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Abstract. We study a d-dimensional coupled map lattice consisting of hyperbolic
toral automorphisms (Arnold cat maps) that are weakly coupled by an analytic map.
We construct the Sinai–Ruelle–Bowen measure for this system and study its marginals on
the tori. We prove that they are absolutely continuous with respect to Lebesgue measure if
and only if the coupling satisfies a non-degeneracy condition.

1. Introduction
There has been much interest recently in time-invariant measures of physical systems
evolving under certain types of non-Hamiltonian deterministic dynamics. These dynamics
are chosen (invented) with the intent of making these measures model the behavior of
stationary non-equilibrium states of real physical systems: e.g. the ‘Gaussian thermostated’
dynamics [EM]. An interesting example is provided by the Moran and Hoover model of
electric-current-carrying systems [MH]. A particle moves on a torus among fixed obstacles
under the influence of an external electric field E and a thermostat which keeps the energy
fixed (it would otherwise grow indefinitely). A very striking (initially surprising) result
of the numerical simulations was that the stationary phase space density in a Poincaré
section looked very ‘fractal’, i.e. singular with respect to the reference Lebesgue measure.
The singular nature of the invariant measure was later proven rigorously (under suitable
hypotheses) for E �= 0, at least when E is small [CELS]. Further computer simulations
and rigorous results strongly suggest that thermostated stationary measures are indeed
generically singular with respect to Lebesgue measure [R99]. They correspond to the
Sinai–Ruelle–Bowen (SRB) measures for these systems [G95].
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The singular nature of these non-equilibrium measures, is a consequence of the
modeling by deterministic dynamics. Alternative modeling of non-equilibrium systems,
using some stochasticity, yields stationary measures which are absolutely continuous
with respect to Lebesgue measure [BLR]. This has raised some questions about
the consistency of these different modelings of such stationary non-equilibrium states
[HHP, H, Le, BDLR]. Fortunately the answer is that for systems containing many
particles the different models can yield the same physical behavior. The reason for this
is that relevant observable properties of macroscopic physical systems correspond to sums
of functions which depend only on the coordinates and velocities of one or a few particles,
e.g. the electrical current is a sum over the velocities of individual particles. Their steady-
state values can therefore be computed from the reduced one- or two-particle distribution
functions and we expect these induced measures to be absolutely continuous with respect to
Lebesgue measure even when the measure in the full phase space of the system is singular.
It is the purpose of this paper to show, by explicit example, that this is indeed to be expected
generically.

To do this we consider the reduced distributions or induced measure for a very idealized
dynamical system made up of an infinite collection of Arnold cat maps of the two torus,
indexed by a d-dimensional lattice. This dynamical system has typically an invariant
measure which is singular with respect to Lebesgue measure. We prove, however,
that under general conditions, the projected measure on a single torus is absolutely
continuous with respect to Lebesgue measure. Note that our result is for a projection
on an explicitly given surface on which the measure is singular in the absence of coupling
to other systems—not just for a ‘typical’ projection. This requires some conditions on
the interaction which we specify—those excluded are very special. They are essentially
uncoupled systems.

2. Definitions and results

The dynamical systems that we consider in this paper are coupled map lattices [PS].
The phase space of such a system is given by a Cartesian product over a d-dimensional
lattice � = Z

d of finite-dimensional manifolds N . In our case, N is the two-dimensional
torus N = T = R

2/Z2 and the full phase space is T = T
�, equipped with the product

topology. We will construct the systems via finite-dimensional approximations, letting
TN = T�N where �N = (ZN)

d and ZN consists of integers of absolute value strictly less
than N .

The dynamics in a coupled map lattice is defined by first fixing a dynamical system on
each separate N and then coupling them appropriately. In the case at hand, let A : T → T

be the Anosov dynamical system defined by the linear transformation A ∈ GL2(Z) with
|detA| = 1. We can define the uncoupled map A : T → T and respectively on TN by
letting A act on each copy of T. More precisely, denoting by ψ ∈ T the points on the
two-dimensional torus and by � = (�i)i∈� those on T , we set (A�)i = A�i. The use of
the same symbol for the map on T and for the uncoupled map on T is done to avoid too
cumbersome notations when no confusion can arise. The Lebesgue measures dψ on each
torus and their product d� , are invariant under A.
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To describe the coupled map, let f : T → R2 be a map and define A : T → T by

(A�)i = A�i + Fi(�), i ∈ � (2.1)

where
Fi(�) = f (τ−i�) (2.2)

and τ defines the Zd -action on T by (τi�)j = �i+j. The pair (A,T ) defines the coupled
map lattice dynamical system.

