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This paper deals with stochastic comparisons of the largest order statistics arising from
two sets of independent and heterogeneous gamma samples. It is shown that the weak
supermajorization order between the vectors of scale parameters together with the weak
submajorization order between the vectors of shape parameters imply the reversed hazard
rate ordering between the corresponding maximum order statistics. We also establish
sufficient conditions of the usual stochastic ordering in terms of the p-larger order between
the vectors of scale parameters and the weak submajorization order between the vectors of
shape parameters. Numerical examples and applications in auction theory and reliability
engineering are provided to illustrate these results.
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1. INTRODUCTION

Order statistics play a critical role in many research areas such as statistical inference,
operations research, reliability theory and applied probability. For instance, the kth order
statistic Xk:n from random sample X1, . . . , Xn corresponds to the lifetime of an (n− k + 1)-
out-of-n system in the area of reliability engineering, which is a rather renowned structure
of system in fault-tolerant systems that have been studied extensively. In particular, Xn:n

and X1:n represent the lifetimes of parallel and series systems, respectively. There have been
a great many papers appearing on various aspects of order statistics when the observations
are independent and identically distributed (i.i.d.); however, for the case of independent
but not identically distributed (i.n.i.d.) observations, not too much work is available in
the literature due to the complexity of the distribution theory; see, for example, [1,10] for
comprehensive discussions on this topic.

Pledger and Proschan [23] might be the first to investigate stochastic comparisons of
order statistics arising from i.n.i.d. exponential random variables. Along this line, many
researchers have focused their attention on the topic of stochastic properties of order statis-
tics stemming from exponential samples (see [7,11,13,17,22,30,31]). However, there is not
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much work dealing with the gamma distribution, which is one of the most commonly used
distributions in many areas including actuarial science and reliability engineering. A ran-
dom variable X is said to have a gamma distribution with the shape parameter r > 0 and
the scale parameter λ > 0 if its probability density function is given as

f(x; r, λ) =
λr

Γ(r)
xr−1e−λx, x > 0. (1)

It is an extremely flexible distribution with decreasing, constant and increasing failure rates
when 0< r < 1, r = 1 and r > 1, respectively. Obviously, it contains exponential distribution
as a special case when r = 1. Gamma distribution is also widely used to describe the lifetime
of components in shock model or undergoing minimal repairs (see [18,25,29]).

Let X1,X2, . . . , Xn [Y1, Y2, . . . , Yn] be a batch of independent gamma random vari-
ables with the common shape parameter r and different scale parameters λ1, λ2, . . . , λn

[λ∗1, λ
∗
2, . . . , λ

∗
n], respectively. Let Z1, Z2, . . . , Zn be another set of independent gamma ran-

dom variables with the common shape parameter r and the common scale parameter λ. For
the case of two heterogeneous gamma samples, Sun and Zhang [27] proved that

r > 1 and (λ1, λ2, . . . , λn)
m� (λ∗1, λ

∗
2, . . . , λ

∗
n) =⇒ X1:n ≤st Y1:n,

r ≤ 1 and (λ1, λ2, . . . , λn)
m� (λ∗1, λ

∗
2, . . . , λ

∗
n) =⇒ (X1:n, . . . , Xn:n) ≥st (Y1:n, . . . , Yn:n),

∀ r > 0, (λ1, λ2, . . . , λn)
m� (λ∗1, λ

∗
2, . . . , λ

∗
n) =⇒ Xn:n ≥st Yn:n,

(2)

where “
m�” denotes the majorization order, “≥st” denotes the usual stochastic ordering

and “≥st” denotes the multivariate usual stochastic ordering. For the sake of briefness,
explicit definitions of related orders used here as well as in the following text will be given
in Section 2. Khaledi et al. [14] relaxed the condition of (2) as

∀ r > 0, (λ1, λ2, . . . , λn)
p

� (λ∗1, λ
∗
2, . . . , λ

∗
n) =⇒ Xn:n ≥st Yn:n. (3)

Misra and Misra [20] further strengthened (2) by showing that

∀ r > 0, (λ1, λ2, . . . , λn)
w� (λ∗1, λ

∗
2, . . . , λ

∗
n) =⇒ Xn:n ≥rh Yn:n. (4)

For the case of two independent heterogeneous and homogenous gamma samples, Balakr-
ishnan and Zhao [4] and Zhao and Balakrishnan [32] investigated the hazard rate ordering
and the likelihood ratio ordering for the maximum order statistics under the condition that
0 < r ≤ 1, respectively.

However, all of the results mentioned above rely on the assumption that all of the shape
parameters are same. To the best of the authors’ knowledge, little work has been done for
stochastic comparisons on the largest order statistics from independent and heterogeneous
gamma samples when the shape parameters are different from each other except Zhao
and Zhang [33] and Zhang and Zhao [28]. In these two papers, the authors dealt with
the ordering properties of the maxima of two independent gamma random variables with
both different shape and scale parameters by means of the likelihood ratio ordering and the
hazard rate ordering. In this paper, we shall investigate ordering properties of the maximum
order statistics arising from heterogeneous gamma random variables with different shape
and scale parameters when the sample size is such that n ≥ 3. Sufficient conditions will be
established in terms of the majorization-type orders for the reversed hazard rate order and
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the usual stochastic order. Our results will generalize the aforementioned results in (2)–(4)
to some extent.

The rest of the paper is organized as follows. Section 2 introduces some pertinent defini-
tions of stochastic orderings and majorization-type orders. In Section 3, sufficient conditions
on vectors of the shape and scale parameters are given to stochastically compare the largest
order statistic between two sets of independent and heterogeneous gamma samples in terms
of the reversed hazard rate ordering. Stochastic comparisons based on the usual stochastic
ordering are carried out in Section 4. Section 5 presents some practical applications where
our results can be applied. Concluding remarks can be found in Section 6.

2. PRELIMINARIES

Throughout this paper, the term increasing is used for monotone nondecreasing and decreas-
ing is used for monotone nonincreasing. We use “

sgn
= ” to denote that both sides of the equality

have the same sign. Let R = (−∞,+∞), R+ = [0,+∞) and R++ = (0,+∞). Define two
2 × n matrix spaces as

Sn =
{

(a, b) =
(
a1, . . . , an

b1, . . . , bn

)
: ai, bj > 0, (ai − aj)(bi − bj) ≥ 0, i, j = 1, 2, . . . , n

}

and

Un =
{

(a, b) =
(
a1, . . . , an

b1, . . . , bn

)
: ai, bj > 0, (ai − aj)(bi − bj) ≤ 0, i, j = 1, 2, . . . , n

}
.

