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Quantum Field Theory:
Underdetermination, Inconsistency,

and Idealization*

Doreen Fraser†‡

Quantum field theory (QFT) presents a genuine example of the underdetermination
of theory by empirical evidence. There are variants of QFT—for example, the standard
textbook formulation and the rigorous axiomatic formulation—that are empirically
indistinguishable yet support different interpretations. This case is of particular interest
to philosophers of physics because, before the philosophical work of interpreting QFT
can proceed, the question of which variant should be subject to interpretation must
be settled. New arguments are offered for basing the interpretation of QFT on a
rigorous axiomatic variant of the theory. The pivotal considerations are the roles that
consistency and idealization play in this case.

1. Introduction. Quantum field theory (QFT) is an example of a mature
field within a mature science in which there are parallel research programs.
Different communities of researchers (including experimentalists, theo-
reticians, and applied mathematicians) employ different variants of QFT.
At one end of the spectrum of variants of QFT is the version of the theory
that is found in the first part of most introductory textbooks and employed
by most working physicists, namely, the version of QFT that introduces
renormalization procedures to facilitate the calculation of scattering ma-
trix elements. At the other end of the spectrum are axiomatic presentations
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of QFT, such as the Haag-Kastler algebraic formulation and the Wight-
man axiomatization, which are rigorous but remote from practical ap-
plications. There is no consensus on how philosophers should deal with
this multitude of QFTs. Before the philosophical work of interpreting
QFT can begin, a question must be addressed: which variant of QFT
should be subject to interpretation? Arguments have been made in favor
of interpreting variants of QFT on both ends of the spectrum. Teller treats
the standard textbook variant of QFT in his book An Interpretive Intro-
duction to Quantum Field Theory (1995); Wallace’s article “In Defence of
Naiveté: The Conceptual Status of Lagrangian Quantum Field Theory”
(2006) is devoted to defending the use of textbook QFT for foundational
purposes; and, most recently, MacKinnon (2008) has advanced arguments
in favor of the same approach in this journal. In contrast, the recent work
of Ruetsche, Earman, Halvorson, Clifton, and others examines the al-
gebraic formulation of QFT.

This debate is an instance of a more general conflict of desiderata of
philosophers of science, a conflict that seems particularly endemic to phi-
losophy of physics. On the one hand, it is desirable to stick as close to
actual scientific practice as possible. This means that philosophers should
focus attention on the versions of theories that practicing scientists ac-
tually use and, in particular, how theories get applied. However, these
theories are often messy. A theme of the work of Batterman and Cart-
wright (among others) is that the messy context of application is important
for foundational and interpretive questions. A second desideratum of
philosophers of science is to clarify the foundations of theories and to
provide interpretations of theories, where necessary. These goals are often
more easily achieved by focusing on cleaner versions of theories that are
farther removed from actual applications. For instance, ‘toy’ models—
models that represent idealized situations—have been used to investigate
many foundational and interpretive questions.

The choice between these two desiderata is particularly stark in the
QFT case because the desiderata are best fulfilled not by different aspects
of a single theoretical framework, but by different theoretical frameworks.
The textbook variant of QFT has a range of applications, and its pre-
dictions have been borne out to an impressive degree of accuracy, but it
is not mathematically rigorous. In contrast, rigorous axiomatizations of
QFT have been proposed, but to date no physically realistic model of
any set of axioms has been found. More specifically, there is no known
model for any interaction in four space-time dimensions.1 The arguments

1. Recently, a method has been developed that can be used to construct models with
nontrivial scattering matrix elements in any number of space-time dimensions, but
these models are not physically realistic insofar as the S-matrix breaks Lorentz sym-
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that have been offered for focusing on a particular variant of QFT track
the general debate. For instance, Teller explains that he does not discuss
“formal and rigorous work in axiomatic field theory” in his book because
“although [axiomatic field theory] is a useful enterprise in the study of
formal properties of quantum field theories, axiomatic quantum field the-
ory as it exists today does not appear usefully to describe real physical
phenomena” (1995, 146, note 5). In their survey article on the philo-
sophical significance of algebraic QFT, Halvorson and Müger concede
that the algebraic approach is “indeed idiosyncratic in the sense of dem-
ographics,” but argue that philosophers of physics should study algebraic
QFT because “there remains an implicit working assumption among many
philosophers that studying the foundations of a theory requires that the
theory have a mathematical description” and, moreover, “whether or not
having a mathematical description is mandatory, having such a description
greatly facilitates our ability to draw inferences securely and efficiently”
(Halvorson and Müger 2007, 731).

I contend that an interpretation of QFT should be based on a rigorous
axiomatic variant of QFT rather than any of the other variants. I will
argue that there is more to recommend a rigorous variant of QFT than
ease of interpretation and transparency of the foundations of the theory.
A fortiori, the choice among formulations of QFT does not come down
to a subjective preference for a certain methodology in philosophy of
science. The content of QFT is the point at issue.

2. Setup: Three Variants of QFT, Empirical Indistinguishability, and Under-
determination. To set up the discussion, I will categorize the variants of
QFT on the basis of the types of renormalization procedures that are
invoked. In the course of the discussion, it will become clear why this is
a natural categorization. This set of distinctions will also help to clarify
the foundational significance of renormalization.

For the sake of concreteness, consider the admittedly physically un-
realistic case of a interaction (i.e., an interaction represented by a4(f )2

Lagrangian with a scalar f4 self-interaction term on two-dimensional
space-time). A f4 interaction is the simplest nontrivial, physically mean-
ingful interaction because a quadratic self-interaction term represents a
free system and a cubic self-interaction term is not physically meaningful
because even the classical wave equation has energy that is unbounded

metry (Buchholz and Summers 2008). A model takes the form of a set of wedge-
localized operators that commute at spacelike distances, transform covariantly under
the underlying representation of the Poincaré group, and admit a scattering theory
(Buchholz and Summers 2008, 1).

https://doi.org/10.1086/649999 Published online by Cambridge University Press

https://doi.org/10.1086/649999


QUANTUM FIELD THEORY 539

from below and has singular solutions2 (Keller 1957; Jaffe 1999, 133). The
restriction to two space-time dimensions allows the ultraviolet divergences
to be completely removed by normal ordering (Glimm and Jaffe 1968,
1945). The Hamiltonian for the interaction is defined as follows4(f )2

(Glimm and Jaffe 1968, 1945):

4H p H � l : f (x, t ) : dx, (1)F � 0

where : : denotes normal ordering. In classic introductory textbook pre-
sentations of QFT (e.g., Schweber 1961), this Hamiltonian acts on the
Hilbert space of the interaction picture representation.3 For the moment,
the only relevant feature of the interaction picture representation is that,
by assumption, there is some time at which the Hilbert space repre-t0

sentation for the interaction coincides with the Fock space F associated
with a neutral scalar field of the same mass. (For further details, see
Schweber 1961, 316–325, or Fraser 2006, Section 2.1.) In particular, at
time , the vacuum state for the interacting system coincides with thet0

vacuum state for the associated free system, . At time , applying theQ t0 0

full interaction Hamiltonian H to the vacuum state yields the followingQ0

well-known result:

HQ p �. (2)0

From a theoretical point of view, this result is problematic because the
vacuum state is supposed to be invariant under the time translation op-
erator . From a practical point of view, this is problematic because�iHte
the formula for calculating scattering matrix elements involves applying
H to , and the scattering matrix elements encode the experimentalQ0

predictions. (Naturally, this traditional introductory textbook presenta-
tion lacks the sophistication of the modern approach to renormalization
[i.e., renormalization group methods]; however, the modern refinements
do not affect the arguments of this paper. See Section 6 below.)

The variants of QFT adopt different solutions to this problem. In the
classic textbook presentation of QFT, this result is interpreted as a sign
that the vacuum self-energy must be renormalized. That is, the infinite
vacuum self-energy counterterm is introduced to make the lowest ei-E0

genvalue of the renormalized interaction Hamiltonian zero:

2. Though recently this conventional wisdom has been challenged by advocates of
non-Hermitian Hamiltonians; see, e.g., Bender 2007.