To proceed we need to make assumptions on f . We suppose the coupling is weak and
local, i.e. that Fi depends weakly on�j for j far away from i. A convenient way to encode
this is to assume f is holomorphic with derivatives with respect to �i decaying rapidly
with i. This condition can be formalized as follows. Given two positive constants α and β,
let Ti,α,β ⊂ C2/Z2 be the complex neighborhood of Ti = R2/Z2 ⊂ C2/Z2 defined by
|Im�i,j | < αe|i|β , j = 1, 2, where �i = (�i,1,�i,2) ∈ C2/Z2 and |i| = ∑d

k=1 |ik|.
Moreover, let R be the Cartesian product over i of the Ti,α,β . If O is the space of
holomorphic functions f : R → C, equipped with the norm

‖f ‖∞ = sup
�∈R

|f (�)| (2.3)

we will consider the dynamical system, defined in (2.1) and (2.2), for f ∈ O with ‖f ‖∞
sufficiently small.

This infinite-dimensional dynamical system will be studied via finite-dimensional
approximations which we now define. Letting RN be the Cartesian product of the Tiα,β

for i ∈ �N and given an f ∈ O we let fN be the map defined on RN given by

fN (�) = f (�p)

where �p ∈ R is obtained by extending� ∈ RN periodically to R. We define the finite-
dimensional approximationAN to A by (2.1) and (2.2) where τ is the action of translations
modulo ((2N − 1)Z)d , i.e. we impose periodic boundary conditions on �N . Observe that
A maps the set PN ⊂ R of periodic points of period N to itself. Thus, identifying RN

with PN we have
AN ≡ A|PN . (2.4)

We define the SRB measure for AN (respectively A) to be the weak limit of
(1/n)

∑n
k=1 Ak

NmN
(
(1/n)

∑n
k=1 Akm

)
as n → ∞ of the normalized Lebesgue measure

mN (m) on TN (T ) if such a limit exists. Our first result concerns the existence of an SRB
measure for A.

THEOREM 1. There exists an ε > 0 independent from N such that given f ∈ O with
‖f ‖∞ ≤ ε the dynamical system A (AN respectively) admits an SRB measure µ (µN ).
The weak limit of µN as N → ∞ exists and is equal to µ. The measures µN and µ are
C∞-smooth in f in the ball ‖f ‖∞ < ε of O in the sense that

∫
T dµ is C∞-smooth for

any C∞-smooth T depending on finitely many variables�i.

Remark. The existence of the N → ∞ limit of the SRB measures has been proven before
[JP], with less stringent regularity assumptions than here. However, we need more detailed
structure of the measures and have to go through the construction.
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Let P be the projection of TN to the torus at origin T and P∗µN the induced projection
of µN on T. We want to address the question of whether this projection is absolutely
continuous with respect to the Lebesgue measure on T.

Definition. AN is degenerate if for all � ∈ TN the unstable manifold of � is a Cartesian
product of curves γi(�) lying on the ith torus.

An example of a degenerate map is the uncoupled map: in this case the curve γi(�, ξ) =
�i + e+ξ for ξ ∈ R where Ae+ = 
+e+ with 
+ > 1. More generally if we choose
f (�) = g(�)e+ with g : T → R it is easy to see that the map A given by (2.1) and (2.2)
with such an f has the same unstable foliation as A. In this case we will say that A is
coupled through the unstable manifold. We can characterize all degenerate coupled maps
through the following proposition.

PROPOSITION 1. AN is degenerate if and only if there exists x : T → T such that
X ◦ AN ◦ X−1 = ÃN where (X(�))i = x(�i) and ÃN is coupled through the unstable
manifold.

Our main result can be formulated as follows.

THEOREM 2. For each 2 ≤ N ≤ ∞ if AN is not degenerate then the projected measures
P∗µN are absolutely continuous with respect to the Lebesgue measure on T. Moreover, if
A is degenerate, then AN is degenerate for every N and if A is non-degenerate then AN

is non-degenerate for N large enough.

We close this section with a remark concerning the fractality of µN . The Hausdorff
dimension of µN will generically satisfy dimHDµN < dimTN . In fact from the
Kaplan–Yorke formula [FKYY] one obtains the upper bound

dimHD µN ≤ dimTN + µN(η)

λmin
(2.5)

where λmin is the minimum Lyapunov exponent of AN and η(�) = −log (detDAN(�)).
Generically we expect that µN(η)/λmin ≥ δ dimTN for some constant δ. Indeed it is
easy to show that for a generic perturbation of A acting on T µ1(η) > 0, see [BGM].
Adding a small enough coupling we will have µN(η) 
 Nµ1(η) while λmin is almost
independent from N . Theorem 2 asserts then that, notwithstanding this extensive loss of
dimensionality of the attractor, the projected SRB measure is still absolutely continuous.

3. The conjugacy
We start by constructing a conjugacyX : T → T of the coupled map A to the uncoupled
one A:

X ◦ A = A ◦X (3.1)

Observe that from (2.4) it follows that XN ≡ X|PN conjugates AN to AN .

