
Philosophy of Science, 74 (December 2007) pp. 957–967. 0031-8248/2007/7405-0034$10.00
Copyright 2007 by the Philosophy of Science Association. All rights reserved.

957

Mathematical Idealization

Christopher Pincock†‡

Mathematical idealizations are scientific representations that result from assumptions
that are believed to be false, and where mathematics plays a crucial role. I propose a
two stage account of how to rank mathematical idealizations that is largely inspired
by the semantic view of scientific theories. The paper concludes by considering how
this approach to idealization allows for a limited form of scientific realism.

1. Introduction. For the purposes of this paper, I will say that a repre-
sentation results from idealization when the steps leading up to the rep-
resentation involve deliberate falsification, that is, assumptions are in-
voked that the agents constructing the representation believe to be false
(cf. Jones 2005). And an idealization will be mathematical just in case
these assumptions, or the resulting representation, involve mathematics
in some crucial way. Here we find a technique for arriving at represen-
tations that is used across the sciences, but seems largely absent in non-
scientific contexts.

My definition of mathematical idealization leads to many further ques-
tions, among them which scientific representations actually are mathe-
matical idealizations in this sense. But to sidestep concerns about the
vagueness of this definition, I will draw on a case of a simple mathematical
idealization with which many of us will be familiar, but which is still
complicated enough to raise the salient issues. My example involves re-
placing a difference equation, that is, an equation put in terms of discrete
differences, with a differential equation. What is sometimes called New-
ton’s law of cooling states that the amount of heat per unit of time that
passes from a warmer plate 2 to a cooler plate 1 is

DQ/Dt p (kAFT � TF)/d,2 1
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where T2 and T1 are the respective temperatures of the plates, A is their
area, d their distance from each other, and k is the thermal conductivity
of the material. That is, the change in heat per unit of time decreases with
the distance between two plates, and increases with the temperature dif-
ference between the two plates, their area, and the properties of the ma-
terials captured by their thermal conductivity. Now I do not want to claim
that no amount of mathematical idealization went into producing this
representation, but will emphasize only that it is formulated in terms of
finite differences of heat over finite periods of time. For this reason, it
stands much closer to experimental practices than my second equation,
the one-dimensional heat equation:

2a u p u ,xx t

where , k is again the thermal conductivity of the material, r2a p k/rs
its density, and s the specific heat of the material. Here tracks theu(x, t)
temperature of point x at time t, and the subscripts indicate partial
differentiation with respect to that variable. That is, . Sou p �/�t u(x, t)t

we have left behind finite differences between magnitudes across finite
times, and arrived at specific assignments of magnitudes to points at
each time.

It should be clear in what respects the heat equation results from math-
ematical idealization. First, it is clearly mathematical, as it is hard to see
how the same representation could result without invoking mathematics.
To be sure, some will dispute this claim, and to fully resolve the issue
more must be said about how representations are individuated. Second,
the representation results from idealization, that is, deliberate falsification.
While I do not have space to review the details, the derivation of the one-
dimensional heat equation from Newton’s law of cooling requires the
assumption that various limits are well defined. This, in turn, seems to
require the assumption that the material being investigated is continuous.
But we have good evidence that none of the materials that we use this
equation to study are in fact continuous. Iron bars, for example, are made
up of iron atoms, and presumably some impurities. The microstructure
of an iron bar is incredibly complicated, and varies from bar to bar in
unpredictable ways. We have every reason to believe, then, that the bar
is not continuous. Despite this, we make an assumption to the contrary
in the course of producing the heat equation.

The problem with mathematical idealization should now be clear. What
guarantee is there that the results of employing these false assumptions
will be representations? Or, more precisely, as representations may be
ranked in terms of their accuracy and adequacy, why should making false
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assumptions contribute to the production of good representations?1 The
mystery is especially urgent in these sorts of cases as it looks like the only
motivation for making false assumptions is so that we get, in the end, a
mathematical equation that we can more easily work with. Morrison
(2000) emphasizes, for example, how scientific theories can be unified
mathematically. In the case of the heat equation, the result is ideally placed
to be solved using the techniques available for such partial differential
equations. But why should this sort of mathematical tractability have any
sort of contact with the way the world is? A deep philosophical mystery
lurks on the horizon.