We first recall the definitions of some useful stochastic orderings used in the sequel.

Definition 2.1: For two random variables X and Y with density functions fX and fY , and
distribution functions FX and FY , respectively, let FX = 1 − FX and FY = 1 − FY be their
corresponding survival functions. Then, X is said to be smaller than Y in the

i. likelihood ratio order (denoted by X ≤lr Y ) if fY (x)/fX(x) is increasing in x ∈ R;
ii. hazard rate order (denoted by X ≤hr Y ) if FY (x)/FX(x) is increasing in x ∈ R;
iii. reversed hazard rate order (denoted by X ≤rh Y ) if FY (x)/FX(x) is increasing in

x ∈ R; and
iv. usual stochastic order (denoted by X ≤st Y ) if FX(x) ≤ FY (x) for all x ∈ R.

It is well known that the likelihood ratio order implies both the reversed hazard rate
order and the hazard rate order, which further imply the usual stochastic order. However,
the reversed statements do not hold in general. For comprehensive discussions and applica-
tions on these stochastic orders, one may refer to the excellent monographs by Shaked and
Shanthikumar [26] and Müller and Stoyan [21].

Majorization is quite helpful in deriving inequalities arising from the areas of applied
probability and reliability theory. Let x1:n ≤ · · · ≤ xn:n be the increasing arrangement of
the components of the vector x = (x1, . . . , xn).

Definition 2.2: A vector x = (x1, . . . , xn) ∈ Rn is said to

i. majorize another vector y = (y1, . . . , yn) ∈ Rn (written as x
m� y) if

∑j
i=1 xi:n ≤∑j

i=1 yi:n for j = 1, . . . , n− 1 and
∑n

i=1 xi:n =
∑n

i=1 yi:n;
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ii. weakly supermajorize another vector y = (y1, . . . , yn) ∈ Rn (written as x
w� y) if∑j

i=1 xi:n ≤∑j
i=1 yi:n for j = 1, . . . , n;

iii. weakly submajorize another vector y = (y1, . . . , yn) ∈ Rn (written as x �w y) if∑n
i=j xi:n ≥∑n

i=j yi:n for j = 1, . . . , n; and

iv. be p-larger than another vector y = (y1, . . . , yn) ∈ Rn (written as x
p

� y) if∏j
i=1 xi:n ≤∏j

i=1 yi:n for j = 1, . . . , n, and the elements of both x and y are
nonnegative.

For two nonnegative vectors x and y, it is evident that x
m� y implies x

w� y, and x
p

� y

is equivalent to log(x)
w� log(y), where log(x) = (log x1, . . . , log xn). It is well known that

x
m� y =⇒ x

w� y =⇒ x
p

� y.

For more details on majorization orders and their applications, one may refer to Bon and
Pǎltǎnea [6] and Marshall et al. [19].

The following lemma presents sufficient and necessary conditions for the preservation
of a multivariate function on the supermajorization and submajorization orders.

Lemma 2.3 [19]: Let φ be a continuous real-valued function defined on D = {x : x1 ≥ x2 ≥
· · · ≥ xn} and differentiable on the interior of D. Denote the partial derivative of φ with
respect to its kth argument by φ(k)(z) = ∂φ(z)/∂zk, for k = 1, . . . , n. Then, φ(x) ≤ φ(y)
whenever x 	w y on D if and only if φ(1)(z) ≥ φ(2)(z) ≥ · · · ≥ φ(n)(z) ≥ 0, that is, the gra-
dient ∇φ(z) ∈ D+ = {x : x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}, for all z in the interior of D. Similarly,

φ(x) ≤ φ(y) whenever x
w	 y on D if and only if 0 ≥ φ(1)(z) ≥ φ(2)(z) ≥ · · · ≥ φ(n)(z), that

is, the gradient ∇φ(z) ∈ D− = {x : 0 ≥ x1 ≥ x2 ≥ · · · ≥ xn}, for all z in the interior of D.

3. THE REVERSED HAZARD RATE ORDERING

In this section, sufficient conditions are presented with regard to the reversed hazard rate
ordering between the maximum order statistics arising from two sets of independent and
heterogeneous gamma samples. The following lemmas play a key role in proving the main
results.

Lemma 3.1 [5]: Let X be a nonnegative random variable with distribution function F and
let μr =

∫∞
0
xrdF (x), r= 1, 2. If X has the increasing hazard rate in average (IHRA), then

μ2 ≤ 2μ2
1.

Lemma 3.2 [20]: Let W be a random variable having the probability density function

fW (w;α, y) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − w)α−1eyw∫ 1

0
(1 − t)α−1eytdt

, if 0 < w < 1,

0, otherwise,

where α and y are positive constants. Then, W has the increasing hazard rate (IHR).

https://doi.org/10.1017/S0269964820000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000108


COMPARISONS ON LARGEST ORDER STATISTICS FROM HETEROGENEOUS GAMMA SAMPLES 615

Lemma 3.3: For r ∈ R++ and x ∈ R+, the bivariate function

Υ(r, x) =

∫ 1

0
ur−1(1 − u)e−x(1+u)du(∫ 1

0
ur−1e−xudu

)2

is decreasing in x ∈ R+ and increasing in r ∈ R++.

Proof: First, we prove the decreasing property of Υ(r, x) in x ∈ R+. Note that

Υ(r, x) =

∫ 1

0
ur−1(1 − u)e−x(1+u)du(∫ 1

0
ur−1e−xudu

)2 =

∫ 1

0
u(1 − u)r−1exudu(∫ 1

0
(1 − u)r−1exudu

)2 .

By taking the derivative of Υ(r, x) with respect to x, we have

∂Υ(r, x)
∂x

sgn
=
∫ 1

0

u2(1 − u)r−1exu du
(∫ 1

0

(1 − u)r−1exu du
)2

− 2
∫ 1

0

(1 − u)r−1exu du
(∫ 1

0

u(1 − u)r−1exu du
)2

sgn
=

∫ 1

0
u2(1 − u)r−1exu du∫ 1

0
(1 − u)r−1exu du

− 2

(∫ 1

0
u(1 − u)r−1exu du∫ 1

0
(1 − u)r−1exu du

)2

≤ 0,

where the last inequality holds by using (2.2) in the proof of Theorem 2.1 of Misra and
Misra [20].