Given a map x : T → R2 let τx : T → (R2)Z
d

be defined by translations as
(τx)i = x ◦ τ−i. With this notation we have that F = τf . Hence, guided by translation
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invariance of our map A we look for a solution of (3.1) in the form X = Id + τx with x a
solution of the equation

Tx = f (Id + τx) (3.2)

where T is the linear operator defined by

Tx = x ◦ A− A ◦ x. (3.3)

From general theory, we expect that the solution x will not be a differentiable function of
� but only Hölder continuous. Given a function g : TN → R2 let δj denote the Hölder
derivative

δjg(�) = sup
vj

|g(� + vj)− g(�)|
|vj|γ

where γ < 1 and the supremum runs over vectors having a non-zero component only at
the jth position and of length no larger than unity. From now on we fix γ < 1 and, to avoid
cumbersome notation, do not indicate the dependence of the estimates in what follows on
γ as well as on α and β. Moreover we will use C to indicate the constants that appear in
all the estimates.

Let E be the Banach space of Hölder continuous maps x : T → R2 with norm

‖x‖ = ‖x‖∞ +
∑

j

e(β/2)|j|‖δjx‖∞ (3.4)

where in this case ‖x‖∞ = sup�∈T |x(�)|. We then have the following.

PROPOSITION 2. There exists an ε > 0 such that given f ∈ O with ‖f ‖∞ ≤ ε, (3.2)
has a unique solution in E with ‖x‖ ≤ C‖f ‖∞. Moreover, x is analytic in f in the ball
‖f ‖∞ < ε.

Proof. Let us define Hx = T−1f (Id + τx). We want to show that H is a contraction in the
ball B = {x|‖x‖ ≤ R‖f ‖∞} for a suitable R.

It is easy to find an explicit representation for T−1. Let e+,
+ and e−,
− denote the
two eigenvectors of the matrix A and the corresponding eigenvalues, with 
+ > 1 and

− = (detA/
+), where |detA| = 1; e+ and e− are the unit vectors in the direction of
the unstable and stable manifolds of A at each point ψ ∈ T2. Expressing vectors v ∈ R2

in this basis as v = v+e+ + v−e−, we have

(T−1x)(�) =
∞∑
n=0


n−x+(A−n+1�)+
∞∑
n=1


−n+ x−(An−1�). (3.5)

From this expression it follows immediately that the norm of T−1 as an operator in E is
bounded by

‖T−1‖L(E,E) ≤ 4

1 −

−(1−γ )
+

. (3.6)

We now claim that the function hx(�) = f (� + τx(�)) satisfies

‖hx‖ ≤ C‖f ‖∞, ‖hx − hy‖ ≤ C‖f ‖∞ ‖x − y‖. (3.7)
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To prove the first inequality in (3.7) we write

|hx(� + vj)− hx(�)| =
∑

k

∫ 1

0
dt ∂kf (�

t)(vj,k + x(τ−k(� + vj))− x(τ−k�))

where �t = � + tvj + tτx(� + vj) + (1 − t)τx(�) and vj,k is the k component of vj.
Then, using |∂kf | ≤ e−β|k|‖f ‖∞, which follows from (2.3), and

|x(τ−k(� + vj))− x(τ−k�)| ≤ ηγ ‖δj−kx‖∞, (3.8)

where we set η = |vj|, we get∑
j

e(β/2)|j|η−γ |hx(� + vj)− hx(�)|

≤ ‖f ‖
( ∑

j

e−(β/2)|j| +
∑
jk

e(β/2)|j|e−β|k|‖δj−kx‖∞
)
. (3.9)

From (3.4) we infer ‖δj−kx‖∞ ≤ e−(β/2)|k−j|‖x‖. Hence by a use of the triangle
inequality the right-hand side of (3.9) is bounded by

C‖f ‖∞ + ‖f ‖∞‖x‖
∑

k

e−(β/2)|k| ≤ C‖f ‖∞(1 + ‖x‖). (3.10)

The second inequality of (3.7) can be proven as follows. Observe that

hx(�)− hy(�) =
∫ 1

0
dt ∂kf (� + τx(�)+ (1 − t)τy(�))(x(τk�)− y(τk�)) (3.11)

so that
‖hx − hy‖ ≤

∑
k

‖∂kf (Id + τx + (1 − t)τy)‖‖x − y‖. (3.12)

Combining (2.3) with a Cauchy estimate we infer that, for � real,

|∂k∂if (�)| ≤ e−β(|k|+|j|)‖f ‖∞. (3.13)

Proceeding as above this implies that

‖∂kf (Id + τx + (1 − t)τy)‖ ≤ Ce−β|k|‖f ‖∞ (3.14)

and (3.7) follows. Equations (3.6) and (3.7) establish the contractive property for
suitable R. By the Banach fixed point theorem we have a unique solution of (3.2) which is
analytic in f . �

4. The invariant manifolds
In this section we will construct the two invariant manifolds W±(�) defined, for every
point� ∈ T , by the property

W±(�) =
{
� ′

∣∣∣ lim
n→∞ |A∓n� − A∓n� ′| = 0

}
, (4.1)

where |�| = supi |�i|. We observe again that the stable and unstable manifolds of AN are
given by the periodic points inW±(�). We will give below a unified construction of these
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sets for N ≤ ∞, N = ∞ referring to W±(�). For convenience the N-dependence of the
various objects will be suppressed whenever possible.