We can see the problem as arising from two commitments: (1) Good
scientific representations are related to the truth about the physical world
and (2) mathematical tractability is unrelated to the way the physical
world happens to be. Cartwright (1983, 1989, 1999), among others, has
presented an account of scientific representation that calls (1) into ques-
tion. Steiner (2005), on the other hand, is willing to reject (2). I do not
want to reject either of them. In what follows I sketch an account of
scientific representation that retains a link between good scientific rep-
resentations and truth, and that also respects the gap between facts about
mathematical tractability and the nature of the physical world.

2. Representation. The first step is to get clearer on exactly what a sci-
entific representation is. I largely follow the semantic view of scientific
representation, according to which a representation is a mathematical
model, or a set of mathematical models (van Fraassen 1991, Chapter 1;
da Costa and French 2003). In aligning my proposal with the semantic
view, however, I am not taking on all the commitments that are associated
with it. In particular, I see no hope of providing what is sometimes called
a naturalistic account of scientific representation that dispenses with the
beliefs and intentions of the scientists doing the representing (Suárez 2003).
Instead, I will fix the content of a scientific representation using both the
features of the mathematical models and the contents of the beliefs and
intentions of the agents doing the representing. This might seem to lead
to a regress. For if I appeal to the beliefs and intentions, that is, the
representations, of the scientists in explaining scientific representation,
then what is responsible for the content of these beliefs and intentions?
This regress results only if we assume that all representations are scientific
representations. Against this assumption, I posit a sort of nonscientific
representation that does not involve mathematical models in the way that

1. Here I am assuming that there is an informative account of what makes a repre-
sentation good. Contessa (2007) argues for this claim in apparent opposition to Suárez
(2004).
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scientific representation does, and that can be used to help clarify how
scientific representation works.

A second point of difference with many advocates of the semantic view
is that I explicitly identify my models with wholly mathematical models.
The models involved in scientific representation, according to all advocates
of the semantic view, are the models encountered in model theory. That
is, they are n-tuples, where in the first position is a set of entities known
as the domain, and the remaining positions are subsets of the domain,
or subsets of the Cartesian product of the domain, and so on.2 In saying
that my models are wholly mathematical I mean to indicate that the
entities in the domain are mathematical entities like real numbers and
pure sets. Some defenders of the semantic view seem to hesitate to take
this step, perhaps because they do not believe in mathematical entities,
or because they worry that a wholly mathematical model will have a hard
time representing a physical situation.

This is not the place to engage with anti-platonists in the philosophy
of mathematics, but the second worry about how a wholly mathematical
model can represent a physical situation is an important one to address.
My proposal is that a wholly mathematical model represents a physical
situation in virtue of a structure-preserving mapping like an isomorphism
or an homomorphism between the physical situation and the mathemat-
ical model. Crucially, though, this mapping is picked out using physical
magnitudes like temperature and position. It is here that the beliefs of
agents are essential, for it is these mental states that fix which physical
magnitudes are associated with which parts of the mathematical model.
A scientific representation of a particular physical situation, then, requires
not only a mathematical model, but also the belief that there is a ho-
momorphism (or isomorphism) that takes physical magnitudes P1, P2, etc.
to positions M1, M2, etc. in the mathematical model. Such a representation
will be true just in case there is in fact such a mapping, and false in all
other cases. The appeal to particular physical magnitudes is essential here,
for otherwise there will always be a mapping with the appropriate struc-
tural features once certain minimal cardinality conditions are met (cf.
Demopoulos 2003).

To see what account of representation I am sketching here, let us return
to the heat equation, but now thought of as a fully realistic representation.
In such a case, we think of the equation as cutting down the complete
class of models reflecting all logically possible combinations of position,
time, and temperature to those that the equation will permit. Each such
model will have as its domain all the triples of real numbers, and its

2. Thomson-Jones (2006) provides a useful overview of the various purposes that
philosophers have had when invoking these models.
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second position will have an admissible trajectory that selects a series of
triples of position, time, and temperature that are consistent with the heat
equation. Note that only a small fraction of these will fit with initial and
boundary conditions that we can actually work with. In the class of
models, we will find not only these accessible trajectories, as we might
call them, but also all the trajectories that fit with the equation under any
logically possible initial and boundary conditions. For this class of models
to become a representation of some iron bar, a scientist must believe that
there is an isomorphism between the temperature states of the iron bar
over time that preserves the position, time and temperature magnitudes
instantiated in the iron bar. If there is such an isomorphism, then the
representation is true. If not, then it is false.