Now, our attention turns to the proof of the increasing property of Υ(r, x) with respect
to r ∈ R++. Upon taking the derivative of Υ(r, x) with respect to r, we have

∂Υ(r, x)
∂r

=

∫ 1

0
ur−1e−x(1+u)(1 − u) lnu du

(∫ 1

0
ur−1e−xu du

)2

(∫ 1

0
ur−1e−xu du

)4

− 2
∫ 1

0
ur−1(1 − u)e−x(1+u) du

∫ 1

0
ur−1e−xu du

∫ 1

0
ur−1e−xu lnu du(∫ 1

0
ur−1e−xu du

)4

sgn
=

∫ 1

0
ur−1e−xu(1 − u) lnu du∫ 1

0
ur−1e−xu du

− 2
∫ 1

0
ur−1e−xu(1 − u) du

∫ 1

0
ur−1e−xu lnu du(∫ 1

0
ur−1e−xu du

)2

= E((1 − U) lnU) − 2E(1 − U)E lnU,

where the random variable U has the density function

fU (u|r, x) =
ur−1e−xu∫ 1

0
tr−1e−xt dt

, u ∈ (0, 1).

Let W = 1−U. The density function of W can be written as follows:

fW (w|r, x) =
(1 − w)r−1e−x(1−w)∫ 1

0
tr−1e−xt dt

=
(1 − w)r−1e−xexw∫ 1

0
(1 − u)r−1e−xexu du

.
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According to Lemma 3.2, we know that W is IHR. Let Y = − lnU . Then, the density
function of Y can be written as follows:

fY (y|r, x) =
e−ry−xe−y∫ 1

0
tr−1e−xt dt

.

By taking twice derivative of ln fY (y|r, x) with respect to y, we get

d2 ln fY (y|r, x)
dy2

= −xe−y ≤ 0,

which means the density function of random variable Y is logconcave, and hence, Y has
IHR. Therefore, both of 1−U and − lnU have IHR. Based on Lemma 3.1, it then follows
that

E(1 − U)2 ≤ 2(E(1 − U))2 and E(lnU)2 ≤ 2(E lnU)2. (5)

Upon applying Cauchy–Schwarz inequality to (5), we have

(E(1 − U) lnU)2 ≤ E(1 − U)2E(lnU)2,

which leads to

(E(1 − U) lnU)2 ≤ E(1 − U)2E(lnU)2 ≤ 4(E(1 − U))2(E lnU)2,

that is,

2E(1 − U)E lnU ≤ E(1 − U) lnU. (6)

In accordance with (6), we know that ∂Υ(r, x)/∂r is nonnegative. Thus, one can see that
the function Υ(r, x) is increasing r ∈ R++. To sum up, the proof is completed. �

Next, the reversed hazard rate ordering is established in the following theorem under
the weak supermajorization order between the vectors of scale parameters.

Theorem 3.4: Let X1,X2, . . . , Xn be independent gamma random variables with the shape
parameter vector r and the scale parameter vector λ. Let Y1, Y2, . . . , Yn be another set of
independent gamma random variables with the vector of shape parameter r and the vector
of scale parameter λ∗. Suppose that (λ,λ∗) ∈ Sn and (r,λ) ∈ Un. Then, it holds that

λ
w� λ∗ =⇒ Xn:n ≥rh Yn:n.

Proof: Without loss of generality, we assume that r1 ≥ r2 ≥ · · · ≥ rn > 0, λ1 ≤ λ2 ≤ · · · ≤
λn and λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n. Denote by r̃Xn:n(t) and r̃Yn:n(t), the reversed hazard rate
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functions of Xn:n and Yn:n, respectively. Then, we have

r̃Xn:n(t) =
1
t

n∑
i=1

e−λit∫ 1

0
uri−1e−λitu du

and r̃Yn:n(t) =
1
t

n∑
i=1

e−λ∗i t∫ 1

0
uri−1e−λ∗i tu du

.

Let xi = λit and x∗i = λ∗i t, i = 1, 2, . . . , n. Then, we know that x1 ≤ x2 ≤ · · · ≤ xn, x∗1 ≤
x∗2 ≤ · · · ≤ x∗nand (x1, x2, . . . , xn)

w� (x∗1, x
∗
2, . . . , x

∗
n). It suffices to prove that

n∑
i=1

e−xi∫ 1

0
uri−1e−xiu du

≥
n∑

i=1

e−x∗i∫ 1

0
uri−1e−x∗i u du

.

In light of Lemma 2.3, we need to show that the derivative functions

∂Ψ
∂xk

(xn, xn−1, . . . , x1), k = 1, 2, . . . , n

of differentiable function Ψ : D←
x

= {(xn, xn−1, . . . , x1) : xn ≥ xn−1 ≥ · · · ≥ x1} → R++

given by

Ψ(xn, xn−1, . . . , x1) =
n∑

i=1

e−xi∫ 1

0
uri−1e−xiu du

satisfy that

0 ≥ ∂Ψ
∂xj

(xn, xn−1, . . . , x1) ≥ ∂Ψ
∂xi

(xn, xn−1, . . . , x1) for all n ≥ j ≥ i ≥ 1.

Taking the derivative of Ψ(xn, xn−1, . . . , x1) with respect to xi gives rise to

∂Ψ
∂xi

(xn, xn−1, . . . , x1) =
−e−xi

∫ 1

0
uri−1e−xiu du+ e−xi

∫ 1

0
urie−xiu du(∫ 1

0
uri−1e−xiu du

)2

= −
∫ 1

0
uri−1(1 − u)e−xi(1+u) du(∫ 1

0
uri−1e−xiu du

)2 ≤ 0.

