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ON CONSTRAINTS AND DIVIDING
IN TERNARY HOMOGENEOUS STRUCTURES

VERA KOPONEN

Abstract. Let M be ternary, homogeneous and simple. We prove that if M is finitely constrained. then
it is supersimple with finite SU-rank and dependence is k-trivial for some k < w and for finite sets of real
elements. Now suppose that, in addition, M is supersimple with SU-rank 1. If M is finitely constrained
then algebraic closure in M is trivial. We also find connections between the nature of the constraints of
M., the nature of the amalgamations allowed by the age of M, and the nature of definable equivalence
relations. A key method of proof is to “extract” constraints (of M) from instances of dividing and from
definable equivalence relations. Finally, we give new examples, including an uncountable family, of ternary
homogeneous supersimple structures of SU-rank 1.

§1. Introduction. We call a structure M homogeneous if it is countable, has a
finite relational vocabulary and every isomorphism between finite substructures
of M can be extended to an automorphism of M. Homogeneous structures are of
interest in various areas, including Ramsey theory, constraint satisfaction problems,
permutation group theory and topological dynamics; surveys include [4, 10,23, 24].
From the point of view of pure model theory they are interesting because they can
also be characterized as the countable structures (with finite relational vocabulary)
which have elimination of quantifiers, or as the countable structures (with finite
relational vocabulary) which are so-called Fraissé limits of “amalgamation classes”
of finite structures (see for example [12, Chapter 7]). The later two characterizations
give homogeneous structures a rather “concrete” character. Nevertheless, there
are uncountably many homogeneous digraphs [11]. Some classes of homogeneous
structures with additional properties, such as for example homogeneous (di)graphs,
partial orders and stable (infinite) structures have been classified [6, 21,22, 26].

It is of course tempting to try to classify other classes of homogeneous struc-
tures. A natural direction is to consider simple homogeneous structures, or some
other class of homogeneous structures in which there is a reasonably well behaved
notion of independence. What makes homogeneous structures intriguing to me is
that, although they are fairly concrete (and useful for providing examples), typi-
cal model theoretic questions such as whether a simple homogeneous structure is
supersimple, has finite SU-rank, or has a nontrivial pregeometry, turn out to be
challenging. Moreover, the class of homogeneous simple structures can be seen as
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the most uncomplicated kind of w-categorical simple structures in the sense that in
a homogeneous structure every definable relation is definable by a quantifier-free
formula (a “Ag-formula”), while in an w-categorical structure a definable relation
may be definable only by a formula of higher complexity, in terms of, say. quanti-
fier alternations. For example, there is an w-categorical supersimple structure with
SU-rank 1 in which algebraic closure induces a nonlocally modular pregeometry,
as shown first by Hrushovski [13, 14]. But we do not know yet if a similar exam-
ple exists if ‘w-categorical’ is replaced with ‘homogeneous’. My guess is that the
answer is ‘no’, and if this is correct one can ask, given any k < w, if there is an w-
categorical supersimple structure with SU-rank 1 in which algebraic closure induces
a nonlocally modular pregeometry and all definable relations are defined by Z; (or
I1; ) formulas. In general, for a given phenomenon, one can ask what the minimal
“definitional complexity” of relations must be in a structure for that phenomenon
to appear in it.

A relational structure (i.e., one with relational vocabulary) will be called k-ary
if no relation symbol of its vocabulary has arity higher than k. We say binary and
ternary instead of 2-ary and 3-ary, respectively. The fine structure of all binary
simple homogeneous structures is well understood in terms of supersimplicity, SU-
rank, pregeometries, the behaviour of dividing and the nature of definable sets of
SU-rank 1 [2,15-17]. However, the arguments for binary structures do not carry
over to ternary structures. This is at least partly to be expected, because at least
one new phenomenon appear when passing from binary to ternary: Every binary
supersimple homogeneous structure with SU-rank 1 is a random structure (in the
sense of Definition 2.2 below), but there are plenty of ternary supersimple structures
with SU-rank 1 which are not random, as witnessed by the examples in Section 7.

The notion of n-complete amalgamation in the sense of [25, Definition 2.2] is
related to random structures (in the presence of homogeneity). The independence
theorem of simple theories is equivalent to 3-complete amalgamation. In the the-
ory of binary simple homogeneous structures the combination of the independence
theorem and the binarity (of the structures) plays a crucial role. Palacin [25] has
recently shown that if a k-ary relational structure is homogeneous, supersimple and
has (k + 1)-complete amalgamation, then it is a random structure. Kruckman [19,
Sections 5.3 and 5.5] has also investigated “higher dimensional” amalgamation
properties in the context of w-categorical (possibly simple) structures. Conse-
quently, we will be concerned with ternary homogeneous simple structures which
do not necessarily have 4-complete amalgamation. Conant has recently studied the
relationship of the free amalgamation property (of a class of finite structures) to
dividing, rosiness, simplicity and related notions (of the Fraissé¢ limit). Both Conant
[8] and Palacin [25] have proved results which relate the free amalgamation property
to (super)simplicity and SU-rank one. The relevance of definable (with parameters)
equivalence relations in a context related to the one of this article has been realized
earlier by Kruckman [19, Section 5.5] (we will deal with equivalence relations in
Section 5). Akhtar and Lachlan [3] have studied homogeneous (not necessarily sim-
ple) 3-hypergraphs. They have proved results about the age of such a 3-hypergraph,
and, in particular, characterize the constraint if there is only one.

Needless to say, if the study of simple homogeneous structures requires a special
treatment of k-ary simple homogeneous structures for every k& < w, then the study
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will never be completed. However, I hope that for some small k& (perhaps k = 4
or k = 5) the arguments for the case k work out for all X’ > k, at least with
respect to general questions such as whether a structure is supersimple, has finite
SU-rank, or what the nature of definable pregeometries is. Some justification for
my optimism comes from the theory of smoothly approximable structures [7] and
from Corollaries 5.3 and 5.4 in [17] where the nature of 4-types over () is crucial.

In this article we will study the interplay between, on the one hand, constraints of
a ternary homogeneous structure and, on the other hand, the behaviour of dividing
(and indirectly the algebraic closure) and the existence of nontrivial definable (with
parameters) equivalence relations on the set of realizations of a complete non-
algebraic 1-type (over the same parameters). The constraints of a homogeneous
structure are the “minimal” structures (for the same vocabulary) which cannot be
embedded into it (see Definition 2.2). The first main result (Theorem 4.1) tells that
if a structure is ternary, homogeneous, finitely constrained and simple, then it is
supersimple with finite SU-rank and dependence is, for some k < w, k-trivial for
finite sets of real elements. As a background recall that all stable homogenous struc-
tures are finitely constrained [20, Theorem 5], but as we will see in Section 7.3, there
are ternary homogeneous simple structures which are not finitely constrained. Then
we see that if M is ternary, homogeneous, finitely constrained and supersimple with
SU-rank 1, then algebraic closure and dependence in M are trivial (Theorem 4.2).

In Section 5 we turn to the special case of SU-rank 1, that is, we study ternary
homogeneous (not necessarily finitely constrained) supersimple structures of SU-
rank 1. Here we show that the existence of nontrivial definable equivalence relations
on the set of realizations of a nonalgebraic 1-type over a finite set plays a crucial role
for understanding the nature of the constraints of the structure and the nature of
its algebraic closure, and vice versa. We also see that if the age of the structure has
the free amalgamation property. then there are no definable equivalence relations
on any nonalgebraic types and all constraints are of a particular kind.

Section 6 elaborates more on the topic of nontrivial definable equivalence relations
and shows that, under some extra conditions, no nontrivial equivalence relation is
definable with only one parameter. It follows, under the extra conditions, that a
binary random structure is definable (with only one parameter) in the structure that
we started with. If the extra conditions are not satisfied. then we only conclude that
a binary structure \V is definable in the original structure M such that N is random
relative to an equivalence relation on its universe which is ()-definable in \V.

Section 7 gives examples of ternary homogeneous supersimple structures with
SU-rank 1 and degenerate algebraic closure. The examples in Sections 7.3 and 7.4
seem to be new. Section 7.3 shows that, with a ternary relation symbol R and
vocabulary ¥ = {R}, there are uncountably many nonisomorphic ¥ -structures
that are homogeneous and supersimple with SU-rank 1 and degenerate algebraic
closure. The last section gives a list of problems.

§2. Preliminaries.

2.1. Notation and general concepts. Structures are denoted by calligraphic letters
A.B....,M,N and their universes by the corresponding noncalligraphic letters
A, B.....,M. N. Usually (but not always) infinite structures are denoted by M or
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N possibly with indices, and finite structures by A, B. ..., possibly with indices.
The complete theory of a structure M is denoted by Th(M). If V is a vocabulary,
M a V-structure and W C V', then M|[W denotes the reduct of M to W.If V'
is a relational vocabulary, M is a V' -structure and 4 C M, then M A denotes the
substructure of M with universe 4. By a.b. ... we denote finite sequences/tuples
of elements. If 4 is a set then ‘@ € A’ usually means that & is a finite sequence of
elements from 4. The length of @ is denoted by |a| and we may write @ € A" if we
want to emphasize that @ is a sequence of length n all of which elements belong
to A. By rng(a) we denote the set of elements that occur in @. For sequences a
and b. ab denotes the concatenation of them. Sometimes we abuse notation and
write ‘@’ in instead of ‘rng(@)’ and ‘4 B’ instead of ‘4 U B’. For a formula ¢(x), or
type p(x). p(M), respectively p(M), denotes the set of tuples of elements from M
which satisfy/realize it.

Given a structure M and 4 C M, S;*(A4) denotes the set of complete n-types
over A (with respect to M). For a structure M and a € M, tpﬁl\f,[ (a) denotes the set
of quantifier free formulas satisfied by @ in M (while tp ,,(a). as usual, denotes the
complete type of @ in M and tp ,,(a@/B) denotes the complete type of @ over B in M
if B C M). We sometimes write @ =, b, or a :j‘w b instead of tp (@) = tp (@),
or tp M( ) =1p M(b), respectively.

We assume familiarity with the notions of dividing and forking, as well as simple
theories and SU-rank, as can be found in [5, 14]. for example. When saying that
a structure M is simple, supersimple, or has finite SU-rank, then we mean that
its complete theory, denoted T/ (M), has the corresponding property. In some
arguments we will consider dividing in different structures and in this context we
may write ‘LM to indicate that we consider dividing in M. If we say that a structure
is simple, then we assume that it is infinite.

A structure M is said to be k-transitive if Th(M) has only one complete k-type
over () which implies that all k& elements are different. An equivalence relation is
called nontrivial if it has at least two equivalence classes and at least one equivalence
class contains more than one element. Suppose that M and N are structures with
the same universe but possibly (and typically) with different vocabularies. We say
that NV is a reduct of M if, for every n < w and R C N”, if R is ()-definable in N/
then it is (-definable in M.

2.2. Classes of finite structures. We assume familiarity with the basic theory of
“amalgamation classes” of finite structures and Fraissé limits (as explained in [12]
for example), but nevertheless some terminology is defined below to avoid confusion.

DEerFmNITION 2.1. Let V be a finite relational vocabulary.