This example should help to make clear what sort of beliefs on the part
of scientists I must assume in order to get this account of scientific rep-
resentation off the ground. They are beliefs about structure-preserving
mappings between physical situations and mathematical models, where
these mappings preserve the structure of the instantiations of various
physical magnitudes. In recent work, Wilson (2006) has challenged some
aspects of this conception of representation, but his objections demand
a detailed response that is not possible here.

3. Idealization. In clarifying my account of nonidealized scientific rep-
resentation in the last section I stipulated a case where the heat equation
was thought to be a fully realistic representation of the temperature dy-
namics of an actual iron bar. But what happens when we reintroduce the
fact that the representation is an idealized one, that is, one that involves
deliberate falsification? If the scientist is aware that the bar is discrete,
she would have to believe in the existence of a mapping that she has every
reason to believe does not exist. An isomorphism that preserves temper-
ature magnitudes will not exist between a continuous mathematical model
and a discrete iron bar. So, on the simple story told in the last section,
idealized scientific representation seems to be impossible. And even if we
somehow make an amendment to allow these sorts of conflicting beliefs,
it will turn out that all idealized scientific representations are false. An
account that says only this is unacceptable because scientists continually
rank idealized scientific representations, and so our account of such rep-
resentations cannot assign them an equal rank.

Several routes out of this impasse suggest themselves, but I will artic-
ulate and defend only one. This is to invoke a second wholly mathematical
model which will allow the scientist to clarify her beliefs in a way that
can make them consistent, and that will also provide the ingredients suf-
ficient to rank idealized representations in various respects. Let us call
the class of models picked out by the heat equation the equation model
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and the second model that I am now proposing to introduce the matching
model. As its name would suggest, the role of the matching model is to
parallel perfectly all the physical features of the physical situation. In the
case of an iron bar, this will involve not only the positions of the iron
molecules over time, but also, say, the color of the bar, and other physical
magnitudes which are not dealt with by the heat equation. Trivially, then,
there will be an isomorphism between the physical system and the match-
ing model.

What is left to fill out the outline of my two stage account of idealized
representation is the connection between the equation model and the
matching model. Here I want to allow for a wide variety of mathematical
transformations that goes far beyond the structure preserving mappings
discussed in the last section. In specifying these transformations, the in-
tentions of the scientists are now essential. For the case of heat equation,
what we need to capture is the thought that at least one of the admissible
trajectories in the equation model results from smoothing out the relevant
trajectory in the matching model. But smoothing out how? If we place
no restrictions on this relationship, then we have no account of what
makes an idealized scientific representation good. And if we place rigid
restrictions, it seems that we risk labeling as bad some representations
that scientists clearly think of as adequate.

My proposal is to go contextual. We bring in the goals that the scientists
have in mind for their representation. In the heat equation case, the goal
is most likely to be to represent the medium scale temperature dynamics
of the iron bar for a short period of time. This provides for a certain
threshold of error. So, in such a case, if there is a mathematical trans-
formation from the equation model to the matching model that falls within
this threshold, then we have a good or adequate idealized representation.
If, despite the beliefs and intentions of the scientists, there is no such
mathematical transformation, then the idealized representation is bad or
inadequate.

The upshot of this proposal is that we must look at the goals that the
scientists have for the representation if we are to evaluate its goodness.
What is an adequate idealized representation for some purposes may be
inadequate for other purposes. Obviously, the heat equation is not going
to be adequate to represent the color of the iron bar as the associated
equation model contains nothing relevant to color. But even though it
does have features tied to temperatures, there is also not going to be an
acceptable mathematical transformation that gets the temperature dy-
namics right on the microscale.

To summarize the two stage model proposal, then, we will say that an
equation model represents a physical situation when the scientists believe
both that (i) there is an isomorphism between the physical situation and

https://doi.org/10.1086/525636 Published online by Cambridge University Press

https://doi.org/10.1086/525636


MATHEMATICAL IDEALIZATION 963

a matching model and (ii) there is an acceptable mathematical transfor-
mation between the equation model and the matching model. The match-
ing model contains wholly mathematical analogues of all the physical
magnitudes in the physical situation. A mathematical transformation will
be acceptable when it is consistent with the goals of the scientists in terms
of scale and accuracy. Finally, we will say that such a representation is a
good one when both of the beliefs involved in conditions (i) and (ii) are
correct and it is a bad one to the extent that these beliefs are incorrect.