Similarly,

∂Ψ
∂xj

(xn, xn−1, . . . , x1) = −
∫ 1

0
urj−1(1 − u)e−xj(1+u) du(∫ 1

0
urj−1e−xju du

)2 .
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Note that

∂Ψ
∂xi

(xn, xn−1, . . . , x1) − ∂Ψ
∂xj

(xn, xn−1, . . . , x1)

=

∫ 1

0
urj−1(1 − u)e−xj(1+u) du(∫ 1

0
urj−1e−xju du

)2 −
∫ 1

0
uri−1(1 − u)e−xi(1+u) du(∫ 1

0
uri−1e−xiu du

)2

=

∫ 1

0
urj−1(1 − u)e−xj(1+u) du(∫ 1

0
urj−1e−xju du

)2 −
∫ 1

0
uri−1(1 − u)e−xj(1+u) du(∫ 1

0
uri−1e−xju du

)2

+

⎡
⎢⎣
∫ 1

0
uri−1(1 − u)e−xj(1+u) du(∫ 1

0
uri−1e−xju du

)2 −
∫ 1

0
uri−1(1 − u)e−xi(1+u) du(∫ 1

0
uri−1e−xiu du

)2

⎤
⎥⎦

≤ 0,

where the inequality is based on Lemma 3.3 for 0 < rj ≤ ri and xi ≤ xj , for all
1 ≤ i ≤ j ≤ n. Hence, the theorem is proved. �

Remark 3.5: It is worth noting that Theorem 3.4 partially generalizes (4) [20]

In the next, we implement stochastic comparisons under different shape parameters by
means of the reversed hazard rate ordering.

Theorem 3.6: Let X1,X2, . . . , Xn be independent gamma random variables with the shape
parameter vector r = (r1, . . . , rn) and the scale parameter vector λ = (λ1, . . . , λn). Let
Y1, Y2, . . . , Yn be another set of independent gamma random variables with the shape param-
eter vector r∗ = (r∗1 , . . . , r

∗
n) and the scale parameter vector λ = (λ1, . . . , λn). Suppose that

(r, r∗) ∈ Sn and (r,λ) ∈ Un. Then,

r �w r∗ =⇒ Xn:n ≥rh Yn:n.

Proof: Without loss of generality, it is supposed that r1 ≥ r2 ≥ · · · ≥ rn, r∗1 ≥ r∗2 ≥ · · · ≥
r∗n and λ1 ≤ λ2 ≤ · · · ≤ λn. Let r̃Xn:n(t)[r̃Yn:n(t)] be the reversed hazard rate function of
Xn:n[Yn:n]. Then,

r̃Xn:n(t) =
n∑

i=1

e−λit∫ 1

0
turi−1e−λitu du

and r̃Yn:n(t) =
n∑

i=1

e−λit∫ 1

0
tur∗i −1e−λitu du

.

To get r̃Xn:n(t) ≥ r̃Yn:n(t), we need to prove

K(r1, r2, . . . , rn) =
n∑

i=1

1∫ 1

0
uri−1eyi(1−u) du

≥
n∑

i=1

1∫ 1

0
ur∗i −1eyi(1−u) du

= K(r∗1 , r
∗
2 , . . . , r

∗
n),

where yi = λit and satisfy the restriction y1 ≤ y2 ≤ · · · ≤ yn. According to Lemma 2.3, we
need to prove that the derivative function

∂K

∂ri
(r1, r2, . . . , rn), i = 1, 2, . . . , n
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of differentiable function K : Dr = {(r1, r2, . . . , rn) : r1 ≥ r2 ≥ · · · ≥ rn} → R++ is decreas-
ing in i = 1, 2, . . . , n and positive, that is,

∂K

∂ri
(r1, r2, . . . , rn) ≥ ∂K

∂rj
(r1, r2, . . . , rn) ≥ 0 for all n ≥ j ≥ i ≥ 1.

To reach the above result, we just need to show that

k(ri, yi) =

∫ 1

0
uri−1eyi(1−u) lnu du(∫ 1

0
uri−1eyi(1−u) du

)2 ≤
∫ 1

0
urj−1eyj(1−u) lnu du(∫ 1

0
urj−1eyj(1−u) du

)2 = k(rj , yj),

for all pairs n ≥ j ≥ i ≥ 1. Note that

k(ri, yi) − k(rj , yj) = k(ri, yi) − k(rj , yi) + k(rj , yi) − k(rj , yj). (7)

Therefore, it is sufficient for us to prove that k(r, y) is decreasing in r ∈ R++ and increasing
in y ∈ R++, respectively, to make sure that equation (7) is nonpositive. Firstly, the decreas-
ing property of k(r, y) with respect to r is proved by Theorem 3.2 of Zhang and Zhao [29].
Next, we will show k(r, y) is increasing in y ∈ R++. Observe that

k(r, y) =

∫ 1

0
ur−1ey(1−u) lnu du(∫ 1

0
ur−1ey(1−u) du

)2 =

∫ 1

0
(1 − u)r−1eyu ln(1 − u) du(∫ 1

0
(1 − u)r−1eyu du

)2

and

ln[−k(r, y)] = ln
[
−
∫ 1

0

(1 − u)r−1eyu ln(1 − u) du
]
− 2 ln

[∫ 1

0

(1 − u)r−1eyu du
]
.

By taking the derivative of ln[−k(r, y)] with respect to y, one can see

∂ ln[−k(r, y)]
∂y

=

∫ 1

0
u(1 − u)r−1eyu ln(1 − u) du∫ 1

0
(1 − u)r−1eyu ln(1 − u) du

− 2
∫ 1

0
u(1 − u)r−1eyu du∫ 1

0
(1 − u)r−1eyu du

=

[∫ 1

0
u(1 − u)r−1eyu ln(1 − u) du∫ 1

0
(1 − u)r−1eyu du

− 2
∫ 1

0
(1 − u)r−1eyu ln(1 − u)du

∫ 1

0
u(1 − u)r−1eyudu(∫ 1

0
(1 − u)r−1eyudu

)2

⎤
⎥⎦

×
∫ 1

0
(1 − u)r−1eyudu∫ 1

0
(1 − u)r−1eyu ln(1 − u)du

=

∫ 1

0
(1 − u)r−1eyudu∫ 1

0
(1 − u)r−1eyu ln(1 − u)du

× [E(U ln(1 − U)) − 2EUE ln(1 − U)] ,

(8)

where the random variable U has the density function defined as follows:

fU (u|r, y) =
(1 − u)r−1eyu∫ 1

0
(1 − u)r−1eyu du

, u ∈ (0, 1).
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According to Lemma 3.2, U has IHR, and hence, the random variable − ln(1 − U) also has
IHR. Then, it follows that

EU2 ≤ 2(EU)2 and E(ln(1 − U))2 ≤ 2(E ln(1 − U))2. (9)

Based on Cauchy–Schwarz inequality, it holds

(EU ln(1 − U))2 ≤ EU2E(ln(1 − U))2. (10)

Combining (9) with (10), we have

(EU ln(1 − U))2 ≤ EU2E(ln(1 − U))2 ≤ 4(EU)2(E ln(1 − U))2,

which is

2EUE ln(1 − U) ≤ EU ln(1 − U)

and this implies that the right hand of (8) is nonnegative. Therefore, k(r, y) is increasing in
y ∈ R++. To sum up, the proof is completed. �

Next, we present the main result of this section in terms of the reversed hazard rate
ordering under some mild and sufficient conditions.