(i) Let M bea V-structureand @ € M. For R € V we say that a is an R-relationship
(in M) if @ € R™M. We say that a is a relationship (in M) if for some R € V', a is an
R-relationship.

(i) If A and B are two V -structures, then the free amalgam of A and B is the unique
structure C such that C = A U B and for every R € V' and every tuple d € C.
d € RCifand onlyif d € RAU RB.If £ is a substructure of A and of B of maximal
cardinality, then we may also say that C (as defined above) is the free amalgam of A
and B over E.

https://doi.org/10.1017/js1.2018.61 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.61

ON CONSTRAINTS AND DIVIDING 1695

(iii) A class K of finite V -structures has the hereditary property if it is closed under
substructures (i.e., if A C B € K, then A € K).

(iv) Suppose that K is a class of finite V-structures which is closed under
isomorphism. Then K has the

(a) Amalgamation property if whenever A.B.C € K and f5 : A — Band f¢ :
A — C are embeddings, then there are D € K and embeddings gz : B — D
and g¢ : C — Dsuchthatggo fg=gco fe.

(b) Disjoint amalgamation property if whenever A, B € K, then there is C € K such
that C = AUB,C[|A=AandC[B = B, and

(c) Free amalgamation property if whenever A, B € K, then the free amalgam of A
and B belongs to K.

DEerFINITION 2.2. Let M be a V' -structure, where the vocabulary V' contains only
relation symbols.
(i) The age of M is the class of all finite V-structures that can be embedded into
M.
(ii) A finite V -structure is permitted (with respect to M) if it belongs to the age of
M. A finite V -structure is forbidden (with respect to M) if it is not permitted.
(iii) A finite V -structure C is a constraint (of M) if it is forbidden and every proper
substructure of it is permitted.
(iv) M is finitely constrained (or has only finitely many constraints) if there are, up
to isomorphism, only finitely many constraints of M.
(v) M is a random structure if it is homogeneous (implying that V is finite) and for
every 0 < k < w, every constraint of

MI{R € V : the arity of R is at most k }
has cardinality at most k.

The most well-known random structure is the Rado graph (often called random graph
in model theory). The Rado graph can be constructed in three interesting ways: as
a Fraissé limit, by a probabilistic construction on finite graphs (via a so-called zero-
one law). and by using a probability measure on the set of all graphs whose vertex set
is the natural numbers. (See for example [12, Chapter 7.4].) Every random structure
can be constructed in these three ways (by straightforward generalizations of the
corresponding procedures for graphs).

2.3. Notions of triviality. If M is a structure then ‘acly,’ and ‘dcl’ denote the
algebraic closure and definable closure, respectively, in M.

DErINITION 2.3, Let M be a structure.
(i) We say that acl g is trivial, or that algebraic closure (in M) is trivial, if whenever
ACM.be Mandb € acly(A4). then b € aclpy(a) for some a € A.
(ii) We say that aclnq is degenerate, or that algebraic closure (in M) is degenerate. if
forall A C M., aclp(A4) = A.

DErFINITION 2.4, Let T be a simple theory.
(i) T has trivial dependence if whenever M |= T, A, B,C C M*® and 4 /J_//B, then

C
Aéﬁb for some b € B.
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(ii) Let 0 < k < w. T has k-trivial dependence for real elements over finite base sets
if whenever M = T, A, B,C C M are finite and 4 é\i/, B. then 4 ét B’ for some

B’ C B with |B’| < k.
(iii) We say that a simple structure M has trivial dependence, or k-trivial dependence
for real elements over finite base sets if its complete theory has the corresponding

property.

OBSERVATION 2.5. Suppose that M is 2-transitive, simple and has 1-trivial depen-
dence for real elements over finite base sets. Then M is supersimple with SU-rank 1
and degenerate algebraic closure.

PROOF. Suppose that A’ = Th(M). B C N is finite.« € N\ B and a < B. Since
M has I-trivial dependence for real elements over finite base sets. a /\f,b for some
b € B. There is, by simplicity, ¢ € N \ {a} (assuming that A is w-saturated)
such that al c. Then we must have tpp-(a.b) # tpy(a.c) which contradicts
2-transitivity. -

2.4. Imaginary elements, equivalence relations and c-categoricity. We assume
familiarity with the extension M*® by imaginary elements of a structure M. Also
recall that every infinite homogeneous structure is w-categorical, i.e., its complete
theory is w-categorical.

FAcT 2.6. Suppose that M is w-categorical.

(i) If B C M is finite and a € M9, then tp e (a/aclpgea(B)) is isolated.

(ii) If B € M s finite and p € S (aclygea(B)) is realized in N9 for some
N = M. then p is realized in M®3; moreover, only finitely many types in
SM* (aclyea (B)) are realized by tuples from M".

(iti) Let B C M be finite and let p..... pi € SM(B). Then the following

equivalence relation on py(M) U ---U pi (M) is B-definable in M:
tP pgea (X /aclpgea (B)) = tp pea (7 /aClpgea (B)).

Explanations of why (i) and (ii) above hold are given in [2, Section 2.4]. Part (iii)
follows in a rather straightforward way from the previous parts.

Fact 2.7. Suppose that N is interpretable in M using only finitely many
parameters.

(1) If M is w-categorical then so is N'.
(il) If M is (super)simple then so is N', and if the SU-rank of M is 1 and N C M ,
then the SU-rank of N is 1.

Part (i) is Theorem 7.3.8 in [12]. The claim about simplicity in (ii) follows from
Remarks 2.26 and 2.27 in [5]. The claim about supersimplicity follows from the fact
that if some type of N divides over every finite subset of its set of parameters, then
the same is true for some type of M® (so M would not be supersimple). The final
claim of (ii) follows since (given the assumptions) every instance of dividing in
gives rise to a corresponding instance of dividing in M.

§3. On definable structures. In this section we prove some technical results which
will be used in Section 4 in the proof of Theorem 4.1 via the use of Corollary 4.8.
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DEerINITION 3.1, Let M be a V' -structure where V' is a finite relational vocabulary
and let A C M be finite. Furthermore, let P = {py...., . pn} C SM(A).

(i) Let V4 be a finite relational vocabulary such that ¥ C ¥V, and for every
R € V of arity r > 1, every 0 < k < r, every permutation z of {1,....r},
and every @ € A*, V4 has a relation symbol Qg ;. of arity r — k. We also
assume that V4 has no other symbols than those described. Note that the
maximal arity of V4 is the same as the maximal arity of V.

(i) Let M p be the V4-structure with universe Mp = p(M)U---U p,(M) and
where the symbols in V4 are interpreted as follows:

(a) If R € V has arity r, then RM? = RM N (Mp)".

(b) If Qrgn € V4 \ V where R € V has arity r and || = k. then for
every b € (Mp) =%, b € (Qrax)™" if and only if 7(ha) € R™ (where
n(ba) = (cz1)- -+ Ca()) iftha = (c1.....c.)).

In the rest of this section we assume that M is a V -structure where V' is finite
and relational, A C M is finite and P = {pi.....pu} C SlM (A) is nonempty.
Furthermore, V4 and Mp are as in Definition 3.1. The following lemma is an
immediate consequence of the definition of Mp.

LemMmA 3.2, Let a be an enumeration of A. For allb, b’ € Mp,
b E?&P b' ifand only if ba = —qf b'a
For the rest of this section suppose that M is infinite and every type in P is
nonalgebraic.

LemMma 3.3, If M is simple then Mp is simple. If M is homogeneous then Mp is
homogeneous.

Proor. The first claim follows from Fact 2.7. Let a enumerate A. Suppose that
b.c € Mpand b = —qf , €. Then Lemma 3.2 gives ba —M ca. Since M is homoge-

neous there is an dutomorphism / of M which takes ba to éa. Then f sends every
element of Mp to an element of Mp. By Lemma 3.2 again, the restriction of f to
Mp is an automorphism of M p. Thus M p is homogeneous. -

LEMMA 3.4. Suppose that M is infinite and homogeneous. For all b.¢ € Mp.
bLMré if and only in b | Mg

PrOOF. Suppose that b.é € Mp and b4 Mrg. Then there are p(x.7) €
tpr,(b.C) and ¢; in some elementary extension of Mp, for i < w. such that
tp g, (Ci) = tppy,(€) for all i and {@(X.¢;) : i < w} is k-inconsistent for some
k < w. As Mp is homogeneous (by the previous lemma). we can assume (by
Fact 2.6) that all ¢; belong to M p. Without loss of generality we may assume that
¢(%. 7) isolates tp , (b. ¢) and that ¢ is quantifier-free.

Let @ enumerate 4. By the homogeneity of M there is a quantifier-free ' -formula
w(X.7.Z) which isolates tp,,(b.¢.a). By Lemma 3.2 and since both M and Mp
have elimination of quantifiers (by Lemma 3.3). it follows that for all 5", ¢’ € Mp.

b'é'a =y bta < b'¢ =y, be (3.1)
and thus _ .
ME (b e.a) = MpEel.7). (3.2)
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From (3.1) it follows that
cid =pm ca foralli < w.

For a contradiction, assume that {w(X.¢;.a) : i < w} is not k-inconsistent with
respect to Th(M). Then (by Fact 2.6) there are b’ € Mp and iy. . ... i such that

M):/\ (b'.¢,.a

By (3.2) we get

which implies that {¢(X.¢;) : i < w} is not k-inconsistent, contradicting our
assumption. Thus we conclude that {y/(X.¢;.a) : i < w} is k-inconsistent and it
follows that b ﬁf, M

Now assume that b {,,M ¢ where b,¢ € Mp. Then there are a quantifier-free

w(X%. 7. %) such that w(%,¢,a) belongs to tp,,(b.¢.a) and isolates this type. and
¢ € Mp such that tp,(¢;.a) = tpy,(c.a) foralli < w and {y(%.¢;.a) : i < w}
is k-inconsistent for some k < . From (3.1) it follows that tp,(¢;) = tp,,,(¢)
for all i. For the same reasons as when we proved the other direction, there is a
quantifier-free V4-formula ¢ (%, j) such that (3.2) holds. and consequently ¢ (%. j)
isolates tpMP(b, ¢). For a contradiction, suppose that {¢(X,¢;) : i < w} in not k-
inconsistent. Then there are »’ € Mp and i. ..., i) such that M p E /\?:1 (b, Ci,).
By (3.2) we get M | A?Z] 1//(5’,51-],,5), which implies that {1//(5’,51-,[1) i<
w} is not k-inconsistent, contradicting our assumption. Hence we conclude that
bd Mg, 4

Lemma 3.5. Suppose that M is homogeneous. For every constraint C of M p there
is a constraint C* of M such that |C| < |C*|.

PrOOF. Let C be a constraint of Mp. Let D be the V -structure (where V is
the vocabulary of M) with universe D = C U A and satisfying the following
conditions:

(a) Forevery R € V and every ¢ € C of appropriate length, ¢ € RP if and only if
¢ € RC.

(b) Forevery R € V and every @ € A of appropriate length, @ € RP if and only if
aeRrRM.

(c) For every R € V of arity r > 1, every 0 < k < r, every permutation 7 of
{1,..., .1}, every ¢ € C"% and every @ € A%, n(¢a) € RP if and only if
¢ € (QR‘M) (where Qg ., is like in Definition 3.1).