We shall look forW±(�) in terms of an embedding

ξ ∈ R
�N → S±

�(ξ) ∈ (R2)�N (4.2)

(�∞ means � = Zd ) such that the action of A is given by

AS±
�(ξ) = S±

A�(L̃
±(�)ξ) (4.3)

where L̃±(�) are linear operators on R�N . For N = ∞ we mean by the latter the vector
space �∞(Zd ).

We want to use (4.3) to study the regularity properties of S± as a function of�, ξ andA.
We expect on general grounds S± to be at most Cα in � . Thus, since A occurs in (4.3)
coupled to � , low regularity can be expected for S also as a function of A. However, it
will be convenient to have maximal regularity in A and this can be achieved by looking for
the solution to (4.3) in the form

S±
�(ξ) = � + X±(X−1(�), ξ) (4.4)

where X is the conjugation constructed in §3. Equation (4.3) implies the following
equation for X±:

A(X(�)+ X±(�, ξ)) = X(A�)+ X±(A�,L±(�)ξ) (4.5)

where L = L̃ ◦ X and the previous problem is clearly not present. Indeed, we will show
that (4.5) has a solution X± that is analytic in f and in ξ as well.

To state the main result of this section we need to introduce the space where (4.5) will
be solved. Let DN be the complex domain DN = {ξ | |ξi| < 1,∀i ∈ �N }. Let B be the
Banach space of maps X : TN × DN → (C2)�N which are Hölder continuous in � and
analytic in ξ equipped with the norm

‖X‖ = sup
i

(
‖Xi‖∞ +

∑
j

e(β/4)|i−j|‖DjXi‖∞
)

(4.6)

where Dj = (δj, ∂ξj) and the infinity norm is intended in both � and ξ for � ∈ TN and
ξ ∈ DN . The following proposition describes the local stable and unstable manifolds.

PROPOSITION 3. There exists an ε > 0, independent of N ≤ ∞ such that given f ∈ O
with ‖f ‖ ≤ ε the local stable and unstable manifolds W±(�) are given by real analytic
embeddings

S±
� : DN → (R2)�N .

S±
� are translation-invariant: S±

τi�
(τiξ) = S±

�(ξ) and are given by (4.4) with X± ∈ B and

‖X± −
±ξ‖ ≤ C‖f ‖∞.

Moreover X± are analytic functions of f in the ball ‖f ‖∞ < ε of the Banach space O.
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To describe the global result let D be the Banach space of Cα maps L from TN to the
linear operators on R�N equipped with the norm

‖L‖ = sup
i

( ∑
j

e(β/4)|i−j|‖Lij‖∞ +
∑
jk

e(β/4)|i−k|‖δkLij‖∞
)
. (4.7)

PROPOSITION 4. With the assumptions of Proposition 3, the global stable and unstable
manifoldsW±(�) are given as real analytic embeddings

S±
� : R

�N → (R2)�N

that satisfy (4.5) with L ∈ D and

‖L± −
±‖ ≤ C‖f ‖∞. (4.8)

Moreover, S±
� can be extended to a complex neighborhood of (R2)�N .

The rest of this section contains the proofs of these two propositions.
We start by separating the linear part in ξ from the rest in X±(�, ξ), i.e. we write

X±(�, ξ) = χ±(�)ξ + X̄±(�, ξ). (4.9)

Observe that χ±(�) is a linear map from R�N to T�TN . We will choose as a basis on
T�TN the one formed by the vectors e−i and e+i .

The matrix χ±(�) satisfies the equation:

Aχ±(�)− χ±(A�)L± = DF(X(�))χ±(�). (4.10)

From now on we will consider explicitly only the unstable (+) case and drop the +
superscript. Identical considerations hold for the stable manifold. It is easy to see that
(4.10) alone cannot fix uniquely χ and L. In fact if the pair χ(�),L(�) is a solution of
(4.10) then, given any non-vanishing function l : TN → R,

χ ′(�) = l(�)χ(�), L′(�) = l(A�)
l(�)

L(�) (4.11)

is also a solution. To resolve the above ambiguity we fix χ+ = Id where the subscript +
refers to the component along the unstable directions and, with a slight abuse, we denote
the − component χ− by χ . Thus χ is now an �N × �N matrix. Writing the matrix
H(�) = DF(X(�)) in the ± basis as

DA =
(

+Id +H++ H+−

H−+ 
−1+ Id +H−−

)
(4.12)

it follows that


+ +H++ +H+−χ(�)− L(�) = 0, (4.13)

H−+ + (
−1+ +H−−)χ(�)− χ(A�)L(�) = 0. (4.14)

Now setting
L(�) = 
+Id + L̄(�) (4.15)
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we can solve (4.13) for L̄(�):
L̄(�) = H++ +H+−χ(�) (4.16)

and substituting this in (4.14) we get

T1χ(�) = H−−χ(�)+H−+ − χ(A�)H++ − χ(A�)H++χ(�) ≡ F(χ,�) (4.17)

where T1 is the operator

(T1χ)(�) = 
+χ(A�)−
−1+ χ(�). (4.18)

We solve this equation in the Banach space D with the norm equation (4.7). The inverse
of T1 is given by

T−1
1 χ(�) =

∞∑
n=0


−2n−1+ χ(A−n−1�) (4.19)

from which follows that T1 is a bounded operator in D. Note that due to the extra
power of 
−1+ compared to (3.5) we could work in C1. This gain is not useful because
F(χ,�) ∈ Cα .