3. The interaction picture representation is also known as the Dirac picture represen-
tation.
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(H � E )Q p 0, (3)0 0

4H p H � l : f (x, t ) : dx � E . (4)ren F � 0 0

As a result of the restriction to two space-time dimensions, the vacuum
self-energy is the only renormalization counterterm that is infinite inE0

this case (Glimm and Jaffe 1970b, 205). The classic textbook approach
is to accept the infinite counterterm and to introduce the HamiltonianE0

. I will refer to the resulting formulation of QFT as the infinitelyHren

renormalized variant of QFT.
There are two other ways of responding to the result that application

of the interaction Hamiltonian H to the vacuum yields infinity.4(f ) Q2 0

One is to introduce a spatial cutoff function into the Hamiltonian that
“cuts off” long-distance contributions:

4 ′H(g) p H � l : f (x, t ) : g(x)dx � E ,F � 0 0

g(x) p 1 in some finite region R and g(x) p 0 outside of R. (5)

The introduction of the long-distance spatial cutoff function renders the
vacuum self-energy counterterm finite. This is the cutoff variant of′E0

QFT. In general (i.e., for interaction terms in general), short-distance
cutoffs will also be needed. (Long-distance cutoffs alone are sufficient for
the interaction because the ultraviolet divergences are rendered finite4(f )2

by normal ordering.)4

The third variant of QFT—the formal variant—responds by taking a
more formal approach. In the context of formal, rigorous mathematics,
the fact that applying the interaction Hamiltonian H to the interaction
picture vacuum yields infinity is an indication that the vector is notQ Q0 0

in the domain of H (see, e.g., Glimm and Jaffe 1970a, 363). Furthermore,
it turns out that the only vector in F that is in the domain of H is the
zero vector (Glimm 1969). From this more formal point of view, the proper
response is thus to find another Hilbert space on which to represent the
interaction Hamiltonian (i.e., a Hilbert space representation of the ca-
nonical commutation relations that is unitarily inequivalent to F). For
the interaction this has been achieved: Glimm and Jaffe’s model4 4(f ) (f )2 2

supplies a Hamiltonian operator for the interaction without an infinite

4. An alternative to introducing a long-distance spatial cutoff function is compactifying
space. This is also known as “quantization in a box with periodic boundary conditions”
(Glimm and Jaffe 1971, 5).
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counterterm that is well defined on a Hilbert space representation of the
canonical commutation relations that is unitarily inequivalent to F at all
times. The Glimm-Jaffe model satisfies all the Wightman and the4(f )2

Haag-Kastler axioms (Cannon and Jaffe 1970; Glimm and Jaffe 1970a;
1970b, 208; Glimm, Jaffe, and Spencer 1974). This formal approach to
QFT has been pursued by the mathematical physicists and mathematicians
named in this paragraph. One strategy for pursuing this approach is the
formulation of axioms for QFT. The complementary strategy is the con-
struction of models for particular interactions, which can then be checked
for their compatibility with different sets of axioms.

The infinitely renormalized, cutoff, and formal variants of QFT are
alternative theories with the same intended domain of application. This
raises the question, How should these variants of QFT be regarded? This
is an important question for the purposes of interpretation, as mentioned
above, but also for foundational purposes (e.g., for determining which
variant should inform the development of future theories, perhaps in-
cluding quantum gravity). There is an obvious line of response to the
question: perhaps this matter can be settled empirically. Perhaps only one
variant of QFT is empirically adequate. However, it turns out that this
is not the case. The three variants are empirically indistinguishable. In
QFT, the quantities that are subject to experimental test are scattering
matrix elements. Scattering matrix elements encode the outcomes of scat-
tering experiments. The three variants of QFT are empirically indistin-
guishable in the sense that the sets of scattering matrix elements generated
by the three variants can be brought into arbitrarily close agreement.
Consider the infinitely renormalized and cutoff variants. In the limit as
the cutoffs are removed, the scattering matrix elements of the cutoff
formulation approach the scattering matrix elements of the infinitely
renormalized formulation (see Fraser 2006, Section 3.3.2, for details).
Thus, the sets of scattering matrix elements generated by these two
variants can be brought into arbitrarily close agreement by choosing
large (or small) enough cutoff functions.5 It has been verified that the
sets of scattering matrix elements yielded by the rigorous Glimm-Jaffe

model also agree with those yielded by the infinitely renormalized4(f )2

variant, modulo the fact that in the infinitely renormalized framework,
scattering matrix elements can be calculated only approximately to some
order in a perturbative expansion (Wightman 1986, 213; Jaffe 1999, 140).
Since a model for a given interaction is required to calculate the scat-

5. In this analysis, the cutoff is not interpreted realistically. If the cutoff is interpreted
realistically, then its value cannot be changed arbitrarily and the limiting procedure is
illegitimate. However, as discussed in Section 4 below, nobody seems to actually hold
the view that QFT dictates that space must be discrete and the universe spatially finite.
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tering matrix elements for that interaction, one might worry that models
that are constructed in the future will reveal disagreements between the
predictions of the formal variant and those of the other variants. How-
ever, this worry is addressed by the process of model construction: one
of the means of establishing that a constructed model is a model for a
particular interaction is to verify that the scattering matrix elements
calculated using the model agree with those calculated using other var-
iants (Glimm 1969, 103). In general, then, one would expect agreement
between the scattering matrix elements generated by the formal variant
and the other variants.

Since experimental tests cannot settle the matter, one might wonder
whether these three variants of QFT are genuinely distinct. Perhaps, for
example, they are merely notational variants of one and the same theory.
However, it is clear that proponents of these approaches to QFT believe
that they differ significantly. As Wightman described the situation in a
1962 lecture, “the root-mean-square deviation from the mean of opinion
on what is a sensible thing to try to do in elementary particle theory seems
to be one of those unrenormalizable infinities one hears about” (1963,
11). From the perspective of philosophy rather than sociology, there is
also reason to regard the variants as genuinely distinct. One reason is that
they yield different metaphysical interpretations. The infinitely renor-
malized and cutoff representations for the interaction are genuinely4(f )2

distinct from the Glimm-Jaffe representation because they support dif-
ferent ontologies. For instance, they disagree about whether QFT de-
scribes quanta. (“Quanta” are entities that resemble classical particles
insofar as they are countable and possess the same energies as classical,
relativistic, noninteracting particles.) The complete argument for this
claim that the variants of QFT disagree about whether QFT describes
quanta is a paper in itself (see Fraser 2008), but it can be sketched in a
few paragraphs.

Consider the cutoff and Glimm-Jaffe representations. The cutoff rep-
resentation for an interaction admits an interpretation in terms of quanta,
but the Glimm-Jaffe representation does not admit a quanta interpreta-
tion. In QFT, the quanta interpretation is derived from the Fock space
representation for a system. A Fock space representation for a free system
has a basis of state vectors—the n-particle state vectors—each of which
can be interpreted as representing a state in which a definite number of
quanta is present. In a cutoff representation for an interacting system,
this quanta interpretation can be extended from free systems to interacting
systems. Since the number of degrees of freedom is finite,6 the Stone–von

6. At least in the typical cases in which both long- and short-distance cutoffs are
introduced.
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Neumann theorem applies and all standard representations7 of the equal
time canonical commutation relations (ETCCRs) are unitarily equivalent.
In particular, the representation for the interacting system is unitarily
equivalent to the Fock representation for the corresponding free system.
Therefore, any state vector describing the interacting system can be written
in terms of the n-particle states for the corresponding free system. Thus,
in the cutoff representation, the interacting system can also be given a
quanta interpretation. In contrast, the Glimm-Jaffe representation does
not admit a quanta representation. The Fock representation for the cor-
responding free system is not unitarily equivalent to the Glimm-Jaffe
representation for the interacting system. (See Fraser 2008 for the argu-
ment.) Thus it is not possible to extend the quanta interpretation from
the free system to the interacting system, and there are no other candidates
for quanta states. As a result, the cutoff and the Glimm-Jaffe represen-
tations disagree about the existence of quanta.

It is less clear how to interpret the infinitely renormalized variant. The
difficulties are a direct result of lack of mathematical rigor. The argument
can be made that the infinitely renormalized representation can be given
a quanta interpretation. By assumption, there is some time at whicht0

the Hilbert space representation for the interaction coincides with the
Fock space F for the corresponding free system. Also by assumption,
time evolution is unitary; therefore, the Hilbert space representation for
the interacting system is unitarily equivalent to F at all times. That is,
the state vector for the interacting system is always in Fock space, so it
is always possible to write it in terms of the n-particle states for the free
system. Thus, it seems that, in the context of the infinitely renormalized
variant, the interacting system can be given a quanta interpretation. How-
ever, infinite renormalization complicates matters. The key assumption
that time evolution is unitary is undermined by infinite renormalization:
the renormalized Hamiltonian for the interaction is not a well-definedHren

self-adjoint operator on the Hilbert space for the interacting system be-
cause it contains an infinite term; consequently, the time translation op-
erator is not unitary.8 Deciding which interpretation the infinitely�iH trene
renormalized variant actually supports will require a judgment about
which principles this variant actually includes. The standard criticism
leveled against unrigorous theories—that they are difficult to analyze and
interpret—certainly applies in this case.