CramM. D is forbidden with respect to M.

PROOF OF THE CLAIM. Suppose that D is not forbidden with respect to M. Then,
by the homogeneity of M., thereis D’ C M and anisomorphism f from D toD’. Let
C' = f(C)and A’ = f(A). Then the restriction of f to A4 is an isomorphism from
D|A to MJA'. So by homogeneity again, there is C” C M and an isomorphism
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from D to M|A U C” which extends f'|A. But then, by the definition of Mp,
Mp|C" =2 C which contradicts that C is a constraint of Mp. -

CLAM. Thereis B C A such that either

(1) B =0 andD|C is forbidden with respect to M or
(i) B # 0. DB U C is forbidden with respect to M and for every b € B,
DI(BUC)\ {b} is permitted with respect to M.

PrOOF OF THE cLAIM. If for all @ € A, DD \ {a} is permitted with respect to
M., then take B = 4 and we are done. Otherwise there is some a; € A such that
DID \{a;} is forbidden with respect to M. If foralla € A\ {a1}. D[D \{ai.a}is
permitted with respect to M, then take B = 4 \ {@;} and we are done. Otherwise
there is some a, € 4\ {a;} such that D[D \ {aj.a»} is forbidden with respect to
M. By continuing in this way we eventually find B C A such that (i) or (ii) holds. -

Let B C A satisfy (i) or (ii) of the last claim. In order to show that D|B U C is a
constraint of M it suffices to show thatif ¢ € C, then D|(BUC) \ {c} is permitted
with respect to M. Solet ¢ € C. AsC is a constraint of Mp, C[C \ {c} is permitted
with respect to M p. As M p is homogeneous there is an embedding f of C[C \ {c¢}
into Mp. From the definitions of Mp and D it follows that if f is extended to
(BUC)\ {c} in such a way that the extension fixes all elements of B pointwise,
then this extension is an embedding of D[(BUC)\ {c} into M, so D[(BUC)\{c}
is permitted. Now we have proved that C* = D[(B U C) is a constraint of M and
clearly |C| < |C*|since C C C*. 4

84. Extracting constraints from instances of dividing. In this section we prove our
first main results, Theorems 4.1 and 4.2. As indicated in the title of this section, the
core of the proofs is to extract a constraint from every instance of dividing. The
main technical result in this section is Proposition 4.4, from which we get a number
of corollaries which extend its usefulness.

THEOREM 4.1. Suppose that M is ternary, homogeneous and simple. If M has only
finitely many constraints, then it is supersimple with finite SU-rank; moreover, if n is
the cardinality of the largest constraint andk = 1+ n-|S{(D)], then M has k-trivial
dependence for real elements over finite base sets.

THEOREM 4.2. Suppose that M is ternary, homogeneous and supersimple with
SU-rank 1. If M has only finitely many constraints, then aclyy is trivial.

Note that if M in Theorem 4.2 is, in addition, 2-transitive then acl is degenerate.
Also observe that the conclusion of Theorem 4.2 implies that M has 1-trivial
dependence for real elements over finite base sets; by (for example) the argument
in Remark 6.6 in [16] it follows that M has trivial dependence. The proofs of
Theorems 4.1 and 4.2 are given after Lemma 4.9 below.

REMARK 4.3. Theorems 4.1 and 4.2 can be strengthened in the following ways, as
proved in [18, Corollaries 3.4-3.5] which I wrote after this article but it was referred
and accepted for publication before this article. First, the conclusion of Theorem 4.1
can be strengthened to say that M has trivial dependence. Second, in Theorem 4.2
the assumption that M has only finitely many constraints can be removed.

https://doi.org/10.1017/js1.2018.61 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.61

1700 VERA KOPONEN

PROPOSITION 4.4. Let M be an infinite ternary homogeneous structure. Suppose
that a.b € M, E,F C M are finite, some formula ¢(x.b. &) € tp,(a/bE) divides
over EF . and for every proper subset E' C E . every formulay(x.b.é') € tp,(a/bE’)
does not divide over EF. Then M has a constraint with at least 3 + |E|/|S{(0)]
elements.

PrROOF. Let a.b € M., E.F C M and ¢(x,bé) € tpy(a/bE) be such that
the assumptions of the proposition are satisfied. We rename these elements and
sets as follows: @, = a, ay_1 = b, A = E = {ay,.... ay—2}. Furthermore, let

p(xi,....xy) = tpyylar..... a,) and when convenient we identity p notationally

divides over AF. So there is an 4F -indiscernible sequence (b; : i < w) such that
by = a,_ and forsome 1 < k < w,

{play,....ayn_2.b;,x,) : i < w} is k-inconsistent, but not /-inconsistent if / < k.
Forevery j € {1,....n — 2}, let
A]' =A \ {Clj}, and

let p; be the restriction of p to the variables in {x..... xn b\ {x;}.
When convenient we notationally identify p; with a quantifier-free formula that
isolates it. By assumption, forevery j = 1,....n — 2,
pilar.....a;_v.ajs1.....ap—2,ay_1.x,) does not divide over AF,
and therefore, forevery j = 1,....n — 2,
{pj(al, o1, Aji1. ... Ap—2.bix,) T i < @} is m-consistent for every m < w.
By Ramsey’s theorem, for every j = 1,...,n — 2 there are a,{ € M and distinct

bl.....b] € {b; : i < w} such that

k
ME /\pj(al,...,aj,l,ajﬂ,...,an,z,b/,a,{) and (4.1)
=1

(al.b].b],) =p (af bl b)) foralll <I<!'<kandalll <s<s' <k.
Since M is ternary with elimination of quantifiers it follows that
(bl’ .. bli) is an {a/ }-indiscernible sequence for each ;. (4.2)

By elimination of quantifiers there are only finitely many 3-types over (). Hence there
is a number 7. at most as large as the number of 3-types (of distinct elements) over
(), and a partition 4 = X, U---U X; such that Xi..... X, are the equivalence classes
of the following equivalence relation on A4:

S L
aj ~aj; < (a).b].b3) =nm (a] .b] .b}).

Let a.bi,.... b, be distinct elements. (It does not matter where they come from.)

Foreachm € {1,..., 7} let BB, be the structure with universe

B, = AU{b|.....b,.a}
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such that
tqufm(al,...,a,,,z,b{,...,b,’() = tpg\;(al,...,an,z,bl,...,bk),
tp%fm(al,...,an,g,b;,a) = tpj\f/[(al,...,an,z,bl,an) foralls =1.....k, and
tqufm(b{ ..... bp.a) = tpX,(b]..... bl.a}). where j is any number in

{1.....n — 2} such that a; € X,,. (Recall that tpj\f/[(b{, .. ,b']f,a,f)
only depends on the ~-class of @;.)

Observe thatif m # m’, then the interpretations of relation symbols in B8, and in B,/
only differ on triples containing ¢ and two elements from {41, . . .. by }. Alsonote that
each B,, is forbidden, due to the k-inconsistency of { p(ay, . ... ay_2.b;. x,) 1 i < w}.
Some X, must have cardinality at least (n — 2)/7r. Without loss of generality,
assume that the cardinality of X; is at least (n — 2)/7. From (4.1) it follows that

forevery ¢ € X1, Bi[(4A\ {c})U{bi.....b;.a} is permitted. (4.3)
Since AU {b; : i < w} C M it follows from the construction of 3; that
BilAU{by,....b.} is permitted. (4.4)
By the choice of the elements b;, i < w, and the construction of 3; it follows that
foreach/ =1.....k, Bil|AU{b;} U{a} is permitted. (4.5)

Cram. Thereis C C A\ X, such that

By X1 UC U{bi.....b;, a} is forbidden and (4.6)
forevery c € C. B[ X1 U (C \ {c}) U{b}.....b;.a} is permitted.

PROOF OF THE cLAIM. If By [X1U{b].....b;.a} is forbidden, then, by taking C =
(). (4.6) holds for trivial reasons. Suppose that B [ X; U {b].....b}.a}is permitted.
Ifthereis c; € A\ X; suchthat Bi[X,U{cy.b].....b;.a}isforbidden then take C =
{c1} and we are done. Otherwise B[ X1 U {c.b].....b,.a} is permitted for all ¢ €
A\ X, If thereare ¢y, ¢z € A\ X such that B, [ X U{c1, ¢2.b].. ... by..a} isforbidden
then take C = {c;.c»} and we are done. Otherwise B[ X; U {c1.¢2.b].....b,.a}

is permitted for all ¢;,¢; € 4\ X). Since B is forbidden we will eventually, if we
continue in this way, find C C 4 \ X) such that (4.6) holds. -

According to the claim there is C C 4\ X; such that (4.6) holds. This together
with (4.3) implies that

foreveryc € XU C. Bil((X1UC)\{c}) U{bi..... by, a} is permitted. (4.7)
Cram. Thereis D C {b].....b.} such that |D| > 2,
By X, U CUDU/{a} isforbidden and (4.8)
foreveryd € D, Bi|X;UCU(D\{d})U{a} ispermitted.

PROOF OF THE cLAIM. Ifforalld € {b{.....b,}.Bi[X,UCU({b]..... b \{d})U
{a} is permitted, then take D = {b]..... by} and we are done. Otherwise there is
dy € {bj.....b}} such that B[ X; UC U ({b].....b;} \ {di}) U{a} is forbidden.
If for all d € {b].....b/}\ {di}. Bi1X) U C U ({b]..... b/} \ {dr.d}) U {a} is
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permitted, then take D = {b{.....b;} \ {di} and we are done. Otherwise there is
dr € {b{..... by} \ {d1} such that By | X; U C U ({b].....b.} \ {di.d2}) U {a} is
forbidden. From (4.5) it follows that by continuing in this way we will eventually
find D C {b].....b,} with at least two elements such that (4.8) holds. -

By the claim let D C {b].... b,’(} have at least two elements and satisfy (4.8). It
now follows from (4.4), (4.7), and (4.8) that B; | X; U C U D U {a} is a constraint.
Moreover, by the choice of X; and D, |X;| > (n — 2)/7 and |D| > 2, where 7 is at
most as large as the number of 3-types over (). -

COROLLARY 4.5. Let M be an infinite ternary homogeneous structure. Suppose
that n > 3, ay,....a, € M. tpy(an/an_1.....a1) divides over {ay_>.....a1},

but for every proper subset A’ C {ay_s.....a1}. tpy(an/an—1A") does not
divide over A'. Then M has a constraint with at least 3 + (n — 2)/|S{(0)]

elements.

Proor. Suppose that » > 3 and that a;.....a, € M satisfy the assump-
tions of the corollary. Let 4 = {aj.....a,—2}, F = 0 and p(x;.....x,) =
tpr(ar.....a,). Now we can argue exactly as in the proof of Proposition 4.4.
(However, I do not see how to use the statement of Proposition 4.4 directly to get
Corollary 4.5.) -

COROLLARY 4.6. Let M be a ternary simple homogeneous structure. Suppose that
a € M, A, B C M are finite sets, |B| > 2, a iﬁ B anda\L(B’for every proper subset

B’ C B. Then M has a constraint with at least 3 + (|B| — 1)/|S(0)| elements.

