grammars
of the same language. The authors show this by selecting ten ‘natural’
constraints and ten ‘unnatural’ ones that receive moderate weights (…3
to …5) from an English phonotactic grammar, where naturalness is
defined on the basis of phonetic and/or typological support. They then
conducted a non-word acceptability judgement task with a set of forms
that violate either the ‘natural’ or ‘unnatural’ constraints, finding that
the ‘natural’ constraints appear to be much more strongly represented
in the English speakers’ judgements. While the article’s title suggests
that they interpret these results in terms of (phonetic) naturalness, they
acknowledge that they may instead be a statistical artefact of the con-
straint-induction process in the Hayes & Wilson learner. Specifically,
Hayes & White’s note 23 states:

[The Wilson & Obdeyn] learner uses the principle of ‘gain’ (Della Pietra
et al. 1997: 1) to select constraints. In a preliminary examination of this
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modified system, we found that the constraints it selects were indeed
more general and less idiosyncratic than those chosen by the Hayes/
Wilson (2008) learner; more specifically, it learned none of our 10
Unnatural constraints. However, it may still be learning different ones:
for instance, it posited a constraint banning stressed lax vowels before
coronal codas as well as a constraint against word-final sonorants. Our
testing was tentative, owing to memory limitations, and more serious
evaluation of the revised model awaits further research.

The *STRUCT constraint is one example of a ‘more generic’ constraint. It
may explain the variation that prompted Hayes & Wilson’s search proce-
dure to induce ‘accidentally true’ constraints.
Another situation in which the *STRUCT constraint is useful is in the

generation of artificial lexicons. Daland et al. (2014) describe a series of
simulations in which the phonotactic structure of artificial languages was
manipulated to study the effect on word segmentation. Specifically, artifi-
cial maxent phonotactic grammars were chosen so as to instantiate varying
degrees of restrictiveness in syllable structure (e.g. only CV vs. CV(C)).
Artificial lexicons were generated by regarding the lexicon as a sample
from the probability distribution generated by the grammar. The
*STRUCT constraint proved necessary for controlling word length during
the generation process. More specifically, PhoMEnt, an open source pub-
licly available maxent phonotactic grammar implementation, was used,
which currently has a finite upper bound of only six segments on string
length.5 In the absence of *STRUCT, it turned out that nearly all of the
sampled words had six segments, the maximum. The reason for this is
very straightforward – the number of phonotactically acceptable words
with six segments is many times greater than the number of phonotacti-
cally acceptable words of shorter lengths. If all acceptable words are
assigned the same well-formedness value, more long words will be
chosen, simply because they make up a greater proportion of the pool of
candidates. *STRUCT was therefore included and its weight manipulated
in integer steps to control the average length of the sampled lexicons.
For most grammars, the best segmentation was found when *STRUCT

was assigned a weight of —3, which is in excellent agreement with
Theorem 2: Daland et al. (2014) use a segmental alphabet % consisting
of 18 segments, so —ln |%|=—ln 18=—2·89.

5.2 Necessary vs. sufficient conditions

Theorem 2 gives sufficient conditions to guarantee a finite partition func-
tion (and therefore a proper probability distribution) in maxent phonotac-
tic grammars. That is, if w*Struct<—ln |S|, then a proper probability
distribution is guaranteed. However, it is possible for a maxent phonotac-
tic grammar to have a finite partition function even when this condition is
not met. For example, the onset grammar that is reported in Hayes &

5 https://github.com/rdaland/PhoMEnt.
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Wilson (2008) has a finite partition function. The key is that the onset
grammar strictly penalises plateaus and decreases in sonority. So a se-
quence like trtrtr contains two rt sonority falls, which are punished by a
variety of sonority-regulating constraints (see also Hayes 2011). More gen-
erally, the sequence (tr)n contains n—1 sonority falls, and is punished for
each of them. In this case, the number of violations grows with the
sequence length for any sequence in the grammar. The underpenalisation
problem does not arise, even though this grammar does not include a
*STRUCT constraint. It would be desirable to be able to characterise not
only sufficient, but also necessary, conditions to avoid underpenalisation.
Theorem 3 does exactly that. The final result is an eigenvalue condition
similar to the one given by Grenander (1976) for consistency of PCFGs.
As the proof is rather technical, its intuition is explained in the online sup-
plementary materials.

