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ON CONSTRAINTS AND DIVIDING
IN TERNARY HOMOGENEOUS STRUCTURES

VERAKOPONEN

Abstract. LetM be ternary, homogeneous and simple.We prove that ifM is finitely constrained, then
it is supersimple with finite SU-rank and dependence is k-trivial for some k < � and for finite sets of real
elements. Now suppose that, in addition,M is supersimple with SU-rank 1. IfM is finitely constrained
then algebraic closure inM is trivial. We also find connections between the nature of the constraints of
M, the nature of the amalgamations allowed by the age ofM, and the nature of definable equivalence
relations. A key method of proof is to “extract” constraints (ofM) from instances of dividing and from
definable equivalence relations. Finally, we give new examples, including an uncountable family, of ternary
homogeneous supersimple structures of SU-rank 1.

§1. Introduction. We call a structure M homogeneous if it is countable, has a
finite relational vocabulary and every isomorphism between finite substructures
ofM can be extended to an automorphism ofM. Homogeneous structures are of
interest in various areas, including Ramsey theory, constraint satisfaction problems,
permutation group theory and topological dynamics; surveys include [4,10,23,24].
From the point of view of pure model theory they are interesting because they can
also be characterized as the countable structures (with finite relational vocabulary)
which have elimination of quantifiers, or as the countable structures (with finite
relational vocabulary) which are so-called Fraı̈ssé limits of “amalgamation classes”
of finite structures (see for example [12, Chapter 7]). The later two characterizations
give homogeneous structures a rather “concrete” character. Nevertheless, there
are uncountably many homogeneous digraphs [11]. Some classes of homogeneous
structures with additional properties, such as for example homogeneous (di)graphs,
partial orders and stable (infinite) structures have been classified [6,21,22,26].
It is of course tempting to try to classify other classes of homogeneous struc-
tures. A natural direction is to consider simple homogeneous structures, or some
other class of homogeneous structures in which there is a reasonably well behaved
notion of independence. What makes homogeneous structures intriguing to me is
that, although they are fairly concrete (and useful for providing examples), typi-
cal model theoretic questions such as whether a simple homogeneous structure is
supersimple, has finite SU-rank, or has a nontrivial pregeometry, turn out to be
challenging. Moreover, the class of homogeneous simple structures can be seen as
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1692 VERAKOPONEN

the most uncomplicated kind of �-categorical simple structures in the sense that in
a homogeneous structure every definable relation is definable by a quantifier-free
formula (a “Δ0-formula”), while in an �-categorical structure a definable relation
may be definable only by a formula of higher complexity, in terms of, say, quanti-
fier alternations. For example, there is an �-categorical supersimple structure with
SU-rank 1 in which algebraic closure induces a nonlocally modular pregeometry,
as shown first by Hrushovski [13, 14]. But we do not know yet if a similar exam-
ple exists if ‘�-categorical’ is replaced with ‘homogeneous’. My guess is that the
answer is ‘no’, and if this is correct one can ask, given any k < �, if there is an �-
categorical supersimple structure with SU-rank 1 in which algebraic closure induces
a nonlocally modular pregeometry and all definable relations are defined by Σk (or
Πk) formulas. In general, for a given phenomenon, one can ask what the minimal
“definitional complexity” of relations must be in a structure for that phenomenon
to appear in it.
A relational structure (i.e., one with relational vocabulary) will be called k-ary
if no relation symbol of its vocabulary has arity higher than k. We say binary and
ternary instead of 2-ary and 3-ary, respectively. The fine structure of all binary
simple homogeneous structures is well understood in terms of supersimplicity, SU-
rank, pregeometries, the behaviour of dividing and the nature of definable sets of
SU-rank 1 [2, 15–17]. However, the arguments for binary structures do not carry
over to ternary structures. This is at least partly to be expected, because at least
one new phenomenon appear when passing from binary to ternary: Every binary
supersimple homogeneous structure with SU-rank 1 is a random structure (in the
sense ofDefinition 2.2 below), but there are plenty of ternary supersimple structures
with SU-rank 1 which are not random, as witnessed by the examples in Section 7.
The notion of n-complete amalgamation in the sense of [25, Definition 2.2] is
related to random structures (in the presence of homogeneity). The independence
theorem of simple theories is equivalent to 3-complete amalgamation. In the the-
ory of binary simple homogeneous structures the combination of the independence
theorem and the binarity (of the structures) plays a crucial role. Palacı́n [25] has
recently shown that if a k-ary relational structure is homogeneous, supersimple and
has (k + 1)-complete amalgamation, then it is a random structure. Kruckman [19,
Sections 5.3 and 5.5] has also investigated “higher dimensional” amalgamation
properties in the context of �-categorical (possibly simple) structures. Conse-
quently, we will be concerned with ternary homogeneous simple structures which
do not necessarily have 4-complete amalgamation. Conant has recently studied the
relationship of the free amalgamation property (of a class of finite structures) to
dividing, rosiness, simplicity and related notions (of the Fraı̈ssé limit). Both Conant
[8] and Palacı́n [25] have proved results which relate the free amalgamation property
to (super)simplicity and SU-rank one. The relevance of definable (with parameters)
equivalence relations in a context related to the one of this article has been realized
earlier by Kruckman [19, Section 5.5] (we will deal with equivalence relations in
Section 5). Akhtar and Lachlan [3] have studied homogeneous (not necessarily sim-
ple) 3-hypergraphs. They have proved results about the age of such a 3-hypergraph,
and, in particular, characterize the constraint if there is only one.
Needless to say, if the study of simple homogeneous structures requires a special
treatment of k-ary simple homogeneous structures for every k < �, then the study
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will never be completed. However, I hope that for some small k (perhaps k = 4
or k = 5) the arguments for the case k work out for all k′ ≥ k, at least with
respect to general questions such as whether a structure is supersimple, has finite
SU-rank, or what the nature of definable pregeometries is. Some justification for
my optimism comes from the theory of smoothly approximable structures [7] and
from Corollaries 5.3 and 5.4 in [17] where the nature of 4-types over ∅ is crucial.
In this article we will study the interplay between, on the one hand, constraints of
a ternary homogeneous structure and, on the other hand, the behaviour of dividing
(and indirectly the algebraic closure) and the existence of nontrivial definable (with
parameters) equivalence relations on the set of realizations of a complete non-
algebraic 1-type (over the same parameters). The constraints of a homogeneous
structure are the “minimal” structures (for the same vocabulary) which cannot be
embedded into it (see Definition 2.2). The first main result (Theorem 4.1) tells that
if a structure is ternary, homogeneous, finitely constrained and simple, then it is
supersimple with finite SU-rank and dependence is, for some k < �, k-trivial for
finite sets of real elements. As a background recall that all stable homogenous struc-
tures are finitely constrained [20, Theorem 5], but as we will see in Section 7.3, there
are ternary homogeneous simple structures which are not finitely constrained. Then
we see that ifM is ternary, homogeneous, finitely constrained and supersimple with
SU-rank 1, then algebraic closure and dependence inM are trivial (Theorem 4.2).
In Section 5 we turn to the special case of SU-rank 1, that is, we study ternary
homogeneous (not necessarily finitely constrained) supersimple structures of SU-
rank 1. Here we show that the existence of nontrivial definable equivalence relations
on the set of realizations of a nonalgebraic 1-type over a finite set plays a crucial role
for understanding the nature of the constraints of the structure and the nature of
its algebraic closure, and vice versa. We also see that if the age of the structure has
the free amalgamation property, then there are no definable equivalence relations
on any nonalgebraic types and all constraints are of a particular kind.
Section 6 elaboratesmore on the topic of nontrivial definable equivalence relations
and shows that, under some extra conditions, no nontrivial equivalence relation is
definable with only one parameter. It follows, under the extra conditions, that a
binary random structure is definable (with only one parameter) in the structure that
we started with. If the extra conditions are not satisfied, then we only conclude that
a binary structureN is definable in the original structureM such thatN is random
relative to an equivalence relation on its universe which is ∅-definable in N .
Section 7 gives examples of ternary homogeneous supersimple structures with
SU-rank 1 and degenerate algebraic closure. The examples in Sections 7.3 and 7.4
seem to be new. Section 7.3 shows that, with a ternary relation symbol R and
vocabulary V = {R}, there are uncountably many nonisomorphic V -structures
that are homogeneous and supersimple with SU-rank 1 and degenerate algebraic
closure. The last section gives a list of problems.

§2. Preliminaries.
2.1. Notation and general concepts. Structures are denoted by calligraphic letters

A,B, . . . ,M,N and their universes by the corresponding noncalligraphic letters
A,B, . . . ,M,N . Usually (but not always) infinite structures are denoted byM or
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N , possibly with indices, and finite structures by A,B, . . . , possibly with indices.
The complete theory of a structureM is denoted by Th(M). If V is a vocabulary,
M a V -structure and W ⊆ V , thenM�W denotes the reduct ofM to W . If V
is a relational vocabulary,M is a V -structure and A ⊆M , thenM�A denotes the
substructure ofM with universe A. By ā, b̄, . . . we denote finite sequences/tuples
of elements. If A is a set then ‘ā ∈ A’ usually means that ā is a finite sequence of
elements from A. The length of ā is denoted by |ā| and we may write ā ∈ An if we
want to emphasize that ā is a sequence of length n all of which elements belong
to A. By rng(ā) we denote the set of elements that occur in ā. For sequences ā
and b̄, āb̄ denotes the concatenation of them. Sometimes we abuse notation and
write ‘ā’ in instead of ‘rng(ā)’ and ‘AB’ instead of ‘A ∪ B’. For a formula ϕ(x̄), or
type p(x̄), ϕ(M), respectively p(M), denotes the set of tuples of elements fromM
which satisfy/realize it.
Given a structureM and A ⊆ M , SMn (A) denotes the set of complete n-types
over A (with respect toM). For a structureM and ā ∈M , tpqfM(ā) denotes the set
of quantifier free formulas satisfied by ā inM (while tpM(ā), as usual, denotes the
complete type of ā inM and tpM(ā/B) denotes the complete type of ā overB inM
if B ⊆M ). We sometimes write ā ≡M b̄, or ā ≡qfM b̄ instead of tpM(ā) = tpM(ā),
or tpqfM(ā) = tp

qf
M(b̄), respectively.

We assume familiarity with the notions of dividing and forking, as well as simple
theories and SU-rank, as can be found in [5, 14], for example. When saying that
a structureM is simple, supersimple, or has finite SU-rank, then we mean that
its complete theory, denoted Th(M), has the corresponding property. In some
arguments we will consider dividing in different structures and in this context we
maywrite ‘�| M’ to indicate thatwe consider dividing inM. If we say that a structure
is simple, then we assume that it is infinite.
A structureM is said to be k-transitive if Th(M) has only one complete k-type
over ∅ which implies that all k elements are different. An equivalence relation is
called nontrivial if it has at least two equivalence classes and at least one equivalence
class contains more than one element. Suppose thatM and N are structures with
the same universe but possibly (and typically) with different vocabularies. We say
that N is a reduct ofM if, for every n < � and R ⊆ Nn , if R is ∅-definable in N
then it is ∅-definable inM.
2.2. Classes of finite structures. We assume familiarity with the basic theory of
“amalgamation classes” of finite structures and Fraı̈ssé limits (as explained in [12]
for example), but nevertheless some terminology is definedbelow to avoid confusion.

