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In the present work, we make use of simplified nonlinear models based on the
compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to
predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering
space-charge and thermal effects. These models proved to be reasonable to estimate
some aspects of 1-D FEL theory, such as the position z of the onset of mixing,
in the case of a initially cold electron beam, and the position z of the breakdown
of the laminar regime, in the case of an initially warm beam (Peter et al., Phys.
Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared
to wave–particle simulations showing a reasonable agreement.
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1. Introduction

Free-electron lasers (FELs) have a special place inside the world of coherent
electromagnetic waves sources: their tunability is one of their most import theoretical
features. These devices are able to generate radiation in a wide range of wavelengths,
from microwaves to X-rays. The FEL tunability is possible by adjusting some
parameters and initial conditions, such as the electron beam energy, the wiggler
wavelength and the wiggler field strength (Bonifacio et al. 1990).

In a FEL, a seed of radiation (the laser) co-propagates with a relativistic electron
beam accelerated by a particle accelerator. The beam enters a time independent and
spatially periodic magnetic field generated by an undulator or a wiggler and the
particles interact with the laser and wiggler fields as well as with themselves through
space-charge forces. The superposition of the laser and wiggler fields forms the so
called ponderomotive potential. This potential confines the electrons. If the resonance
condition is satisfied, the electrons lose energy and form micro-bunches separated by
a distance d = 2π/kp, where k = 2π/λ and kw = 2π/λw are the wavenumber of the
laser and the wiggler, respectively and kp= k+ kw. The energy lost by the electrons is
transferred to the laser (Kroll & McMullin 1978; Sprangle, Tang & Manheimer 1980;
Marshall 1985; Murphy, Pellegrini & Bonifacio 1985; Bonifacio et al. 1990; Brau
1990; Freund & Antonsen 1996; Seo & Choi 1997). However, experimentally, due to
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the interaction between the particles and the fields, the operability of the machines is
limited in terms of the electron beam properties, for example (Allaria et al. 2012).

According to the resonance condition, approximately given by γr=
√
λw(1+ aw

2)/2λ,
(γr is the resonant Lorentz factor; aw = eλwBw/2πmc2 is the adimensional undulator
parameter; Bw is the magnetic field strength; m and e are the electron’s rest mass and
charge; and c is the speed of light) if we decrease the value of the laser wavelength,
the resonant energy, Er ≡ mγrc2, increases. The wiggler wavelength corresponds to
the spatial periodicity of the magnetic field generated by the wiggler, which in turn
is the distance between magnets with the same magnetic orientation.

As the system is conservative, the total energy of the system must be conserved
− part of the total energy is the sum of the kinetic energy of each electron of the
beam and the another part is the energy associated with the electromagnetic mode.
For a FEL, it is desirable to maximize the energy transfer to the laser. As in many
amplifiers, the gain is one way to evaluate how good the amplifier is. The gain is
defined as the ratio of the final to the initial amplitudes of the laser. It is usually
measured in a decibel scale and the typical range of it is approximately tens of dB.
The purpose of this work is to use the nonlinear models recently developed (Peter
et al. 2013; Peter, Endler & Rizzato 2014, 2016) to estimate the theoretical gain
of one-dimensional (1-D) FELs in a single pass and time-independent (steady-state
regime) configuration, both for Compton and Raman regimes. In the Compton regime,
the system dynamics is mainly driven by the ponderomotive potential, while in the
Raman regime, the space-charge effects are comparable to the ponderomotive potential.
The predicted results are compared to wave–particle simulations.

The paper is organized as follows: in § 2, we present the physical model; in § 3,
we show the nonlinear model predictions for an initially cold beam and we make
a comparison with the results obtained through wave–particle simulations and the
results are compared with those available in literature; in § 4, we compare the results
given by the wave–particle simulations and the results given by energies; and in the
nonlinear model for an initially water bag distribution for the electrons § 5, we draw
our conclusions.