ProOF. Let M, a € M and A, B C M satisfy the assumptions of the corollary.
Note that the assumptions imply that acly(4)NB = (). Let py. .. .. p,, enumerate all
types in S{*'(A4) which are realized in {a} U B and let P = {p..... p}. soall types
in P are nonalgebraic. Furthermore, let M p be as in Definition 3.1. By Lemmas 3.3
and 3.4, Mp is homogeneous. simple, a <_ B and al MrB’ for every proper
subset B’ C B. Let the elements of B be enumerated as ay.....a,_; (son > 3
as |B| > 2) and let a, = a. Then tp,,, (a,/a,—1.....a) divides over () and. for
every proper subset B C {a,_1.....a1}.tp,,,(a,/B’) does not divide over (. By
transitivity. tp,,(a,/a,—1.....a1) divides over {a,_».....a;}. By monotonicity.
for every proper A’ C {a,_2,....ai}, P, (an/an—1A") does not divide over 4’. By
Corollary 4.5, Mp has a constraint with at least 3 + (|B| — 1)/|S(0)| elements.
By Lemma 3.5, so does M. -

COROLLARY 4.7. Let M be a ternary simple homogeneous structure. Suppose that
A.B C M are finite, A <|/,B, AL B for every proper subset A C A. and AL B
Sor every proper subset B’ C B. If |B| > 2 then M has a constraint with at least
3+ (|B| —1)/|SM(0)| elements.

ProoF. Let A4 and B satisfy the assumptions of the corollary, so in particu-
lar ANB = 0. Let 4 = {ay.....a,}. Then {ay,.... a,,}i, B and by symmetry,
Bl, {as.....a,} (and B L A), so we get B A @y by transitivity, and then

a....ay }

a 4 B by symmetry. If a, & B’ for some proper subset B’ C B. then (by

as,....a, {ar.....a,
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symmetry and monotonicity) {aj,...,a,} 4 B , which contradicts our assump-
tion. Hence a; J, B’ for every proper subset B’ C B. Now the result follows

from Corollary 4 6. N

COROLLARY 4.8. Let M be a ternary simple homogeneous structure. Suppose that
A.B.C C M are finite, A /I/ B and AL | B for every proper subset A’ C A, and

AL | B’ for every proper subset B’ C B Then M has a constraint with at least

3 + (|B] = 1)/|SM(0)| elements.

Proor. Like the proof of Corollary 4.6, but we use Corollary 4.7 instead of
Corollary 4.5. -

By [14, Proposition 2.5.4], the conclusion of the next lemma is equivalent to saying
that Th(M) is a low theory.

LEmMMA 4.9. Let M be a ternary simple homogeneous structure. For every formula
@(x. ) without parameters, there is k, < . depending only on . such that if ¢;.
i < w, is an indiscernible sequence and {@(x,¢;) : i < w} is inconsistent, then it is
ky-inconsistent.

PrOOF. Suppose that (¢; : i < w) is an indiscernible sequence. Since M is ternary
with elimination of quantifiers, for every m < w and all i} < -+ < i, < w,
tp v (Gipee e ¢;,) is determined by tp (0. ¢1.¢2). Let us call tp,,(¢o.¢1.¢) the
type of the indiscernible sequence (¢; : i < w). By w-categoricity, for every s < ,
there are only finitely many types of indiscernible sequences (¢; : i < ). such
that |éo| = s. By homogeneity. if (¢; : i < w) and (d; : i < w) are indiscernible
sequences of the same type and {¢(x.¢) : i < w} is k-consistent, then so is
{p(x.d;) i< w}. =

4.1. Proof of Theorem 4.1. Let M be ternary, homogeneous and simple with
only finitely many constraints. Let p be the cardinality of a constraint of M of
maximal cardinality. Note that by Proposition 4 4, whenever the assumptions of
this proposition are satisfied, then 3+ |E[/|S{(0)| < p.so |E| < (p—3) - [S{M(0)].

To prove that M is supersimple with finite SU-rank it essentially suffices to prove
the following lemma.

LEMMA 4.10. There is ny < w such that there do not exist no < n < w,a € M
and finite subsets By C By C --- C B, C M such that a B{I,Biﬂfor alli < n.

PrOOF. Suppose that a € M, By C By C --- B, are finite subsets of M and
a B{LBM for every i < n. For every i < n, we can choose a formula @, 1(x,b;11) €

tP (a. Bi11) such that @, 1 (x. bi+1) divides over B; and for every b such that rng(h)
is a proper subset of rng(b;1). every formula y(x,b) € tp\(a,b) does not divide
over B;. By Proposition 4.4 we have |b;| < p - [S{(0)| for all 0 < i < n. By w-
categoricity, there are, up to equivalence in M, only finitely many, say ¢, formulas
with at most p - [S?(0)| + 1 free variables. Note that the numbers p, |S{(0)| and
t depend only on Th(M). Moreover, by Lemma 4.9, there is k¥ <  such that, for
every i < n, pi1(x.bi+1) k-divides over B;.! Again, k depends only on Th(M). Let

IThat ®it1 (x.b;41) k-divides over B; means that there is a B;-indiscernible sequence (¢o : o < @)
such that b; .| = ¢ and {p; | (x.¢a) : @ < @} is k-inconsistent.
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f(x) = |x/t].so f depends only on Th(M) and not on n. Then, if n is sufficiently
large, thereare 0 < mgy < --- <my(,) < nsuchthatep,, (x, 7) is equivalent, in M, to
@m, (x.7) foralli < j < f(n)and g, (x. by,) k-divides over By, _; foralli < f(n).
Let us rename @, (x, 7) by w,(x, 7). From the definition of k-dividing it follows

that, for every i < f(n), w,(x, b, ) k-divides over | i<i ng(by,, ). Consequently we
have D(tp (a/Bo). yu(x. 7). k) > f(n).s0 D(x = x.y,(x. 7). k) > f(n) (by [14.
Lemma 2.3.4] for example).

As p.|S{M(0)]. 1.k and the function f(x) only depend on Th(M) and y, is
always a formula in at most p - |S31(0)| + 1 free variables (of which there are only ¢
choices up to equivalence modulo Th(M)), it follows that if such @ € M and finite
subsets By C B) C --- C B, of M exist for every n < w. then for some w(x, ) with
at most p - [S{M(0)| + 1 free variables, D(x = x.w(x.7).k) > n for every n < w,
so D(x = x,w(x. 7)., k) is infinite. This would imply. using [14, Proposition 2.3.7].
that M is not simple. Hence, there is m < @ such that if » > m then there do not
exist ¢ € M and finite subsets By C By C --- C B, of M such that a gf,BiH for

every i < n. -

By the finite character of dividing and Lemma 4.10 it follows that M is supersimple
with finite SU-rank. The second part of the theorem is a direct consequence of
Corollary 4.8. This concludes the proof of Theorem 4.1

4.2. Proof of Theorem 4.2. Suppose that M is ternary, homogeneous, super-
simple with SU-rank 1 and with only finitely many constraints. Then, as the
SU-rank of M is 1, for all « € M and B.C C M, aéﬁB if and only if

a € acly(B U C) \ acly(C). Suppose for a contradiction, that acly is not

trivial. Then there is finite A = {a;,....a,} C M such that n > 3, 4 is not
independent but every proper subset of 4 independent. Since all, {az,....ay_1}
we find, using the existence of nondividing extensions, aé,...,aﬁhl such that
tpa(ardb.....a, ) =tpylar.as. ... .a,—1) and
{4, .... a, 1}?|11,{a2 ..... dn—1}
Then there is a, € acly(ar.dj. . ... a!,_,) such that
tpaar.as.....a;) =tpplar.as. ... ay)
Now it is straightforward to verify that {ay. ..., ay. aj, . ... a)} is not independent

but every proper subset of it is independent. By repeating the procedure we obtain
arbitrarily large finite dependent B C M such that every proper subset of B is
independent. Now Corollary 4.5 implies that M has arbitrarily large constraints,
contradicting the assumption that M is finitely constrained.’

85. Definable equivalence relations and weakly isolated constraints. In order to
understand the fine structure of a simple structure M it is useful to understand the
fine structure on definable subsets of A% (and in particular of M) of SU-rank 1.

20ne can also use Lemma 3 in [9] the proof of which works out in the present context, but I chose to
give a simpler proof here.
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Also, by Observation 2.5, if M is 2-transitive and has trivial dependence, then its SU-
rank is 1 and acl v is trivial. Moreover, there are (see Section 7.3), for a vocabulary
with only one ternary relation symbol, uncountably many homogeneous 2-transitive
supersimple V' -structures with SU-rank 1 and degenerate algebraic closure. Thus
there is reason for dealing with the special case when the SU-rank is 1, even under
the assumption that the algebraic closure is degenerate. The ultimate goal would be
to find some sort of classification of such structures. We do not reach that far here.
But we do reveal some general connections between the nature of the constraints of
a structure and the existence of nontrivial definable (with parameters) equivalence
relations in it. Here, an equivalence relation is called nontrivial if it has more than one
equivalence class and has at least one equivalence class with more than one element.
The question whether there is a ternary, homogeneous, supersimple structure M
with SU-rank 1 that contains a finite subset 4 C M such that |4| > 3. 4 is not
independent (over ()) but every proper subset of A is independent remains open.
Note that by Theorem 4.2 such an example, if it exists, must have infinitely many
constraints.

DEerFINITION 5.1. Let V' be a finite relational vocabulary.

(i) Let A and B be V-structures with the same universe and let a, b, ¢ be distinct
elements from their universe. We say that A and B are (a, b, ¢)-neighbours if for
every finite sequence d of elements from their universe such that {a. b. ¢} Z rng(d).
tpli(d) = tp (d).

(ii) Suppose that M is a ternary homogeneous structure and let C be a constraint
of M. We say that C is weakly isolated (with respect to M, or the age of M) if for
every choice of distinct a.b.c € C, C has a (a. b, ¢)-neighbour which is permitted
with respect to M. We say that C is isolated (with respect to M, or the age of M) if
for every choice of distinct a. b, ¢ € C. every (a.b. ¢)-neighbour of C is permitted
with respect to M.

All examples known to the author of ternary 2-transitive homogeneous supersimple
structures with SU-rank 1 have only weakly isolated constraints. Note that if we
work with 3-hypergraphs, then the notions ‘isolated’ and ‘weakly isolated’ coincide.
It will turn out that the existence of constraints which are not weakly isolated
is related to the existence of nontrivial definable (with parameters) equivalence
relations. But first we consider the case when the age of a structure has the free
amalgamation property.

PROPOSITION 5.2. Suppose that M is homogeneous and that its age has the free
amalgamation property. Then for every finite A C M and every nonalgebraic p(x) €
S{M(A), there is no nontrivial A-definable equivalence relation on p(M).

PrOOF. Let M satisfy the assumptions of the proposition. (We can assume that
M is infinite, which would follow if we assumed that M was simple. For if M is finite
then all types are algebraic and the result follows automatically.) It implies that acl
is degenerate, forif b € M and a € M \ rng(h), then, by free amalgamation (in fact
disjoint amalgamation suffices), for every n there are distinct ay,....a, € M such
that a;b Ejl\f/[ ab for all i and by elimination of quantifiers we get a;b = ab for
all i, so tp ,(a/b) cannot be algebraic. Suppose for a contradiction that 4 € M is
finite, p € S{*'(4) is nonalgebraic and that E is a nontrivial 4-definable equivalence

https://doi.org/10.1017/js1.2018.61 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.61

1706 VERA KOPONEN

relation on p(M). Since acl 4 is degenerate it follows that every equivalence class of
E is infinite. Since M is homogeneous it follows that E is defined by a quantifier-free
formula with parameters from 4.