The solution of (4.17) proceeds analogously to what was done in the previous section.
Writing it as χ = T−1

1 F(χ) we show the right-hand side is contraction in ‖χ‖ ≤ Cε0.
This follows in a straightforward fashion using the following lemmas.

LEMMA 1. D is a Banach algebra:

‖χη‖ ≤ 2‖χ‖‖η‖. (4.20)

Proof. The claim follows from the simple estimates∑
j

e(β/2)|i−j||(χη)ij| ≤
∑

jl

e(β/2)(|i−l|+|l−j|)|χil||ηlj| ≤ ‖χ‖‖η‖ (4.21)

and in a similar manner∑
jk

e(β/2)|i−k||∂k(χη)ij|

≤
∑
jkl

(e(β/2)|i−k||∂kχil||ηlj| + e(β/2)|i−l||χil|e(β/2)|l−k||∂kηlj|)

≤ 2‖χ‖‖η‖. (4.22)
�

LEMMA 2. For i, j = ± we haveHi,j ∈ D.

Proof. Note first that from (2.3) we get

|∂kFi(�)| ≤ C‖f ‖∞e−β|i−k| (4.23)

and
|∂l∂kFi(�)| ≤ C‖f ‖∞e−β(|i−k|+|i−l|) (4.24)

for � ∈ R. It follows that

|δkHi,j(�)| =
∣∣∣∣ ∑

l

∂j∂lFi|X(�)δkXl(�)

∣∣∣∣ ≤ Cα−1‖f ‖2∞e−(β/2)|i−k|. (4.25)

These are summable when multiplied by the exponential factors in our norm. �
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We can summarize the above discussion in the following proposition.

PROPOSITION 5. There exists an ε such that given f : R → R
2 with ‖f ‖∞ ≤ ε, (4.10)

has a unique solution χ = (1, χ−) with χ− ∈ D and ‖χ−‖ ≤ C‖f ‖∞. L is given by
(4.15) with ‖L̄‖ ≤ C‖f ‖∞. Moreover χ and L are analytic in f in the ball ‖f ‖∞ < ε.

Let us finally consider the remainder X̄ in (4.9). Using (4.10) we deduce

X̄ (A�,L(�)ξ)− AX̄ (�, ξ) = G(�, ξ, X̄ ) (4.26)

where

G(�, ξ, X̄ ) ≡ F(X(�)+χ(�)ξ + X̄ (�, ξ))−F(X(�))−DF(X(�))χ(�)ξ. (4.27)

Let T2 be the operator

T2X̄ (�, ξ) = X̄ (A�,L(�)ξ)− AX̄ (�, ξ). (4.28)

Thus we need to solve the equation

X̄ = T−1
2 G(X̄ ) (4.29)

in the Banach space B with norm given by (4.6). First we need to control the inverse of T2

given formally by

(T−1
2 X̄ )(�, ξ) =

∞∑
n=0

AnX̄ (A−n−1�, L̂n(�)ξ) (4.30)

where L̂n(�) = ∏n−1
i=1 L(A−i�). Recall that X̄ vanishes at ξ = 0 together with its first

derivatives, i.e. we want to solve our equation in the closed subspace B0 of B of functions
with this property.

LEMMA 3. The map
F : X̄ → AX̄ (A−1�,L(�)−1ξ) (4.31)

is a bounded map from B0 into itself with norm strictly less than one.

Proof. From L = 
+ + L̄ and ‖L̄‖ ≤ C‖f ‖∞ we infer that if ξ ∈ DN then L(�)−1ξ ∈
ρDN with

ρ = (
+ − C‖f ‖∞)−1.

Hence by a Cauchy estimate, taking into account that X̄ (�, ξ) vanish to second order for
ξ = 0, we get

‖FX̄i‖∞ ≤ λ‖X̄i‖∞
for λ = 
+ρ2 < 1 provided ‖f ‖∞ is chosen small enough.