2. Physical model
The physical model presented in this work has been developed in a previous paper

(Peter et al. 2013). Thus, only the final expressions for the equations are shown.
The wiggler (Aw) and the laser (A) fields are described by their vector potentials

fields, respectively

eAw

mc2
= aw(z) ê exp[i(kwz)] + c.c., (2.1)

eA
mc2
= a(z) ê exp[i(kz−ωt)] + c.c., (2.2)

ω is the frequency of the radiation; a = a(z) is the slowly varying dimensionless
amplitude of the laser and aw is the dimensionless undulator parameter; z is the
position of the beam; and ê is the circular polarization vector.

The 1-D FEL dynamics is well described by particle equations for the energy γ and
phase θ (= [k+ kw]z−ωt), and the wave equation for the laser amplitude a(z). These
equations form what is called wave–particle system, composed by 2N + 2 equations,
where N is the number of particles (in the present paper we considered 1000 particles
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for the cold beam case and 5000 particles for the warm beam case). The equations,
shown below, were solved using the LSODE code (Hindmarsh 1980, 1983) and they
were normalized in a way that: t=ωt, v = v/c and z= vpt= k/(k+ kw)t

d
dz
γj =− aw

2γj

[
aeiθj + c.c.

]+ η2vpvz,j

〈
−(θk − θj)+π

(
θk − θj

)∣∣θk − θj

∣∣
〉
, (2.3)

d
dz
θj = vz,j

vp (1− ν) − 1, (2.4)

d
dz

a= η2vpaw

〈
e−iθ

2γ

〉
− iη2vp

〈
1

2γ

〉
a. (2.5)

In these equations, j is the index for each particle, while the index k refers to the other
particles; the brackets indicate an average over the particle distribution (thus, there is
an equation of energy and an equation of phase for each particle); the quantity η is the
space-charge factor arising from the beam charge, η2=ωp

2/ω2, with ωp=
√

4πn0e2/m
being the plasma frequency and n0 is the average density of particles; the velocity
of the ponderomotive potential is represented by vp = k/(kw + k) = k/kp < 1;
ν is the detuning, which is a dimensionless parameter that measures somehow
the difference between the ponderomotive potential velocity (vp) and the beam
velocity (v′p): ν = (v′p − vp)/v

′
p; and the longitudinal particle velocity is given

through the relativistic Lorentz factor definition: vzj = [1 − (1 − |atot|2)/γj
2]1/2, with

|atot|2 = |aw(exp[i(kwz)] + c.c.)+ (a exp[i(kz−ωt)] + c.c.)|2.
The total energy of the system is conserved while the system evolves. Dividing the

energy by a volume and using the Poynting vector is possible to find a relation in
which the density of energy is conserved (n0〈γ 〉mc2+|E|2/4π= ε∗= const., where |E|
is the modulus of the electric field of the laser) (Bonifacio et al. 1990). This relation
is rewritten in terms of the variables defined in this section as η2〈γ 〉 + |a|2 = ε.

The evolution of the laser amplitude is well described by the models, both for the
initially cold and warm beam in the linear regime. Some considerations are made
to evaluate the gain (its maximum is measured taking the first peak of the laser
amplitude). The gain, Γ , is defined with help of a decibel scale as

Γ (z)= 10 log
( |a(z)|
|a(z= 0)|

)
. (2.6)

The theoretical gain given by wave-particle equations is compared to the models
prediction in the next sections.