5.3 Conjecture: finiteness is guaranteed when training on
finite samples

Just as Chi & Geman (1998) proved that a PCFG derived from maximum
likelihood estimation will be consistent, this section offers a rationale for
the conjecture that a maxent phonotactic grammar trained on a lexicon
will avoid underpenalisation as long as a *STRUCT constraint is included
with sufficient weight in the initial state.
As shown by Della Pietra et al. (1997), the likelihood of the training data

is maximised with respect to a given weight wi when the number of
expected violations of Ci (over the entire candidate set) equals the
number of observed violations of Ci (over the training set). We can
obtain a more intuitive version of this equation by dividing both sides
by the number of words in the training set. The total number of violations
of *STRUCT in the training data is the total number of segments in all
words; dividing this by the number of such words gives us the average
length of a word in the training set. The expected number of violations
of *STRUCT in the candidate set is simply the number of words in the train-
ing set multiplied by the average number of *STRUCT violations over the
candidate set; dividing this by the number of words in the training set
gives us the expected average length of a word according to the current
grammar.
Suppose that the grammar is initialised so that the partition function is

finite (or, in other words, the expected length of a word is finite). At this
initialisation stage, the weight of *STRUCT might either be too low or too
high. If it is too low, the expected average word length is too long, and
the weight-setting procedure will simply increase the weight of *STRUCT

until the expected average word length matches the observed average
word length. If it is too high, the expected average word length is too
short, and the weight-setting procedure will simply decrease the weight
of *STRUCT until the expected average word length matches the observed
average word length. As long as the weight-setting algorithm is initialised
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with reasonable starting weights, there should be no chance of ‘overshoot’,
which would make the weight of *STRUCT so low that the partition func-
tion ceases to be finite. Adding new constraints to the grammar cannot de-
crease the penalty assigned to any string (since constraints only punish,
never reward), so adding a constraint to a grammar with a finite partition
function will not cause the partition function to become non-finite.
In short, the training data will always exhibit the property that it has a

observable and finite average length. Maximum likelihood estimation with
maxent phonotactic grammars will tend to cause the weight of *STRUCT to
settle at whatever value makes the expected average word length match the
observed average word length. As long as the prior does not force the
weight of *STRUCT to be too low, underpenalisation should be avoided
with the standard maximum a posteriori training.

6 Discussion and conclusions

6.1 Summary of major points

This article considers the properties that a phonotactic grammar should
have. It began by discussing the motivations for a phonotactic grammar:
the need to assess the well-formedness of potential words is motivated
by the fact that humans can do so in well-formedness judgement tasks,
and the need to link well-formedness with other cognitive modules,
notably speech perception and word recognition. Jointly, these properties
call for a probabilistic model of phonotactic knowledge.
An especially promising grammatical formalism is maxent HG, which is

a stochastic variant of Optimality Theory, with weighted rather than
ranked constraints; it stands out from other stochastic approaches particu-
larly in formal guarantees of optimal learning of languages with variation.
Maxent HG can be and has been adapted for modelling phonotactic gram-
mars; the result is called maxent phonotactic grammars here to distinguish
them from regular maxent HG grammars.
Like other classes of probabilistic models such as PCFGs, maxent

phonotactic grammars require special care when it comes to potentially un-
bounded sequences. The problem, described here as underpenalisation, is
that relatively well-formed subsequences may be concatenated together to
form arbitrarily long sequences with no ill-formed subparts. The word
supercalifragilisticexpialidocious is an example of just such a possible
word. In general, the number of such words may grow exponentially
with word length. If these words are all assigned a ‘perfect’ harmony
score of 0, the grammar’s partition function will not be finite, meaning
that the probabilities of individual strings will not be well-defined. One
solution to this problem that has been used in the literature is to impose
a strict upper limit, such as ten segments, on the length of words to be con-
sidered. But this approach is empirically inadequate and theoretically
undesirable.
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After documenting the underpenalisation issue, this paper has proposed
a solution: the *STRUCT constraint. Formal proofs are given of sufficient
and necessary conditions which allow a researcher to steer between a
hard upper bound on word length and underpenalisation. Provided that a
*STRUCT constraint is included and initialised with sufficient weight,
a maxent phonotactic grammar may allow for possible words of unbounded
length, but penalise them enough to avoid an ill-defined probability distri-
bution (by keeping the partition function finite). The practical implications
for researchers are as follows: (i) when using the Hayes &Wilson phonotac-
tic learner or other maxent phonotactic grammar software, always include a
*STRUCT constraint and set its initial weight to be greater than ln |S|; (ii) if
developing one’s own maxent phonotactic grammar implementation, either
force the grammars to always include a *STRUCT constraint, or build in the
test described in Theorem 3.
The remainder of the discussion briefly considers two issues.