Definition 2.1. Let V be a finite relational vocabulary.
(i) LetM be aV -structure and ā ∈M . ForR ∈ V we say that ā is anR-relationship
(inM) if ā ∈ RM. We say that ā is a relationship (inM) if for some R ∈ V , ā is an
R-relationship.
(ii) IfA andB are twoV -structures, then the free amalgam ofA andB is the unique
structure C such that C = A ∪ B and for every R ∈ V and every tuple d̄ ∈ C ,
d̄ ∈ RC if and only if d̄ ∈ RA ∪RB. If E is a substructure ofA and of B of maximal
cardinality, then we may also say that C (as defined above) is the free amalgam ofA
and B over E .
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(iii) A class K of finite V -structures has the hereditary property if it is closed under
substructures (i.e., if A ⊆ B ∈ K, then A ∈ K).
(iv) Suppose that K is a class of finite V -structures which is closed under
isomorphism. Then K has the

(a) Amalgamation property if whenever A,B, C ∈ K and fB : A → B and fC :
A → C are embeddings, then there are D ∈ K and embeddings gB : B → D
and gC : C → D such that gB ◦ fB = gC ◦ fC ,

(b) Disjoint amalgamation property if wheneverA,B ∈ K, then there is C ∈ K such
that C = A ∪ B, C�A = A and C�B = B, and

(c) Free amalgamation property if wheneverA,B ∈ K, then the free amalgam ofA
and B belongs to K.
Definition 2.2. LetM be a V -structure, where the vocabulary V contains only
relation symbols.
(i) The age ofM is the class of all finite V -structures that can be embedded into
M.
(ii) A finite V -structure is permitted (with respect toM) if it belongs to the age of
M. A finite V -structure is forbidden (with respect toM) if it is not permitted.
(iii) A finite V -structure C is a constraint (ofM) if it is forbidden and every proper
substructure of it is permitted.
(iv)M is finitely constrained (or has only finitely many constraints) if there are, up
to isomorphism, only finitely many constraints ofM.
(v)M is a random structure if it is homogeneous (implying that V is finite) and for
every 0 < k < �, every constraint of

M�{R ∈ V : the arity of R is at most k}
has cardinality at most k.

Themostwell-known randomstructure is theRado graph (often called randomgraph
in model theory). The Rado graph can be constructed in three interesting ways: as
a Fraı̈ssé limit, by a probabilistic construction on finite graphs (via a so-called zero-
one law), and by using a probability measure on the set of all graphswhose vertex set
is the natural numbers. (See for example [12, Chapter 7.4].) Every random structure
can be constructed in these three ways (by straightforward generalizations of the
corresponding procedures for graphs).

2.3. Notions of triviality. IfM is a structure then ‘aclM’ and ‘dclM’ denote the
algebraic closure and definable closure, respectively, inM.
Definition 2.3. LetM be a structure.
(i) We say that aclM is trivial, or that algebraic closure (inM) is trivial, if whenever
A ⊆M , b ∈M and b ∈ aclM(A), then b ∈ aclM(a) for some a ∈ A.
(ii) We say that aclM is degenerate, or that algebraic closure (inM) is degenerate, if
for all A ⊆M , aclM(A) = A.
Definition 2.4. Let T be a simple theory.
(i) T has trivial dependence if wheneverM |= T , A,B,C ⊆M eq and A �|�

C
B, then

A �
|�
C
b for some b ∈ B.
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(ii) Let 0 < k < �. T has k-trivial dependence for real elements over finite base sets
if wheneverM |= T , A,B,C ⊆ M are finite and A �|�

C
B, then A �|�

C
B ′ for some

B ′ ⊆ B with |B ′| ≤ k.
(iii) We say that a simple structureM has trivial dependence, or k-trivial dependence
for real elements over finite base sets if its complete theory has the corresponding
property.

Observation 2.5. Suppose thatM is 2-transitive, simple and has 1-trivial depen-
dence for real elements over finite base sets. ThenM is supersimple with SU-rank 1
and degenerate algebraic closure.

Proof. Suppose thatN |= Th(M), B ⊆ N is finite, a ∈ N \B and a �|� B. Since
M has 1-trivial dependence for real elements over finite base sets, a �|� b for some
b ∈ B. There is, by simplicity, c ∈ N \ {a} (assuming that N is �-saturated)
such that a�| c. Then we must have tpN (a, b) �= tpN (a, c) which contradicts
2-transitivity. �
2.4. Imaginary elements, equivalence relations and �-categoricity. We assume
familiarity with the extensionMeq by imaginary elements of a structureM. Also
recall that every infinite homogeneous structure is �-categorical, i.e., its complete
theory is �-categorical.

Fact 2.6. Suppose thatM is �-categorical.

(i) If B ⊆M eq is finite and ā ∈M eq, then tpMeq (ā/aclMeq (B)) is isolated.
(ii) If B ⊆ M eq is finite and p ∈ SMeq

n (aclMeq (B)) is realized in N eq for some
N � M, then p is realized in Meq; moreover, only finitely many types in
SM

eq

n (aclMeq (B)) are realized by tuples fromMn .
(iii) Let B ⊆ M be finite and let p1, . . . , pk ∈ SMn (B). Then the following

equivalence relation on p1(M) ∪ · · · ∪ pk(M) is B-definable inM:
tpMeq (x̄/aclMeq (B)) = tpMeq (ȳ/aclMeq (B)).

Explanations of why (i) and (ii) above hold are given in [2, Section 2.4]. Part (iii)
follows in a rather straightforward way from the previous parts.

Fact 2.7. Suppose that N is interpretable in M using only finitely many
parameters.

(i) IfM is �-categorical then so is N .
(ii) IfM is (super)simple then so isN , and if the SU-rank ofM is 1 andN ⊆M ,
then the SU-rank ofN is 1.

Part (i) is Theorem 7.3.8 in [12]. The claim about simplicity in (ii) follows from
Remarks 2.26 and 2.27 in [5]. The claim about supersimplicity follows from the fact
that if some type of N divides over every finite subset of its set of parameters, then
the same is true for some type ofMeq (soM would not be supersimple). The final
claim of (ii) follows since (given the assumptions) every instance of dividing in N
gives rise to a corresponding instance of dividing inM.

§3. On definable structures. In this section we prove some technical results which
will be used in Section 4 in the proof of Theorem 4.1 via the use of Corollary 4.8.
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Definition 3.1. LetM be aV -structure whereV is a finite relational vocabulary
and let A ⊆M be finite. Furthermore, let P = {p1, . . . , pn} ⊆ SM1 (A).
(i) Let VA be a finite relational vocabulary such that V ⊆ VA and for every
R ∈ V of arity r > 1, every 0 < k < r, every permutation � of {1, . . . , r},
and every ā ∈ Ak , VA has a relation symbol QR,ā,� of arity r − k. We also
assume that VA has no other symbols than those described. Note that the
maximal arity of VA is the same as the maximal arity of V .

(ii) LetMP be the VA-structure with universeMP = p1(M)∪ · · · ∪ pn(M) and
where the symbols in VA are interpreted as follows:
(a) If R ∈ V has arity r, then RMP = RM ∩ (MP)r .
(b) If QR,ā,� ∈ VA \ V where R ∈ V has arity r and |ā| = k, then for
every b̄ ∈ (MP)r−k , b̄ ∈ (QR,ā,�)MP if and only if �(b̄ā) ∈ RM (where
�(b̄ā) = (c�(1), . . . , c�(r)) if b̄ā = (c1, . . . , cr)).

In the rest of this section we assume that M is a V -structure where V is finite
and relational, A ⊆ M is finite and P = {p1, . . . , pn} ⊆ SM1 (A) is nonempty.
Furthermore, VA and MP are as in Definition 3.1. The following lemma is an
immediate consequence of the definition ofMP .

Lemma 3.2. Let ā be an enumeration of A. For all b̄, b̄′ ∈MP ,
b̄ ≡qfMP

b̄′ if and only if b̄ā ≡qfM b̄′ā.
For the rest of this section suppose that M is infinite and every type in P is
nonalgebraic.

Lemma 3.3. IfM is simple thenMP is simple. IfM is homogeneous thenMP is
homogeneous.

Proof. The first claim follows from Fact 2.7. Let ā enumerate A. Suppose that
b̄, c̄ ∈ MP and b̄ ≡qfMP

c̄. Then Lemma 3.2 gives b̄ā ≡qfM c̄ā. SinceM is homoge-
neous there is an automorphism f ofM which takes b̄ā to c̄ā. Then f sends every
element ofMP to an element ofMP . By Lemma 3.2 again, the restriction of f to
MP is an automorphism ofMP. ThusMP is homogeneous. �
Lemma 3.4. Suppose that M is infinite and homogeneous. For all b̄, c̄ ∈ MP ,
b̄�| MP c̄ if and only in b̄�|

A

Mc̄.

Proof. Suppose that b̄, c̄ ∈ MP and b̄ �|� MP c̄. Then there are ϕ(x̄, ȳ) ∈
tpMP

(b̄, c̄) and c̄i in some elementary extension of MP , for i < �, such that
tpMP

(c̄i) = tpMP
(c̄) for all i and {ϕ(x̄, c̄i) : i < �} is k-inconsistent for some

k < �. As MP is homogeneous (by the previous lemma), we can assume (by
Fact 2.6) that all c̄i belong toMP . Without loss of generality we may assume that
ϕ(x̄, ȳ) isolates tpMP

(b̄, c̄) and that ϕ is quantifier-free.
Let ā enumerateA. By the homogeneity ofM there is a quantifier-freeV -formula
�(x̄, ȳ, z̄) which isolates tpM(b̄, c̄, ā). By Lemma 3.2 and since bothM andMP

have elimination of quantifiers (by Lemma 3.3), it follows that for all b̄′, c̄′ ∈MP ,
b̄′c̄′ā ≡M b̄c̄ā ⇐⇒ b̄′c̄′ ≡MP b̄c̄ (3.1)

and thus
M |= �(b̄′, c̄′, ā) ⇐⇒ MP |= ϕ(b̄′, c̄′). (3.2)
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From (3.1) it follows that

c̄i ā ≡M c̄ā for all i < �.

For a contradiction, assume that {�(x̄, c̄i , ā) : i < �} is not k-inconsistent with
respect to Th(M). Then (by Fact 2.6) there are b̄′ ∈MP and i1, . . . , ik such that

M |=
k∧

j=1

�(b̄′, c̄ij , ā).

By (3.2) we get

MP |=
k∧

j=1

ϕ(b̄′, c̄ij ),

which implies that {ϕ(x̄, c̄i) : i < �} is not k-inconsistent, contradicting our
assumption. Thus we conclude that {�(x̄, c̄i , ā) : i < �} is k-inconsistent and it
follows that b̄ �|�

A

Mc̄.

Now assume that b̄ �|�
A
,M c̄ where b̄, c̄ ∈ MP . Then there are a quantifier-free

�(x̄, ȳ, z̄) such that �(x̄, c̄, ā) belongs to tpM(b̄, c̄, ā) and isolates this type, and
c̄i ∈ MP such that tpM(c̄i , ā) = tpM(c̄, ā) for all i < � and {�(x̄, c̄i , ā) : i < �}
is k-inconsistent for some k < �. From (3.1) it follows that tpMP

(c̄i) = tpMP
(c̄)

for all i . For the same reasons as when we proved the other direction, there is a
quantifier-freeVA-formula ϕ(x̄, ȳ) such that (3.2) holds, and consequently ϕ(x̄, ȳ)
isolates tpMP

(b̄, c̄). For a contradiction, suppose that {ϕ(x̄, c̄i) : i < �} in not k-
inconsistent. Then there are b̄′ ∈MP and i1, . . . , ik such thatMP |= ∧k

j=1 ϕ(b̄
′, c̄ij ).

By (3.2) we get M |= ∧k
j=1 �(b̄

′, c̄ij , ā), which implies that {�(b̄′, c̄i , ā) : i <
�} is not k-inconsistent, contradicting our assumption. Hence we conclude that
b̄ �

|� MP c̄. �
Lemma 3.5. Suppose thatM is homogeneous. For every constraint C ofMP there
is a constraint C∗ ofM such that |C | ≤ |C ∗|.
Proof. Let C be a constraint of MP. Let D be the V -structure (where V is
the vocabulary of M) with universe D = C ∪ A and satisfying the following
conditions:

(a) For every R ∈ V and every c̄ ∈ C of appropriate length, c̄ ∈ RD if and only if
c̄ ∈ RC .

(b) For every R ∈ V and every ā ∈ A of appropriate length, ā ∈ RD if and only if
ā ∈ RM.