4. Evaluating Representations. The main strength of the two stage pro-
posal is that it can accommodate several different epistemic situations
with regard to the mathematical transformation between the equation
model and the matching model. The typical case in science is that we have
a representation that is idealized, but we do not know if it is a good
representation because we do not know if there is an acceptable mathe-
matical transformation. In what is for me the best case scenario, we can
actually show that such a transformation exists by showing how the equa-
tion model and the matching model are mathematically related. This is
the sort of case that Batterman (2002a, 2002b, 2007) has discussed ex-
tensively under the heading of asymptotics, although he does not nec-
essarily endorse my interpretation of these cases. In such cases, I claim
that we start with an equation that we have good reason to think accu-
rately describes some features of the matching model. Based on mathe-
matical manipulations, for example, setting a given quantity to 0, we can
extract a new equation that then can be used to pick out what I have
been calling the equation model. The ultimate check on these manipu-
lations is that we are able to prove that the new equation and the original
equation will agree on certain magnitudes within certain constraints.

Such insight into the mathematical transformation between the equa-
tion model and the matching model is rarely available. A kind of case
that is one step down in terms of epistemic security, but still quite optimal,
is the focus of work by McMullin (1985) and Laymon (1995). Both sketch
out a process where a scientist starts from an idealized equation and
proceeds to add in increasingly realistic correction terms. This rarely
achieves the sort of explicit mathematical derivation that we get from
asymptotic explanations, but can still give the scientists reason to believe
that an acceptable mathematical transformation does in fact exist for their
equation model. For example, an equation for an ideal pendulum can be
corrected with terms reflecting the resistance of the medium. As these
corrections are made, the gap between the equation models and the match-
ing model decreases, at least in the sense that the relevant mathematical
transformations between the two become less intricate, and the accuracy
of the predictions increases.
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The least secure case, and by far the most common, is where the only
evidence we have that an acceptable mathematical transformation exists
is that our predictions based on the equation model turn out to be correct
for the purposes we have in mind. In these sorts of situation, the char-
acteristics of the matching model may be obscure, and the extent to which
our equation is getting things right therefore risks being completely mys-
terious. But a series of successful predictions can convince us that the
idealized scientific representation is a good one, despite our ignorance
about exactly how the mathematical transformation between the equation
model and the matching model should be specified. In such cases, further
investigation will hopefully make the connection manifest, but will often
in the end convince us that there is no acceptable mathematical trans-
formation, because the matching model will turn out to look quite dif-
ferent than we expected.

5. Limited Realism. Although I have distinguished three sorts of episte-
mic situation with respect to the existence of an appropriate mathematical
transformation between the equation model and the matching model, the
antirealist or nonrealist about science is likely to be unsatisfied. For the
discussion so far has been put in terms of a single scientific representation
at a particular time for one group of scientists. Such a synchronic defi-
nition of a good representation at a time, though, is not enough to vin-
dicate any kind of scientific realism. In addition, what is needed is an
account of why scientific representations tend to get better over time. In
this final section, I sketch such a diachronic account of how mathematical
idealization can help us aim at truth. This sketch is not meant either to
defend scientific realism or to convince antirealists to become realists. In
fact, it is consistent with a realistic attitude only in special, limited situ-
ations. It is intended, then, to mark a shift away from global realist or
antirealist arguments, and towards the local circumstances that warrant
this or that interpretation in particular cases (Fine 1984).3

Suppose a community of scientists has arrived at an equation model
using our heat equation and they hope that there is a mathematical trans-
formation appropriate for temperature over medium time and distance
scales for a certain range of iron bars. The matching models for each of
these bars may vary considerably, and be almost completely unknown in
their details to the scientists. Still, imagine that the equation model leads
to impressive success in predictions, and that all of these successes fall
within the envisioned time and distance scales. Our question is: Under
what conditions are the scientists warranted in extending this success to

3. For a more general discussion concerning versions of the semantic view and scientific
realism see Chakravartty 2001.
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other time and distance scales, or to a wider range of physical systems,
or even to other physical magnitudes?