Theorem 3.7: Let X1,X2, . . . , Xn be independent gamma random variables with the shape
parameter vector r = (r1, . . . , rn) and the scale parameter vector λ = (λ1, . . . , λn). Let
Y1, Y2, . . . , Yn be another set of independent gamma random variables with the shape param-
eter vector r∗ = (r∗1 , . . . , r

∗
n) and the scale parameter vector λ∗ = (λ∗1, . . . , λ

∗
n). Suppose that

(λ,λ∗) ∈ Sn, (r, r∗) ∈ Sn and (r,λ) ∈ Un. Then,

λ
w� λ∗, r �w r∗ =⇒ Xn:n ≥rh Yn:n.

Proof: Without loss of generality, assume that r1 ≥ r2 ≥ · · · ≥ rn > 0, r∗1 ≥ r∗2 ≥ · · · ≥
r∗n > 0, λ1 ≤ λ2 ≤ · · · ≤ λn and λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n. Let Z1, Z2, . . . , Zn be a set of indepen-
dent gamma random variables with Zi having the shape and scale parameters ri and λ∗i ,
respectively. In accordance with Theorem 3.4, it can be obtained that Xn:n ≥rh Zn:n. On
the other hand, we can see that Zn:n ≥rh Yn:n by using Theorem 3.6. Hence, it holds that
Xn:n ≥rh Yn:n. �

Now, we will give a numerical example to illustrate the results of Theorems 3.4, 3.6
and 3.7.

Example 3.8: Let X = (X1,X2,X3) be a vector of independent gamma random variables
with the shape parameters (r1, r2, r3) = (2.1, 1.6, 0.1) and the scale parameters (λ1, λ2, λ3) =
(0.8, 1.3, 2.4), let Y = (Y1, Y2, Y3) be another set of independent gamma random variables
with the shape parameters (r∗1 , r

∗
2 , r

∗
3) = (1.8, 1.5, 0.3) and the scale parameters (λ∗1, λ

∗
2, λ

∗
3) =

(1, 1.2, 3.2), and let Z = (Z1, Z2, Z3) be a set of independent gamma random variables with
the shape parameters (r1, r2, r3) and the scale parameters (λ∗1, λ

∗
2, λ

∗
3). It can be seen that

(2.1, 1.6, 0.1)�w(1.8, 1.5, 0.3) and (0.8, 1.3, 2.4)
w� (1, 1.2, 3.2), which is in accordance with

the conditions of Theorem 3.7. Let u ∈ (0, 1) and t = − log(u). Figure 1 plots the difference
of the reversed hazard rate functions r̃X3:3(t(u)) − r̃Z3:3(t(u)) and r̃Z3:3(t(u)) − r̃Y3:3(t(u))
for t = − log(u) and u ∈ (0, 1). We can observe that the inequality chain r̃Y3:3(t(u)) ≤
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Figure 1. (a) Plot of the difference function r̃X3:3(t(u)) − r̃Z3:3(t(u)) for u ∈ (0, 1).
(b) Plot of the difference function r̃Z3:3(t(u)) − r̃Y3:3(t(u)) for u ∈ (0, 1).

r̃Z3:3(t(u)) ≤ r̃X3:3(t(u)) always holds for u ∈ (0, 1), which confirms the statement of the
theoretical results established in Theorems 3.4, 3.6 and 3.7.

One may wonder whether the likelihood ratio ordering holds under the assumptions of
Theorem 3.7. For the special case of n = 2, the result has been verified by Zhao and Zhang

[33] when the submajorization order “x �w” is replaced by “
m�” between the vectors of

shape parameters with other conditions unchanged. However, the likelihood ratio ordering
may not hold when n ≥ 3. The following example is provided to explain this point.

Example 3.9: Let X = (X1,X2,X3) be a group of independent gamma random variables
with the shape parameters (r1, r2, r3) = (0.9, 0.5, 0.1) and the scale parameters (λ1, λ2, λ3) =
(0.1, 1, 99), and let Y = (Y1, Y2, Y3) be another group of independent gamma random
variables with the shape parameters (r∗1 , r

∗
2 , r

∗
3) = (0.5, 0.4, 0.05) and the scale parame-

ters (λ∗1, λ
∗
2, λ

∗
3) = (1, 10, 91). We then have (0.9, 0.5, 0.1)�w(0.5, 0.4, 0.05) and (0.1, 1, 99)

w�
(1, 10, 91). Figure 2 plots the ratio function of the density functions fX3:3(t) and fY3:3(t).
It can be seen that the function fX3:3(t)/fY3:3(t) is not monotonic in t ∈ R+, which means
that the likelihood ratio ordering does not hold between X3:3 and Y3:3.

Note that the conditions in Theorem 3.7 require that the shape parameters are arranged
in the opposite direction to the scale parameters. It is natural to ask whether these require-
ments are necessary. The following example tells us that these restrictions cannot be
ignored.

Example 3.10: Let X = (X1,X2,X3) be a vector of independent gamma random vari-
ables with the shape parameters (r1, r2, r3) = (0.99, 0.3, 0.5) and the scale parameters
(λ1, λ2, λ3) = (2.5, 0.8, 1.3), and let Y = (Y1, Y2, Y3) be another vector of independent
gamma random variables with the shape parameters (r∗1 , r

∗
2 , r

∗
3) = (0.8, 0.6, 0.2) and the

scale parameters (λ∗1, λ
∗
2, λ

∗
3) = (1, 3.2, 1.2). Then, we have (0.99, 0.3, 0.5)�w(0.8, 0.6, 0.2)
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Figure 2. Plot of the ratio function between fX3:3(t) and fY3:3(t) when
(r1, r2, r3) = (0.9, 0.5, 0.1), (λ1, λ2, λ3) = (0.1, 1, 99), (r∗1 , r

∗
2 , r

∗
3) = (0.5, 0.4, 0.05) and

(λ∗1, λ
∗
2, λ

∗
3) = (1, 10, 91).