(c) For every R ∈ V of arity r > 1, every 0 < k < r, every permutation � of
{1, . . . , r}, every c̄ ∈ Cr−k and every ā ∈ Ak , �(c̄ā) ∈ RD if and only if
c̄ ∈ (QR,ā,�)C (where QR,ā,� is like in Definition 3.1).
Claim. D is forbidden with respect toM.
Proof of the claim. Suppose that D is not forbidden with respect toM. Then,
by the homogeneity ofM, there isD′ ⊆ M and an isomorphismf fromD toD′. Let
C ′ = f(C ) andA′ = f(A). Then the restriction of f toA is an isomorphism from
D�A toM�A′. So by homogeneity again, there is C ′′ ⊆ M and an isomorphism
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from D to M�A ∪ C ′′ which extends f�A. But then, by the definition of MP ,
MP�C ′′ ∼= C which contradicts that C is a constraint ofMP. �
Claim. There is B ⊆ A such that either
(i) B = ∅ and D�C is forbidden with respect toM or
(ii) B �= ∅, D�B ∪ C is forbidden with respect to M and for every b ∈ B,

D�(B ∪ C ) \ {b} is permitted with respect toM.
Proof of the claim. If for all a ∈ A, D�D \ {a} is permitted with respect to

M, then take B = A and we are done. Otherwise there is some a1 ∈ A such that
D�D \ {a1} is forbidden with respect toM. If for all a ∈ A \ {a1},D�D \ {a1, a} is
permitted with respect toM, then take B = A \ {a1} and we are done. Otherwise
there is some a2 ∈ A \ {a1} such that D�D \ {a1, a2} is forbidden with respect to
M. By continuing in this way we eventually find B ⊆ A such that (i) or (ii) holds. �

Let B ⊆ A satisfy (i) or (ii) of the last claim. In order to show that D�B ∪ C is a
constraint ofM it suffices to show that if c ∈ C , thenD�(B ∪C ) \ {c} is permitted
with respect toM. So let c ∈ C . As C is a constraint ofMP, C�C \ {c} is permitted
with respect toMP. AsMP is homogeneous there is an embedding f of C�C \ {c}
into MP . From the definitions ofMP and D it follows that if f is extended to
(B ∪ C ) \ {c} in such a way that the extension fixes all elements of B pointwise,
then this extension is an embedding ofD�(B ∪C )\{c} intoM, soD�(B ∪C )\{c}
is permitted. Now we have proved that C∗ = D�(B ∪ C ) is a constraint ofM and
clearly |C | ≤ |C ∗| since C ⊆ C ∗. �

§4. Extracting constraints from instances of dividing. In this section we prove our
first main results, Theorems 4.1 and 4.2. As indicated in the title of this section, the
core of the proofs is to extract a constraint from every instance of dividing. The
main technical result in this section is Proposition 4.4, from which we get a number
of corollaries which extend its usefulness.

Theorem 4.1. Suppose thatM is ternary, homogeneous and simple. IfM has only
finitely many constraints, then it is supersimple with finite SU-rank; moreover, if n is
the cardinality of the largest constraint and k = 1+ n · |SM3 (∅)|, thenM has k-trivial
dependence for real elements over finite base sets.

Theorem 4.2. Suppose that M is ternary, homogeneous and supersimple with
SU-rank 1. IfM has only finitely many constraints, then aclM is trivial.

Note that ifM in Theorem 4.2 is, in addition, 2-transitive then aclM is degenerate.
Also observe that the conclusion of Theorem 4.2 implies that M has 1-trivial
dependence for real elements over finite base sets; by (for example) the argument
in Remark 6.6 in [16] it follows that M has trivial dependence. The proofs of
Theorems 4.1 and 4.2 are given after Lemma 4.9 below.

Remark 4.3. Theorems 4.1 and 4.2 can be strengthened in the following ways, as
proved in [18, Corollaries 3.4–3.5] which I wrote after this article but it was referred
and accepted for publication before this article. First, the conclusion of Theorem 4.1
can be strengthened to say thatM has trivial dependence. Second, in Theorem 4.2
the assumption thatM has only finitely many constraints can be removed.
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Proposition 4.4. LetM be an infinite ternary homogeneous structure. Suppose
that a, b ∈ M , E,F ⊆ M are finite, some formula ϕ(x, b, ē) ∈ tpM(a/bE) divides
overEF , and for every proper subsetE ′ ⊂ E, every formula�(x, b, ē′) ∈ tpM(a/bE ′)
does not divide over EF . ThenM has a constraint with at least 3 + |E|/|SM3 (∅)|
elements.

Proof. Let a, b ∈ M , E,F ⊆ M and ϕ(x, bē) ∈ tpM(a/bE) be such that
the assumptions of the proposition are satisfied. We rename these elements and
sets as follows: an = a, an−1 = b, A = E = {a1, . . . , an−2}. Furthermore, let
p(x1, . . . , xn) = tpM(a1, . . . , an) and when convenient we identity p notationally
with a quantifier-free formula that isolates it. By assumption, p(a1, . . . , an−1, xn)
divides over AF . So there is an AF -indiscernible sequence (bi : i < �) such that
b0 = an−1 and for some 1 < k < �,

{p(a1, . . . , an−2, bi , xn) : i < �} is k-inconsistent, but not l -inconsistent if l < k.
For every j ∈ {1, . . . , n − 2}, let

Aj = A \ {aj}, and
let pj be the restriction of p to the variables in {x1, . . . , xn} \ {xj}.

When convenient we notationally identify pj with a quantifier-free formula that
isolates it. By assumption, for every j = 1, . . . , n − 2,

pj(a1, . . . , aj−1, aj+1, . . . , an−2, an−1, xn) does not divide over AF ,

and therefore, for every j = 1, . . . , n − 2,
{pj(a1, . . . , aj−1, aj+1, . . . , an−2, bi , xn) : i < �} is m-consistent for every m < �.
By Ramsey’s theorem, for every j = 1, . . . , n − 2 there are ajn ∈ M and distinct
b
j
1 , . . . , b

j
k ∈ {bi : i < �} such that

M |=
k∧

l=1

pj(a1, . . . , aj−1, aj+1, . . . , an−2, b
j
l , a

j
n ) and (4.1)

(ajn , b
j
l , b

j
l ′) ≡M (ajn , b

j
s , b

j
s′) for all 1 ≤ l < l ′ ≤ k and all 1 ≤ s < s ′ ≤ k.

SinceM is ternary with elimination of quantifiers it follows that

(bj1 , . . . , b
j
k) is an {ajn}-indiscernible sequence for each j. (4.2)

By elimination of quantifiers there are only finitely many 3-types over ∅. Hence there
is a number �, at most as large as the number of 3-types (of distinct elements) over
∅, and a partitionA = X1∪· · ·∪X� such thatX1, . . . , X� are the equivalence classes
of the following equivalence relation on A:

aj ∼ aj′ ⇐⇒ (ajn , b
j
1 , b

j
2 ) ≡M (aj

′
n , b

j′

1 , b
j′

2 ).

Let a, b′1, . . . , b
′
k be distinct elements. (It does not matter where they come from.)

For each m ∈ {1, . . . , �} let Bm be the structure with universe
Bm = A ∪ {b′1, . . . , b′k, a}

https://doi.org/10.1017/jsl.2018.61 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.61


ON CONSTRAINTS AND DIVIDING 1701

such that

tpqfBm(a1, . . . , an−2, b
′
1, . . . , b

′
k) = tp

qf
M(a1, . . . , an−2, b1, . . . , bk),

tpqfBm(a1, . . . , an−2, b
′
s , a) = tp

qf
M(a1, . . . , an−2, b1, an) for all s = 1, . . . , k, and

tpqfBm(b
′
1, . . . , b

′
k, a) = tp

qf
M(b

j
1 , . . . , b

j
k, a

j
n ), where j is any number in

{1, . . . , n − 2} such that aj ∈ Xm. (Recall that tpqfM(bj1 , . . . , bjk, ajn )
only depends on the ∼-class of aj .)
Observe that ifm �= m′, then the interpretations of relation symbols inBm and inBm′

only differ on triples containing a and two elements from {b′1, . . . , b′k}.Also note that
eachBm is forbidden, due to thek-inconsistency of {p(a1, . . . , an−2, bi , xn) : i < �}.
Some Xm must have cardinality at least (n − 2)/�. Without loss of generality,
assume that the cardinality of X1 is at least (n − 2)/�. From (4.1) it follows that

for every c ∈ X1, B1�(A \ {c}) ∪ {b′1, . . . , b′k, a} is permitted. (4.3)

Since A ∪ {bi : i < �} ⊆M it follows from the construction of B1 that
B1�A ∪ {b′1, . . . , b′k} is permitted. (4.4)

By the choice of the elements bi , i < �, and the construction of B1 it follows that
for each l = 1, . . . , k, B1�A ∪ {b′l} ∪ {a} is permitted. (4.5)

Claim. There is C ⊆ A \ X1 such that
B1�X1 ∪C ∪ {b′1, . . . , b′k, a} is forbidden and (4.6)

for every c ∈ C , B1�X1 ∪ (C \ {c}) ∪ {b′1, . . . , b′k, a} is permitted.
Proof of the claim. If B1�X1∪{b′1, . . . , b′k, a} is forbidden, then, by takingC =

∅, (4.6) holds for trivial reasons. Suppose that B1�X1 ∪ {b′1, . . . , b′k, a} is permitted.
If there is c1 ∈ A\X1 such thatB1�X1∪{c1, b′1, . . . , b′k, a} is forbidden then takeC =
{c1} and we are done. Otherwise B1�X1 ∪ {c, b′1, . . . , b′k, a} is permitted for all c ∈
A\X1. If there are c1, c2 ∈ A\X1 such thatB1�X1∪{c1, c2, b′1, . . . , b′k, a} is forbidden
then take C = {c1, c2} and we are done. Otherwise B1�X1 ∪ {c1, c2, b′1, . . . , b′k, a}
is permitted for all c1, c2 ∈ A \ X1. Since B1 is forbidden we will eventually, if we
continue in this way, find C ⊆ A \ X1 such that (4.6) holds. �
According to the claim there is C ⊆ A \ X1 such that (4.6) holds. This together
with (4.3) implies that

for every c ∈ X1 ∪ C , B1�
(
(X1 ∪ C ) \ {c}

) ∪ {b′1, . . . , b′k, a} is permitted. (4.7)
Claim. There is D ⊆ {b′1, . . . , b′k} such that |D| ≥ 2,

B1�X1 ∪ C ∪D ∪ {a} is forbidden and (4.8)

for every d ∈ D, B1�X1 ∪ C ∪ (D \ {d}) ∪ {a} is permitted.
Proof of the claim. If for alld ∈ {b′1, . . . , b′k},B1�X1∪C∪({b′1, . . . , b′k}\{d}

)∪
{a} is permitted, then take D = {b′1, . . . , b′k} and we are done. Otherwise there is
d1 ∈ {b′1, . . . , b′k} such that B1�X1 ∪ C ∪ ({b′1, . . . , b′k} \ {d1}

) ∪ {a} is forbidden.
If for all d ∈ {b′1, . . . , b′k} \ {d1}, B1�X1 ∪ C ∪ ({b′1, . . . , b′k} \ {d1, d}

) ∪ {a} is
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permitted, then take D = {b′1, . . . , b′k} \ {d1} and we are done. Otherwise there is
d2 ∈ {b′1, . . . , b′k} \ {d1} such that B1�X1 ∪ C ∪ ({b′1, . . . , b′k} \ {d1, d2}

) ∪ {a} is
forbidden. From (4.5) it follows that by continuing in this way we will eventually
find D ⊆ {b′1, . . . , b′k} with at least two elements such that (4.8) holds. �

By the claim let D ⊆ {b′1, . . . , b′k} have at least two elements and satisfy (4.8). It
now follows from (4.4), (4.7), and (4.8) that B1�X1 ∪ C ∪D ∪ {a} is a constraint.
Moreover, by the choice of X1 and D, |X1| ≥ (n − 2)/� and |D| ≥ 2, where � is at
most as large as the number of 3-types over ∅. �
Corollary 4.5. Let M be an infinite ternary homogeneous structure. Suppose
that n ≥ 3, a1, . . . , an ∈ M , tpM(an/an−1, . . . , a1) divides over {an−2, . . . , a1},
but for every proper subset A′ ⊂ {an−2, . . . , a1}, tpM(an/an−1A′) does not
divide over A′. Then M has a constraint with at least 3 + (n − 2)/|SM3 (∅)|
elements.