7. That is, all irreducible representations of the Weyl form of the ETCCRs.

8. Another possibility is that, according to the infinitely renormalized variant, there
is an informal sense in which the state of the interacting system ‘remains in’ the Fock
representation for the free system even though, formally, the two representations are
not unitarily equivalent.
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The disagreement on matters of metaphysics among the three variants
of QFT can also be made out in more general terms. The variants disagree
about what is possible. According to the cutoff variant, it is possible for
the interacting system to be in the same state as any other system, governed
by any dynamics. The infinitely renormalized variant incorporates the
assumption that it is possible for the interacting system to be in the same
state as a free system. (Indeed, scattering theory in the interaction picture
works on the basis of the assumption that the free and interacting systems
are actually in the same state at .) This disagreement is the upshott p ��
of their respective assumptions about unitary equivalence. In contrast,
according to the formal variant, it is not possible for the interacting system
to be in the same state as a system governed by any other dynamics. In
addition, Baker (2009) argues that the considerations that rule out a
quanta interpretation of the formal variant also rule out a natural field
interpretation of the formal variant. Thus, the disagreement between the
variants is not limited to the existence of quanta. Even if we decide that
QFT does not describe quanta, we can expect that the representations
will still disagree on matters of metaphysics.

A second (and perhaps more decisive) reason for regarding the variants
of QFT as genuinely distinct theories is that they adopt disparate sets of
theoretical principles. The physical differences between the sets of prin-
ciples will be described in the next section.

The three variants are empirically indistinguishable yet must be re-
garded as distinct theories because they embrace different sets of the-
oretical assumptions and carry different metaphysical implications. In
other words, this is a genuine case of the classic problem of underde-
termination of theory by all possible evidence. To emphasize, this is not
a contrived example of underdetermination, but a real case of under-
determination that actually arises in a mature physical theory. This ad-
dresses a criticism leveled by skeptics about underdetermination: that
the only examples of the phenomenon are ‘toy theories’ invented by
philosophers. However, the antirealist should not be too quick to cel-
ebrate. I contend that this case of underdetermination does not provide
support for scientific antirealism because there are good arguments for
paying heed to the metaphysical implications of one variant of QFT
and disregarding the others.

3. Inconsistency. The starting point for resolving the question of which
variant of QFT to adopt is a better understanding of the point of departure
for the variant formulations of QFT. What went wrong with the con-
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struction of the interaction picture?9 Theorists adopted a set of seemingly
plausible principles for a relativistic quantum theory but ended up with
nonsensical results (i.e., a vacuum state with infinite energy and infinite
probabilities for the outcomes of scattering experiments). Historically, this
is precisely the difficulty that Feynman and others had to overcome in
order to formulate quantum electrodynamics (QED). Renormalization
methods were the remedy, but they do not directly address the question
of what went wrong in the first place.

Haag’s theorem provides some insight into what went wrong with the
interaction picture. Haag’s theorem can be viewed as a ‘no-go’ theorem for
the interaction picture. The theorem establishes that if a theory adopts the
specified set of assumptions {T}, then the theory necessarily describes a
free system. The interaction picture goes wrong by adopting the complete
set of assumptions {T}. The set {T} contains the following assump-
tions:10

The interacting system and the corresponding free system are each
described by a neutral scalar11 field , , and a conjugatef j p 1, 2j

momentum field such thatpj

(i) Each pair gives an irreducible representation of the(f , p )j j

ETCCR:
′ ′[ f (x, t), p (x , t)] p id(x � x ), j p 1, 2,j j

′ ′[f (x, t), f (x , t)] p [p (x, t), p (x , t)] p 0. (6)j j j j

(ii) Poincaré transformations (a, L) (where a stands for a space-
time translation and L stands for a Lorentz transformation) are
induced by unitary transformations .U (a, L)j

9. Here and in the following discussion, “interaction picture” denotes the prerenor-
malization representation of the system adopted in the introductory textbook approach
to QFT.

10. There are several versions of Haag’s theorem. The following discussion is based
on the version of the theorem presented in Hall and Wightman 1957 for the special
case in which one of the fields is a free field. For further details, see Earman and Fraser
2006 and Fraser 2006.

11. The case of neutral scalar fields is treated for notational convenience. Haag’s
theorem also holds in the more general case of fields with spin indices (Streater and
Wightman 2000, 166). The commutation relations below are then CCR’s or CAR’s,
as dictated by the spin-statistics theorem.
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(iii) The fields transform under as follows:U (a, L)j

�1U (a, L)f (x, t)U (a, L) p f (Lx � a, t),j j j j

�1U (a, L)p (x, t)U (a, L) p p (Lx � a, t). (7)j j j j

(iv) There exist unique normalizable states invariant under Poin-F0 Sj
caré transformations (i.e., vacuum states):12

U (a, L)F0 S p F0 S. (8)j j j

(v) The fields are related at some time t by a unitary transformation
V:

�1 �1f (x, t) p Vf (x, t)V , p (x, t) p Vp (x, t)V . (9)2 1 2 1

(vi) No states of negative energy exist.

These assumptions are, taken individually, each plausible. However,
Haag’s theorem establishes that, when combined, this package of as-
sumptions has the unwanted consequence that the field that was intended
to describe an interacting system actually describes a free system. More
specifically, what is proven is that all the vacuum expectation values
(VEVs) of the two fields are equal:

. . . . . .A0 Ff (x ) f (x )F0 S p A0 Ff (x ) f (x )F0 S for all n. (10)2 2 1 2 n 2 1 1 1 1 n 1

This means that the ‘interacting’ representation makes exactly the same
predictions as the representation for the free system. The set of all VEVs
for a field contains the set of all its scattering matrix elements. Thus, the
representation that was intended to describe an interacting system actually
describes a system with trivial scattering matrix elements (i.e., the scat-
tering matrix is the identity); that is, the representation actually describes
a free system in which the initial state is identical to the final state. As-
surance that theories that share a complete set of VEVs share the same
dynamics in the sense of having the same Hamiltonian is provided by
Wightman’s reconstruction theorem (Streater and Wightman 2000, 117–
126).

Put in slightly different terms, Haag’s theorem demonstrates that the

12. Actually, this is stronger than necessary. The weaker assumptions that suffice are
that there exist unique normalizable states that are invariant under EuclideanF0 Sj
transformations and that these states are also invariant under PoincaréF0 Sj
transformations.
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interaction picture adopts an inconsistent set of principles. Inconsistency
is a straightforward consequence of the theorem. Let F be the statement
that the system described is free. By Haag’s theorem, . But, the{T} ⇒ F
interaction picture was introduced for the purpose of treating interacting
systems; thus, by assumption, the system described by the interaction
picture is not free. This sets up a reductio ad absurdum: {T}& F ⇒

. Thus, Haag’s theorem informs us that the source of the problemF& F
with the interaction picture is that it is inconsistent. Furthermore, Haag’s
theorem establishes that this is an entirely generic problem; the theorem
does not hinge on any assumptions about the specific form taken by the
interaction.13

The three variants of QFT espouse different responses to the reductio
of the interaction picture. The infinitely renormalized variant modifies the
principles of the interaction picture by inserting infinite renormalization
counterterms into the Hamiltonian. The practical consequence is that the
scattering matrix elements become nontrivial and finite; the theoretical
consequence is that Haag’s theorem is inapplicable to the interaction
picture after the renormalization procedures have been carried out. Strictly
speaking, the assumptions of Haag’s theorem no longer hold. For ex-
ample, the renormalized interaction Hamiltonian

4H p H � l : f (x, t ) : dx � Eren F � 0 0

is not a formally well-defined self-adjoint operator14 in virtue of the infinity
of . By Stone’s theorem, since is not self-adjoint, the operatorE H0 ren

is not unitary. Thus, time translations are represented by operators�iH trene
that are not unitary, contrary to assumption (ii) of Haag’s theorem. Put
another way, infinite renormalization introduces informal mathematical
reasoning in the form of infinite subtractions and informally defined math-
ematical expressions. Hall and Wightman’s proof of Haag’s theorem relies
on heavy machinery from advanced mathematics (e.g., the theory of an-
alytic functions). The infinitely renormalized variant of QFT dodges
Haag’s theorem by shifting to the context of informal, unrigorous math-
ematics, in which these techniques of formal, rigorous mathematics are
inapplicable and hence proofs of the theorem do not go through.