For the second factor occurring in the norm equation (4.6) we write∑
j

e(β/4)|i−j|‖DjX̄i(A
−1�,L(�)−1ξ)‖∞

≤ ρ2

γ
+

∑
j

e(β/4)|i−j|‖δjX̄i(�, ξ)‖∞

+ ρ
∑
k,l,j

e(β/4)|k−j|‖δj(L(�)−1)k,l‖∞e(β/4)|k−i|‖∂ξk X̄i(�, ξ)‖∞

+ ρ
∑
j,k

e(β/4)|k−j|‖(L(�)−1)k,j‖∞e(β/4)|i−k|‖∂ξkX̄i(�, ξ)‖∞
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where the factors ρ2 and ρ come from a Cauchy estimate on ρDN . By the definitions of
the norms (4.6) and (4.7) the sums may be bounded by

(ρ2

γ
+ + ρ‖L(�)−1‖)‖X̄ ‖

and since
‖L(�)−1‖ ≤ (
+ − C‖f ‖∞)−1

the claim follows with ‖f ‖ small enough. �

Hence T2 has a bounded inverse in B0 as long as γ < 1.
Next we turn to the study of ‖G‖. Note that G is well defined: the argument of F in

(4.26) is in its analyticity domain if C‖f ‖∞ < α. Moreover, we want to prove that

‖G(X̄ )‖ ≤ C‖f ‖∞‖X̄ ‖, ‖G(X̄ )−G(Ȳ)‖ ≤ C‖f ‖∞‖X̄ − Ȳ‖ (4.32)

so that we can conclude our proof, invoking again the Banach fixed-point theorem.
To prove the above estimates we must bound both the derivatives in ξ and the Hölder

derivative in � of G. It is easy to see that the ξ derivatives bound follows easily from
Cauchy type estimates like (4.23) and (4.24). To bound the Hölder derivative in � we
observe that for both of the above estimates it is enough to study the first term in the
definition (4.27) since good estimates were already proven on the other two terms while
proving the existence of X and χ . To this end, using H(�, X̄ ) = H(X(�) + χ(�)ξ +
X̄ (�, ξ)), we can write

Hi(�, X̄ )− Hi(� + δvi, X̄ )

=
∑

k

∫ 1

0
dt ∂kHi(�

t) · (vj,k + (X(� + vj)−X(�))

+ (χ(� + vj)ξ − χ(�)ξ)+ (X̄ (� + vj, ξ)− X̄ (�, ξ))), (4.33)

where we have set

�t = tvj,k+t (X(�+vj)+χ(�+vj)ξ+X̄ (�+vj, ξ))+(1−t)(X(�)+χ(�)ξ+X̄ (�, ξ))
(4.34)

and proceed like in (3.10). The second inequality follows from

H(�, ξ, X̄ )− H(�, ξ, Ȳ)

=
∫ 1

0
dt ∂kF(� +X(�)+ χ(�)ξ + tX̄ (ψ)+ (1 − t)Ȳ(�))(X̄ (�)− Ȳ(�))

(4.35)

and again we can conclude like in (3.12). By the Banach fixed-point theorem we get
a solution of (4.29). Combining the solution of (4.10) and (4.29) we obtain a proof of
Proposition 3.

To prove Proposition 4 note that the analyticity domain of X+ in ξ is independent of� .
Equation (4.5) implies

X (�, ξ) = A(X(A−1�)+ X (A−1�,L(A−1�)−1ξ))−X(�) (4.36)
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so that by Lemma 3 the right-hand side provides analytic continuation of the left-hand
side to ρDN with ρ = (
+ − C‖f ‖∞). Iterating this formula n times we expand the
domain of X+ as long as X(A−1�) + X±(A−1�,L+(A−1�)−1ξ) is in the analyticity
domain of A. Since A = A+F the imaginary part of X may expand each step by a factor

+ + Cε0. Hence, for Re ξ ∈ ρnDN with ρn = (
+ − C1ε0)

n, we can take Im ξ ∈ rnDN
with rn = (
+ + C2ε0)

−n. Thus X+ is analytic in ξ in such a neighborhood of R�N .
Furthermore, since W±

F (�) = XF (W
±
0 (�)), as follows immediately from the definition

of the unstable manifold, the continuity of X and density of W+
0 (�) imply that W+

H(�) is
dense in TN .

5. The SRB measure
The SRB measure is constructed in a standard way using a Markov partition. Since we
want to have a construction uniform in N and also keep track of analyticity properties
in that limit we cannot refer directly to standard constructions. However, we assume the
reader is familiar with the various standard definitions concerning Markov partitions and
thermodynamic formalism and will use them freely without comment [R78].

Let Q = {Qi}1,...,m be a Markov partition of the two-torus T corresponding to the
linear map A. We recall that the Qi are standard rectangles in R2 with sides parallel to the
vectors e±.

Let SN = {1, . . . ,m}�N . Then Q = {Qs}s∈SN where Qs = ×i∈�NQs(i) is a Markov
partition for A acting on TN and

Q = {Qs}s∈SN , Qs = X(Qs) (5.1)

is a Markov partition for A.
As usual, a Markov partition allows us to conjugate A to a subshift of finite type on a

symbol sequence space. Let �̄N = SZN and denote its elements by σ = {σi}i∈Z where
σi ∈ SN is written as σi = (σi(j))j∈�N . The fact that Q is a Markov partition implies that
the set

P(σ ) =
⋂
i∈Z

A−i (Qσi ) (5.2)

contains at most one point. Let �N be the set of all σ such that P(σ ) contains exactly one
point (we will call this point P(σ ) with a small abuse of notation). The Markov property
of Q and the way we constructed it imply that there exists an m × m matrix M with
Mij ∈ {0, 1} such that σ ∈ �N if and only ifMσi(j),σi+1(j) = 1 for every i ∈ Z and j ∈ �N .
We equip �N with the metric

d(σ, σ ′) =
∑
i,j

2−(|i|+|j|)|σi(j)− σ ′
i (j)|. (5.3)