Proof. Suppose that n ≥ 3 and that a1, . . . , an ∈ M satisfy the assump-
tions of the corollary. Let A = {a1, . . . , an−2}, F = ∅ and p(x1, . . . , xn) =
tpM(a1, . . . , an). Now we can argue exactly as in the proof of Proposition 4.4.
(However, I do not see how to use the statement of Proposition 4.4 directly to get
Corollary 4.5.) �
Corollary 4.6. LetM be a ternary simple homogeneous structure. Suppose that
a ∈M , A,B ⊂M are finite sets, |B| ≥ 2, a �|�

A
B and a�|

A
B ′ for every proper subset

B ′ ⊂ B. ThenM has a constraint with at least 3 + (|B| − 1)/|SM3 (∅)| elements.
Proof. LetM, a ∈ M and A,B ⊂ M satisfy the assumptions of the corollary.
Note that the assumptions imply that aclM(A)∩B = ∅. Letp1, . . . , pm enumerate all
types in SM1 (A) which are realized in {a}∪B and let P = {p1, . . . , pm}, so all types
in P are nonalgebraic. Furthermore, letMP be as in Definition 3.1. By Lemmas 3.3
and 3.4,MP is homogeneous, simple, a �|� MPB and a�| MPB ′ for every proper
subset B ′ ⊂ B. Let the elements of B be enumerated as a1, . . . , an−1 (so n ≥ 3
as |B| ≥ 2) and let an = a. Then tpMP

(an/an−1, . . . , a1) divides over ∅ and, for
every proper subset B ′ ⊂ {an−1, . . . , a1}, tpMP

(an/B ′) does not divide over ∅. By
transitivity, tpMP

(an/an−1, . . . , a1) divides over {an−2, . . . , a1}. By monotonicity,
for every properA′ ⊂ {an−2, . . . , a1}, tpMP

(an/an−1A′) does not divide overA′. By
Corollary 4.5,MP has a constraint with at least 3 + (|B| − 1)/|SM3 (∅)| elements.
By Lemma 3.5, so doesM. �
Corollary 4.7. LetM be a ternary simple homogeneous structure. Suppose that
A,B ⊆ M are finite, A �|� B, A′

�| B for every proper subset A′ ⊂ A, and A�| B ′

for every proper subset B ′ ⊂ B. If |B| ≥ 2 thenM has a constraint with at least
3 + (|B| − 1)/|SM3 (∅)| elements.
Proof. Let A and B satisfy the assumptions of the corollary, so in particu-
lar A ∩ B = ∅. Let A = {a1, . . . , ar}. Then {a2, . . . , ar}�| B and by symmetry,
B�

| {a2, . . . , ar} (and B �|� A), so we get B �
|�

{a2 ,...,ar}
a1 by transitivity, and then

a1 �|�{a2 ,...,ar}
B by symmetry. If a1 �|�{a2,...,ar}

B ′ for some proper subset B ′ ⊂ B, then (by

https://doi.org/10.1017/jsl.2018.61 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.61


ON CONSTRAINTS AND DIVIDING 1703

symmetry and monotonicity) {a1, . . . , ar} �|� B ′, which contradicts our assump-
tion. Hence a1 �|{a2,...,ar}

B ′ for every proper subset B ′ ⊂ B. Now the result follows
from Corollary 4.6. �
Corollary 4.8. LetM be a ternary simple homogeneous structure. Suppose that
A,B,C ⊆ M are finite, A �|�

C
B and A′

�
|
C
B for every proper subset A′ ⊂ A, and

A�|
C
B ′ for every proper subset B ′ ⊂ B. Then M has a constraint with at least

3 + (|B| − 1)/|SM3 (∅)| elements.
Proof. Like the proof of Corollary 4.6, but we use Corollary 4.7 instead of
Corollary 4.5. �
By [14, Proposition 2.5.4], the conclusion of the next lemma is equivalent to saying
that Th(M) is a low theory.
Lemma 4.9. LetM be a ternary simple homogeneous structure. For every formula
ϕ(x, ȳ) without parameters, there is kϕ < �, depending only on ϕ, such that if c̄i ,
i < �, is an indiscernible sequence and {ϕ(x, c̄i) : i < �} is inconsistent, then it is
kϕ-inconsistent.
Proof. Suppose that (c̄i : i < �) is an indiscernible sequence. SinceM is ternary
with elimination of quantifiers, for every m < � and all i1 < · · · < im < �,
tpM(c̄i1 , . . . , c̄im ) is determined by tpM(c̄0, c̄1, c̄2). Let us call tpM(c̄0, c̄1, c̄2) the
type of the indiscernible sequence (c̄i : i < �). By �-categoricity, for every s < �,
there are only finitely many types of indiscernible sequences (c̄i : i < �), such
that |c̄0| = s . By homogeneity, if (c̄i : i < �) and (d̄i : i < �) are indiscernible
sequences of the same type and {ϕ(x, c̄i) : i < �} is k-consistent, then so is
{ϕ(x, d̄i ) : i < �}. �
4.1. Proof of Theorem 4.1. Let M be ternary, homogeneous and simple with
only finitely many constraints. Let � be the cardinality of a constraint of M of
maximal cardinality. Note that by Proposition 4.4, whenever the assumptions of
this proposition are satisfied, then 3+ |E|/|SM3 (∅)| ≤ �, so |E| ≤ (�−3) · |SM3 (∅)|.
To prove thatM is supersimple with finite SU-rank it essentially suffices to prove
the following lemma.

Lemma 4.10. There is n0 < � such that there do not exist n0 < n < �, a ∈ M
and finite subsets B0 ⊂ B1 ⊂ · · · ⊂ Bn ⊂M such that a �|�

Bi
Bi+1 for all i < n.

Proof. Suppose that a ∈ M , B0 ⊂ B1 ⊂ · · ·Bn are finite subsets of M and
a �|�
Bi
Bi+1 for every i < n. For every i < n, we can choose a formula ϕi+1(x, b̄i+1) ∈

tpM(a,Bi+1) such thatϕi+1(x, b̄i+1) divides overBi and for every b̄ such that rng(b̄)
is a proper subset of rng(b̄i+1), every formula �(x, b̄) ∈ tpM(a, b̄) does not divide
over Bi . By Proposition 4.4 we have |b̄i | < � · |SM3 (∅)| for all 0 < i ≤ n. By �-
categoricity, there are, up to equivalence inM, only finitely many, say t, formulas
with at most � · |SM3 (∅)|+ 1 free variables. Note that the numbers �, |SM3 (∅)| and
t depend only on Th(M). Moreover, by Lemma 4.9, there is k < � such that, for
every i < n, ϕi+1(x, b̄i+1) k-divides overBi .1 Again, k depends only on Th(M). Let
1That ϕi+1(x, b̄i+1) k-divides over Bi means that there is a Bi -indiscernible sequence (c̄α : α < �)

such that b̄i+1 = c̄0 and {ϕi+1(x, c̄α) : α < �} is k-inconsistent.
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f(x) = �x/t�, so f depends only on Th(M) and not on n. Then, if n is sufficiently
large, there are 0 < m0 < · · · < mf(n) ≤ n such thatϕmi (x, ȳ) is equivalent, inM, to
ϕmj (x, ȳ) for all i < j ≤ f(n) andϕmi (x, b̄mi ) k-divides overBmi−1 for all i ≤ f(n).
Let us rename ϕm0 (x, ȳ) by �n(x, ȳ). From the definition of k-dividing it follows
that, for every i < f(n), �n(x, b̄mi ) k-divides over

⋃
j<i rng(b̄mj ). Consequently we

haveD(tpM(a/B0), �n(x, ȳ), k) ≥ f(n), soD(x = x,�n(x, ȳ), k) ≥ f(n) (by [14,
Lemma 2.3.4] for example).
As �, |SM3 (∅)|, t, k and the function f(x) only depend on Th(M) and �n is
always a formula in at most � · |SM3 (∅)|+1 free variables (of which there are only t
choices up to equivalence modulo Th(M)), it follows that if such a ∈M and finite
subsets B0 ⊂ B1 ⊂ · · · ⊂ Bn ofM exist for every n < �, then for some �(x, ȳ) with
at most � · |SM3 (∅)| + 1 free variables, D(x = x,�(x, ȳ), k) ≥ n for every n < �,
so D(x = x,�(x, ȳ), k) is infinite. This would imply, using [14, Proposition 2.3.7],
thatM is not simple. Hence, there is m < � such that if n > m then there do not
exist a ∈ M and finite subsets B0 ⊂ B1 ⊂ · · · ⊂ Bn ofM such that a �|�

Bi
Bi+1 for

every i < n. �
By the finite character of dividing and Lemma 4.10 it follows thatM is supersimple
with finite SU-rank. The second part of the theorem is a direct consequence of
Corollary 4.8. This concludes the proof of Theorem 4.1

4.2. Proof of Theorem 4.2. Suppose that M is ternary, homogeneous, super-
simple with SU-rank 1 and with only finitely many constraints. Then, as the
SU-rank of M is 1, for all a ∈ M and B,C ⊆ M , a �|�

C
B if and only if

a ∈ aclM(B ∪ C ) \ aclM(C ). Suppose for a contradiction, that aclM is not
trivial. Then there is finite A = {a1, . . . , an} ⊂ M such that n ≥ 3, A is not
independent but every proper subset of A independent. Since a1�| {a2, . . . , an−1}
we find, using the existence of nondividing extensions, a′2, . . . , a

′
n−1 such that

tpM(a1, a
′
2, . . . , a

′
n−1) = tpM(a1, a2, . . . , an−1) and

{a′2, . . . , a′n−1}�|a1 {a2, . . . , an−1}.

Then there is a′n ∈ aclM(a1, a′2, . . . , a′n−2) such that
tpM(a1, a

′
2, . . . , a

′
n) = tpM(a1, a2, . . . , an).

Now it is straightforward to verify that {a2, . . . , an, a′2, . . . , a′n} is not independent
but every proper subset of it is independent. By repeating the procedure we obtain
arbitrarily large finite dependent B ⊂ M such that every proper subset of B is
independent. Now Corollary 4.5 implies thatM has arbitrarily large constraints,
contradicting the assumption thatM is finitely constrained.2

§5. Definable equivalence relations and weakly isolated constraints. In order to
understand the fine structure of a simple structureM it is useful to understand the
fine structure on definable subsets ofM eq (and in particular ofM ) of SU-rank 1.

2One can also use Lemma 3 in [9] the proof of which works out in the present context, but I chose to
give a simpler proof here.
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Also, byObservation 2.5, ifM is 2-transitive andhas trivial dependence, then its SU-
rank is 1 and aclM is trivial.Moreover, there are (see Section 7.3), for a vocabularyV
with only one ternary relation symbol, uncountablymany homogeneous 2-transitive
supersimple V -structures with SU-rank 1 and degenerate algebraic closure. Thus
there is reason for dealing with the special case when the SU-rank is 1, even under
the assumption that the algebraic closure is degenerate. The ultimate goal would be
to find some sort of classification of such structures. We do not reach that far here.
But we do reveal some general connections between the nature of the constraints of
a structure and the existence of nontrivial definable (with parameters) equivalence
relations in it.Here, an equivalence relation is called nontrivial if it hasmore thanone
equivalence class and has at least one equivalence class with more than one element.
The question whether there is a ternary, homogeneous, supersimple structureM
with SU-rank 1 that contains a finite subset A ⊂ M such that |A| ≥ 3, A is not
independent (over ∅) but every proper subset of A is independent remains open.
Note that by Theorem 4.2 such an example, if it exists, must have infinitely many
constraints.

Definition 5.1. Let V be a finite relational vocabulary.
(i) Let A and B be V -structures with the same universe and let a, b, c be distinct
elements from their universe. We say that A and B are (a, b, c)-neighbours if for
every finite sequence d̄ of elements from their universe such that {a, b, c} �⊆ rng(d̄ ),
tpqfA(d̄ ) = tp

qf
B (d̄ ).

(ii) Suppose thatM is a ternary homogeneous structure and let C be a constraint
ofM. We say that C is weakly isolated (with respect toM, or the age ofM) if for
every choice of distinct a, b, c ∈ C , C has a (a, b, c)-neighbour which is permitted
with respect toM. We say that C is isolated (with respect toM, or the age ofM) if
for every choice of distinct a, b, c ∈ C , every (a, b, c)-neighbour of C is permitted
with respect toM.
All examples known to the author of ternary 2-transitive homogeneous supersimple
structures with SU-rank 1 have only weakly isolated constraints. Note that if we
work with 3-hypergraphs, then the notions ‘isolated’ and ‘weakly isolated’ coincide.
It will turn out that the existence of constraints which are not weakly isolated
is related to the existence of nontrivial definable (with parameters) equivalence
relations. But first we consider the case when the age of a structure has the free
amalgamation property.