6.2 Comments on arguments against *STRUCT

Gouskova (2003) constitutes a concerted attack upon constraints whose
sole purpose is to enforce economy effects, i.e. the general linguistic
preference for less structure. The constraint *STRUCT is a canonical
example – without exception, it prefers fewer segments. Gouskova’s cri-
tique is couched within the framework of what might be called ‘classic
OT’ (e.g. Prince & Smolensky 1993), in which a categorical grammar reg-
ulates input–output mappings with constraints that are totally ranked,
rather than weighted. It is argued in this section that Gouskova’s critique
does not apply to *STRUCT in the maxent HG phonotactic learning setting.
Gouskova considers two types of argument against this kind of economy

constraint. First, she proposes that analyses which include such constraints
do not actually need it; in support, she gives an impressive array of exam-
ples that have been analysed with a *STRUCT-like constraint (e.g. *V,
which penalises all vowels), and then provides an alternative analysis in
which the economy effect falls out frommore specific, independently moti-
vated constraints. Gouskova’s second argument is that the inclusion of
*STRUCT-like constraints in a grammar leads to improper predictions.
The general character of this argument can be illustrated with the most
extreme case: if *STRUCT were the top-ranked constraint in an OT
grammar, it would predict the null output to be the winning candidate
for every input; in other words, no-one would ever include any overt ma-
terial in their utterances (i.e. speak). Gouskova considers several less
extreme cases that are like this in logical character, and argues that
several typologically predicted languages do not occur. She concludes
that constraints like *STRUCT are both unnecessary and actually harmful,
so they should be excluded from the theory.
The most fundamental point to make is that Gouskova is working in a

different framework, with different properties and assumptions. In
classic OT, there is an input–output relationship that is regulated by
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constraints ranked with a total order. In this framework, faithfulness con-
straints achieve the work of preventing unboundedly long repetitions of a
subsequence in surface forms. High-ranking markedness constraints may
require multiple epenthesis operations (e.g. vowel prothesis to repair an
onset cluster and glottal stop prothesis to repair the resulting onsetless
vowel, as in /ktub/£[?uktub]). But in these cases, each application per-
manently resolves the violation that triggered it (it could not be optimal
otherwise). The number of such violations must be finite (because under-
lying forms are only finitely long, and there are only finitely many con-
straints that could be violated). Therefore, high-ranking markedness
constraints can trigger at most a finite number of epenthetic repairs. In
the phonotactic learning setting, there is no underlying representation
to be faithful to, as the goal is to spell out the well-formedness of potential
words (which have not yet been learned). Therefore, faithfulness con-
straints cannot eliminate unboundedly long sequences. Since markedness
constraints are the only constraints in phonotactic learning, they are the
ones which must rule out possible words of an arbitrary length (cf. super-
califragilisticexpialidocious). Gouskova’s essential point is that *STRUCT

is not needed in classic OT because faithfulness constraints derive
economy effects; this point does not hold for phonotactic learning,
where there is no faithfulness.
As the field now possesses a much better theoretical understanding of

phonological acquisition than it did at the time of Gouskova’s (2003)
work, it is worth thinking through the acquisition scenario from the
child’s point of view. It seems reasonable to suppose that the child is ini-
tially exposed to a language in which input from caretakers contains seg-
mental content, and moreover that comparatively short words have a
higher type frequency, at least during the early stages of phonological
acquisition (Hayes 2004). According to the theory described here, it is
statistically inappropriate for the child to begin with an ‘empty’ phono-
tactic grammar, as such a grammar does not assign a well-defined prob-
ability distribution over the string-space. However, the child might
begin with the next best thing, a phonotactic grammar which merely
states that longer words are worse – a prior bias which is empirically
supported by the input (specifically, one in which w*Struct < …ln |%|).
As the child begins to recognise, encode and learn word-forms, their
phonotactic grammar elaborates. Sequences which systematically fail
to occur in the input acquire their own more specific markedness con-
straints, while sequences which do occur drive down the weight of
*STRUCT and drive up the weight of these more specific constraints.
After a large number of word-forms are learned, the grammar will
have developed to a considerable extent; the work that was formerly
done by *STRUCT will be mostly replaced by more specific and more ac-
curate constraints. This will presumably leave *STRUCT with a very low
weight relative to inviolable markedness constraints and other
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constraints that drive active alternations. As the child begins to acquire
faithfulness constraints, the weights of remaining markedness con-
straints may move slightly, but *STRUCT might be left with a low
weight – just enough to match the observed average word length with
the expected average word length.