The answer that our definition from Section 4 suggests is that we look
to the nature of the mathematical transformation between the equation
model and the relevant matching models. In the heat equation case, we
expect the extension to shorter times and to longer times to fail, although
for very different reasons. Over shorter times, the particle-particle inter-
actions that are tracked in the matching model will become more signif-
icant to the temperature dynamics. As our idealizations have erased any-
thing corresponding to these aspects of the iron bar, and our mathematical
transformation ignores them, we have good reason to think that the equa-
tion will fail over shorter times. In the long term, other issues become
problematic, and these are again issues that are ignored by our process
of idealization and the associated mathematical transformation. In this
case, the problem is that heat loss to the environment becomes a domi-
nating factor as the time scale is increased.

A somewhat trivial positive case of extending the range of application
of such a mathematical idealization is when we keep the time and distance
scales fixed, but shift from iron bars to bars made up of similar materials,
for example, steel. Here, based on a prior understanding of the materials,
we see that the cases are relevantly similar. And relevance is determinable
in advance when we see the way the parts of one kind of bar admit of a
matching model which stands in the right kind of mathematical relation-
ship to the equation model. The same thing can happen in a more rarefied
kind of case where we see that the same equation can work for different
physical magnitudes. For example, the same mathematical equations that
govern certain electromagnetic systems also fit certain fluid mechanics
systems. By arranging one such system appropriately, we can see what
will happen in the other. Again, what is needed for us to be confident
that such a substitution will work is that the matching models of the
systems with the two magnitudes of interest be mathematically similar in
a way that connects to the needed mathematical transformation between
the equation model and the matching model.

Understanding the mathematical transformation between the equation
model and the matching models, then, is crucial not only in determining
that a given scientific representation is a good one, but also in suggesting
which new situations require new equation models, and which do not.
When we have good reason to think that the same mathematical trans-
formation will not work, a radically new kind of equation may be war-
ranted that may not look anything like our original equation. For ex-
ample, new complications are needed to understand how an iron bar will
radiate heat into its environment. There is no reason to expect that an
equation that could handle such radiation would mesh easily with our
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original heat equation. To be sure, if they are both good mathematical
idealizations of the same physical system, there will be appropriate math-
ematical transformations from each equation model to the matching
model. But this is a very weak condition. Almost any pair of equation
models can be grouped together this way by finding a carefully constructed
matching model.

Our account of idealization gives us the resources to respond to some
recent criticisms of scientific realism based on the prevalence of mathe-
matical idealization in scientific practice. The realist, we are told, cannot
accommodate the wide range of conflicting models that are used to treat
the same physical system. Traditional realism held out the hope that a
single theory, thought of as a list of equations or more recently as a set
of models picked out by a list of equations, could truly represent a class
of physical systems. But this hope has proven illusory. For example, in
response to McMullin’s account of idealization, Morrison has complained
that “the successful use of models does not involve refinements to a unique
idealized representation of some phenomena or group of properties, but
rather a proliferation of structures, each of which is used for different
purposes. Indeed in many cases we do not have the requisite information
to determine the degree of approximation that the model bears to the real
system” (Morrison 2005, 170). If the models conflict, then of course they
cannot all truly represent the physical systems. But is there any reason
why a realist must restrict herself to theories in this sense? The realist
need only insist that the goal of science is truth and that we have good
reason to think that our representations are getting better at capturing
truth over time. This fits perfectly with our scientific practice, at any given
time, requiring several different, even conflicting, mathematical models
that are used to provide good representations of this or that aspect of a
physical system. The connections between these models may be clearly
understood theoretically, to the point where we can explain why this model
works for this purpose, whereas this model must be applied only for these
other purposes. But even in the absence of these clarifications, we can
often be confident that we have a good representation of this aspect using
this model, and some other aspect using some other model. A limited
realist position, then, does not try to explain away these appearances, but
insists that it is consistent with adequate and improvable scientific
representations.

The costs of this approach should be obvious. For unlike the traditional
realist who tried to get arguments that applied to science as a whole, the
limited realism I am suggesting requires a case by case consideration of
exactly what evidence we have that our representations are good ones.
This piecemeal approach, however, promises to fit in better with the judg-
ments of scientists themselves, but still holds out the hope that scientists
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are discovering at least a part of the truth about a mind independent
physical world.
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