Figure 3. Plot of the ratio FX3:3(t) and FY3:3(t) when (r1, r2, r3) = (0.99, 0.3, 0.5),
(λ1, λ2, λ3) = (2.5, 0.8, 1.3), (r∗1 , r

∗
2 , r

∗
3) = (0.8, 0.6, 0.2) and (λ∗1, λ

∗
2, λ

∗
3) = (1, 3.2, 1.2).

and (2.5, 0.8, 1.3)
w� (1, 3.2, 1.2). However, (λ,λ∗) /∈ Sn and (r, r∗) /∈ Sn. Figure 3 plots the

ratio function of distribution functions FX3:3(t) and FY3:3(t). It can be seen that the function
FX3:3(t)/FY3:3(t) is not monotonic in t ∈ R+, which means the reversed hazard rate ordering
does not hold between X3:3 and Y3:3.

4. THE USUAL STOCHASTIC ORDERING

In this section, we carry out stochastic comparisons on the largest order statistics arising
from two sets of independent and heterogeneous gamma random variables in terms of the
usual stochastic ordering. Firstly, two useful lemmas are given as follows, which are very
helpful to the proofs of the main results.
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Lemma 4.1: For any λ ∈ R++, the function

ψ(r) = r −
∫ 1

0
λure−λu du∫ 1

0
ur−1e−λu du

is increasing in r ∈ R++.

Proof: Note that

ψ(r) = r −
∫ 1

0
λure−λu du∫ 1

0
ur−1e−λu du

= r − r
∫ 1

0
ur−1e−λu du− e−λ∫ 1

0
ur−1e−λu du

=:
1
η(r)

,

where

η(r) =
∫ 1

0

ur−1eλ(1−u) du.

Since η′(r) ≤ 0, we know that η(r) is decreasing in r ∈ R++. Hence, it can been seen that
ψ(r) is increasing in r ∈ R++. �

Lemma 4.2: For any r ∈ R++, the function

φ(λ) =

∫ 1

0
λure−λu du∫ 1

0
ur−1e−λu du

is increasing in λ ∈ R++.

Proof: Note that

φ(λ) =

∫ 1

0
λure−λu du∫ 1

0
ur−1e−λu du

=
r
∫ 1

0
ur−1e−λu du− e−λ∫ 1

0
ur−1e−λu du

=: r − 1
ϕ(λ)

,

where

ϕ(λ) =
∫ 1

0

ur−1eλ(1−u) du.

Then, the increasing property of φ(λ) can be acquired due to the fact that ϕ′(λ) ≥ 0. �

Now, we show that the p-larger order between the vectors of scale parameters implies
the usual stochastic ordering of the maximum order statistics from gamma samples.

Theorem 4.3: Let X1,X2, . . . , Xn be independent gamma random variables with the shape
parameter r = (r1, . . . , rn) and the scale parameter λ = (λ1, . . . , λn). Let Y1, Y2, . . . , Yn

be another set of independent gamma random variables with the shape parameter r =
(r1, . . . , rn) and the scale parameter λ∗ = (λ∗1, . . . , λ

∗
n). Suppose that (λ,λ∗) ∈ Sn and

(r,λ) ∈ Un. Then, we have

λ
p

� λ∗ =⇒ Xn:n ≥st Yn:n.
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Proof: Without loss of generality, we assume that r1 ≥ r2 ≥ · · · ≥ rn > 0, λ1 ≤ λ2 ≤ · · · ≤
λn and λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n. The distribution function of Xn:n can be written as follows:

FXn:n(t) =
n∏

i=1

∫ t

0

λri
i

Γ(ri)
uri−1e−λiu du

=
n∏

i=1

∫ 1

0

(λit)ri

Γ(ri)
uri−1e−λitu du.

Similarly,

FYn:n(t) =
n∏

i=1

∫ 1

0

(λ∗i t)
ri

Γ(ri)
uri−1e−λ∗i tu du.

To reach the desired result, we need to prove that FXn:n(t) ≤ FYn:n(t), which is equivalent to

n∏
i=1

∫ 1

0

xri
i

Γ(ri)
uri−1e−xiu du ≤

n∏
i=1

∫ 1

0

(x∗i )
ri

Γ(ri)
uri−1e−x∗i u du (11)

under the transformations xi = λit and x∗i = λ∗i t, and the conditions x1 ≤ x2 ≤ · · · ≤ xn,

x∗1 ≤ x∗2 ≤ · · · ≤ x∗n and (x1, x2, . . . , xn)
p

� (x∗1, x
∗
2, . . . , x

∗
n). Let yi = log xi and y∗i = log x∗i .

Then, (11) is equivalent to proving

−
n∏

i=1

∫ 1

0

eriyi

Γ(ri)
uri−1e−eyi u du ≥ −

n∏
i=1

∫ 1

0

eriy
∗
i

Γ(ri)
uri−1e−ey∗i u du (12)

under the conditions y1 ≤ y2 ≤ · · · ≤ yn, y∗1 ≤ y∗2 ≤ · · · ≤ y∗n and (y1, y2, . . . , yn)
w�

(y∗1 , y
∗
2 , . . . , y

∗
n). Upon using Lemma 2.3, we need to prove that the derivative functions

∂Φ
∂yk

(yn, yn−1, . . . , y1), k = 1, 2, . . . , n

of differentiable function Φ : D←
y

= {(yn, yn−1, . . . , y1) : yn ≥ yn−1 ≥ · · · ≥ y1} → (−∞, 0)
given by

Φ(yn, yn−1, . . . , y1) = −
n∏

i=1

∫ 1

0

eriyi

Γ(ri)
uri−1e−eyiu du

satisfy that

0 ≥ ∂Φ
∂yj

(yn, yn−1, . . . , y1) ≥ ∂Φ
∂yi

(yn, yn−1, . . . , y1) for all n ≥ j ≥ i ≥ 1.