First suppose that if a,b € p(M) are distinct and E(a. b). then there is some
¢ € A such that some permutation of ab¢ is a relationship. As E is nontrivial on
p(M) there are distinct a,b € p(M) such that E(a.b). Let Ay = M|(4 U {a})
and A; = M[(4 U {a.b}). Furthermore, let A, be an isomorphic copy of A; such
that Ay C Ay and 4, \ (4 U {a}) = {b’'} where b’ # b. By free amalgamation the
free amalgam, say BB, of A; and A, over Ay is permitted. Without loss of generality
we may assume that B C M, so that also b” belongs to M. As E is an equivalence
relation and E (a, b) and E (a. b’) we must have E (b, ") But as B is the free amalgam
of A and A,. thereis no ¢ € A such that some permutation of bb'¢ is a relationship.
Since E(b.b’) holds this contradicts our assumption.

Now suppose that there are distinct a. b € p(M) such that E(a. b) and there isno
¢ € A such that some permutation of ab¢ is a relationship. Since M has elimination
of quantifiers (and the vocabulary is finite and relational) it follows that

if a,b € p(M) are distinct and there is no ¢ € A4 such that some (5.1)
permutation of ab¢ is a relationship, then E (a.b).

Let aj.,a; € p(M) be distinct but otherwise arbitrary. We will show that E (a;. a;)
which contradicts that E is nontrivial. Let 49 = M[(4 U {a;}) and A = M|
(A4 U{ay.a2}). Since every E-class is infinite there is b € p(M) \ {a;} such that
E(ay,b). Let Ay = M[(A U {ay.b}). By free amalgamation the free amalgam, say
B. of A; and A, over Ay is permitted. Without loss of generality we may assume
that B C M. It follows from (5.1) that E(a, b). Since E is an equivalence relation
and E(a;.b) we get E(ay. az). -

The next two lemmas are just straightforward observations, most likely noticed by
others before, but we nevertheless give their proofs.

LEMMA 5.3. Suppose that M is w-categorical and supersimple with SU-rank 1.
Also assume that there are finite A € M and distinct b,c € M \ acly(A4) such that
¢ € aclag(bA) \ acln((A). Then, letting py = tp(b/A) and py = tp(c/A). there
is a nontrivial A-definable equivalence relation on p1(M) U py(M) with only finite
equivalence classes.

PrOOF. Let A C M be finite and let b,c € M \ acly(A4) be distinct such that
¢ € aclp(bA) \ aclp(4). Let pi(x) = tp(b/A) and pa(x) = tpr(c/A4). As M
has SU-rank 1 (so (M. acl,) is a pregeometry) and is w-categorical it follows that
if we define E(x. y) if and only if x € aclr(pA4). then E is a nontrivial A-definable
equivalence relation on p; (M) U p2(M) with only finite equivalence classes. -

LeEmMA 5.4. Suppose that M is w-categorical. The following are equivalent for any
finite A C M:
(a) Thereareb,c € M \ acla(A) such that tp ,(b/A) = tp ,(c/A) and
tp yea (b/aclpgea (A)) # tp pgea(c/aclpea (A)).
(b) There are a nonalgebraic p € S{*'(A) and a nontrivial A-definable equivalence
relation on p(M) with only finitely many equivalence classes all of which are
infinite.
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Proor. The implication from (a) to (b) follows from the fact (Fact 2.6(iii)) that
the equivalence relation

tP e (x/aCIMeq (4)) = P pgeq (y/aCIMeq (4))

on p(M) is A-definable and has only finitely many equivalence classes all of which
are infinite (since p = tpaq(b/A) is nonalgebraic).

Suppose that (b) holds and let £ be a nontrivial A-definable equivalence relation
on p(M). Let a enumerate A and let n = |a|. Define the following equivalence
relation on M"*!: E'(x%. y7) if and only if

X =7 and tp e (x/aclpea (X)) = tp ppea(¥/aclpea (X)).

By a straightforward argument. using. Fact 2.6, it follows that E’ is a ()-definable
equivalence relation. As we assume that E is nontrivial on p(M) there are
b.c € p(M) such that —E (b, c). from which it follows (since E is A-definable)
that =E’(ba. ca). By Fact 2.6, only finitely many complete types over acl e (A) are
realized in M . so the E’-classes of ha and of ¢a belong to acl e (A). Consequently
b and ¢ have different types over acl et (A4). 4

We have seen above that if the algebraic closure is degenerate, then the existence
of definable equivalence relations is related to the existence of elements having (for
some finite set 4) the same type over 4 but different types over aclpq(A4). The
next result and its corollary implies that if M is finitely constrained, then every
nontrivial definable equivalence relation (on a nonalgebraic type) is determined by
equivalence relations which are definable over sets of parameters of bounded size.

THEOREM 5.5. Let M be ternary, homogeneous and supersimple with SU-rank 1
and degenerate algebraic closure. Suppose that A C M is finite, that p € S{*(A4)
is nonalgebraic and that there are b.c € p(M) such that tp ye(b/aclpea(A4)) #
tp e (¢/aclpgea(A)) and for every proper subset A" C A, tp e (b/aclpgea(A’)) =
tp pgea (€/aclpgea (A7), Then M has a constraint C with at least 3 + |A|/|S{(0)]
elements.

PROOF. Suppose that 4 C M is finite, let p € S{*(A) be a nonalgebraic type
and suppose that there are b,c € p(M) are such that tp e (b/aclpea(A4)) #
tp e (¢/aclpgea(A)) and for every proper subset A’ C A, tp yiea(b/aclpgea(A4”)) =
tp v (c/aclpgea(A)). If we define E on p(M) by E(x.y) if and only if
tp v gea (X/aClpgea(A4)) = tp pgea (¥/aclpgea (A)), then (by Fact 2.6) E is an A-definable
equivalence relation with only finitely many equivalence classes all of which are
infinite (since acl4 is degenerate). By the choice of b and ¢, —=E(b. ¢). As all equiv-
alence classes are infinite there are a,a’ € p(M) \ {b.c} such that E(a.b) and

E(a’.c).
Let 4 = {ay,....a,}. a = (ai,...,a,) and let F be a structure with universe
F = AU{a,b,c} and such that

tquf(b, c.d) = tpjl\f,t(b,c,d), (5.2)
tquf(a,b,d) = tpjl\f,[(a,b,d), and
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Since M has elimination of quantifiers there is a quantifier-free formula ¢(x, y, Z)
without parameters such that ¢(x,y.a) defines E. We claim that F is forbid-
den. If not, then there is an embedding f : 7 — M. By quantifier-elimination,
tpr((f(a)) = tp (@) and consequently ¢(x, y, f(@)) defines an equivalence rela-
tion on ¢g(M) where g(x) = {@(x. f(a’)) : ¢(x.a’) € p}. Butas f is an embedding
and ¢ is quantifier-free we get

M o(fla). f(B). f(@)) Ne(f(a). f(c). f(@) A—p(b.c. f(a)).

which contradicts that ¢(x, y. f(a)) defines an equivalence relation on ¢(M). Thus
F is forbidden, no matter how tpg_f (a.b. c)ischosen. Hence every (a. b, ¢)-neighbour
of F is forbidden.

Cram. Foreveryi € {l,..., n}, FI(F\{a;}) hasan (a. b, ¢)-neighbour P; which
is permitted.

PrOOF. Leti € {l,...,n} and let 4; = A\ {a;}. By the choice of » and ¢ and
since E(a.b) and E(a’, ¢) we have tp (e (a/aclpgea (4;)) = tp e (@’ /aclpgea(4))).
Since we assume that M is supersimple with SU-rank 1 and acl is degenerate we
have a L b, a’l cand b?!/ c. The independence theorem of simple theories (and the

i i

fact that M is w-saturated) thus implies that there is a”’ € M such that
tpr(a”/bA;) = tpy(a/bA;) and tp,,(a”/cA;) = tpy(a’/cA;).

Let P; be structure with universe 4; U{a, b, ¢} such that the map which sends a” to a
and every element in 4;U{b, ¢} toitself is an isomorphism from M [(4; U{a”. b, c})
to P;. By the choice of ¢” and since the language is ternary it follows that P; is
permitted and is an (a. b, ¢)-neighbour of F. =

Let © = |S{(0)|. By the pigeon hole principle there are m > n/t and B C A
such that |B| = m and for all ¢;.a; € B, tp%fl_ (a.b.c) = tp;lpfj (a.b.c). To simplify
notation we assume that B = {ay, ..., an . Now we have that

Pil(A\{ai.a;})U{a.b.c} = P;(A\{a;.a;})U{a.b.c} whenever 1 <i < j < m.
Therefore we can define a structure 7’ with universe F' = A U {a. b, ¢} such that
tquf,(b,c,al,...,a,,) = tpjl\f/[(b,c,al ..... a,) and,foralli =1,....m,

f f
tp (a.b.c.ar.....ai1.ai1.....a,) = tpp (a.b.c.ar.....ai-1.aiq1.....a4y).

Note that for all triples (d;. d>. d3) € (F')3 except permutations of (a. b. ¢). we have
tquf/(dl, dr.d3y) = tpc}_f(dl, dy.d5). Therefore F' is forbidden. By construction we
also have that

foreveryd € {a.b.c.ay...., am}, F'IF'\ {d} is permitted. (5.3)

The next claim is proved similarly as the first claim in the proof of Proposition 4.4
so we omit its proof.

Cram. Thereis D C A\ B such that F'|B U D U{a,b,c} is forbidden and for
everyd € D, P[(BUD U{a,b.c})\ {d} is permitted.

Let D C A\ B be as in the claim. From (5.3) it follows that 7/|B U D U{a.b,c} is
a constraint with at least 3 + |B| > 3 + | 4|/|S"(0)| elements. o

https://doi.org/10.1017/js1.2018.61 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.61

ON CONSTRAINTS AND DIVIDING 1709

COROLLARY 5.6. Suppose that M is ternary. homogeneous and supersimple with
SU-rank 1 and degenerate algebraic closure. Furthermore, assume that M has only
finitely many constraints. Then there is n < w such that for every finite A C M,
every nonalgebraic p € S{M(A) and all a.a’ € p(M), if tp ppe(a/aclpe(B)) =
tp v (@’ /aclpgea(B)) for all B C A with |B| < n. then tp e (a/aclye(A4)) =
Pvga (@' facl g (4)).