Proposition 5.2. Suppose thatM is homogeneous and that its age has the free
amalgamation property. Then for every finite A ⊂M and every nonalgebraic p(x) ∈
SM1 (A), there is no nontrivial A-definable equivalence relation on p(M).
Proof. LetM satisfy the assumptions of the proposition. (We can assume that

M is infinite, which would follow if we assumed thatMwas simple. For ifM is finite
then all types are algebraic and the result follows automatically.) It implies that aclM
is degenerate, for if b̄ ∈M and a ∈M \ rng(b̄), then, by free amalgamation (in fact
disjoint amalgamation suffices), for every n there are distinct a1, . . . , an ∈ M such
that ai b̄ ≡qfM ab̄ for all i and by elimination of quantifiers we get ai b̄ ≡M ab̄ for
all i , so tpM(a/b̄) cannot be algebraic. Suppose for a contradiction that A ⊂M is
finite, p ∈ SM1 (A) is nonalgebraic and thatE is a nontrivialA-definable equivalence
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relation on p(M). Since aclM is degenerate it follows that every equivalence class of
E is infinite. SinceM is homogeneous it follows thatE is defined by a quantifier-free
formula with parameters from A.
First suppose that if a, b ∈ p(M) are distinct and E(a, b), then there is some
c̄ ∈ A such that some permutation of abc̄ is a relationship. As E is nontrivial on
p(M) there are distinct a, b ∈ p(M) such that E(a, b). Let A0 = M�(A ∪ {a})
and A1 =M�(A ∪ {a, b}). Furthermore, let A2 be an isomorphic copy of A1 such
that A0 ⊆ A2 and A2 \ (A ∪ {a}) = {b′} where b′ �= b. By free amalgamation the
free amalgam, say B, ofA1 andA2 overA0 is permitted. Without loss of generality
we may assume that B ⊆ M, so that also b′ belongs toM . As E is an equivalence
relation andE(a, b) andE(a, b′) wemust haveE(b, b′) But asB is the free amalgam
ofA1 andA2, there is no c̄ ∈ A such that some permutation of bb′c̄ is a relationship.
Since E(b, b′) holds this contradicts our assumption.
Now suppose that there are distinct a, b ∈ p(M) such thatE(a, b) and there is no
c̄ ∈ A such that some permutation of abc̄ is a relationship. SinceM has elimination
of quantifiers (and the vocabulary is finite and relational) it follows that

if a, b ∈ p(M) are distinct and there is no c̄ ∈ A such that some (5.1)

permutation of abc̄ is a relationship, then E(a, b).

Let a1, a2 ∈ p(M) be distinct but otherwise arbitrary. We will show that E(a1, a2)
which contradicts that E is nontrivial. Let A0 = M�(A ∪ {a1}) and A1 = M�
(A ∪ {a1, a2}). Since every E-class is infinite there is b ∈ p(M) \ {a1} such that
E(a1, b). Let A2 =M�(A ∪ {a1, b}). By free amalgamation the free amalgam, say
B, of A1 and A2 over A0 is permitted. Without loss of generality we may assume
that B ⊆ M. It follows from (5.1) that E(a2, b). Since E is an equivalence relation
and E(a1, b) we get E(a1, a2). �
The next two lemmas are just straightforward observations, most likely noticed by
others before, but we nevertheless give their proofs.

Lemma 5.3. Suppose thatM is �-categorical and supersimple with SU-rank 1.
Also assume that there are finite A ⊆ M and distinct b, c ∈ M \ aclM(A) such that
c ∈ aclM(bA) \ aclM(A). Then, letting p1 = tpM(b/A) and p2 = tpM(c/A), there
is a nontrivial A-definable equivalence relation on p1(M) ∪ p2(M) with only finite
equivalence classes.

Proof. Let A ⊆ M be finite and let b, c ∈ M \ aclM(A) be distinct such that
c ∈ aclM(bA) \ aclM(A). Let p1(x) = tpM(b/A) and p2(x) = tpM(c/A). AsM
has SU-rank 1 (so (M, aclM) is a pregeometry) and is �-categorical it follows that
if we define E(x, y) if and only if x ∈ aclM(yA), then E is a nontrivialA-definable
equivalence relation on p1(M) ∪ p2(M) with only finite equivalence classes. �
Lemma 5.4. Suppose thatM is�-categorical. The following are equivalent for any
finite A ⊂M :
(a) There are b, c ∈M \ aclM(A) such that tpM(b/A) = tpM(c/A) and
tpMeq (b/aclMeq (A)) �= tpMeq (c/aclMeq (A)).

(b) There are a nonalgebraic p ∈ SM1 (A) and a nontrivial A-definable equivalence
relation on p(M) with only finitely many equivalence classes all of which are
infinite.
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Proof. The implication from (a) to (b) follows from the fact (Fact 2.6(iii)) that
the equivalence relation

tpMeq (x/aclMeq (A)) = tpMeq (y/aclMeq (A))

on p(M) is A-definable and has only finitely many equivalence classes all of which
are infinite (since p = tpM(b/A) is nonalgebraic).
Suppose that (b) holds and let E be a nontrivialA-definable equivalence relation
on p(M). Let ā enumerate A and let n = |ā|. Define the following equivalence
relation onMn+1: E ′(xx̄, yȳ) if and only if

x̄ = ȳ and tpMeq (x/aclMeq (x̄)) = tpMeq (y/aclMeq (x̄)).

By a straightforward argument, using, Fact 2.6, it follows that E ′ is a ∅-definable
equivalence relation. As we assume that E is nontrivial on p(M) there are
b, c ∈ p(M) such that ¬E(b, c), from which it follows (since E is A-definable)
that¬E ′(bā, cā). By Fact 2.6, only finitely many complete types over aclMeq (A) are
realized inM , so theE ′-classes of bā and of cā belong to aclMeq (A). Consequently
b and c have different types over aclMeq (A). �
We have seen above that if the algebraic closure is degenerate, then the existence
of definable equivalence relations is related to the existence of elements having (for
some finite set A) the same type over A but different types over aclMeq (A). The
next result and its corollary implies that if M is finitely constrained, then every
nontrivial definable equivalence relation (on a nonalgebraic type) is determined by
equivalence relations which are definable over sets of parameters of bounded size.

Theorem 5.5. LetM be ternary, homogeneous and supersimple with SU-rank 1
and degenerate algebraic closure. Suppose that A ⊂ M is finite, that p ∈ SM1 (A)
is nonalgebraic and that there are b, c ∈ p(M) such that tpMeq (b/aclMeq (A)) �=
tpMeq (c/aclMeq (A)) and for every proper subset A′ ⊂ A, tpMeq (b/aclMeq (A′)) =
tpMeq (c/aclMeq (A′)). Then M has a constraint C with at least 3 + |A|/|SM3 (∅)|
elements.

Proof. Suppose that A ⊆ M is finite, let p ∈ SM1 (A) be a nonalgebraic type
and suppose that there are b, c ∈ p(M) are such that tpMeq (b/aclMeq (A)) �=
tpMeq (c/aclMeq (A)) and for every proper subset A′ ⊂ A, tpMeq (b/aclMeq (A′)) =
tpMeq (c/aclMeq (A′)). If we define E on p(M) by E(x, y) if and only if
tpMeq (x/aclMeq (A)) = tpMeq (y/aclMeq (A)), then (by Fact 2.6) E is an A-definable
equivalence relation with only finitely many equivalence classes all of which are
infinite (since aclM is degenerate). By the choice of b and c, ¬E(b, c). As all equiv-
alence classes are infinite there are a, a′ ∈ p(M) \ {b, c} such that E(a, b) and
E(a′, c).
Let A = {a1, . . . , an}, ā = (a1, . . . , an) and let F be a structure with universe
F = A ∪ {a, b, c} and such that

tpqfF (b, c, ā) = tp
qf
M(b, c, ā), (5.2)

tpqfF (a, b, ā) = tp
qf
M(a, b, ā), and

tpqfF (a, c, ā) = tp
qf
M(a

′, c, ā).
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SinceM has elimination of quantifiers there is a quantifier-free formula ϕ(x, y, z̄)
without parameters such that ϕ(x, y, ā) defines E. We claim that F is forbid-
den. If not, then there is an embedding f : F → M. By quantifier-elimination,
tpM(f(ā)) = tpM(ā) and consequently ϕ(x, y,f(ā)) defines an equivalence rela-
tion on q(M)where q(x) = {ϕ(x,f(ā′)) : ϕ(x, ā′) ∈ p}. But asf is an embedding
and ϕ is quantifier-free we get

M |= ϕ(f(a), f(b), f(ā)) ∧ ϕ(f(a), f(c), f(ā)) ∧ ¬ϕ(b, c, f(ā)),
which contradicts thatϕ(x, y,f(ā)) defines an equivalence relation on q(M). Thus
F is forbidden, nomatter how tpqfF (a, b, c) is chosen.Hence every (a, b, c)-neighbour
of F is forbidden.
Claim. For every i ∈ {1, . . . , n},F�(F \{ai}) has an (a, b, c)-neighbourPi which
is permitted.
Proof. Let i ∈ {1, . . . , n} and let Ai = A \ {ai}. By the choice of b and c and
since E(a, b) and E(a′, c) we have tpMeq (a/aclMeq (Ai)) = tpMeq (a′/aclMeq (Ai )).
Since we assume thatM is supersimple with SU-rank 1 and aclM is degenerate we
have a�|

Ai
b, a′�|

Ai
c and b�|

Ai
c. The independence theorem of simple theories (and the

fact thatM is �-saturated) thus implies that there is a′′ ∈M such that
tpM(a

′′/bAi) = tpM(a/bAi) and tpM(a
′′/cAi) = tpM(a

′/cAi).

LetPi be structurewith universeAi∪{a, b, c} such that themapwhich sends a′′ to a
and every element inAi∪{b, c} to itself is an isomorphism fromM�(Ai∪{a′′, b, c})
to Pi . By the choice of a′′ and since the language is ternary it follows that Pi is
permitted and is an (a, b, c)-neighbour of F . �
Let � = |SM3 (∅)|. By the pigeon hole principle there are m ≥ n/� and B ⊆ A
such that |B| = m and for all ai , aj ∈ B, tpqfPi (a, b, c) = tp

qf
Pj (a, b, c). To simplify

notation we assume that B = {a1, . . . , am}. Now we have that
Pi�(A\{ai , aj})∪{a, b, c} = Pj�(A\{ai , aj})∪{a, b, c} whenever 1 ≤ i ≤ j ≤ m.
Therefore we can define a structure F ′ with universe F ′ = A ∪ {a, b, c} such that
tpqfF ′(b, c, a1, . . . , an) = tp

qf
M(b, c, a1, . . . , an) and, for all i = 1, . . . , m,

tpqfF ′(a, b, c, a1, . . . , ai−1, ai+1, . . . , an) = tp
qf
Pi (a, b, c, a1, . . . , ai−1, ai+1, . . . , an).

Note that for all triples (d1, d2, d3) ∈ (F ′)3 except permutations of (a, b, c), we have
tpqfF ′(d1, d2, d3) = tp

qf
F (d1, d2, d3). Therefore F ′ is forbidden. By construction we

also have that

for every d ∈ {a, b, c, a1, . . . , am}, F ′�F ′ \ {d} is permitted. (5.3)

The next claim is proved similarly as the first claim in the proof of Proposition 4.4
so we omit its proof.

Claim. There is D ⊆ A \ B such that F ′�B ∪ D ∪ {a, b, c} is forbidden and for
every d ∈ D, P�(B ∪D ∪ {a, b, c}) \ {d} is permitted.
Let D ⊆ A \B be as in the claim. From (5.3) it follows that F ′�B ∪D ∪ {a, b, c} is
a constraint with at least 3 + |B| ≥ 3 + |A|/|SM3 (∅)| elements. �
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Corollary 5.6. Suppose thatM is ternary, homogeneous and supersimple with
SU-rank 1 and degenerate algebraic closure. Furthermore, assume thatM has only
finitely many constraints. Then there is n < � such that for every finite A ⊆ M ,
every nonalgebraic p ∈ SM1 (A) and all a, a′ ∈ p(M), if tpMeq (a/aclMeq (B)) =
tpMeq (a′/aclMeq (B)) for all B ⊆ A with |B| ≤ n, then tpMeq (a/aclMeq (A)) =
tpMeq (a′/aclMeq (A)).