Observe that, for 1 ≤ i ≤ n,

∂Φ
∂yi

(yn, yn−1, . . . , y1) = Φ(yn, yn−1, . . . , y1)

∫ 1

0
uri−1

Γ(ri)

(
rie

riyie−eyiu − eriyie−eyi ueyiu
)

du∫ 1

0
eriyi

Γ(ri)
uri−1e−eyi u du

= Φ(yn, yn−1, . . . , y1)

(
ri −

∫ 1

0
eyiurie−eyi u du∫ 1

0
uri−1e−eyi u du

)

=
Φ(yn, yn−1, . . . , y1)∫ 1

0
uri−1eeyi (1−u) du

≤ 0.
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Thus, it follows that, for n ≥ j ≥ i ≥ 1,

∂Φ
∂yi

(yn, yn−1, . . . , y1) − ∂Φ
∂yj

(yn, yn−1, . . . , y1)

sgn
= rj −

∫ 1

0
eyjurje−eyj u du∫ 1

0
urj−1e−eyj u du

− ri +

∫ 1

0
eyiurie−eyi u du∫ 1

0
uri−1e−eyiu du

= rj −
∫ 1

0
eyiurje−eyi u du∫ 1

0
urj−1e−eyiu du

−
(
ri −

∫ 1

0
eyiurie−eyi u du∫ 1

0
uri−1e−eyi u du

)

+

∫ 1

0
eyiurje−eyiu du∫ 1

0
urj−1e−eyi u du

−
∫ 1

0
eyjurje−eyj u du∫ 1

0
urj−1e−eyj u du

=: A+B,

where

A = rj −
∫ 1

0
eyiurje−eyi u du∫ 1

0
urj−1e−eyi u du

−
(
ri −

∫ 1

0
eyiurie−eyiu du∫ 1

0
uri−1e−eyi u du

)

and

B =

∫ 1

0
eyiurje−eyiu du∫ 1

0
urj−1e−eyi u du

−
∫ 1

0
eyjurje−eyj u du∫ 1

0
urj−1e−eyj u du

.

Then, it can be verified that A ≤ 0 by applying Lemma 4.1 and B ≤ 0 according to
Lemma 4.2, respectively. Thus, the desired result can be obtained from Lemma 2.3. �

Remark 4.4: It can be seen that Theorem 4.3 extends (3) [14]

Now, we will present the main result in this section in terms of the usual stochastic
ordering when both sets of the shape and scale parameters are heterogeneous.

Theorem 4.5: Let X1,X2, . . . , Xn be independent gamma random variables with the shape
parameter r = (r1, . . . , rn) and the scale parameter λ = (λ1, . . . , λn). Let Y1, Y2, . . . , Yn

be another set of independent gamma random variables with the shape parameter r∗ =
(r∗1 , . . . , r

∗
n) and the scale parameter λ∗ = (λ∗1, . . . , λ

∗
n). Suppose that (λ,λ∗) ∈ Sn, (r, r∗) ∈

Sn and (r,λ) ∈ Un. Then,

λ
p

� λ∗, r �w r∗ =⇒ Xn:n ≥st Yn:n.

Proof: Without loss of generality, it is assumed that r1 ≥ r2 ≥ · · · ≥ rn > 0, r∗1 ≥ r∗2 ≥
· · · ≥ r∗n > 0, λ1 ≤ λ2 ≤ · · · ≤ λn and λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n. Let Z1, Z2, . . . , Zn be a set of
independent gamma random variables with Zi having the shape and the scale parameters
ri and λ∗i , respectively. In accordance with Theorem 4.3, we have Xn:n ≥st Zn:n. Also, we
can see that Zn:n ≥rh Yn:n by applying Theorem 3.6, which implies that Zn:n ≥st Yn:n.
Hence, it follows that Xn:n ≥st Yn:n. �

To display the validity of Theorems 4.3 and 4.5, we will present a numerical example
as follows.
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Figure 4. (a) Plot of the difference function FX3:3(t(u)) − FZ3:3(t(u)) for u ∈ (0, 1).
(b) Plot of the difference function FZ3:3(t(u)) − FY3:3(t(u)) for u ∈ (0, 1).

Example 4.6: Let X = (X1,X2,X3) be a collection of independent gamma random
variables with the shape parameters (r1, r2, r3) = (2.9, 1.7, 0.3) and the scale parameters
(λ1, λ2, λ3) = (0.9, 2.7, 3), and let Y = (Y1, Y2, Y3) be another collection of independent
gamma random variables with the shape parameters (r∗1 , r

∗
2 , r

∗
3) = (1.8, 1.6, 1.1) and the

scale parameters (λ∗1, λ
∗
2, λ

∗
3) = (1, 2.5, 3.2). Let Z = (Z1, Z2, Z3) be a collection of inde-

pendent gamma random variables with the shape parameters (r1, r2, r3) and the scale

parameters (λ∗1, λ
∗
2, λ

∗
3). Note that (2.9, 1.7, 0.3)�w(1.8, 1.6, 1.1), (0.9, 2.7, 3)

p

� (1, 2.5, 3.2)

and (0.9, 2.7, 3)
w

� (1, 2.5, 3.2). Let u ∈ (0, 1) and t = − log(u). Figure 4 plots the difference
of the survival functions FX3:3(t(u)) − FZ3:3(t(u)) and FZ3:3(t(u)) − FY3:3(t(u)), respec-
tively. It can be observed that FY3:3(t(u)) ≤ FZ3:3(t(u)) ≤ FX3:3(t(u)) always holds for
u ∈ (0, 1), which proves the effectiveness of both Theorems 4.3 and 4.5.

One may wonder whether the hazard rate ordering holds under the assumptions of
Theorem 4.5. A counterexample is presented as follows.

Example 4.7: Let X = (X1,X2,X3) be a set of independent gamma random variables
with the shape parameters (r1, r2, r3) = (0.9, 0.5, 0.1) and the scale parameters (λ1, λ2, λ3) =
(0.1, 15, 100), and let Y = (Y1, Y2, Y3) be another set of independent gamma random
variables with the shape parameters (r∗1 , r

∗
2 , r

∗
3) = (0.5, 0.4, 0.05) and the scale parameters

(λ∗1, λ
∗
2, λ

∗
3) = (1, 10, 91). We then have (0.9, 0.5, 0.1)�w(0.5, 0.4, 0.05) and (0.1, 15, 100)

p

�
(1, 10, 91). Figure 5 plots the ratio function of the survival functions FX3:3(t) and FY3:3(t).
Note that FX3:3(t)/FY3:3(t) is not monotonic in t ∈ R+, which means the hazard rate
ordering does not hold between X3:3 and Y3:3.