13. Though interaction terms that take particular forms will violate some of the as-
sumptions of Haag’s theorem. For an example, see the discussion below of Hamil-
tonians incorporating cutoff functions.

14. On the Hilbert space F, the Fock space for the corresponding free system. As
noted above, strictly speaking, the domain of on F contains only the zero vectorHren

(Glimm and Jaffe 1970a, 363).
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The cutoff variant of QFT responds to the reductio of the interaction
picture by Haag’s theorem by denying one of the common assumptions
of the interaction picture and Haag’s theorem: that the fields transform
appropriately under Poincaré transformations (assumption (iii) above).
The Hamiltonian with the spatial cutoff function ( inH(g) g(x) g(x) p 1
region R and outside of R) is associated with the ‘cutoff’ fieldg(x) p 0
equation

2 3(� � m )f (x) � 4gl f (x) p 0. (11)0 g 0 g

The ‘cutoff field’ that satisfies this field equation is clearly not in-f (x)g

variant under spatial translations:15

�iP7x iP7x ′e f (x, t)e ( f (x � x , t) (12)g g

for x such that , such that . In general, the cutoff′ ′g(x) p 1 x g(x ) p 0
variant of QFT introduces both long- and short-distance spatial cutoff
functions, which serve to reduce the theory from an infinite number of
degrees of freedom to a finite number. Haag’s theorem is applicable only
in the presence of an infinite number of degrees of freedom. The cutoff
variant also invalidates assumption (iv) of Haag’s theorem, that there
exists a unique normalizable state (i.e., the vacuum state) that isF0 Sj
invariant under Poincaré transformations. For a finite number of degrees
of freedom the assumption of uniqueness fails. (See Fraser 2006, Section
1.2.2, for further discussion.) Naturally, when the time comes to evaluate
the cutoff variant of QFT, the physical motivations for rejecting these
assumptions will be a central issue.

The formal variant of QFT also confronts the inconsistency of the
interaction picture by seeking to modify or reject at least one of the
assumptions of the interaction picture. The rigorous Glimm-Jaffe model
for the interaction rejects assumption (v), that the fields are related4(f )2

at some time t by a unitary transformation V. This is the natural as-
sumption to reject because, unlike the other assumptions, it does not have
a strong physical motivation. While it seems reasonable to guess that the
representation for the interaction will coincide with the representation for
the corresponding free system in the limit of infinitely early and late times,
when the interaction is negligible, this is not an essential feature of a
relativistic quantum theory. Historically, the motivation for introducing
this assumption was not foundational, but practical; it made it possible

15. Introduction of a short-distance cutoff function would also be sufficient to violate
spatial translation invariance and thus would render the version of Haag’s theorem
presented above inapplicable. However, there are other versions of Haag’s theorem
(e.g., the Streit-Emch version) that are applicable in the presence of short-distance
spatial cutoffs (i.e., to lattices). See Emch 1972, 247–253, and Fraser 2006, 63–64.
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to extract predictions from QFT via renormalization. From a mathe-
matical perspective, the assumption of unitary equivalence of the free and
interacting representations is dubious. In the context of ordinary non-
relativistic quantum mechanics with a finite number of degrees of freedom,
the Stone–von Neumann theorem guarantees that all representations of
the ETCCRs are unitarily equivalent. However, the Stone–von Neumann
theorem fails in QFT because of the infinite number of degrees of freedom;
in fact, there exist uncountably many unitarily inequivalent representa-
tions of the ETCCRs (Gårding and Wightman 1954).

4. QFT p SR � QT. With a view toward evaluating them, these three
variants of QFT can be characterized as providing either a principled
response to the inconsistency of the interaction picture or a pragmatic
response. The formal variant is a clear example of the principled response:
the inconsistency of the interaction picture must be addressed by fixing
the principles of the interaction picture because the inconsistency of the
principles reflects a problem with the foundations of the theory. In con-
trast, the infinitely renormalized variant is a clear example of the prag-
matic response: the expedient of introducing infinite renormalization is
adequate as a means of getting around the problem of inconsistency be-
cause it allows predictions to be derived from the theory. (Which category
the cutoff variant falls into depends on how the cutoffs are justified, as
discussed below.) The principled approach is to cure the disease; the prag-
matic approach is to treat the symptoms.

For scientific theories in general, it is not clear that the principled
strategy of revising the principles of the theory to make it consistent is
always preferable. The argument has been made that, even for mature
scientific theories, it can be appropriate to retain an inconsistent theory
and to merely treat the symptoms.16 However, in the case of QFT, there
is a compelling reason to demand a consistent formulation of the theory.
Quantum field theory is by definition the theory that best unifies quantum
theory (QT) and the special theory of relativity (SR).17 Historically, it was
clear by the mid-1920s, when physicists had obtained nonrelativistic quan-
tum mechanics, that physicists should work on formulating a relativistic

16. See, e.g., daCosta and French 2002, among other contributions to Meheus 2002.

17. There are two qualifications of this definition: (1) This is intended to be a definition
of relativistic quantum field theory (Galilean QFTs, e.g., are excluded). (2) It is not
obvious a priori that the theory that best unifies SR and QT must be a field theory;
I take it that nonfield theories (e.g., S-matrix theory) will be ruled out either on the
grounds of not providing the best unification or on the grounds of being failed
programs.
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version of quantum theory.18 Since QFT p QT � SR, the project of
formulating quantum field theory cannot be considered successful until
either a consistent theory that incorporates both relativistic and quantum
principles has been obtained or a convincing argument has been made
that such a theory is not possible. The big foundational question lying
in the background is, of course, whether the principles of quantum theory
and special relativity are consistent. I do not presume that this question
has a positive answer. However, I do maintain that the project of devel-
oping QFT cannot be considered complete until this central foundational
question has been answered. The pragmatic response to the inconsistency
of the interaction picture is inadequate because it leaves the question of
whether QFT is possible unanswered. To put the point provocatively, it
is not clear that any variant of QFT that adopts a pragmatic response to
the infinities is a theory that satisfies the definition of QFT. Either a
principled response or a demonstration that a principled response is not
possible is required.

The infinitely renormalized variant of QFT is unsatisfactory because it
neither furnishes a manifestly consistent set of principles for relativistic
quantum theory nor provides a reason to believe that a consistent rela-
tivistic quantum theory is impossible. On the latter score, the inconsistency
of the interaction picture does not constitute evidence that it is not possible
to consistently formulate a relativistic quantum theory because we have
no reason to believe that the interaction picture is the only possible way
to realize such a theory. For example, the formal variant furnishes ex-
amples of alternatives (e.g., the Wightman axiomatization and the Haag-
Kastler axiomatization). With respect to the former point, after infinite
renormalization procedures have been carried out, the resources of formal,
rigorous mathematics cannot be brought to bear to test the consistency
of the theory. Consequently, it would be difficult to determine whether
the infinitely renormalized variant of QFT is consistent. Note that these
criticisms have nothing to do with the efficacy of infinite renormalization
procedures for the purpose of deriving predictions. To the best of my
knowledge, no set of contradictory predictions has been derived in the
more than 50-year history of applications of the theory. I grant that it is

18. In fact, it was already clear before nonrelativistic quantum mechanics had been
worked out: Schrödinger experimented with a relativistic wave equation en route to
his wave mechanics, and the earliest version of the Klein-Gordon equation was pub-
lished in 1925 (Kragh 1990, 49–50; Schweber 1994, 57; Mehra and Rechenberg 2001,
445).
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extremely unlikely that physicists will ever unearth a contradiction.19 How-
ever, this fact should not be taken as evidence in favor of the consistency
of the theory. It is possible that physicists are just reasoning very carefully
from an inconsistent set of theoretical principles. That is, they may be
employing inferential restrictions. Many historical examples of this phe-
nomenon have been brought to light by historians and philosophers of
science, including the old quantum theory and Newtonian gravity (see
Meheus 2002).

In contrast, the formal variant of QFT offers a satisfactory line of
response to the reductio of the interaction picture because the response
is principled. The goal of the formal variant is to find a consistent re-
formulation of the principles of the interaction picture. Again, the con-
sistency of quantum and relativistic principles is desired but not presup-
posed. Ultimately, the success of this project will hinge on whether there
exist realistic models of the resultant axioms. (I will return to this issue
in Section 5.)