PROPOSITION 6. The map P : �N → TN is given by Pi = p ◦ τ−i where p : �N → T

and
|p(σ)− p(σ ′)| ≤ Cd(σ, σ ′)η

for a suitable Hölder exponent η. Moreover, P conjugates A to the shift τ̃ on �N , where
(τ̃σ )i = σi−1.
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Proof. Let P0(σ ) be the map associated with A. It is clear that P0(σ ) = p0 ◦ τ−i and
that p0 depends only on the value of σ at the origin o of Zd . For this map the time part
of the estimate is a simple consequence of the hyperbolicity of A. Our theorem follows
immediately from the fact that P(σ ) = X(P0(σ )) and the Hölder continuity of X proved
in §3. �

Observe that if we consider the metric on T given by

d(�,� ′) =
∑

j

2−|j||�j − � ′
j|, (5.4)

then P is a Hölder function from � to T .
The SRB measure is constructed in the standard fashion by studying the Jacobian of the

map A restricted to the unstable foliation. Recall that the local unstable manifold at � is
given by the embedding (4.2). We will use as a basis of the tangent space TW+(�) the
vectors ∂ξj , j ∈ �N . In this basis the Jacobian of A restricted to the unstable foliation is

given at the point� by det L̃(�). Thus, let us define

λ+(�) = −log det(
−1+ L(X−1(�))) (5.5)

where the constant
−1+ was inserted for later convenience, and let

h+(σ ) = λ+(P(σ )).

PROPOSITION 7. λ+ and h+ can be written as a sum of local functions as follows:

λ+(�) =
∑

i∈�N
λ(τi�) (5.6)

and
h+(σ ) =

∑
i∈�N

h(τiσ) (5.7)

with λ and h Hölder continuous with constants uniform in N . Furthermore,

|λ(�)− λ(� ′)| ≤ C‖f ‖∞d(�,� ′)η (5.8)

and
|h(σ)− h(σ ′)| ≤ C‖f ‖∞d(σ, σ ′)η. (5.9)

Proof. Writing

λ+(�) = Tr log(1 + L̄(X(�))
−1+ ) = Tr
∞∑
i=1

(−1)i

i

L̄(X(�))i


i+

we can define

λ(�) =
∞∑
i=1

(−1)i

i

(L̄(X(�))i)o,o

N+

.

From Lemma 1 and Proposition 3 we get ‖λ(�)‖∞ < C‖f ‖∞ and ‖δiλ(�)‖∞ <

Ce−(β/4)|i|‖f ‖∞ from which (5.8) follows immediately. Equation (5.9) is an immediate
consequence of (5.8) and Proposition 5. �
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The SRB measure of our system will be given in terms of a Gibbs state on �N . Let m̄
be the maximum entropy measure on �N and let us define the ‘Hamiltonian’

HT (σ) =
T∑

i=−T
h+(τ̃ i (σ )). (5.10)

Moreover we set

µ̃T (dσ) = 1

ZT
eHT (σ )m̄(dσ) (5.11)

where ZT = ∫
eHT dm̄.

PROPOSITION 8. The weak limits

lim
n→∞

1

n

n∑
k=1

Ak
NmN = µN, lim

T→∞ µ̃
T = µ̃N

exist and µN = Pµ̃N . Furthermore, µN and µ̃N converge weakly to measures µ and µ̃
as N → ∞ and µ = Pµ̃.

Proof. For any finite N the maps λ+ and h+ are Hölder continuous. For instance

|λ+(�)− λ+(� ′)| ≤
∑

j

|λ(τj�)− λ(τj�
′)| ≤ C(N) sup

j
d(τj�, τj�

′)η

and the last distance is bounded by C(N)d(�,� ′), as is readily seen from (5.4).
The Bowen–Ruelle theorem [Bo] yields the claim for (1/n)

∑n
k=1 Ak

NmN .
The claim for µ̃T can be proven similarly, but let us prove a more general result that

comprises both the T and the N limits. Consider the Hamiltonian

HT,N(σ) =
T∑

i=−T

∑
j∈�N

h(τjτ̃
i (σ )). (5.12)

Given a σ ∈ �N let σn ∈ �N be defined as σni (j) = σi(j) for |j| ≤ n and σni (j) = σi(0)
for |j| > n. Write

h(σ) = h(σ 0)+
n(N)∑
n=1

(h(σn)− h(σn−1)) ≡
n(N)∑
n=0

hn(σ ) (5.13)

and then do a similar telescoping sum in the time direction† for each hn(σ ) arriving at

h(σ) =
∑
R

hR(σ) (5.14)

where R are sets of the form {(i, j) | |i| ≤ m, |j| ≤ n} ∈ Z × �N and hR depends on σ
only through its restriction to R. The Hölder continuity expressed by (5.8) of h implies

|hR| ≤ C‖f ‖∞e−cd(R) (5.15)