Proor. Let M satisfy the assumptions of the corollary. If the conclusion is
false, then, for every n < w, there is finite 4, C M such that |4,| > n, and
nonalgebraic p € S{M(4,) and b.c € p(M) such that tp .q(b/aclpea(4,)) #
tp e (¢/aclpgea(4,)) and for every proper subset B C A, such that |B| < n,
tp v (b/aclpea(B)) = tpagelc/aclye(B)). By considering subsets of A, of
cardinality at least n we find, for each n, 4, C A, such that n < |A4}].
tP pgea (b/aClpgea (A]))) # tP pgea(¢/acipgea (A],)) and for every proper subset B C A,
tp oo (b/aclpgea (B)) = tp pqea(¢/aclpgea (B)). By Theorem 5.5, there is a constraint
with at least 3 + n/|S3*!(0)| elements for each n < w. This contradicts that M has
only finitely many constraints. -

The next theorem and its corollaries relates weakly isolated constraints to the
existence of definable equivalence relations.

THEOREM 5.7. Suppose that M is ternary, homogeneous and supersimple with SU-
rank 1. If C is a constraint of M with at least three elements, then at least one of the
following two conditions holds:

(a) Cis weakly isolated.
(b) ThereisD C Cwith|D| = |C|-3 such that for every embedding f : D — M,
(i) There are (not necessarily distinct) nonalgebraic types pi.p» €
SM(f (D)) and a nontrivial f(D)-definable equivalence relation on
p1(M) U pr(M) with only finite equivalence classes or
(ii) There is a nonalgebraic type p € S{M(f (D)) and a nontrivial f(D)-
definable equivalence relation on p(M) with only finitely many equivalence
classes all of which are infinite.

Proor. Let C be a constraint of M with at least three elements, let a,.b,¢c € C
be distinct and let D = C \ {a.b.c}. Since C[D U {b.c} is permitted and is M
homogeneous we may. without loss of generality, assume that C[D U {b,c} C M.
Since C[D{a.b} is permitted we may also assume that C[D U {a.b} C M. As
CID U {a,c} is permitted there is ' € M such that if d enumerates D, then
tp?\f/t(a’ e.d ) = tpgf(a, e.d ). Note that by elimination of quantifiers in M we have
tpy(a'/D) = tprg(a/ D).

First suppose that

b%c, (5.4)
a\l|_),b, (5.5)
a’\D,c, and (5.6)
tp pgea (@/aclpgea (D)) = tp e (@’ Jacipgea (D). (5.7)
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Then the independence theorem for simple theories implies that there is ¢’ € M
such that

tp(a”/bD) = tp,(a/bD). tp(a” JeD) = tp,(a’/cD), and a"\l_),bc. (5.8)

Let C* be the unique structure with universe C such that the following map f is
an isomorphism from M|D U {a”.b,c} to C*: f(a”) = a and f is the identity
on D U {b, c}. Then C* is permitted and, since the language is ternary, an (a.b.c)-
neighbour of C. If (5.4)—(5.7) hold for every choice of distinct @, b. ¢ € C. then C is
weakly isolated.

We conclude that if C is not weakly isolated, then there are distinct a,b,¢c € C
such that at least one of (5.4)—(5.7) fails. If (5.4) fails, then, since the SU-rank of
Mis 1, b € aclp(eD) \ aclpq (D). Tt follows from Lemma 5.3 that if p; = tp,,(b)
and p> = tp,,(c). then there is a nontrivial D-definable equivalence relation on
p1(M) U pr(M) with only finite classes. If (5.5) or (5.6) fails then we argue in the
same way. If (5.4)—(5.6) hold and (5.7) fails, then, by Lemma 5.4, with p = tp ,,(a)
there is a nontrivial D-definable equivalence relation on p(M) with only finitely
many equivalence classes all of which are infinite. -

COROLLARY 5.8. Suppose that M is ternary, homogeneous and supersimple with
SU-rank 1. Furthermore, suppose that for every finite A C M and all (not necessarily
distinct) nonalgebraic py. p» € S{*(A) there is no nontrivial A-definable equivalence
relation on p1 (M) U pa(M) except, if py # pa. for the equivalence relation: “x and y
have the same complete type over A”. Then every constraint of M is weakly isolated.

Proor. If the assumptions of the corollary are satisfied. then, for every constraint
C. condition (b) of Theorem 5.7 fails, so C must be weakly isolated by the same
theorem. 4

COROLLARY 5.9. Suppose that M is ternary, homogeneous, supersimple with SU-
rank 1 and that its age has the free amalgamation property. Then every constraint of
M is weakly isolated.

Proor. Note that if M satisfies the assumptions then acl is degenerate. There-
fore condition (i) of Theorem 5.7 cannot hold. The conclusion now follows from
Proposition 5.2 and Theorem 5.7. -

For some questions left unanswered, see Section 8.

§6. Definability of binary random structures. Suppose that M is ternary, homo-
geneous, supersimple with SU-rank 1 and degenerate algebraic closure. We saw in
the previous section that if for every finite A C M and every nonalgebraic type
p € SM(A), there is no nontrivial 4-definable equivalence relation on p(M), then
every constraint of M is weakly isolated. The following question remains open:
Is there M with the properties assumed above such that there is no nontrivial
()-definable equivalence relation on M, but for some finite 4 C M and some nonal-
gebraic p € S{*'(4), there is a nontrivial A-definable equivalence relation on p(M)?
Proposition 6.5 below implies that if M is, in addition, symmetric and 2-transitive,
and A is a singleton, then there is no nontrivial A-definable equivalence relation on
M \ A. A direct consequence (Corollary 6.6) is that, with the same assumptions on
M, a binary random structure is definable in M using only one parameter. Thus, if
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M is not 3-transitive, then the Rado graph is definable in M. The first result of this
section has a similar conclusion, but starts from more general assumptions. It also
gives information about the fine structure of M.

DEerINITION 6.1. Let M be a binary structure and E an equivalence relation
on M. Here we say that M satisfies extension properties relative to E if whenever
0O<n<w, ay.....ay.by,....b, € M, all by....,b, belong to the same E-class

and b; # a; for all i, then there is b € M such that tp ,,(a;.b) = tp,(a;. b;) for all
i=1,....n.

Although the context here is partly the same as that studied by Ahlman [1] (in
particular Theorem 5.7 of [1]) the definition of extension properties is different
here, because we can do with the simpler definition above. (The more complicated
definition of ‘¢-extension properties’ in [1] makes sense in a more general context,
including that of considering a class of finite structures and asymptotic probabil-
ities.) Extension properties relative to some equivalence relation can be useful for
understanding what the age of the structure looks like. Moreover, under suitable cir-
cumstances extension properties can be used to carry out a back-and-forth argument
which establishes that a structure has certain properties, like being homogeneous.

DErFINITION 6.2. Let M be an w-categorical V -structure where V' is a finite
relational vocabulary. Suppose that A C M is finite, P C S{*(A4) and let V4 be the
vocabulary and M p the V4-structure in Definition 3.1. Then M, be the reduct of
M p to the vocabulary V4 \ V.

Observe that if M is ternary then M is binary.

PROPOSITION 6.3.  Suppose that M is ternary, homogeneous. supersimple with SU-
rank 1 and with degenerate aclyq. Let A C M be finite and let P C SIM (A) be a
nonempty set of nonalgebraic types.

(1) M3 is supersimple with SU-rank 1.
(ii) The algebraic closure operator in My, is degenerate.

(iii) M satisfies extension properties relative to the following 0-definable (in M} )

equivalence relation: E* (x. y) if and only if

tp(M;)éq (x/aCI(M;)Eq (@)) = tp(/\/(;)eq (y/aCI(M;)Eq ((Z)))

(iv) EF is definable (in M} ) by a quantifier-free formula without parameters.

Proor. We first note that M, is interpretable in M with finitely many parameters
(those in A). So by Fact 2.7, M, is w-categorical and supersimple with SU-rank 1,
so (i) is proved. Part (ii) is a straightforward consequence of the fact that M}, is
interpretable in M in such a way that every element a € M corresponds (via the
interpretation) to the =-class of a in M (so essentially the interpretation identifies
every a € M, with itself).

(iii) Suppose that 0 < n < w. ay.....a,.by.....b, € M. all by, .... b, belong
to the same E”-class and b; # a; for all i. Assuming (without loss of generality)
that a; # a; if i # j it follows that {a;.....a,} is an independent set (as M} has
SU-rank 1 and degenerate algebraic closure). Moreover, EZ (b;, b;) implies that

PP )ea (bi/aCI(M;)eq () = PP )ea (bj/aCI(M;)eq ()
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for all i and j. Since M, is w-categorical (and hence ‘small’) it follows from [14,
Corollary 5.3.5] that b; and b; have the same Lascar strong type over (). for all i and
j. Hence the independence theorem for simple theories [14, Theorem 3.2.8] implies
that there is » such that P (a;.b) = P (a;.b;) foralli =1.....,n.

(iv) By Fact 2.6 (iii), E” is (-definable in M. For a contradiction, suppose that
ET is defined by a formula denoted ¢(x,y) and that no quantifier-free formula
defines E”. Then we can find a1. a2, b1, b, € M} such that

M; )Z —\Lp(al,az) A\ (p(bl,bz), and aja» E'C/l\f/l; b1bs.
From a;a; E.C/l\f/l_ b1b> and the definition of M, it follows that

tpjl\f/t (Cll, Clz/A) = tp;l\f/[ (bl, bz/A).

As M is homogeneous there is an automorphism of M which sends a;a; to b1b;
and fixes 4 pointwise. By the definition of M, , the restriction of this automorphism
to M, is an automorphism of M. so aja, =M biby. Hence M, = p(ar. az) A
@0(b1.b2) or My | —pl(ar.az) A —p(by.by), but in either case it contradicts our
assumption. -

DErFINITION 6.4. We say that a relational structure M is symmetric if for every
relation symbol R and every @ € M, M = R(a) if and only if M = R(a’) for
every permutation @’ of a.

PROPOSITION 6.5. Suppose that M is ternary, symmetric, 2-transitive, homoge-
neous, supersimple with SU-rank 1 and with degenerate algebraic closure. If b, b’, a €
M and tp\,(b/a) = tp,(b'/a). then tp seq (b/aclpgea(a)) = tp psea (b’ /aClpgea(a)).
Consequently (by Lemma 5.4 and Theorem 5.7) every constraint of cardinality 4 is
weakly isolated.

PROOF OF PROPOSITION 6.5. Let a € M, A = {a}, let p be the unique nonalge-
baric 1-type over 4 and let P = {p}. Also let E” be as in Proposition 6.3, so E”
has only infinite equivalence classes and only finitely many equivalence classes. It
suffices to prove that E* has only one equivalence class.

Since M 1is 2-transitive it follows that if «’.h € M are distinct and ¢(x)
tp((b/a’). then everything that we say about M}, also holds for M, where O

{gq}. Let

Ef(x.p).....E{(x.y)

enumerate all 2-types (over () in M, which imply that E”(x, y). We will nota-
tionally identify each Ef with the quantifier-free formula which isolates it. Then
E*(x.y) is equivalent, in M. to E{ (x.y) V-V EF(x. p).

Suppose that E” has at least two equivalence classes and let X, X¥ be two
distinct £7-classes. The argument now splits into two cases. both of which will lead
to a contradiction. Since the cases cover all possibilities it follows that £7 has only
one class.