3. Cold beam

The first case analysed in this paper is the initially cold beam case. It implies that
at z= 0 all of the particles of the beam have the same velocity (v′p) and energy (γr).
As shown in a previous work (Peter et al. 2013), the onset of mixing takes place in
the phase space when the local electron density, at the position of the onset, goes to
infinity. Then, the compressibility factor (which is defined as C ∝ n0/n, where n is
the local density) goes to zero. This occurs because the distribution of the particles
becomes a multi-valued function. A very similar model was recently applied to the
case of magnetically focused beams as well (Souza et al. 2010).
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In the model, the complete set of equations, given by equations (2.3)–(2.5), is
linearized as in Bonifacio et al. (1990). Thus, the linear evolution of the radiation
field is obtained through the integration of the following set of equations (where dot
indicates time derivation)

Ẋ = i
[

aw

2vp
2(1− ν)γr

2

]
ã+

[
1+ aw

2

vp
2(1− ν)γr

3

]
Y, (3.1)

˙̃a=−
[
vp

awη
2

2γr

] (
i X + Y

γr

)
− i
(
vp
η2

2γr
− ν
)

ã, (3.2)

Ẏ =− aw

2γr
ã− vp

2η2X + Ẏ|therm, (3.3)

where the collective complex variable X represents the fluctuations in the phase (X=
〈e−iθ̃0δθ̃〉), while the subscript 0 refers to the initial condition and δθ̃ = θ̃ − θ̃0; the
collective complex variable Y represents the fluctuations in the energy (Y = 〈e−iθ̃0δγ 〉)
and δγ = γ − γ0; ã is the transformed complex laser amplitude (ãeiθ̃ = aeiθ ); and, θ̃ is
the transformed phase (θ = θ̃ − νz); the subscript r refers to the resonance condition;
in the case of a cold beam Ẏ|therm = 0: this term will be explained later (this term is
added due to thermal effects).

With these coupled equations it is possible to generate a third-order polynomial
equation to determine the parameters that lead to the maximum growth rate and the
instability limits. The linear set of equations also provides the linear growth of the
laser amplitude. In Bonifacio et al. (1990), for example, the linear growth rate is
analysed including space-charge effects.

But the linear set of equations itself is unable to predict the onset of the phase-space
mixing. In the model, the nonlinearities of the space-charge effects are introduced due
to a connection between the phase and the energy. By exploring this connection, a
second-order ordinary differential equation for the phase, which depends on the initial
phase, θ̃0j, is written as

d2

dz2
θ̃j =−χ1(ãeiθ̃j + c.c.)+ χ2(θ̃oj − θ̃j), (3.4)

where χ1 ≡ aw(1+ aw
2)/(2vp

2(1− ν)γr
4) and χ2 ≡ η2(1+ aw

2)/((1− ν)γr
3).

Deriving (3.4) with respect to θ̃0, and defining ∂θ̃j/∂θ̃0 ≡ C as the compressibility
factor, we obtain an evolution equation that indicates the beginning of the phase
mixing (it occurs in the model when the first θ̃0 satisfies the condition C→ 0). The
equation of the compressibility evolution is given by

d2

dz2
C=−iχ1(ãeiθ̃j − c.c.)+ χ2 (1−C) . (3.5)

The linear equations combined with (3.4) and (3.5) form our simplified model that
can estimate the position z and θ of the onset of mixing, the saturated amplitude
of the laser and the critical value of ν responsible to separate Compton and Raman
regimes (Peter et al. 2013). These equations are solved also using the LSODE code
(Hindmarsh 1980, 1983).

In the model, the position z of the onset of mixing is obtained when the first θ̃0
satisfies the condition C→ 0: this position is called z0. This point forward, we freeze
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FIGURE 1. Map η versus ν of the gain Γ . The colours indicate the gain, in dB. The black
solid lines are from the linear analysis and they delimit the instable region. The dashed
line is the curve which maximizes the growth rate. Finally, the indexed filled circles are
the points used to compare the model and the full simulations results. The commas appear
because the gain depends on a combination between the growth rate and the position z0
of the onset of the mixing.

the collective variables X and Y . Thus, the amplitude |a| oscillates and we take the
maximum value of it. This value, obtained through the model, is assumed to estimate
the first peak amplitude in the wave–particle simulations.