Proof. Let M satisfy the assumptions of the corollary. If the conclusion is
false, then, for every n < �, there is finite An ⊂ M such that |An | > n, and
nonalgebraic p ∈ SM1 (An) and b, c ∈ p(M) such that tpMeq (b/aclMeq (An)) �=
tpMeq (c/aclMeq (An)) and for every proper subset B ⊂ An such that |B| ≤ n,
tpMeq (b/aclMeq (B)) = tpMeq (c/aclMeq (B)). By considering subsets of An of
cardinality at least n we find, for each n, A′

n ⊆ An such that n < |A′
n |,

tpMeq (b/aclMeq (A′
n)) �= tpMeq (c/aclMeq (A′

n)) and for every proper subset B ⊂ A′
n ,

tpMeq (b/aclMeq (B)) = tpMeq (c/aclMeq (B)). By Theorem 5.5, there is a constraint
with at least 3 + n/|SM3 (∅)| elements for each n < �. This contradicts thatM has
only finitely many constraints. �
The next theorem and its corollaries relates weakly isolated constraints to the
existence of definable equivalence relations.

Theorem 5.7. Suppose thatM is ternary, homogeneous and supersimple with SU-
rank 1. If C is a constraint ofM with at least three elements, then at least one of the
following two conditions holds:

(a) C is weakly isolated.
(b) There isD ⊆ C with |D| = |C |−3 such that for every embeddingf : D → M,

(i) There are (not necessarily distinct) nonalgebraic types p1, p2 ∈
SM1 (f(D)) and a nontrivial f(D)-definable equivalence relation on
p1(M) ∪ p2(M) with only finite equivalence classes or

(ii) There is a nonalgebraic type p ∈ SM1 (f(D)) and a nontrivial f(D)-
definable equivalence relation onp(M)with only finitely many equivalence
classes all of which are infinite.

Proof. Let C be a constraint ofM with at least three elements, let a, b, c ∈ C
be distinct and let D = C \ {a, b, c}. Since C�D ∪ {b, c} is permitted and is M
homogeneous we may, without loss of generality, assume that C�D ∪ {b, c} ⊆ M.
Since C�D{a, b} is permitted we may also assume that C�D ∪ {a, b} ⊆ M. As
C�D ∪ {a, c} is permitted there is a′ ∈ M such that if d̄ enumerates D, then
tpqfM(a

′, c, d̄ ) = tpqfC (a, c, d̄ ). Note that by elimination of quantifiers inM we have
tpM(a

′/D) = tpM(a/D).
First suppose that

b�
|
D
c, (5.4)

a�
|
D
b, (5.5)

a′�|
D
c, and (5.6)

tpMeq (a/aclMeq (D)) = tpMeq (a′/aclMeq (D)). (5.7)

https://doi.org/10.1017/jsl.2018.61 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.61


1710 VERAKOPONEN

Then the independence theorem for simple theories implies that there is a′′ ∈ M
such that

tpM(a
′′/bD) = tpM(a/bD), tpM(a

′′/cD) = tpM(a
′/cD), and a′′�|

D
bc. (5.8)

Let C∗ be the unique structure with universe C such that the following map f is
an isomorphism fromM�D ∪ {a′′, b, c} to C∗: f(a′′) = a and f is the identity
on D ∪ {b, c}. Then C∗ is permitted and, since the language is ternary, an (a, b, c)-
neighbour of C. If (5.4)–(5.7) hold for every choice of distinct a, b, c ∈ C , then C is
weakly isolated.
We conclude that if C is not weakly isolated, then there are distinct a, b, c ∈ C
such that at least one of (5.4)–(5.7) fails. If (5.4) fails, then, since the SU-rank of
M is 1, b ∈ aclM(cD) \ aclM(D). It follows from Lemma 5.3 that if p1 = tpM(b)
and p2 = tpM(c), then there is a nontrivial D-definable equivalence relation on
p1(M) ∪ p2(M) with only finite classes. If (5.5) or (5.6) fails then we argue in the
same way. If (5.4)–(5.6) hold and (5.7) fails, then, by Lemma 5.4, with p = tpM(a)
there is a nontrivial D-definable equivalence relation on p(M) with only finitely
many equivalence classes all of which are infinite. �
Corollary 5.8. Suppose thatM is ternary, homogeneous and supersimple with
SU-rank 1. Furthermore, suppose that for every finite A ⊂M and all (not necessarily
distinct) nonalgebraic p1, p2 ∈ SM1 (A) there is no nontrivial A-definable equivalence
relation on p1(M)∪p2(M) except, if p1 �= p2, for the equivalence relation: “x and y
have the same complete type over A”. Then every constraint ofM is weakly isolated.

Proof. If the assumptions of the corollary are satisfied, then, for every constraint
C, condition (b) of Theorem 5.7 fails, so C must be weakly isolated by the same
theorem. �
Corollary 5.9. Suppose thatM is ternary, homogeneous, supersimple with SU-
rank 1 and that its age has the free amalgamation property. Then every constraint of
M is weakly isolated.

Proof. Note that ifM satisfies the assumptions then aclM is degenerate. There-
fore condition (i) of Theorem 5.7 cannot hold. The conclusion now follows from
Proposition 5.2 and Theorem 5.7. �
For some questions left unanswered, see Section 8.

§6. Definability of binary random structures. Suppose thatM is ternary, homo-
geneous, supersimple with SU-rank 1 and degenerate algebraic closure. We saw in
the previous section that if for every finite A ⊂ M and every nonalgebraic type
p ∈ SM1 (A), there is no nontrivial A-definable equivalence relation on p(M), then
every constraint of M is weakly isolated. The following question remains open:
Is there M with the properties assumed above such that there is no nontrivial
∅-definable equivalence relation onM , but for some finite A ⊂M and some nonal-
gebraicp ∈ SM1 (A), there is a nontrivialA-definable equivalence relation onp(M)?
Proposition 6.5 below implies that ifM is, in addition, symmetric and 2-transitive,
and A is a singleton, then there is no nontrivial A-definable equivalence relation on
M \A. A direct consequence (Corollary 6.6) is that, with the same assumptions on
M, a binary random structure is definable inM using only one parameter. Thus, if
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M is not 3-transitive, then the Rado graph is definable inM. The first result of this
section has a similar conclusion, but starts from more general assumptions. It also
gives information about the fine structure ofM.
Definition 6.1. Let M be a binary structure and E an equivalence relation
on M . Here we say thatM satisfies extension properties relative to E if whenever
0 < n < �, a1, . . . , an, b1, . . . , bn ∈ M , all b1, . . . , bn belong to the same E-class
and bi �= ai for all i , then there is b ∈M such that tpM(ai , b) = tpM(ai , bi) for all
i = 1, . . . , n.

Although the context here is partly the same as that studied by Ahlman [1] (in
particular Theorem 5.7 of [1]) the definition of extension properties is different
here, because we can do with the simpler definition above. (The more complicated
definition of ‘
-extension properties’ in [1] makes sense in a more general context,
including that of considering a class of finite structures and asymptotic probabil-
ities.) Extension properties relative to some equivalence relation can be useful for
understanding what the age of the structure looks like. Moreover, under suitable cir-
cumstances extension properties can beused to carry out a back-and-forth argument
which establishes that a structure has certain properties, like being homogeneous.

Definition 6.2. Let M be an �-categorical V -structure where V is a finite
relational vocabulary. Suppose thatA ⊆M is finite, P ⊆ SM1 (A) and let VA be the
vocabulary andMP the VA-structure in Definition 3.1. ThenM−

P be the reduct of
MP to the vocabulary VA \ V .
Observe that ifM is ternary thenM−

P is binary.

Proposition 6.3. Suppose thatM is ternary, homogeneous, supersimple with SU-
rank 1 and with degenerate aclM. Let A ⊂ M be finite and let P ⊆ SM1 (A) be a
nonempty set of nonalgebraic types.

(i) M−
P is supersimple with SU-rank 1.

(ii) The algebraic closure operator inM−
P is degenerate.

(iii) M−
P satisfies extension properties relative to the following ∅-definable (inM−

P )
equivalence relation: EP(x, y) if and only if

tp(M−
P )
eq(x/acl(M−

P )
eq(∅)) = tp(M−

P )
eq(y/acl(M−

P )
eq(∅)).

(iv) EP is definable (inM−
P ) by a quantifier-free formula without parameters.

Proof. Wefirst note thatM−
P is interpretable inMwith finitely many parameters

(those in A). So by Fact 2.7,M−
P is �-categorical and supersimple with SU-rank 1,

so (i) is proved. Part (ii) is a straightforward consequence of the fact thatM−
P is

interpretable inM in such a way that every element a ∈ M−
P corresponds (via the

interpretation) to the =-class of a inMeq (so essentially the interpretation identifies
every a ∈ M−

P with itself).
(iii) Suppose that 0 < n < �, a1, . . . , an, b1, . . . , bn ∈ M , all b1, . . . , bn belong
to the same EP -class and bi �= ai for all i . Assuming (without loss of generality)
that ai �= aj if i �= j it follows that {a1, . . . , an} is an independent set (asM−

P has
SU-rank 1 and degenerate algebraic closure). Moreover, EP(bi , bj) implies that

tp(M−
P )
eq(bi/acl(M−

P )
eq(∅)) = tp(M−

P )
eq(bj/acl(M−

P )
eq(∅))
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for all i and j. SinceM−
P is �-categorical (and hence ‘small’) it follows from [14,

Corollary 5.3.5] that bi and bj have the same Lascar strong type over ∅, for all i and
j. Hence the independence theorem for simple theories [14, Theorem 3.2.8] implies
that there is b such that tpM−

P
(ai , b) = tpM−

P
(ai , bi) for all i = 1, . . . , n.

(iv) By Fact 2.6 (iii), EP is ∅-definable inM−
P . For a contradiction, suppose that

EP is defined by a formula denoted ϕ(x, y) and that no quantifier-free formula
defines EP . Then we can find a1, a2, b1, b2 ∈M−

P such that

M−
P |= ¬ϕ(a1, a2) ∧ ϕ(b1, b2), and a1a2 ≡qfM−

P

b1b2.

From a1a2 ≡qfM−
P

b1b2 and the definition ofM−
P it follows that

tpqfM(a1, a2/A) = tp
qf
M(b1, b2/A).

AsM is homogeneous there is an automorphism ofM which sends a1a2 to b1b2
and fixesA pointwise. By the definition ofM−

P , the restriction of this automorphism
toM−

P is an automorphism ofM−
P , so a1a2 ≡M−

P
b1b2. HenceM−

P |= ϕ(a1, a2) ∧
ϕ(b1, b2) orM−

P |= ¬ϕ(a1, a2) ∧ ¬ϕ(b1, b2), but in either case it contradicts our
assumption. �
Definition 6.4. We say that a relational structureM is symmetric if for every
relation symbol R and every ā ∈ M ,M |= R(ā) if and only ifM |= R(ā′) for
every permutation ā′ of ā.

Proposition 6.5. Suppose that M is ternary, symmetric, 2-transitive, homoge-
neous, supersimple with SU-rank 1 and with degenerate algebraic closure. If b, b′, a ∈
M and tpM(b/a) = tpM(b

′/a), then tpMeq (b/aclMeq (a)) = tpMeq (b′/aclMeq (a)).
Consequently (by Lemma 5.4 and Theorem 5.7) every constraint of cardinality 4 is
weakly isolated.

Proof of Proposition 6.5. Let a ∈ M , A = {a}, let p be the unique nonalge-
baric 1-type over A and let P = {p}. Also let EP be as in Proposition 6.3, so EP
has only infinite equivalence classes and only finitely many equivalence classes. It
suffices to prove that EP has only one equivalence class.
Since M is 2-transitive it follows that if a′, b ∈ M are distinct and q(x) =
tpM(b/a

′), then everything that we say aboutM−
P also holds forM−

Q where Q =
{q}. Let

EP1 (x, y), . . . , E
P
k (x, y)

enumerate all 2-types (over ∅) in M−
P which imply that E

P(x, y). We will nota-
tionally identify each EPi with the quantifier-free formula which isolates it. Then
EP(x, y) is equivalent, inM−

P , to E
P
1 (x, y) ∨ · · · ∨ EPk (x, y).