Cask 1. Suppose that there are distinct b, b’,b” € M, suchthatb € X[, b'.b" € XI
and M, = E 2(b,b"), where ¢ is the unique nonalgebraic 1-type over {6’} in M
and Q = {q}.
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From the symmetry of ()-definable ternary definable relations in M we get 5’6" a =
b"ab'.Since M, = E(b'.b") it follows that M, |= EQ(b".a). As E?is transitive
(being an equivalence relation) we get M, |= E9(b.a). so M, El.Q(b, a) for
some i. Since E,Q (x.y) isolates a type in M, it follows from the definition of M,
that EI-Q(x, y) determines the type of xyb’ in M (i.e.. if M, = E,-Q(c, c’) /\El-Q(d, d’)
then cc’b’ =, dd'b’). By the symmetry of definable ternary relations in M we
get bab’ = bb'a. Then M, = EF(b.b’) and hence M, = ET(b.b’) which
contradicts the choice of » and 4’.

CasE 2. Suppose that for all distinct b,6.0"” € M, . if b € X' and b'.0" € X7,
then M, = —E 2(b,b"), where ¢ is the unique nonalgebraic 1-type over {6’} in M
and Q = {q}.

Given b € X! let r(x) be the unique nonalgebraic 1-type over {b} in M and
let R = {r}. If b'.0" € X[ are distinct we have M, = —E©(b,b") (where Q
depends on b’) and from the symmetry of ()-definable ternary relations in M we get
My = —ER(b'.b"). Since we can fix (any) b € X[ and then vary b’,b" over all
pairs of distinct elements in X7 it follows, as X7 is infinite, that E® has infinitely
many equivalence classes. But since £ER has only infinite equivalence classes this
contradicts that M has SU-rank 1.

Now we show that every constraint of cardinality 4 is weakly isolated. Suppose for
acontradiction that C is a constraint of cardinality 4 that is not weakly isolated. Since
M has (by assumption) degenerate algebraic closure it follows from Theorem 5.7
that there is @ € M, a nonalgebraic p € S{*'({a}) and a nontrivial equivalence
relation on p(M) which is {a }-definable and all of its equivalence classes are infinite.
By Lemma 5.4, there are b, b’ € M such that tp ,,(b/a) = tp (b’ /a) and

tp agea (b/aclpgea (@) # tp pgea (b /aclpgea (@)).
But this contradicts what we have proved. -

COROLLARY 6.6. Suppose that M is ternary, symmetric, 2-transitive, homogeneous,
supersimple with SU-rank 1 and with degenerate algebraic closure. Let a € M and let
p(x) be the unique nonalgebraic 1-type of M over {a}. Then M{*p} is a symmetric
binary random structure.

Proor. By Proposition 6.3, M{*p} is w-categorical, supersimple with SU-rank 1
and degenerate algebraic closure. As M is symmetric it follows from the definition of
ME o} that pr} is symmetric. Since M is 2-transitive it follows (by the definition

of M{_p}) that M{_p} has a unique 1-type over ). Now Proposition 6.5 implies
that M., has a unique 1-type over acl M) (0). Hence E{7} (as in part (iii) of
P

Proposition 6.3) has only one equivalence class. It follows from Proposition 6.3(iii)
thatif 0 < n < w, ay...., an.by,....b, € M; | and b; # a; for all i, then there
. - {r} .

is b € M, such that tpsz} (a;.b) = tpM{fp}(ai,b,») foralli = 1.....n. From
this it follows that pr} has no constraint of cardinality greater than 2. To show
that M{_p} is a random structure (recall Definition 2.2(v)) it remains to show that
M{*p} is homogeneous. But since M{*p} has a unique 1-type and has no constraint
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of cardinality greater than two it follows immediately that its age has the disjoint
amalgamation property and therefore M{*p} is homogeneous. (Homogeneity can
also be proved by a back-and-forth argument which builds up an automorphism
that sends a given tuple to any other given tuple that satisfies the same quantifier-free
formulas.) B

§7. Examples. Here we give examples of ternary 2-transitive homogeneous
supersimple structures with SU-rank 1 and degenerate algebraic closure. The exam-
ples in Sections 7.1 and 7.2 are known. Section 7.3 shows that even if the vocabulary
V' contains only one relation symbol which is ternary there are uncountably many
homogeneous 2-transitive supersimple V -structures with SU-rank 1 and degen-
erate algebraic closure. In Section 7.4 we give an example of a homogeneous
ternary 2-transitive structure which is a reduct of the generic tournament. I have
not encountered the examples from Sections 7.3 and 7.4 in the literature or in the
oral “folklore”.’

All examples in Sections 7.1 — 7.4 have only weakly isolated constraints. Also, the
same examples split into two categories: the examples with the free amalgamation
property: every other example (i.e., those in Sections 7.2 and 7.4) is a reduct of a
binary random structure.

If, for some vocabulary V', C is a class of finite J -structures, then F(C) denotes
the class of all finite V/-structures .4 such that no member of C embeds into A.
If C = {Cy.....Cx}, then we may write F(Cy....,C;) instead of F(C). We will
consider examples in which we consider only structures in which some relation
symbol is always interpreted as a symmetric relation and in these cases we do not
explicitly mention the constraints which express this.

7.1. Forbidding 3-irreducible structures. The notion of ‘indecomposable struc-
ture’ used by Henson in [11] has been generalized by Conant to the notion of
‘k-irreducible structure’ in [8]. We say that a structure A (in any relational lan-

guage) is k-irreducible if for any choice of k elements a,....a; € A thereis a
relationship @ (of A) such that a;....,a, € rng(a). We will use the following two
results.

Facrt 7.1. (Henson [11, Theorem 1.2]) For any finite relational vocabulary V . if
C is a class of finite V -structures and every member of C is 2-irreducible, then F(C)
has the free amalgamation property.

We recall that if K has the disjoint amalgamation property (and the hereditary
property) then the Fraissé limit of K has degenerate algebraic closure. Part (a) of
the following result shows how to construct many ternary homogeneous supersimple
structures with SU-rank 1 and degenerate algebraic closure. It will be used more
systematically in Section 7.3. If A and B are relational structures with the same
vocabulary and f : A — B we call f a homomorphism from A to B if for every
relation symbol R and every @ € A. A = R(a) implies B = R(f (a)).

Fact 7.2 (Conant [8, Theorem 7.22]). Let V be a finite relational vocabulary
and suppose that C is a set of finite V -structures such for any two different A, B € C

3In [3] Akhtar and Lachlan show that there are uncountably many homogeneous 3-hypergraphs, but
it seems like their examples are not simple although I have not checked this.
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there is no injective homomorphism from A into B. Let K be the class of all finite V -
structures A such that for every C € C there does not exist an injective homomorphism
from C into A.

(a) If every structure in C is 3-irreducible then the Fraissé limit of K is supersimple
with SU-rank 1 and degenerate algebraic closure.

(b) IfK has the free amalgamation property, then its Fraissé limit is simple if and
only if every member of C is 3-irreducible.

REMARK 7.3. (a) Part (a) of Fact 7.2 holds (by inspection of its proof) if ‘K’ is

replaced by ‘F(C)” and the assumption on C is changed as follows: suppose that for
any two different A, B € C, there is no embedding from A into 3. (This observation
is due to Gabriel Conant.)
(b) If we want to consider a class of finite structures in which some relation symbol,
say R, is always interpreted as a symmetric relation, then, in order to use Fact 7.2,
we must not add constraints to C which express this. Instead we just ignore all
structures in which R is not interpreted as a symmetric relation. To see why, con-
sider this example: The structure A = ({a.b.c}. R*). where R* = {(a.b.c)}.
does not belong to the class of all finite 3-hypergraphs (viewed as { R}-structures)
because R is not a symmetric relation, but there is an injective homomorphism
from A into any 3-hypergraph with at least one edge. Consequently, the class of
all finite 3-hypergraphs which do not have a complete 3-hypergraph on 4 ver-
tices as a subgraph cannot be described in the framework of Fact 7.2, unless we
simply ignore all {R}-structures in which R is not interpreted as a symmetric
relation.

(c) Note that if V' is ternary and K is as in Fact 7.2 and every member of C is
3-irreducible, then every constraint of K is weakly isolated.

A particularly well known example that can be obtained from Fact 7.2(a) with
the interpretation of part (b) of the above remark is the generic tetrahedron-free
3-hypergraph, that is, the Fraissé limit of the class of all finite 3-hypergraphs into
which K4 cannot be embedded, where K4 denotes the complete 3-hypergraph on
4 vertices. As a contrast consider the following example. Let X, be the result of
removing one hyperedge from 4. Since K, and Ky are 2-irreducible, F(K; . K4)
has the free amalgamation property by Fact 7.1. Since K, is not 3-irreducible
it follows from part (b) of Fact 7.2 that the Fraissé limit of F(K; ,K4) is not
simple. But it is superrosy with thorn rank 1, which can be concluded from
results in [8].

7.2. The “parity 3-hypergraph”. In [3] Akhtar and Lachlan study infinite homo-
geneous 3-hypergraphs. One of the examples that they consider is the following one,
which they attribute to Cherlin and Macpherson. Let V' = {R} and Vp = {E}
where E is a binary and R a ternary relation symbol. Let G be the Rado graph, with
vertex set G, viewed as a Vg-structure. Furthermore, let H be the 3-hypergraph,
viewed as a V-structure with the same vertex set as G (i.e., H = G) where, for all
distinct vertices a, b and ¢. H = R(a. b, ¢) if and only if the number of edges (of G)
between elements in the set {a, b. ¢} is odd. As explained in [3], H is homogeneous.
Since H is a reduct of G and G is supersimple with SU-rank 1 and with degenerate
algebraic closure, the same is true for H (by Fact 2.7).
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The structure H can also be characterized in the following way (and we refer
to [3] for more explanations of the nontrivial claims that follow). Let C; and
C3 be 3-hypergraphs with exactly four vertices and such that C; has exactly 1
hyperedge and C; has exactly 3 hyperedges. Then F(C;,C3) has the disjoint amal-
gamation property (but not the free amalgamation property) and # is the Fraissé
limit of F(Cy.C3). It is immediate that both C; and C5 are isolated with respect to
F(C1.C3).

7.3. Uncountably many ternary homogeneous simple structures. Let 1 = {R}
where R is a ternary relation symbol. With the help of Fact 7.2 we modify, for
our purposes, the construction which Henson used to obtain uncountably many
homogeneous directed graphs [11]. For each 2 < n < w, let H,, be the V' -structure
with universe {0, ..., n} such that

o if H, = R(a.b,c) then a. b and ¢ are distinct, and
e for all distinct a, b, ¢ € {0,...,n},

H, | —R(a,b,c)ifand onlyifa = 0,5 > 0 and eitherb <nandc = b+ 1,
orb=nandc = 1.

LemmaA 7.4. If n # m then there is no embedding from H, to H,,.

PrROOF. Let n < m. Suppose for a contradiction that f : H, — H, is an
embedding. First note that in both #,, and #,, all elements but 0 satisfy the following
formula:

Vy.z(x #y ANy #zAx#z — R(x..2)).