The short argument that the cutoff variant is unsatisfactory is that it
does not satisfy the definition of QFT. Setting aside the principled-
pragmatic distinction, the cutoff variant cannot, strictly speaking, be
considered a relativistic theory because the fields are not Poincaré
covariant.

The long argument that the cutoff variant is unsatisfactory appeals to
the principled-pragmatic distinction. Whether the cutoff variant of QFT
falls into the category of a principled or a pragmatic response to the
reductio depends on how the cutoffs are interpreted. If the cutoffs are
regarded as a convenient device that is employed for the purpose of fa-
cilitating the derivation of predictions, then the cutoff variant offers a
pragmatic response to the inconsistency of the interaction picture. How-
ever, the cutoff variant also contains the resources for a principled re-
sponse. As explained above, the cutoff variant rejects common assump-
tions of the interaction picture and Haag’s theorem; consequently, the
principles of the cutoff variant are consistent. In general, consistency is
achieved by reducing the theory to a finite number of degrees of freedom
by defining the fields on a spatial lattice of finite extent. However, to
provide a genuine principled response to the inconsistency of the inter-
action picture, the cutoffs must be regarded as essential elements of the
theory and not merely dispensable add-ons to facilitate calculation. On

19. Huggett (2002) offers an argument based on renormalization group theory that S-
matrix elements follow as deductive consequences from the interaction picture frame-
work. Note that renormalization group methods do not solve the problem with the
interaction picture that is brought to light by Haag’s theorem; however, they may fall
into the category of inferential restrictions.
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the latter, instrumental view, the content (i.e., core theoretical principles)
of the cutoff variant of QFT is identical to that of the infinitely renor-
malized variant; it is merely the approach to renormalization as a tool
for deriving predictions that differs.20 The way in which the cutoffs are
viewed will have repercussions for their interpretation. If the cutoffs are
taken seriously, then they must be interpreted realistically; that is, space
is really discrete and of finite extent according to the cutoff variant of
QFT.21 Thus, the cutoffs must take particular fixed values (though these
may not be presently known). If the cutoffs are not taken seriously, then
they may be interpreted instrumentally; that is, space is really continuous
and of infinite extent according to the cutoff variant of QFT. This is
compatible with assigning the cutoffs arbitrary values. The upshot is that
the cutoff variant of QFT can be regarded as a candidate formulation of
relativistic quantum theory only if it makes sense to regard space as a
lattice of finite extent.

Can a case be made for interpreting the cutoffs realistically? If QFT
were true, would space be discrete and finite in extent? It is telling that—
to the best of my knowledge—nobody defends the position that QFT
provides evidence that space is discrete and the universe is finite. Of course,
proponents of some quantum theories of gravity have claimed that space
is discrete. However, even if these claims are borne out, the fact that
quantum gravity indicates that space is discrete would not help settle the
question of how to interpret the cutoff variant of QFT because gravita-
tional considerations are external to QFT. The point at issue is whether
QFT dictates that space is necessarily discrete and finite in extent, that
is, whether the discreteness and finitude of space are a foundational prin-
ciple of QFT.

One reason that a realistic interpretation of the cutoffs is not compelling
is illuminated by considering, once again, the cutoffs as a response to the
reductio of the interaction picture. As a response to the reductio, the
introduction of the assumption that space is discrete and the universe is
finite seems ad hoc. It does circumvent Haag’s theorem and produces a
consistent set of principles for QFT, but it does not have an independent
motivation. In contrast, arguments from quantum gravity that space is
discrete are supported by deep theoretical considerations about how grav-

20. Wallace (2006) endorses a different version of the cutoff variant; this position is
discussed in Section 6.

21. An apparent alternative for taking the cutoffs seriously is to regard space as con-
tinuous and of infinite extent and QFT as breaking down at small- and large-distance
scales. Since I take an interpretation of QFT to involve providing a description of a
possible world in which QFT is true (see Section 6), I regard this apparent alternative
as being equivalent to regarding space as discrete and finite in extent.
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ity is to be quantized. Arguments from cosmology that the universe is
spatially finite are based on a combination of theory and a variety of
experimental results. The desire for a consistent formulation of QFT is
not sufficient to justify the introduction of the assumption that space is
discrete and the universe is finite because there is another strategy for
obtaining a consistent formulation of QFT: the strategy of modifying
other principles of the interaction picture, which is adopted by the formal
variant. If we had good reason to believe that this strategy will fail, then
perhaps we would have good reason to interpret the cutoffs realistically.
However, even in that case, it would remain an option to concede that it
is not possible to formulate a consistent relativistic quantum theory. (This
issue will be taken up in Section 5.) In sum, the cutoff variant of QFT
is unsatisfactory because the cutoffs are not interpreted realistically, and
when the cutoffs are interpreted instrumentally, the cutoff variant is sub-
ject to the same criticisms as the infinitely renormalized variant.

The formal variant is the only one of the three variants to provide an
adequate response to the reductio of the interaction picture. Viewed in
these terms, the choice among the variants of QFT is not (merely) a matter
of picking the variant that is easiest to subject to analysis and interpre-
tation; the choice is a matter of determining the content of QFT. Each
of the three variants of QFT adopts a different set of theoretical principles.
In this sense, each of the three variants prescribes a different foundation
for QFT. Since the content of the theory is what is at stake, it is not
surprising that the matter is settled by foundational considerations rather
than purely interpretive considerations. The formal variant is not singled
out because it supports a particular ontology or even because the other
candidates succumb to interpretive difficulties, but because QFT should
be a relativistic quantum field theory (if such a thing is possible) and it
is the only variant that satisfies this condition. In some respects, the
situation in QFT parallels the situation in nonrelativistic quantum me-
chanics. In nonrelativistic quantum mechanics, alternative, physically dis-
tinct formulations of the theory (e.g., Bohmian mechanics) were also
sought out in response to foundational problems with the standard for-
mulation of the theory. The significant point of contrast is, of course, that
the consistency of relativistic and quantum principles is a different kind
of foundational problem than the measurement problem.

As an aside, the foregoing considerations about consistency may also
pose a difficulty for the interpretation of infinitely renormalized QFT. A
consistent set of theoretical principles may all be true simultaneously; an
inconsistent set is certainly not, in any possible world.22 If a theory con-

22. Unless, that is, one agrees with Priest (2002) that contradictions do occur in nature.
Briefly, my response is that we would need to be driven to this by compelling consid-

https://doi.org/10.1086/649999 Published online by Cambridge University Press

https://doi.org/10.1086/649999


554 DOREEN FRASER

tains an inconsistent set of theoretical principles, some members of the
set must be false. A metaphysical interpretation of a theory should be
based on the true theoretical principles, but not the false ones. The need
to identify the true principles complicates the project of interpreting an
inconsistent theory. This must be borne in mind when interpreting the
infinitely renormalized variant of QFT because it is not known whether
this variant is consistent.

5. But We Possess No Realistic Models of Any Set of Rigorous Axioms
for QFT! The position that I have been advocating—that the formal
variant of QFT should be treated as the official formulation of QFT—
seems counterintuitive in an important respect: it is not clear that any of
the proposed sets of rigorous, consistent principles for QFT holds for any
realistic system! To date, no rigorous model for a realistic interaction has
been obtained—for any axiomatization of QFT. This is why I have been
referring to the Glimm-Jaffe model for the interaction. David Wal-4(f )2

lace worries that “pending the discovery of a realistic interacting [model
for an axiomatization of QFT] . . . we have only limited reason to trust
that our results apply to the actual world” (2006, 34). In particular, the
lack of realistic interacting models means that, strictly speaking, formal
QFT does not make any empirical predictions about our world! This is
a reasonable concern; if the formal variant of QFT is to be viable, it must
be addressed. The first step is to observe that, as explained in Section 2,
one would expect the empirical predictions of any as-yet-to-be-discovered
realistic interacting model to agree with the empirical predictions of the
infinitely renormalized and cutoff variants (modulo the use of approxi-
mation methods). One might ask, Should not the fact that, at the present
time, the alternative variants have enjoyed superior empirical success in
the real world weigh in favor of the alternatives to formal QFT?