Suppose that EP has at least two equivalence classes and let XP1 , X
P
2 be two

distinct EP-classes. The argument now splits into two cases, both of which will lead
to a contradiction. Since the cases cover all possibilities it follows that EP has only
one class.

Case 1.Suppose that there are distinct b, b′, b′′ ∈M−
P such that b ∈ XP1 , b′, b′′ ∈ XP2

andM−
Q |= EQ(b, b′′), where q is the unique nonalgebraic 1-type over {b′} inM

and Q = {q}.
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From the symmetry of ∅-definable ternary definable relations inMweget b′b′′a ≡M
b′′ab′. SinceM−

P |= EP(b′, b′′) it follows thatM−
Q |= EQ(b′′, a). AsEQ is transitive

(being an equivalence relation) we getM−
Q |= EQ(b, a), soM−

Q |= EQi (b, a) for
some i . Since EQi (x, y) isolates a type inM−

Q it follows from the definition ofM−
Q

thatEQi (x, y) determines the type of xyb
′ inM (i.e., ifM−

Q |= EQi (c, c′)∧EQi (d, d ′)
then cc′b′ ≡M dd ′b′). By the symmetry of definable ternary relations in M we
get bab′ ≡M bb′a. Then M−

P |= EPi (b, b′) and hence M−
P |= EP(b, b′) which

contradicts the choice of b and b′.

Case 2. Suppose that for all distinct b, b′, b′′ ∈ M−
P , if b ∈ XP1 and b′, b′′ ∈ XP2 ,

thenM−
Q |= ¬EQ(b, b′′), where q is the unique nonalgebraic 1-type over {b′} inM

and Q = {q}.
Given b ∈ XP1 let r(x) be the unique nonalgebraic 1-type over {b} in M and
let R = {r}. If b′, b′′ ∈ XP2 are distinct we haveM−

Q |= ¬EQ(b, b′′) (where Q
depends on b′) and from the symmetry of ∅-definable ternary relations inM we get
M−
R |= ¬ER(b′, b′′). Since we can fix (any) b ∈ XP1 and then vary b′, b′′ over all

pairs of distinct elements in XP2 it follows, as X
P
2 is infinite, that E

R has infinitely
many equivalence classes. But since ER has only infinite equivalence classes this
contradicts thatM has SU-rank 1.
Nowwe show that every constraint of cardinality 4 is weakly isolated. Suppose for
a contradiction that C is a constraint of cardinality 4 that is notweakly isolated. Since
M has (by assumption) degenerate algebraic closure it follows from Theorem 5.7
that there is a ∈ M , a nonalgebraic p ∈ SM1 ({a}) and a nontrivial equivalence
relation onp(M)which is {a}-definable and all of its equivalence classes are infinite.
By Lemma 5.4, there are b, b′ ∈M such that tpM(b/a) = tpM(b′/a) and

tpMeq (b/aclMeq (a)) �= tpMeq (b′/aclMeq (a)).

But this contradicts what we have proved. �
Corollary6.6. Suppose thatM is ternary, symmetric, 2-transitive, homogeneous,
supersimple with SU-rank 1 and with degenerate algebraic closure. Let a ∈M and let
p(x) be the unique nonalgebraic 1-type ofM over {a}. ThenM−

{p} is a symmetric
binary random structure.

Proof. By Proposition 6.3,M−
{p} is �-categorical, supersimple with SU-rank 1

and degenerate algebraic closure. AsM is symmetric it follows from the definition of
M−

{p} thatM−
{p} is symmetric. SinceM is 2-transitive it follows (by the definition

of M−
{p}) that M−

{p} has a unique 1-type over ∅. Now Proposition 6.5 implies
thatM−

{p} has a unique 1-type over acl(M−
{p})

eq(∅). Hence E{p} (as in part (iii) of

Proposition 6.3) has only one equivalence class. It follows from Proposition 6.3(iii)
that if 0 < n < �, a1, . . . , an, b1, . . . , bn ∈ M−

{p} and bi �= ai for all i , then there
is b ∈ M−

{p} such that tpM−
{p}
(ai , b) = tpM−

{p}
(ai , bi) for all i = 1, . . . , n. From

this it follows thatM−
{p} has no constraint of cardinality greater than 2. To show

thatM−
{p} is a random structure (recall Definition 2.2(v)) it remains to show that

M−
{p} is homogeneous. But sinceM−

{p} has a unique 1-type and has no constraint
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of cardinality greater than two it follows immediately that its age has the disjoint
amalgamation property and thereforeM−

{p} is homogeneous. (Homogeneity can
also be proved by a back-and-forth argument which builds up an automorphism
that sends a given tuple to any other given tuple that satisfies the same quantifier-free
formulas.) �

§7. Examples. Here we give examples of ternary 2-transitive homogeneous
supersimple structures with SU-rank 1 and degenerate algebraic closure. The exam-
ples in Sections 7.1 and 7.2 are known. Section 7.3 shows that even if the vocabulary
V contains only one relation symbol which is ternary there are uncountably many
homogeneous 2-transitive supersimple V -structures with SU-rank 1 and degen-
erate algebraic closure. In Section 7.4 we give an example of a homogeneous
ternary 2-transitive structure which is a reduct of the generic tournament. I have
not encountered the examples from Sections 7.3 and 7.4 in the literature or in the
oral “folklore”.3

All examples in Sections 7.1 – 7.4 have only weakly isolated constraints. Also, the
same examples split into two categories: the examples with the free amalgamation
property; every other example (i.e., those in Sections 7.2 and 7.4) is a reduct of a
binary random structure.
If, for some vocabulary V , C is a class of finite V -structures, then F(C) denotes
the class of all finite V -structures A such that no member of C embeds into A.
If C = {C1, . . . , Ck}, then we may write F(C1, . . . , Ck) instead of F(C). We will
consider examples in which we consider only structures in which some relation
symbol is always interpreted as a symmetric relation and in these cases we do not
explicitly mention the constraints which express this.

7.1. Forbidding 3-irreducible structures. The notion of ‘indecomposable struc-
ture’ used by Henson in [11] has been generalized by Conant to the notion of
‘k-irreducible structure’ in [8]. We say that a structure A (in any relational lan-
guage) is k-irreducible if for any choice of k elements a1, . . . , ak ∈ A there is a
relationship ā (of A) such that a1, . . . , ak ∈ rng(ā). We will use the following two
results.

Fact 7.1. (Henson [11, Theorem 1.2]) For any finite relational vocabulary V , if
C is a class of finite V -structures and every member of C is 2-irreducible, then F(C)
has the free amalgamation property.

We recall that if K has the disjoint amalgamation property (and the hereditary
property) then the Fraı̈ssé limit of K has degenerate algebraic closure. Part (a) of
the following result showshow to constructmany ternary homogeneous supersimple
structures with SU-rank 1 and degenerate algebraic closure. It will be used more
systematically in Section 7.3. If A and B are relational structures with the same
vocabulary and f : A → B we call f a homomorphism from A to B if for every
relation symbol R and every ā ∈ A, A |= R(ā) implies B |= R(f(ā)).
Fact 7.2 (Conant [8, Theorem 7.22]). Let V be a finite relational vocabulary
and suppose that C is a set of finite V -structures such for any two different A,B ∈ C
3In [3] Akhtar and Lachlan show that there are uncountably many homogeneous 3-hypergraphs, but

it seems like their examples are not simple although I have not checked this.
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there is no injective homomorphism from A into B. Let K be the class of all finite V -
structuresA such that for every C ∈ C there does not exist an injective homomorphism
from C into A.
(a) If every structure in C is 3-irreducible then the Fraı̈ssé limit of K is supersimple
with SU-rank 1 and degenerate algebraic closure.

(b) If K has the free amalgamation property, then its Fraı̈ssé limit is simple if and
only if every member of C is 3-irreducible.

Remark 7.3. (a) Part (a) of Fact 7.2 holds (by inspection of its proof) if ‘K’ is
replaced by ‘F(C)’ and the assumption on C is changed as follows: suppose that for
any two differentA,B ∈ C, there is no embedding fromA into B. (This observation
is due to Gabriel Conant.)
(b) If we want to consider a class of finite structures in which some relation symbol,
say R, is always interpreted as a symmetric relation, then, in order to use Fact 7.2,
we must not add constraints to C which express this. Instead we just ignore all
structures in which R is not interpreted as a symmetric relation. To see why, con-
sider this example: The structure A = ({a, b, c}, RA), where RA = {(a, b, c)},
does not belong to the class of all finite 3-hypergraphs (viewed as {R}-structures)
because RA is not a symmetric relation, but there is an injective homomorphism
from A into any 3-hypergraph with at least one edge. Consequently, the class of
all finite 3-hypergraphs which do not have a complete 3-hypergraph on 4 ver-
tices as a subgraph cannot be described in the framework of Fact 7.2, unless we
simply ignore all {R}-structures in which R is not interpreted as a symmetric
relation.
(c) Note that if V is ternary and K is as in Fact 7.2 and every member of C is
3-irreducible, then every constraint of K is weakly isolated.

A particularly well known example that can be obtained from Fact 7.2(a) with
the interpretation of part (b) of the above remark is the generic tetrahedron-free
3-hypergraph, that is, the Fraı̈ssé limit of the class of all finite 3-hypergraphs into
which K4 cannot be embedded, where K4 denotes the complete 3-hypergraph on
4 vertices. As a contrast consider the following example. Let K−

4 be the result of
removing one hyperedge from K4. Since K−

4 and K4 are 2-irreducible, F(K−
4 ,K4)

has the free amalgamation property by Fact 7.1. Since K−
4 is not 3-irreducible

it follows from part (b) of Fact 7.2 that the Fraı̈ssé limit of F(K−
4 ,K4) is not

simple. But it is superrosy with thorn rank 1, which can be concluded from
results in [8].

7.2. The “parity 3-hypergraph”. In [3] Akhtar and Lachlan study infinite homo-
geneous 3-hypergraphs. One of the examples that they consider is the following one,
which they attribute to Cherlin and Macpherson. Let V = {R} and VE = {E}
whereE is a binary andR a ternary relation symbol. Let G be the Rado graph, with
vertex set G , viewed as a VE-structure. Furthermore, let H be the 3-hypergraph,
viewed as a V -structure with the same vertex set as G (i.e., H = G) where, for all
distinct vertices a, b and c,H |= R(a, b, c) if and only if the number of edges (of G)
between elements in the set {a, b, c} is odd. As explained in [3],H is homogeneous.
Since H is a reduct of G and G is supersimple with SU-rank 1 and with degenerate
algebraic closure, the same is true forH (by Fact 2.7).
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The structure H can also be characterized in the following way (and we refer
to [3] for more explanations of the nontrivial claims that follow). Let C1 and
C3 be 3-hypergraphs with exactly four vertices and such that C1 has exactly 1
hyperedge and C3 has exactly 3 hyperedges. Then F(C1, C3) has the disjoint amal-
gamation property (but not the free amalgamation property) and H is the Fraı̈ssé
limit of F(C1, C3). It is immediate that both C1 and C3 are isolated with respect to
F(C1, C3).

7.3. Uncountably many ternary homogeneous simple structures. Let V = {R}
where R is a ternary relation symbol. With the help of Fact 7.2 we modify, for
our purposes, the construction which Henson used to obtain uncountably many
homogeneous directed graphs [11]. For each 2 < n < �, let Hn be the V -structure
with universe {0, . . . , n} such that
• if Hn |= R(a, b, c) then a, b and c are distinct, and
• for all distinct a, b, c ∈ {0, . . . , n},

Hn |= ¬R(a, b, c) if and only if a = 0, b > 0 and either b < n and c = b+1,
or b = n and c = 1.

Lemma 7.4. If n �= m then there is no embedding fromHn toHm.
Proof. Let n < m. Suppose for a contradiction that f : Hn → Hm is an
embedding. First note that in bothHn andHm all elements but 0 satisfy the following
formula:

∀y, z(x �= y ∧ y �= z ∧ x �= z → R(x, y, z)
)
.