Figure 1 shows a map of the gain for the model, in terms of ν and η. The map
was built for aw= 0.5, |a(z= 0)| = aw× 10−5 and vp= 0.99 − these values correspond
to an initial beam energy of the order of ∼4 MeV. The black solid lines represent
the limits of the instability region, while the dashed line is the maximum growth rate
curve obtained from the cubic polynomial of the linear set of equations. The colours
indicate the gain and the indexed circles, from A to D, denote the points used to
compare the model and the full simulations − and are over the curve of maximum
growth rate. The values of the gain vary from 0 to ≈47 dB and grow by increasing
the value of η.

In figure 2, the points from A to D of figure 1 are compared. The horizontal axis
represents η, while the vertical axis shows the gain, Γ . The indexed points represent
the result from the model, while the solid line is obtained from wave–particle
simulations. Until the point A (η= 0.01) the gain is very sensible to the space-charge
effects: the gain is increased by three orders of magnitude (from zero to Γ = 30 dB).
In this region, the kinetic energy available for the energy conversion increases as
η increases. The space-charge effects also increase, but the ponderomotive potential
mainly drives the dynamics of the particles. This corresponds to the Compton regime
(Peter et al. 2013).

After the point A, the gain still grows, but in, according to figure 2, an approxi-
mately linear fashion. This occurs because the space-charge effects becomes relevant
to the system dynamics. The space-charge effects act against the ponderomotive
potential. While the ponderomotive tends to attract the particles (forming micro-
bunches), the space charge acts to the contrary. It is typical of Raman or near Raman
regimes (Peter et al. 2013).

Moreover, the red curve of figure 2 is obtained from a relation described in
McNeil & Thompson (2010), Milton et al. (2001), Kim (1986) for an initially
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FIGURE 2. The figure depicts the behaviour of Γ versus η. The solid line corresponds
to the result from wave–particle simulations, while the filled circles are from the model.
The indexed points correspond exactly to the ones of figure 1. The pair η and ν is over
the maximum growth rate curve. The red curve is the gain considering Psat = ρPbeam.

cold beam, considering space-charge effects. The relation is given by Psat = ρPbeam,
where Psat is the saturation power of the laser, Pbeam is the beam power and ρ

is the FEL parameter Bonifacio et al. (1990), while the gain can be written as
Γ = 10 log (Psat/P0)

1/2, where P0 is the initial power of the laser. The FEL parameter
is written as ρ = 1/γr(awωp/4ckw)

2/3. Using the variables transformation proposed in
this work, we obtain

Γ = 10 log


η2

(
awηkw

4k

)2/3

|a(z= 0)|2


1/2

. (3.6)

Thus, the red curve agrees very well with the simulations and, consequently, with
the simplified model given in this work. The simplified model gave values of the gain
higher than the wave–particle simulations of the order of a few per cent. This way,
the model agrees well with the wave–particle simulations, proving to be a good tool
to estimate the amplification of the laser.

4. Warm beam
For a warm beam, at z= 0 we consider that the velocity of the particles is given

by a water bag distribution function, where 1v0 is the half-width of the distribution,
while the particles distribution in the phase space is spatially homogeneous. The
difference, in terms of the wave–particle equations’ integration, consists in a change
in the initial conditions of the particles. The evolution of the particles in the phase
space occurs in a laminar fashion until nonlinearities begin to dominate the system
dynamics. The breakdown of the laminar regime is defined when the lower border of
the particle distribution in the phase space becomes a multi-valued function.

Non-relativistic water bag distributions with constant density over the occupied
phase space are exactly represented by adiabatic fluid equations (Coffey 1971), while
the laminar regime persists. In the model, we consider very small values of velocity
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spread − in the hydrodynamical regime, i.e. 1v0 < ν. In this limit, we can use
the non-relativistic approximation and the connections between widths in velocity,
momentum and energy are approximately linear and their interaction is efficient
(Marshall 1985; Brau 1990). This guarantees that if the density is constant in one
phase-space representation, then the density is constant in another.