This concern can be alleviated by regarding the formal variant of QFT
as a program that has yet to be completed and recognizing that, even at
its current stage, it constitutes an improvement over the alternatives in
salient respects. This axiomatic program cannot be considered complete
until models of a rigorous set of axioms are found for realistic interactions.
The starting point for the program is the interaction picture and the
reductio of the interaction picture underwritten by Haag’s theorem. As

erations, and I am arguing that QFT does not supply them.
Da Costa and French (2002) also argue that it is appropriate to regard inconsistent

theories as true, but as partially true rather than wholly true, a notion that they explicate
using model theory. This approach does not undermine my argument because we would
still be left with the problem of how to determine which parts of the theory are true.
In their terms, I am arguing that the formal variant is to be preferred because it may
be wholly true, whereas the infinitely renormalized variant may be only partially true.
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Haag himself recognized in the paper that contains the first presentation
of the eponymous theorem (Haag 1955), the first step was to reject the
assumption of the interaction picture that there is a time at which the
representation for the interacting system is unitarily equivalent to the
representation for the free system.23 That this was the first step was con-
firmed by the first success of the program: the construction of the rigorous
model for the interaction by Glimm and Jaffe in the early 1970s.4(f )2

This model satisfies all the assumptions of the Hall-Wightman version of
Haag’s theorem with the sole exception of the assumption that there is a
time at which the representation is unitarily equivalent to the Fock rep-
resentation for a free system. However, even before the model had4(f )2

been obtained, it was clear that further refinements to the interaction
picture would be necessary to obtain a consistent set of principles appli-
cable to realistic interactions. Recall that Haag’s theorem pertains only
to the divergence in vacuum self-energy, which can be treated by intro-
ducing a long-distance cutoff. For realistic interactions, there are other
types of divergences (e.g., ultraviolet divergences, which are treated using
short-distance cutoffs). It would be very useful if it were possible to prove
a sequence of Haag-type no-go theorems: for example, a (Haag)2 theorem
that establishes that a certain set of the principles embraced by the in-
teraction picture imply that the system under consideration is a free system
when the dimension of space-time is greater than two. Such a sequence
of theorems might give an indication of which assumptions of the inter-
action picture would need to be revised or abandoned to treat particular
interactions.

By the early 1960s, Wightman (1959) had proposed one set of axioms
for QFT and Haag and Kastler (1964) had proposed another set of ax-
ioms. These axiom systems were conjectures about how the principles of
the interaction picture would need to be refined in order to consistently
accommodate realistic interactions. The provisional nature of these pro-
posed axiomatizations was recognized from the outset. In one of the first
textbook presentations of the formal approach to QFT, Jost (1965, xi)
coined the term “general field theory” because he did not like the con-
notations of the term “axiomatic.” Haag gives the following explanation
of why he also prefers to employ Jost’s terminology: “the word ‘axiom’
suggests something fixed, unchangeable. This is certainly not intended
here. Indeed, some of the assumptions are rather technical and should be
replaced by more natural ones as deeper insight is gained. We are con-
cerned with a developing area of physics which is far from closed and
should keep an open mind for modifications of the assumptions, addi-

23. In the abstract, he writes, “it is shown that . . . Dyson’s matrix for finiteU(t , t )1 2

or cannot exist” (Haag 1955, 1).t t1 2
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tional structural principles as well as information singling out a specific
theory within a general frame” (1996, 58).

For the axiomatic program to achieve completion, realistic models of
some set of principles for relativistic quantum theory must be found. The
construction of realistic models for either (or both) the Wightman or
Haag-Kastler axioms24—or any other set of axioms that has been pro-
posed, for that matter—would complete the program, but this is not the
only way in which the program could be completed. It is also possible
that the sets of principles proposed by Wightman and Haag-Kastler must
be further refined before they admit realistic models. For example, Bender
(2007) advocates dropping the requirement that the Hamiltonian be Her-
mitian, and Rivasseau (2007) makes a case for adopting noncommutative
space-time.

This approach to the formal variant gains further plausibility when
QFT is viewed in its proper historical context. QFT is hardly unusual in
requiring refinements over a period of time. There are many cases in which
an inconsistent formulation of a theory was replaced by a consistent one
in the course of its historical development. There is also historical prec-
edent for an informally formulated theory later being given a formal
reformulation. Arguably, the evolution of Newtonian mechanics from
Newton’s Principia to its modern-day textbook formulation is an example
of this.

From this perspective, the fact that no rigorous model for a realistic
interaction has been constructed is not an argument for disregarding the
formal variant of QFT. In fact, precisely the opposite is the case: the
Wightman and Haag-Kastler axiomatizations improve on the interaction
picture by refining its axioms. The rigorous models for idealized inter-
actions that have been constructed—interactions that exhibit tamer in-
stances of the same types of divergences that plague realistic interactions—
provide evidence that the refinements that have been made are on the
right track. In contrast, the infinitely renormalized and cutoff variants of
QFT do not institute appropriate refinements of the principles of the
interaction picture, as I have argued. The fact that no rigorous model for
a realistic interaction has been obtained is not an argument against the
formal variants and for the alternatives, but this fact should not be over-
looked by philosophers studying the foundations and interpretation of
QFT. The provisional nature of the proposed axiomatizations of QFT

24. Streater (1988) rehearses the considerations that suggest that QED in four dimen-
sions and QCD cannot be fit into the framework of the Wightman axioms. He remarks
that “it should be possible to fit QCD into the framework of the Haag-Kastler algebraic
axiomatization” (147).
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carries the implication that foundational and interpretive conclusions
based on these axiomatizations are also provisional.

What if the formal variant of QFT is a program that it is not possible
to complete? That is, what if it turns out not to be possible to find a
consistent set of relativistic and quantum principles that are applicable
to realistic interacting systems? This is a hypothetical question because
mathematical physicists are still working toward constructing models for
realistic interactions. The results that have been obtained so far do not
give any reason to believe that this is an unattainable goal. However, it
is interesting to speculate on what the failure of the program to formulate
an applicable yet consistent relativistic quantum theory would mean. One
interpretation of the result is that relativistic and quantum principles are
inconsistent. This seems to be what Streater and Wightman had in mind
when they wrote in the introduction to their textbook PCT, Spin and
Statistics, and All That that “the Main Problem of quantum field theory
turned out to be to kill it or cure it: either to show that the idealizations
involved in the fundamental notions of the theory (relativistic invariance,
quantum mechanics, local fields, etc.) are incompatible in some physical
sense, or to recast the theory in such a form that it provides a practical
language for the description of elementary particle dynamics” (2000, 1).
Another way of interpreting the failure of the formal program would be
as a victory for the cutoff variant: as discussed in Section 4, failure to
obtain a consistent set of principles on infinite, continuous space could
be cited as a justification for treating space as finite and discrete. A third
alternative is that the no-go result for the formal program could be am-
biguous.25 The requirement is that relativistic quantum theory include
recognizably relativistic principles and recognizably quantum principles;
however, there is a certain amount of latitude in deciding what counts as
a relativistic principle and what counts as a quantum principle. In any
case, it is worth pursuing the formal program because either success or
failure would be a significant result for the foundations and interpretation
of QFT.

6. In Defense of Sophistication. I have been arguing against basing the
interpretation of QFT on the cutoff variant of the theory. In a paper

25. Perhaps Coleman and Mandula’s (1967) result is an example of this. Supersym-
metric theories were introduced in response to the Coleman-Mandula ‘no-go’ theorem
for QFTs in four space-time dimensions. Supersymmetric theories generalize the frame-
work of QFT by allowing the algebra of generators of symmetries to contain both
commutation and anticommutation relations (Wess and Bagger 1992, 4). The resultant
algebra is not a Lie algebra, but a pseudo-Lie algebra (also known as a superalgebra
or a graded Lie algebra; Haag, Łopuszański, and Sohnius 1975, 257–258; Wess and
Bagger 1992, 2).
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entitled “In Defence of Naiveté: The Conceptual Status of Lagrangian
Quantum Field Theory,” David Wallace defends the cutoff variant of
QFT. By “interpretation” I mean the activity of giving an answer to the
following hypothetical question: “If QFT were true, what would reality
be like?” In contrast, the interpretive question that Wallace focuses on is
“Given that QFT is approximately true, what is reality (approximately)
like?” The fact that QFT does not furnish a true description of the actual
world makes this a substantial point of disagreement. QFT marries special
relativity and quantum theory but does not incorporate general relativity.
Following Cao (1997), Wallace frames the debate in terms of which one
of two attitudes should be adopted to the foundational status of QFT:26

(i) “The current situation is genuinely unsatisfactory: we should
reject the cutoff theories . . .27 and continue to look for non-
trivial theories defined at all lengthscales,” or

(ii) “QFT’s as a whole are to be regarded as only approximate
descriptions of some as-yet-unknown deeper theory [theory X],
which gives a mathematically self-contained description of the
short-distance physics” (2006, 45).