Hence f(0) = 0. Observe that the map g : {0, . . . , n} → {0, . . . , n} given by
g(0) = 0, g(k) = k + 1 if 0 < k < n and g(n) = 1 is an automorphism of
Hn . Therefore we may, without loss of generality, assume that f(1) = 1. By the
definition of Hn, for each k ∈ {1, . . . , n} there is a unique l ∈ {1, . . . , n} such that
Hn |= ¬R(0, k, l) (and we must have either l = k + 1 or l = 1 and k = n). The
same is true if n is replaced by m. It follows that we must have f(k) = k for all
k ∈ {1, . . . , n} and consequently n = m which contradicts our assumption. �
Let S = {Hn : 2 < n < �} and T ⊆ S. Clearly, for every 2 < n < �, Hn is 3-
irreducible and hence 2-irreducible. So by Fact 7.1, F(T) has the free amalgamation
property and (since it obviously has the hereditary property) we can letMT denote
the Fraı̈ssé limit of F(T). From Lemma 7.4, Fact 7.2(a) and Remark 7.3(a) it
follows thatMT is supersimple with SU-rank 1 and degenerate algebraic closure.
From Lemma 7.4 again, it follows that if T and T ′ are different subsets of S,
thenMT �∼=MT′ . As T ⊆ S can be chosen in 2� ways, we get 2� nonisomorphic
(countable) structuresMT. It follows directly from the definitions that for every
T ⊆ S and everyHn ∈ CT,Hn is isolated with respect toMT.

7.4. A ternary homogeneous structure which is a reduct of the generic tournament.
Let E be a binary relation symbol and let D be the class of all finite tourna-
ments, viewed as {E}-structures. It is easy to see thatD has the hereditary property
and the (disjoint, but not free) amalgamation property. Let G be the Fraı̈ssé limit
of D.

https://doi.org/10.1017/jsl.2018.61 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.61


ON CONSTRAINTS AND DIVIDING 1717

Definition 7.5. Let 1 < n < � and (a1, . . . , an), (b1, . . . , bn) ∈ Gn. We define
(a1, . . . , an) ≈n (b1, . . . , bn)

if and only if the following two conditions hold:

(a) For all 1 ≤ i, j ≤ n, ai = aj ⇐⇒ bi = bj .
(b) Either

for all 1 ≤ i, j ≤ n, G |= E(ai , aj)↔ E(bi , bj),
or, for all 1 ≤ i, j ≤ n, G |= E(ai , aj)↔ E(bj, bi).

Observe that ‘≈n’ is an equivalence relation which is ∅-definable in G. Also note that
for all pairs of distinct elements (a1, a2), (b1, b2) ∈ G2 we have (a1, a2) ≈2 (b1, b2).
Lemma 7.6. Let n ≥ 3 and (a1, . . . , an), (b1, . . . , bn) ∈ Gn. Then (a1, . . . , an) ≈n
(b1, . . . , bn) if and only if for all distinct i, j, k ∈ {1, . . . , n}, (ai , aj, ak) ≈3 (bi , bj, bk).
Proof. Only one of the implications is nontrivial. Let (a1, . . . , an), (b1, . . . , bn) ∈
Gn where n ≥ 3 and suppose that (ai , aj , ak) ≈3 (bi , bj, bk) for all distinct i, j, k ∈
{1, . . . , n}. By induction on n we prove that (a1, . . . , an) ≈n (b1, . . . , bn). The base
case is n = 3 and then there is nothing to prove.
So suppose that n > 3. By the induction hypothesis, for every i ∈ {1, . . . , n},

(a1, . . . , ai−1, ai+1, . . . , an) ≈n−1 (b1, . . . , bi−1, bi+1, . . . , bn). (7.1)

In particular we have (a1, . . . , an−1) ≈n−1 (b1, . . . , bn−1), so either for all dis-
tinct i, j ∈ {1, . . . , n − 1}, G |= E(ai , aj) ↔ E(bi , bj), or for all distinct i, j ∈
{1, . . . , n − 1}, G |= E(ai , aj) ↔ E(bj, bi). Accordingly we divide the argument
into two (similar) cases.

Case 1: For all distinct i, j ∈ {1, . . . , n − 1}, G |= E(ai , aj)↔ E(bi , bj).
Let i, j ∈ {1, . . . , n − 1} be distinct. Since G is a tournament we can, without
loss of generality, assume that G |= E(ai , aj) ∧ E(bi , bj). First suppose that
G |= E(ai , an) ∧ E(aj, an). Since (ai , aj , an) ≈3 (bi , bj, bn) it follows that G |=
E(bi , bn)∧E(bj, bn). If instead G |= E(an, ai)∧E(aj, an), then, by the same argu-
ment, we see that G |= E(bn, bi) ∧ E(bj, bn). We argue in the same way in the
remaining two cases. As the arguments works for any distinct i, j ∈ {1, . . . , n − 1}
it follows that for all 1 ≤ i ≤ n − 1, G |= E(ai , an) ↔ E(bi , bn) and therefore
(a1, . . . , an) ≈n (b1, . . . , bn).
Case 2: For all distinct i, j ∈ {1, . . . , n − 1}, G |= E(ai , aj)↔ E(bj, bi).
Let i, j ∈ {1, . . . , n − 1} be distinct. Since G is a tournament we can, without loss
of generality, assume that G |= E(ai , aj) ∧ E(bj, bi). The rest of the argument in
Case 2 is an obvious modification of the argument in Case 1, which is left for the
reader. �
It is straightforward to verify that ≈3 has exactly four equivalence classes, say
X1, . . . , X4, on triples of distinct elements. Let V = {R1, . . . , R4} where R1, . . . , R4
are ternary relation symbols. LetM be the V -structure with the same universe as
G (soM = G) such that for each i = 1, . . . , 4, RM

i = Xi .

Lemma 7.7. M is homogeneous and supersimple with SU-rank 1 and with
degenerate aclM.
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Proof. From the definitions of≈3 andRM
i , eachR

M
i is ∅-definable in G. Since G

is supersimple with SU-rank 1 and aclG is degenerate it follows (using Fact 2.7) that
the same is true forM and aclM. So it remains to show thatM is homogeneous.
Let 0 < n < �, a1, . . . , an, an+1, b1, . . . , bn ∈M = G and suppose that

tpqfM(a1, . . . , an) = tp
qf
M(b1, . . . , bn). (7.2)

We need to find bn+1 ∈M such that
tpqfM(a1, . . . , an, an+1) = tp

qf
M(b1, . . . , bn, bn+1).

By the definition ofM, this is accomplished if we find bn+1 ∈ G = M such that
(a1, . . . , an, an+1) ≈n (b1, . . . , bn, bn+1).
We consider only the case when n > 2 since the cases n = 1, 2 are similar
and simpler. From the definition of M and (7.2) it follows that for all distinct
i, j, k ∈ {1, . . . , n}, (ai , aj , ak) ≈3 (bi , bj , bk). By Lemma 7.6 we get

(a1, . . . , an) ≈n (b1, . . . , bn). (7.3)

Without loss of generality we can assume that an+1 /∈ {a1, . . . , an}. In order to
find bn+1 ∈ G such that (a1, . . . , an, an+1) ≈n (b1, . . . , bn, bn+1), it suffices, by the
definition of ≈n and (7.3), to find bn+1 ∈ G such that
if there are distinct i, j ∈ {1, . . . , n} such thatG |= E(ai , aj)∧E(bi , bj) (which,
via (7.3), implies that for all i, j ∈ {1, . . . , n}, G |= E(ai , aj) ↔ E(bi , bj)),
then

G |= E(ai , an+1)↔ E(bi , bn+1) for all i ∈ {1, . . . , n},
and otherwise

G |= E(ai , an+1)↔ E(bn+1, bi) for all i ∈ {1, . . . , n}.
Since G is the generic tournament (i.e., the Fraı̈ssé limit of D) it is possible to find
such bn+1 ∈ G . �
Lemma 7.8. (i) Every constraint ofM has at most 4 elements.
(ii) Every constraint ofM is weakly isolated.
(iii) The age ofM does not have the free amalgamation property.

Proof. (i) Suppose, towards a contradiction, that C is a constraint ofM with at
least 5 elements. Let c ∈ C and letA = C�C \{c}, soA is permitted with respect to
M. Thenwemay,without loss of generality, assume thatA⊆ M.AsC is a constraint
with at least 5 elements it follows that for every triple ā = (a1, a2, a3) ∈ A3 (where
A = C \ {c}) there is cā ∈M such that tpqfC (ā, c) = tpqfM(ā, cā).
Suppose that ā = (a1, a2, a3), ā′ = (a1, a2, a′3) ∈ A3 are triples of dis-
tinct elements. From the choice of cā and cā′ it follows that tp

qf
M(a1, a2, cā) =

tpqfM(a1, a2, cā′), so (a1, a2, cā) ≈3 (a1, a2, cā′) and hence tpqfG (a1, a2, cā) =
tpqfG (a1, a2, cā′).
Now suppose that ā = (a1, a2, a3), ā′ = (a1, a′2, a

′
3) ∈ A3 are triples of distinct

elements where {a2, a3} ∩ {a′2, a′3} = ∅. Let ā′′ = (a1, a2, a′2). From what we just
proved it follows that

tpqfG (a1, cā) = tp
qf
G (a1, cā′′) = tp

qf
G (a1, cā′).
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Thus we have proved that if ā = (a1, a2, a3), ā′ = (a1, a′2, a
′
3) ∈ A3 are triples of

distinct elements, then tpqfG (a1, cā) = tp
qf
G (a1, cā′). Since G is the generic tournament

it follows that
{
ϕ(x, ā) : ϕ(x, ā) ∈ tpqfG (cā/ā) and ā ∈ A3}

is consistent. So there is c′ ∈ M such that for all ā ∈ A3, tpqfG (c′, ā) = tpqfG (cā , ā).
Then tpqfM(c

′, ā) = tpqfM(cā , ā) for every ā ∈ A3 and consequently tpqfM(c′/A) =
tpqfC (c/A) which contradicts that C is a constraint.
(ii) As G is the generic tournament, it is easy to see that for every finite A ⊆ G
there is no nontrivial A-definable (in G) equivalence relation on G \ A. SinceM is
a reduct of G it follows that the same holds forM. Hence the conclusion follows
from Corollary 5.8.
Part (iii) follows from the fact that for every triple (a1, a2, a3) of distinct elements
fromM we have, by the definition ofM,M |= ∨4

i=1Ri (a1, a2, a3). �
7.5. Examples of higher SU-rank. All examples above have SU-rank 1. It is not
hard, however, to construct examples of higher SU-rank, for example 2, by using a
binary relation symbol interpreted as an equivalence relation with infinitely many
infinite equivalence classes. If one likes, on each class (which in itself is a structure of
rank 1) one can add somemore “exotic” structure by (for example) choosing one of
the structures earlier in this section, call itM, and letting each class, as a structure
in itself be isomorphic toM. Obviously this kind of example is not primitive, i.e., it
has a nontrivial ∅-definable equivalence relation on its universe.
A different kind of example of SU-rank 2 which is primitive is Example 3.3.2
in [23], which is also discussed in [16, Example 2.7]. This example is not 2-transitive.
In fact, it follows fromObservation 2.5 that ifM is a homogeneous simple structure
with trivial dependence and higher SU-rank than one, then it must have some binary
relation symbol (it is easy to see that unary relation symbols would not suffice to
raise the rank).

§8. Problems. As a number of questions are left unanswered, also taking the
conclusions of the later article [18] into account, we conclude with a collection of
problems.

(1) Is every ternary homogeneous simple structure supersimple (with finite SU-
rank)?

(2) For k ≥ 4, is every k-ary homogeneous finitely constrained simple structure
supersimple (with finite SU-rank)?

(3) Is there k ≥ 4 and a k-ary homogeneous supersimple structure M with
SU-rank 1 and nontrivial algebraic closure?

(4) Suppose that M is ternary, 2-transitive, homogeneous, supersimple with
SU-rank 1 and degenerate algebraic closure.
(a) CanM have a constraint which is not weakly isolated?
(b) CanM have a finite subset A ⊂ M , a nonalgebraic type p ∈ SM1 (A)
and a nontrivial A-definable equivalence relation on p(M)? (A nega-
tive answer implies, by Theorem 5.7, a negative answer to the previous
question.)
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(c) If there is a finite A ⊂ M , a nonalgebraic type p ∈ SM1 (A) and a
nontrivial A-definable equivalence relation on p(M), does it follow that
M has a constraint which is not weakly isolated?

(d) If the age of M does not have the free amalgamation property, must
M be a reduct of (or more generally, interpretable in) a binary random
structure?
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