5. APPLICATIONS

In this section, we present two explicit scenarios where our main results in both Sections 3
and 4 can be applied to analyze effects of the heterogeneity among the shape and scale
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Figure 5. Plot of the ratio function between FX3:3(t) and FY3:3(t) when
(r1, r2, r3) = (0.9, 0.5, 0.1), (λ1, λ2, λ3) = (0.1, 15, 100), (r∗1 , r

∗
2 , r

∗
3) = (0.5, 0.4, 0.05) and

(λ∗1, λ
∗
2, λ

∗
3) = (1, 10, 91).

parameters of gamma random variables on the stochastic properties of the maximum order
statistics.

5.1. Auction Theory

Auctions have a long history and can be recorded as early as 500 BC. Nowadays, auctions
play a vital role in economy and can be adopted to sell goods or services by offering them
up for bid, taking bids, and then selling the item to the highest bidder. In general, auction
can be classified into open ascending price auction (English auction), open descending price
auction (Dutch auction), sealed first-price auction (FPA), sealed second-price auction (SPA)
and so on (see the monograph Krishna [16]). Recently, there have been some recent works
concentrated on the effect of bidders’ asymmetries on revenue in FPA and SPA (see [8,9,12]).
For example, Chen and Xu studied the effect of bidder asymmetry on the revenue in SPA
with the help of the useful tool of majorization.

FPA is commonly used in practical scenarios for the sale of an item such as a piece of
precious painting. For this kind of auction, all bidders submit sealed bids simultaneously so
that no bidder knows the bidding price of any other participants. The highest bidder wins
the item and pays the price that they submitted to the auctioneer.

Suppose that an auctioneer is ready to auction an antique by employing FPA. There are
n people who do not know each other coming to bid for the item. It is assumed that the bid
price for each person is a gamma random variable with different shape and scale parameters.
The results established in Theorems 3.7 and 4.5 state that the more heterogeneity between
the prices of bidders will lead to a higher final price (denoted by Xn:n) in the FPA, which
will be beneficial for the auctioneer.

5.2. Minimal Repairs

Consider a parallel system comprised of n exponential components in a factory, and these
n components have hazard rates (λ1, λ2, . . . , λn). In order to improve the reliability of
the system, an economical way is to conduct minimal repairs (see [25]) immediately when
the original components fail. For such kind of parallel system, each of the components
X1, . . . , Xn is assumed to be allocated ki minimal repairs in advance, for i = 1, 2, . . . , n,
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where
∑n

i=1 ki = K and K is the total number of available minimal repairs. Now, an impor-
tant question for system engineers is to determine how to allocate these minimal repairs
among the components.

Intuitively, all minimal repairs should be put in the node with the component having
the smallest hazard rate parameter (c.f. [25]). Denote by Xi(ki), the lifetime of component
Xi assembled with ki minimal repairs. It is known from the Gamma–Poisson relationship
that

FXi(ki)(t) = P(Xi(ki) ≤ t) =
∞∑

j=ki+1

e−λit(λit)j

j!
=
∫ t

0

λki+1
i

Γ(ki + 1)
xkie−λix dt.

Thus, Xi with ki minimal repairs has a gamma distribution with the scale parameter λi and
the shape parameter ki + 1, that is, Γ(ki + 1, λi) for i = 1, 2, . . . , n. Then, the lifetime of the
resulting system under policy k can be expressed as the maximum of n gamma random vari-
ables with the shape and scale parameters (k1 + 1, k2 + 1, . . . , kn + 1) and (λ1, λ2, . . . , λn).
Recently, by employing the Gamma–Poisson relationship, Zhang and Zhao [29] studied
optimal allocation strategies of minimal repairs for parallel and series systems with i.i.d.
components in the sense of the hazard rate, the reversed hazard rate and the likelihood
ratio orderings.

Now, we assume that λ1 ≤ λ2 ≤ · · · ≤ λn. For two allocation policies k and k∗ such that

k1 ≥ k2 ≥ · · · ≥ kn, k∗1 ≥ k∗2 ≥ · · · ≥ k∗n and k
m� k∗, we can conclude that the allocation

policy k is better than k∗ in accordance with Theorem 3.6. Therefore, it can be claimed
that the optimal allocation policy for a parallel system with exponential components having
hazard rates λ1 ≤ λ2 ≤ · · · ≤ λn must be (K, 0, . . . , 0).

6. CONCLUDING REMARKS

In this paper, we have investigated the ordering properties of the largest order statistics
arising from independent and heterogeneous gamma samples. Let X1,X2, . . . , Xn be a set of
independent gamma random variables with the vector of shape parameter r = (r1, . . . , rn)
and the vector of scale parameter λ = (λ1, . . . , λn). Let Y1, Y2, . . . , Yn be another set of
independent gamma random variables with the vector of shape parameter r∗ = (r∗1 , . . . , r

∗
n)

and the vector of scale parameter λ∗ = (λ∗1, . . . , λ
∗
n). Suppose that (λ,λ∗) ∈ Sn, (r, r∗) ∈ Sn

and (r,λ) ∈ Un. It has been shown that, for all 1 ≤ i ≤ n,

λ
w� λ∗, r �w r∗ =⇒ Xn:n ≥rh Yn:n. (13)

Besides, we also prove that

λ
p

� λ∗, r �w r∗ =⇒ Xn:n ≥st Yn:n. (14)

We also present some real applications in auction theory, reliability system and minimal
repairs to address the importance of our main results.

It is of interest to check whether similar ordering results can be obtained for the smallest
order statistics under some sufficient conditions as stated in (13) and (14). On the other
hand, Zhao and Zhang [33] established the likelihood ratio ordering under the assumption
of (13) for n = 2. It is natural to examine whether their results could be extended to the
case of multiple-outlier gamma models. We are currently working on these problems and
hope to report some interesting findings in a future paper.
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