Wallace elaborates that “the difference between [(i)] and [(ii)] is that the
former rejects current QFT in toto, and looks for mathematically rigorous
versions of our current QFTs: QED, , the Standard Model, etc. By4lf

contrast [(ii)] accepts that these current theories are indeed best understood
in terms of Lagrangian QFT, and looks for a deeper-level theory in which
Lagrangian QFT as a whole can be grounded” (45). In order to resolve
the “attendant foundational problem” with option (ii)—that is, the prob-
lem of how we can “give a clean conceptual description of a theory which
can be rigorously defined only as the low-energy limit of another theory

26. Following Cao 1997, Wallace lists as a third option “the picture of ‘an infinite
tower of effective field theories,’” but Wallace does not discuss this possibility. This
‘effective field theory’ option falls outside the categories delineated in Section 2 because
it is tantamount to denying that QFT can be formulated; some of the arguments
presented here could also be deployed against this option.

27. He adds “as not mathematically well-defined,” but—as Wallace himself goes on
to argue—the (finitely renormalized) cutoff variant does not suffer from this problem;
only the (infinitely renormalized) variant without cutoffs is not mathematically well
defined.
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which we do not yet have”28 (46)—Wallace adopts what I have been calling
the cutoff variant of QFT. A short-distance cutoff that is much shorter
than the length scales at which QFT is applied and tested is imposed.

Recall that in Section 4 I argued that the cutoff variant is unsatisfactory
because it offers only a pragmatic response to the reductio of textbook
QFT. These arguments are not straightforwardly applicable to Wallace’s
position because the above arguments are predicated on the assumption
that interpreting QFT involves describing what reality would be like if
QFT were true. In accordance with attitude (ii), Wallace instead regards
QFT as providing an approximate description of the actual world at
suitably large distance scales. As he puts it, “success in [algebraic QFT,
string theory, or another theory-of-everything candidate] . . . would, of
course, revolutionise physics, but that success would scarcely change the
current status of Lagrangian QFT: as an inherently approximate, but
nonetheless extraordinarily powerful tool to analyse the deep structure of
the world” (2006, 75). This stance allows Wallace to argue that there is
a principled physical justification for introducing the cutoffs without nec-
essarily being forced to defend the view that space is discrete and finite
in our world. He lists three alternatives that each provide a “physical
justification . . . for imposing a cutoff in relativistic QFT” (43). Two of
these possible physical justifications involve the physics imposing an ef-
fective cutoff for QFT without space being discrete. For example, it is
possible that the field-theoretic description breaks down at a very high
energy scale and is replaced by a different kind of theory (e.g., string
theory; 44). Wallace’s attempted defense of the cutoff variant is not suc-
cessful. My first line of objection is that, even if it were granted that QFT
should be regarded as an approximate guide to the ontology of relatively
large distance scales, it does not follow that the cutoff variant of QFT
succeeds in describing large-scale ontology. I take issue with the premise
that the content and interpretation of the cutoff variant are approximately
equivalent to those of algebraic QFT (the leading strain of the formal
variant of QFT). The more important line of objection is the second one:
that QFT should not be regarded as merely an approximate guide to the
ontology of relatively large distance scales. Wallace’s insistence that we
respect the fact that QFT is not our final theory actually supports the
pursuit of the formal variant of QFT.

28. Indeed, Wallace summarizes the aim of his paper as follows: “this paper is an
investigation of whether Lagrangian QFT is sufficiently well-defined conceptually and
mathematically that it too can be subject to foundational analysis” (2006, 34). It should
be clear that I agree that the cutoff variant—Lagrangian QFT with cutoffs—is suffi-
ciently well defined that its foundations could be analyzed; however, I maintain that
the cutoff variant should not be subject to foundational analysis.
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An underlying assumption of Wallace’s argument is that there is ap-
proximate agreement on matters of ontology between the cutoff variant
of QFT and algebraic QFT (an instance of what I have been calling the
formal variant). This assumption is incorrect. As Wallace represents mat-
ters, “we can see that Lagrangian QFT (as I have defended it) is not
really in conflict with A[lgebraic] QFT at all. Success in the A[lgebraic]
QFT program would leave us with a field theory exactly defined on all
scales, and such a theory would be a perfectly valid choice for ‘theory
X’: furthermore, even if we found such an exact QFT it would not prevent
us from defining low-energy, ‘effective’ QFTs—which would not be well
defined without a cutoff” (2006, 41; see also 35, 75). One of the main
conclusions of the foregoing sections is that the variants of QFT differ
with respect to both content and matters of interpretation. Changing the
subject from precise agreement to approximate agreement does not affect
matters. Wallace contends that cutoff QFT approximately satisfies the
axioms of QFT.29 For example, the axioms of Poincaré covariance and
local commutativity are strictly false but approximately satisfied over large
distance scales (Wallace 2006, 50). However, the cutoff variant does not
have even approximately the same content as algebraic QFT because the
cutoff variant has a finite number of degrees of freedom and therefore
does not admit unitarily inequivalent representations; in contrast, alge-
braic QFT has an infinite number of degrees of freedom and therefore
admits unitarily inequivalent representations.30 Spontaneous symmetry
breaking is one case in which these unitarily inequivalent representations
are put to use (see Earman 2004 for an exposition and preliminary analysis
of this case). Cutoff and algebraic QFT admit different interpretations
for the same reason. A theory according to which quanta exist is not
approximately equivalent to a theory according to which quanta do not
exist. The flaw in Wallace’s reasoning is that the fact that we do not care
about what QFT tells us about short-distance scales does not license
chopping short-distance scales out of the theory. Cutting off the theory
at some short-distance scale has the effect of changing the content of the
theory as a whole, including its description of long-distance scales. The
difference in physical content is also reflected in the fact that the variants

29. Note, however, Wallace’s important qualification that “obviously, this is not in-
tended to be precise” (2006, 49). Note also that, at this point, the discussion shifts
from cutoff Lagrangian QFTs to algebraic QFTs with cutoffs. The relevant comparison
is between cutoff Lagrangian QFTs and algebraic QFTs without cutoffs.

30. Wallace (2001) advances an alternative interpretation of free bosonic cutoff QFT,
according to which particles are emergent entities. “Particles” in Wallace’s sense differ
from “quanta” in my sense in that Wallace’s “particles” satisfy a locality condition.
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include different sets of theoretical principles. A consequence of these
differences in content is that the theories support different ontologies.

Wallace does address the issue of unitarily inequivalent representations.
He summarizes his argument as follows: “From a realist perspective the
sting of the representation ambiguity has largely been drawn. Locally,
any representation ambiguity is artificial, caused by the presence of un-
physical degrees of freedom beyond the high-energy limit of the theory’s
validity. Globally, there may indeed be representation ambiguities—de-
pending on cosmology, and the topology of the universe—but the inac-
cessible information which they encode is ‘respectable’, analogous to the
classical inaccessibility of the long-distance structure of the universe”
(2006, 58). In the present context, this argument is not compelling because
the issue of whether the “degrees of freedom beyond the high-energy limit
of the theory’s validity” need to be taken into account is precisely the
point of contention.

A source of motivation for Wallace’s position is the thought that re-
normalization group methods provide a warrant for subjecting the cutoff
variant of QFT to interpretation. As Wallace points out, renormalization
group methods establish that the imposition of a short-distance cutoff
“has no practical consequences” for the predictions of the theory (2006,
44). However, this contingent fact about some QFTs is not by itself suf-
ficient warrant for the conclusion that the cutoff variant should be subject
to interpretation. Renormalization group methods establish that the pre-
dictions of the cutoff variant are in approximate agreement with the pre-
dictions of the infinitely renormalized variant, but they do not furnish
any evidence about approximate agreement of either the theoretical prin-
ciples or the interpretations supported by the cutoff and infinitely renor-
malized variants. A fortiori, renormalization group methods have no bear-
ing on whether or not there is approximate agreement between either the
theoretical principles or the interpretations of the cutoff and algebraic
variants of QFT. This brings the discussion back to underdetermination.31

There is a more fundamental difficulty with Wallace’s position. Wallace
contends that the correct attitude to adopt toward QFT is to accept that
our “current theories [i.e., the standard model, QED, etc.] are indeed best
understood in terms of Lagrangian QFT, and looks for a deeper-level
theory in which Lagrangian QFT as a whole can be grounded” (2006,
45). The problem with this approach is that it gets things the wrong way
around. QFT, as the predecessor theory, is valuable for the hints that it