By exploring the connection between (2.3) and (2.4), identifying a pressure term
and the thermal effects over the system through the Vlasov equation and its moments
(exactly as in Peter et al. 2014) and using a relation between the pressure and the
initial velocity spread for a non-relativistic water bag distribution given in Coffey
(1971) (the relation, although for non-relativistic water bag distribution, is valid for
very narrow initial distributions), a linear term that represents the thermal effect in
the system is written as

Ẏ|therm =− 1v0
2

2Dγ 2γr
X, (4.1)

where Dγ 2 = ∂2v/∂γ 2.
In the presence of an initial spread, a pressure term 6= 0 is added to the linear

equations. Precisely, (4.1) is replaced in (3.3). The thermal effect acts like the space-
charge effect, reducing the linear growth rate. The linear growth rate obtained from
this linear set of equations is close to the wave–particle simulations’ growth rate and it
is within a range of 6 % from calculations in the literature (Chakhmachi & Maraghechi
2009).

The thermal effect must be included in the evolution of the beam element θ̃j. We
do this by preserving the nonlinearities neglected to generate (4.1). This way, (3.4) is
changed, giving place to

d2

dz2
θ̃j =−χ1(ãeiθ̃j + c.c.)+ χ2(θ̃oj − θ̃j)−1v0

2

[
∂δθ̃j

∂θ̃0j
+ 1

]−4
∂2δθ̃j

∂θ̃0j
2 , (4.2)

where δθ̃j = θ̃j − θ̃0.
Differently to (3.4), which is an ordinary differential equation, equation (4.2) is a

partial differential equation, which is solved numerically through the finite differences
method. The laser amplitude in this equation is given by the integration of the linear
system, (3.1)–(3.3) and (4.1), and the equation is solved through the partition of the
beam into a large number of discrete elements. Differently to the cold case, in the case
of a warm beam, the compressibility factor never goes to zero due the presence of
the thermal effects (a similar analysis was made by the group for warm magnetically
focused beams (Souza et al. 2012)). Then, the breakdown of the laminar regime is
reached when density discontinuities are established.

The nonlinear model estimates quite well the peak amplitude of the radiation (Peter
et al. 2014). If we consider that the breakdown of the laminar regime is located at
zb, from this point forward, the collective variables X and Y are frozen. As in the
cold case, the laser dynamics, then, becomes oscillatory. The maximum value of these
oscillations correspond to the estimated peak of the radiation field.

Figure 3 shows the gain, Γ against η for vp= 0.99, aw= 0.5 and |a(z= 0)| = aw×
10−5 and different values of 1v0, always over the curve that maximizes the growth
rate. The filled circles are from the model, while the lines are from wave–particle
simulations. Each colour corresponds to a different value of 1v0: black is for 1v0 =
0.0002 and red is for 1v0 = 0.0008.
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FIGURE 3. In this figure is plotted Γ versus η. The solid line corresponds to the result
from the wave–particle simulations, while the filled circles are from the theoretical model.
The red (black) ones correspond to 1v0 = 0.0008 (1v0 = 0.0002). The pair η and ν is
over the maximum growth rate curve.

It is possible to see that the gain is diminished as the initial velocity spread
increases. The thermal effect act like the space charge, in opposition to the
ponderomotive potential. With the increase of the charge in the system, the thermal
effects become less important in the dynamics. Thus, the curves tend to bring together
as we increase η. These results agree with what was shown in the previous work
(Peter et al. 2014).

In figure 4, we plot the gain against the initial velocity spread for a fixed, and
small, η (η = 0.01, aw = 0.5 and |a(z = 0)| = aw × 10−5). The solid black line was
obtained from wave–particle simulations, while the filled circles are from the model.
The dashed line is a fit curve of the filled circles.

FIGURE 4. Γ is plotted against 1v0 for vp = 0.99, η = 0.01, aw = 0.5 and |a(z= 0)| =
aw × 10−5. The solid line corresponds to the result from the wave–particle simulations,
while the filled circles are from the theoretical models. The dashed line is a fit curve for
the filled circles. The pair η and ν is over the maximum growth rate curve.