6.3 Implications for maxent HG: the consequences of
constraint omission

A reviewer raises the issue of whether the underpenalisation problem po-
tentially arises with all maxent HG grammars, or only with maxent phono-
tactic grammars. This question is related to the discussion in the preceding
section, and the answer is that there may be an underpenalisation problem
even with ‘normal’ maxent HG.
As Gouskova (2003) points out, economy effects in classical OT are nor-

mally derived by faithfulness constraints. For example, a single instance of
vowel epenthesis may be motivated by a high-ranking markedness con-
straint, such as repair of a triconsonantal cluster, illustrated in (17) by
the choice of candidate (b) over (a).

(17)
a.

b.

c.

d.

e.

…

aptka

apitka
apiitka
apitika

apitkani

*CCC/aptka/

™
*!

Dep(V)

*
**!
**!
**!

Dep(C)

*

In general, multiple epentheses will not repair the original markedness vio-
lation better than a single epenthesis operation (c)–(e), but they do incur
additional DEP violations. Of course, if the DEP constraints were omitted
from (17), there would be nothing to stop the speaker from choosing one
of the ‘wrong’ candidates (c)–(e). And according to Prince & Smolensky
(1993), GEN presents the speaker with an infinite number of wrong candi-
dates. Even if it is at the very bottom of the constraint hierarchy, DEP plays
an important role in weeding out uneconomical candidates.
In maxent HG, constraints are weighted rather than strictly ranked.

Tableau (18) recapitulates (17), but cast in the framework of maxent
HG, with a weight of 0 assigned to both DEP constraints.
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(18)

a.

b.

c.

d.

e.

…

aptka
apitka

apiitka
apitika
apitkani

C1: *CCC
w1=—5

/aptka/ H

—5

0

0

0

0

0

1

C2: Dep(V)
w2=0

1

2

2

2

C3: Dep(C)
w3=0

1

F

e 5

1

1

1

1

…

Pr

<undef>

<undef>

<undef>

<undef>

<undef>

<undef>

Since unbounded amounts of epenthesis are unpenalised, there is a count-
ably infinite number of candidates which satisfy the important markedness
constraint equally well. Underpenalisation may also occur in this circum-
stance. Fortunately, the same intuitions which govern underpenalisation
in maxent phonotactic grammars apply in this more general setting.
Underpenalisation cannot occur if sufficient weight is allocated to DEP

and/or STRUCT constraints. It is straightforward to adapt Theorem 2 to
obtain a guaranteed finite partition function over an infinite candidate
set in this case (but a formal proof is not given). In effect, this point is
merely a formalisation of something that is already conventional wisdom
in the field: the candidate set should not contain SRs that both differ
from the UR and are underpenalised for being so.

6.4 Conclusion

In summary, it has long been a tenet of constraint-based phonology that the
candidate set is infinite (Prince & Smolensky 1993). This has not caused prac-
tical problems for normal working phonologists, as typical analyses only con-
sider a finite subset of all possible candidates. However, this paper has argued
in somedetail that the infinite candidate set can and shouldbe considered in the
case of phonotactic grammars.The essence of the argument is that speakers can
and do produce novel words of arbitrary length, that our speech-processing
systems have to be equipped to handle this and that a probabilistic phonotactic
grammar plays a central role in doing so. Maximum entropy Harmonic
Grammar is a particularly promising phonological formalism, owing to its
attractive learning guarantees, and it can be seamlessly adapted for phonotactic
grammars, as demonstrated here and in Hayes & Wilson (2008). However,
existing implementations of maxent phonotactic grammars have imposed a
hard upper limit on the length of possible words, which is undesirably restric-
tive. Without such a hard upper limit, there is the opposite risk: the infinite
candidate set may contain sequences consisting of arbitrarily many relatively
well-formed subsequences, which might be underpenalised. In this case, a
maxent phonotactic grammar can still characterise the relative well-formed-
ness of words, but it cannot assign a well-defined probability distribution.
Besides documenting this problem, this paper has proposed a solution:
include the constraint *STRUCT. Theorems 2 and 3 give necessary and
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sufficient conditions for maxent phonotactic grammars to avoid underpenali-
sation. The body of the text gives motivation for the conjecture that an under-
penalisation problem will not occur provided that the grammar is initialised
with a *STRUCT constraint of sufficient weight, and the default weight-
setting algorithm (maximising the likelihood of the training data) is followed.
In plain language, maxent HG is an excellent tool for phonological analysis,
but this paper points out there is a subset of the parameter space where the
tool does not function as intended; this paper also shows how to avoid that
regime, and conjectures that the bad regime will be avoided in normal usage
so long as grammars are initialised with a *STRUCT constraint of sufficient
weight.
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