Hence f(0) = 0. Observe that the map g : {0....,n} — {0.....n} given by
g(0) =0, g(k) =k+1if0 < k < nand g(n) = 11is an automorphism of
H,. Therefore we may, without loss of generality, assume that /(1) = 1. By the
definition of H,, for each k € {1,...,n} thereis a unique/ € {1,.... n} such that
H, E —R(0.k,/) (and we must have either / = k + 1 or/ = 1 and k = n). The
same is true if n is replaced by m. It follows that we must have f (k) = k for all
k € {1,...,n} and consequently » = m which contradicts our assumption. -

LetS={H,:2<n<w}and T C S. Clearly. for every 2 < n < w, H, is 3-
irreducible and hence 2-irreducible. So by Fact 7.1, F(T) has the free amalgamation
property and (since it obviously has the hereditary property) we can let Mt denote
the Fraissé limit of F(T). From Lemma 7.4, Fact 7.2(a) and Remark 7.3(a) it
follows that M is supersimple with SU-rank 1 and degenerate algebraic closure.
From Lemma 7.4 again, it follows that if 7 and 7’ are different subsets of S.
then Mt 2 My.. As T C S can be chosen in 2” ways, we get 2* nonisomorphic
(countable) structures Mr. It follows directly from the definitions that for every
T C S and every H,, € Cr. H, is isolated with respect to Mr.

7.4. A ternary homogeneous structure which is a reduct of the generic tournament.
Let £ be a binary relation symbol and let D be the class of all finite tourna-
ments, viewed as { E }-structures. It is easy to see that D has the hereditary property
and the (disjoint, but not free) amalgamation property. Let G be the Fraissé limit
of D.

https://doi.org/10.1017/js1.2018.61 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.61

ON CONSTRAINTS AND DIVIDING 1717

DEFINITION 7.5. Letl <n < w and (ay.....a,). (b1.....b,) € G". We define

(ar,....an) =y (b1.....by)
if and only if the following two conditions hold:
(a) For all 1 < l] <mn,a; =a; @bi :bj.
(b) Either
forall 1 < l] <n. g ': E(a,-,aj) < E(bi,bj),
or, forall 1 < l] <mn, g ': E(ai,av,‘) — E(bj,b,’).

Observe that ‘~,” is an equivalence relation which is ()-definable in G. Also note that
for all pairs of distinct elements (a;.a>). (b1. b2) € G* we have (a1, az) ~> (b1, by).

LEMMA 7.6. Letn > 3 and (ay, ..., a,).(by.....b,) € G". Then (ay.....a,) ~,
(b1.....by)ifand only if for all distinct i, j.k € {1.....n},(a;.a;,ax) =3 (bi,b;. by).

PrOOF. Only one of the implications is nontrivial. Let (ay. .. .. a,).(by.....b,) €
G" where n > 3 and suppose that (a;.a;. ar) ~3 (b;.b;. by) for all distinct i, j. k €
{1,....n}. By induction on n we prove that (ay,...,a,) =, (b1,....b,). The base

case is 7 = 3 and then there is nothing to prove.
So suppose that n > 3. By the induction hypothesis, for every i € {1,...,n},

(al,...,ai,l,aiﬂ,...,an) -1 (b],...,b,;l,le,...,bn). (7.1)

In particular we have (ai.....a,_1) ~n,_1 (b1.....b,_1). so either for all dis-
tinct i,j € {l.....n — 1}, G = E(a;.a;) < E(b;.b;). or for all distinct i, j €
{l.....n =1}, G = E(a;.a;) +» E(b;,b;). Accordingly we divide the argument
into two (similar) cases.

Cask 1: For all distinct i, j € {1.....n — 1}, G = E(a;.a;) <> E(b;.b;).

Let i,j € {l.....n — 1} be distinct. Since G is a tournament we can., without
loss of generality, assume that G = E(a;,a;) A E(b;.b;). First suppose that
G E E(a;.ay) N E(a;.ay,). Since (a;.a;,a,) =3 (b;.b;.b,) it follows that G =
E(b;i.by) NE(b;.by). If instead G = E(ay,.a;) A E(a;.ay). then, by the same argu-
ment, we see that G = E(b,.b;) A E(bj,bn). We argue in the same way in the
remaining two cases. As the arguments works for any distinct i, j € {I,...,n — 1}

it follows that forall 1 < i <n—1,G & E(a;,a,) <+ E(b;.b,) and therefore
(ar.....ay) ~, (b1.....b,).

Cask 2: For all distinct i, j € {1.....n — 1}, G = E(a;.a;) <> E(b;.b;).

Leti,j € {1.....n — 1} be distinct. Since G is a tournament we can, without loss
of generality, assume that G = E (aj.a j) A E(b s b;). The rest of the argument in
Case 2 is an obvious modification of the argument in Case 1, which is left for the
reader. -

It is straightforward to verify that ~; has exactly four equivalence classes, say
X1..... X4 on triples of distinct elements. Let V' = {R;...., R4} where R;,..., R4
are ternary relation symbols. Let M be the V -structure with the same universe as
G (so M = G) such that foreachi = 1,....4, RM = X;.

Lemma 7.7. M is homogeneous and supersimple with SU-rank 1 and with
degenerate acl .
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Proor. From the definitions of ~3 and RM each RM is -definable in G. Since G
is supersimple with SU-rank 1 and aclg is degenerate it follows (using Fact 2.7) that
the same is true for M and acl4. So it remains to show that M is homogeneous.

Let0<n<w,ay,....ay.an1,b1....,b, € M = G and suppose that

tp¥ (ar.....an) = tp% (br.....by). (7.2)
We need to find b,,,1 € M such that

tpjl\f/((ale v aanean+l) = tpjl\f/t(bl, . ,bn,bn+1).

By the definition of M., this is accomplished if we find b,,; € G = M such that
(ar.....an. ans1) =p (br..... by, bysr).

We consider only the case when n > 2 since the cases n = 1,2 are similar
and simpler. From the definition of M and (7.2) it follows that for all distinct
i,jke{l.....n}. (a;.a;.ar) =3 (bj.b;.by). By Lemma 7.6 we get

(al,...,a,,) =y (b],...,bn). (73)

Without loss of generality we can assume that a,; ¢ {ai,.... ay}. In order to
find b,.1 € G such that (ay..... Sy dny1) =y (b1, .. .. b,.b,y1), it suffices. by the
definition of ~,, and (7.3), to find b,.; € G such that
if there are distinct i, j € {1,..., n}suchthatG = E(a;.a;) NE(b;,b;) (which
via (7.3), implies that for all i, j € {1.....n}. G = E(a,,aj) “ E(bl, ]))
then
G = E(aj,ans1) <> E(bi,byyy) foralli € {1,....n},

and otherwise
G = E(aj.ans1) < E(byi1.b;) foralli € {1,....n}.

Since G is the generic tournament (i.e., the Fraissé limit of D) it is possible to find
such b,.1 € G. =

LemMA 7.8. (i) Every constraint of M has at most 4 elements.

(ii) Every constraint of M is weakly isolated.
(iii) The age of M does not have the free amalgamation property.

PrROOF. (i) Suppose, towards a contradiction, that C is a constraint of M with at
least 5 elements. Let ¢ € C andlet A = C[C \ {c}.so Ais permitted with respect to
M. Then we may, without loss of generality, assume that A C M. AsCisa constraint
with at least 5 elements it follows that for every triple @ = (ay. as. a3) € A* (where
A= C\ {c}) thereis ¢; € M such that tpgf(c'z,c) = tpjl\f/[(d,ca).

Suppose that @ = (aj.a2.a3).@ = (ai,a2.a}) € A° are triples of dis-
tinct elements. From the choice of ¢; and ¢z it follows that tp(}\f/[(al,az,c&) =
tpj\f,[(al,az,ca—,), so (ar.ar.c;) =3 (ay.as.cz) and hence tpgf(al,az, c;) =
tpgf(al as, Ca)

Now suppose that @ = (a1.a2.a3).a’ = (a1.a}. a}) € A* are triples of distinct
elements where {ay. a3} N{a}.a}} = 0. Let @’ = (a1. a». a}). From what we just
proved it follows that

f f f
tpg (a1.¢a) = tpg (ar.can) = tpg (ar. car).

https://doi.org/10.1017/js1.2018.61 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.61

ON CONSTRAINTS AND DIVIDING 1719

Thus we have proved that if @ = (a1, a2, a3).a’ = (ay.a}. a}) € A° are triples of
distinct elements, then tpgf(al .Cq) = tpg(al . ca). Since G is the generic tournament
it follows that

{o(x.a):p(x.a) € tpgf(ca/c'z) anda € A%}

is consistent. So there is ¢/ € M such that for all @ € 43, tpgf(c’, a) = tp‘éf(ca, a.
Then tp‘}&(c’,d) = tp(}\;(c’g,c'z) for every @ € A3 and consequently tp(}\f,[(c’/A) =
tpgf (¢/A) which contradicts that C is a constraint.

(ii) As G is the generic tournament, it is easy to see that for every finite 4 C G
there is no nontrivial A-definable (in G) equivalence relation on G \ 4. Since M is
a reduct of G it follows that the same holds for M. Hence the conclusion follows
from Corollary 5.8.

Part (iii) follows from the fact that for every triple (a;. as, a3) of distinct elements
from M we have, by the definition of M, M = \/;‘:1 Ri(ay, ar, a3). 5

7.5. Examples of higher SU-rank. All examples above have SU-rank 1. It is not
hard, however, to construct examples of higher SU-rank, for example 2, by using a
binary relation symbol interpreted as an equivalence relation with infinitely many
infinite equivalence classes. If one likes. on each class (which in itself is a structure of
rank 1) one can add some more “exotic” structure by (for example) choosing one of
the structures earlier in this section, call it M, and letting each class. as a structure
in itself be isomorphic to M. Obviously this kind of example is not primitive, i.e., it
has a nontrivial ()-definable equivalence relation on its universe.

A different kind of example of SU-rank 2 which is primitive is Example 3.3.2
in [23], which is also discussed in [16, Example 2.7]. This example is not 2-transitive.
In fact, it follows from Observation 2.5 that if M is a homogeneous simple structure
with trivial dependence and higher SU-rank than one, then it must have some binary
relation symbol (it is easy to see that unary relation symbols would not suffice to
raise the rank).

§8. Problems. As a number of questions are left unanswered, also taking the
conclusions of the later article [18] into account, we conclude with a collection of
problems.

(1) Isevery ternary homogeneous simple structure supersimple (with finite SU-
rank)?

(2) For k > 4, is every k-ary homogeneous finitely constrained simple structure
supersimple (with finite SU-rank)?

(3) Is there k > 4 and a k-ary homogeneous supersimple structure M with

SU-rank 1 and nontrivial algebraic closure?

(4) Suppose that M is ternary, 2-transitive, homogeneous, supersimple with

SU-rank 1 and degenerate algebraic closure.

(a) Can M have a constraint which is not weakly isolated?

(b) Can M have a finite subset A C M. a nonalgebraic type p € S{*(4)
and a nontrivial 4-definable equivalence relation on p(M)? (A nega-
tive answer implies, by Theorem 5.7, a negative answer to the previous
question.)
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(c) If there is a finite 4 C M, a nonalgebraic type p € S{*'(4) and a
nontrivial A-definable equivalence relation on p(M), does it follow that
M has a constraint which is not weakly isolated?

(d) If the age of M does not have the free amalgamation property, must
M be a reduct of (or more generally, interpretable in) a binary random
structure?
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