31. There is certainly more to be said here. This topic will be taken up in a paper
written in response to another paper by David Wallace to be published with the pro-
ceedings of the April 2009 University of Western Ontario Philosophy of Quantum Field
Theory Workshop.
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gives about the content of the successor theory, theory X. Theory X is
the theory that furnishes an adequate description of short-distance physics
and, thus, includes quantum gravity. But, as the name indicates, theory
X is an as-yet-undiscovered theory. How are we to determine the content
of theory X? One of the starting points for formulating theory X is QFT.32

Wallace commits himself to the following brand of scientific realism (at
least with respect to Lagrangian QFT): Lagrangian QFT is “an inherently
approximate, but nonetheless extraordinarily powerful tool to analyse the
deep structure of the world” (75). If (Lagrangian) QFT is to play this
role, then theory change from QFT to theory X must involve approximate
continuity at the theoretical level and not merely approximate continuity
at the empirical level. This makes the theoretical content of QFT partic-
ularly relevant for finding theory X. As I have stressed, the content of
QFT is precisely what is at issue in the choice among variants of QFT.
How the disagreements about the appropriate theoretical principles for
QFT get settled is germane to the development of theory X. Resting
content with Lagrangian QFT is thus a poor strategy for finding theory
X; the better strategy is to continue to work on these questions about the
content of QFT.

This is an entirely general point about theoretical change that does not
hinge on the details of theory X. Of course, until we actually find theory
X and can determine the respects in which there is approximate continuity
between theory X and QFT, we have no way of knowing how helpful it
would have been to work out the details of QFT. The fact remains that—
given our limited knowledge at the present time—continuing to pursue
the development of QFT is a good strategy. However, one can hypothesize
about how pursuing the axiomatic program might illuminate the content
of theory X. Entering into the realm of pure speculation, here are some
examples. As Wallace himself points out, the fact that the cutoff variant
is approximately (but not exactly) Poincaré covariant is of little help for
finding theory X; approximate Poincaré covariance at large-distance scales
does not provide any indication about whether theory X is covariant or
not (“understood as, say, the absence of a preferred spacetime foliation”
[2006, 51–52]). In contrast, either a formal variant of QFT that contains
exact Poincaré covariance as a principle or the knowledge that it is not
possible to consistently combine Poincaré covariance with other field-
theoretic principles (e.g., knowledge that the axiomatic QFT program
fails) would be useful for finding theory X. If the debate were to be settled

32. Of course, there is disagreement among theorists working on rival programs for
quantum gravity about the extent to which QFT should be used as a starting point.
However, theory X is a theory of everything, including nongravitational forces; there-
fore, QFTs such as QED are relevant starting points.
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in favor of the cutoff variant with realistically construed cutoffs, this might
lend support to approaches to quantum gravity according to which space
is discrete. More fundamentally, if it were to turn out that even special
relativity and quantum theory are incompatible (if, say, the axiomatic
program proves to be incompletable), then the strategy for combining
general relativity and quantum theory could be affected. More generally,
it is conceivable that the quest for a rigorous model of a realistic model
will uncover a more general mathematical framework that could prove
more suitable for formulating quantum gravity. (For hints in this direc-
tion, see Bender 2007 and Rivasseau 2007.) I concede that these examples
are pure speculation. I hope that this does not deflect attention from the
argument that settling questions about the theoretical content of QFT
might aid the search for theory X. Resting content with the cutoff variant
of QFT because it is empirically adequate at large-distance scales would
be a strategic mistake because it would hinder the search for theory X.

7. Conclusion. This paper has explored the implications of a genuine case
of underdetermination in contemporary physics. The infinitely renor-
malized, cutoff, and formal variants of QFT are empirically equivalent
in the sense that they are empirically indistinguishable on the basis of
past and future scattering experiments. The three variants differ with
respect to physical content; each variant adopts a different set of theo-
retical principles. The three variants also admit different interpretations.
For example, the cutoff variant supports a quanta ontology but the formal
variant does not. I argued that the proper moral to draw from this case
is not antirealism, but that empirical considerations narrowly construed
are not the only grounds on which to choose among rival theories. In
this case, consistency is also a relevant criterion because quantum field
theory is, by definition, the theory that integrates quantum theory and
the special theory of relativity. Consistency is relevant to QFT for theo-
retical reasons—not for practical reasons (e.g., the derivation of predic-
tions). As a result, it is necessary to either formulate a consistent theory
or else show that this criterion cannot be satisfied (i.e., that there is no
consistent theory with both quantum and special relativistic principles).
The infinitely renormalized variant fails to satisfy this criterion because
its theoretical principles are not manifestly consistent. The cutoff variant
fails to satisfy the criterion because, while its theoretical principles are
consistent, they are not well motivated. The formal variant is the only
variant that satisfies the criterion; its set of theoretical principles are both
consistent and well motivated. Neither the infinitely renormalized nor
cutoff variant furnishes an argument that a consistent formulation of QFT
is impossible; such an argument would require making the case that the
axiomatic program cannot be completed.
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This covers the terms “underdetermination” and “inconsistency” in the
title. Idealization also plays an interesting role in this case. The standard
criticism of the formal variant of QFT—that it has yet to be established
that any set of rigorous axioms applies to the real world because no
realistic models have been constructed—can be construed as a complaint
that the formal variant of QFT is an idealization. In response to this
criticism, I have argued that if it does turn out that none of the sets of
axioms that have been proposed admit realistic models, then the proposed
axiomatizations could be modified. Thus, if it does turn out that the
proposed axiomatizations are idealizations in this sense, the idealization
is in principle dispensable; the idealization could be removed by appro-
priate modification of the axioms (modulo the possibility that there is no
set of relativistic plus quantum axioms that admits realistic models).

The cutoff variant is an idealization in another sense: when the theo-
retical principles of the cutoff variant are interpreted literally, the cutoff
variant describes a world in which space is discrete and of finite extent;
this is an idealization in the sense that the possible worlds in which QFT
is true are presumed to be worlds in which space is continuous and infinite.
This idealization is indispensable insofar as it is not possible to remove
the cutoffs entirely. (Removing the cutoffs by taking infinite limits would
turn the cutoff variant into the infinitely renormalized variant, which
would mean adopting a different set of theoretical principles and intro-
ducing the attendant set of problems.)33

The significance of idealization in quantum statistical mechanics (QSM)
has recently been the subject of debate (see Callendar 2001; Ruetsche
2003; Batterman 2005). Since there are many similarities between QFT
and QSM, one might expect this debate about idealization to map onto
QFT; however, idealization plays opposing roles in the two cases. The
root issues in the QSM case are the same as in the QFT case: an infinite
number of degrees of freedom and unitarily inequivalent representations.
In QSM, the thermodynamic limit is taken, which is an idealization insofar
as the system under consideration (e.g., a steaming cup of coffee) is rep-
resented as containing an infinite number of particles. The thermodynamic
limit, which makes available unitarily inequivalent representations, must
be invoked to represent phase transitions (e.g., a transition from a liquid

33. The distinction that I am drawing here between dispensable and indispensable
idealizations is similar to Batterman’s distinction between traditional and nontradi-
tional views of mathematical modeling. One difference is that revising the axioms of
a theory is not what he has in mind when he says that “the traditional view aims,
ultimately, to ‘de-idealize’ by adding more details so as to bring about a convergence
to a complete and accurate description” (2009, 4). Another difference is pointed out
in the discussion of infinite limits in the next paragraph.
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to a gas). Another point of similarity is that renormalization group meth-
ods are employed in both QFT and QSM. However, there is a crucial
difference between QSM and QFT with an infinite number of degrees of
freedom (i.e., either the infinitely renormalized variant or the formal var-
iant): whereas the description of a system as containing an infinite number
of particles furnished by QSM is taken to be false, the description of space
as continuous and infinite that is furnished by QFT with an infinite num-
ber of degrees of freedom is taken to be true. As far as idealization is
concerned, the parallel should not be drawn between QSM and QFT with
an infinite number of degrees of freedom, but between QSM and QFT with
a finite number of degrees of freedom (i.e., the cutoff variant). In the context
of QFT, representing space as being discrete and finite is the same sort
of idealization as, in the context of QSM, representing a system as con-
taining an infinite number of particles. Both idealizations are also indis-
pensable, in the above sense. However, the fact that there is no alternative
to QSM that both is capable of handling phase transitions and does not
employ the idealization means that there is an argument for adopting
QSM that is not available for QFT with cutoffs.
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