As can be seen in figure 4, the model is more sensitive in relation to 1v0 than
the wave–particle system. For small values of 1v0, the oscillations of the laser field
in the model are greater than the wave–particle simulations. Thus the model tends
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Application of nonlinear models to free-electron lasers 9

to overestimate the gain in that region. While for values of 1v0 near the limit of
the hydrodynamical regime, the model tends to underestimate the gain. This is the
effect of the temperature over the model when we freeze the collective variables. The
oscillations of the laser field become smaller as we increase 1v0.

Although the difference is of the order of 15 % for the gain for very small 1v0, the
model proved to estimate in a reasonable way the gain obtained from wave–particle
simulations and the decreasing tendency of the gain by increasing 1v0.

5. Conclusions

In previous works (Peter et al. 2013, 2014), nonlinear models based on the
compressibility factor were developed and proven to describe reasonably the dynamics
of the FEL, especially the evolution of the laser field in the linear regime. The models
were used to determine the parameters to maximize the growth rate of the radiation
field and to estimate a number of quantities at the moment of the onset of mixing.
In the present work, we applied nonlinear models in order to estimate the gain of
the laser field for 1-D FELs in the case of a cold and a warm electron beam. In the
cold beam case, a linear set of equations was obtained through the introduction of
the collective complex variables X and Y and the linearization of the wave–particle
equations. The linearized equations emulate the evolution of the laser field in the
linear regime. The nonlinear effects, such as the space charge, were introduced by
exploring a connection between the phase and the energy of the particles. It allowed us
to obtain a second-order ordinary differential equations for the compressibility factor
(which is the inverse of the longitudinal density). The zeroes of the compressibility
factor indicate the onset the mixing. This point forward, the collective variables are
frozen and we take the maximum value of the oscillatory dynamics of the laser field
to estimate the gain in the model. We run the simulations for aw = 0.5 and different
values of η, over the curve of maximum growth rate. As shown in the present work,
the results of the simplified model agrees well with the wave–particle simulations and
with previous works which gave estimations for the gain for an initially cold beam.

Analogously, for the warm beam case, we ran simulations for aw= 0.5 and different
values of η and 1v0, also over the curve of maximum growth rate. We considered only
the hydrodynamical regime (Davidson & Qin 2001) for the nonlinear model. In this
regime, a non-relativistic water bag distribution with constant density over the phase
space is exactly represented by the adiabatic fluid equations, as long as the laminar
regime persists. Then, the electron beam is treated as a fluid. Moreover, the smallness
of the initial spread, a typical situation for FELs (Chakhmachi & Maraghechi 2009),
allows us to change the phase-space representation. In the nonlinear model for the
warm beam case, the laser field is emulated by the linear set of equations (but in this
case, a pressure term is added in the equations for the fluctuations of the energy of the
particles, Ẏ|therm). In order to estimate the gain, we let the system evolve and, when
discontinuities appear in the density plot (the compressibility factor never goes to zero
due to the pressure of the fluid), we freeze the collective and complex variables X and
Y . Thus, the laser amplitude oscillates and we take the peak value. The results are
satisfactory. We have shown that if we increase the thermal effects, i.e. if we increase
1v0, the gain is reduced gradually and if we increase η, then the role of the pressure
term becomes less important. It occurs because the space-charge effect becomes more
expressive than the effect of the initial distribution. We emphasize that our simplified
model is an alternative way to estimate the gain in FELs, especially in the case of an
initially warm beam.
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10 E. Peter, F. B. Rizzato and A. Endler

The nonlinear models suggest a way to estimate more features of the FEL, such
as the density of particles in the position of the breakdown of the laminar flow and
the fraction of particles actively participating in the FEL interaction process. Other
initial distributions can be described by a sum of water bag distributions in the
hydrodynamical regime. These topics are of relevance in the study of the FEL theory
and they shall be developed in future works.
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