† Some care should be paid here to take into account the compatibility matrix M. This is a standard construction,
see e.g. [G99].
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where d(R) is the diameter of R. For the full Hamiltonian we get now

HT,N(σ) =
∑
R

hR(σ) (5.16)

where R are rectangles similar to the ones appearing in (5.14) but centered arbitrarily in
[−T , T ] ×�N . For the existence of the limit

lim
N→∞ lim

T→∞ eHT,N m̄ (5.17)

(in any order, indeed) we refer the reader to e.g. [BK] where it is proven in our set-up
provided that ‖f ‖∞ is small enough. We should warn the reader that standard high-
temperature expansion methods cannot be used when the interactions have a decay as in
(5.15) where only the diameter of the set R occurs (one needs the volume of R). See [BK]
for a discussion of these subtleties.

Finally we have to prove that limN→∞ µN = µ. To do this one can use the symbolic
map P . Some care should be paid to the fact that P is not one-to-one. Indeed the points on
the set

∂∞Q =
∞⋃

n=−∞

⋃
s

∂Qs

have more than one symbolic representation. Hence we need to show that for every s and
N we have µN(∂Qs) = 0. For N < ∞ this is evident while for N = ∞ it follows from a
standard argument [JP].

6. Decomposition of the SRB measure
6.1. Coordinates on rectangles. In order to study the projection of the SRB measure on
finitely many tori we need to express it in terms of our parameterization of the stable and
unstable manifolds constructed in §4. To do this we will introduce new coordinates on the
rectangles Qs . For � ∈ Qs let

W±
s (�) = W±(�) ∩ Qs . (6.1)

Let us fix an arbitrary point ψi on each basic rectangle Qi of the 2-torus. Observe that
Qi = Ui × Si where Ui and Si are segments in the direction of e+ and e−, respectively,
containing ψi . We set �̄s = (ψs(j))j∈� ∈ Qs and call �s = X(�̄s) the center of Qs .
From the fact that Qs is a rectangle we know that for every � ∈ Qs there is one and only
one � ′ ∈ W−

s (�s) such that � ∈ W+
s (�

′). Hence there exists a unique ξ− ∈ R�N such
that � ′ = S−

�s
(ξ−) and a unique ξ+ ∈ R

�N such that � = S+
�′ (ξ+). Thus we have a

one-to-one map � ∈ Qs → (ξ−, ξ+) ∈ R�N × R�N whose inverse we will, with slight
abuse, denote by �N(ξ−, s, ξ+), i.e.

�N(ξ−, s, ξ+) = S+
S−
�s
(ξ−)(ξ

+). (6.2)

�N can be viewed as a continuous map MN → TN where MN is a compact subset of
SN × R�N × R�N given by

MN = {(ξ−, s, ξ+) | s ∈ SN, ξ− ∈ IN(s), ξ+ ∈ JN(s, ξ−)} (6.3)
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where
IN(s) = (S−

�s
)−1W−

s (�s) (6.4)

and
JN(s, ξ

−) = (S+
�′ )−1W+

s (�
′), � ′ = S−

�s
(ξ−). (6.5)

Denoting the points in MN by m, we have by translation invariance (see Proposition 3)

�Ni (m) = �N0 (τ−im).

It is easy to see from the properties of the maps S±
� that there exists an r independent of N

such that MN ⊂ SN × CNr × CNr = M̂N where CNr is the cube of side r centered at the
origin of R�N .

Setting C∞
r equal to the r-cube in R� and giving it the topology defined by the metric

d(ξ, ξ ′) =
∑

j

2−|j||ξj − ξ ′
j | (6.6)

and S∞ = {1, . . . ,m}� with the metric

d(s, s′) =
∑

j

2−|j||s(j)− s′(j)| (6.7)

we have that C∞
r and S∞ are compact metric spaces. We can view M as a compact subset

of M̂.
The following proposition summarizes the important properties of the function�N .

PROPOSITION 9. There exists an r such that�N can be extended to a function from M̂N

to T , still denoted by�N . For every s ∈ SN , �N(ξ−, s, ξ+) is one-to-one from CNr ×CNr
into its image. Moreover �N0 converge as N → ∞ uniformly to a Hölder continuous
function �0. Finally, for each (ξ−, s), �0(ξ

−, s, ξ+) is analytic in ξ+ for |Im ξi| < 1.

Proof. The extensions follows from the fact that ξ+ and ξ− are global coordinates on the
unstable and stable manifolds. Moreover the image of CNr × CNr under �N is close to Qs

for every s, from which the one-to-one property follows.
The regularity property in ξ± immediately follows from Proposition 1 while the

regularity in s is a consequence of the construction of the center �s , see definition after
(6.1). �

Let us spell out the correspondence between the coordinates (ξ−, s, ξ+) and the
symbolic representation. Define

Cs = {σ |σ0 = s}, (6.8)

i.e. the set of all the sequences σ that agree with s at the position 0. On Cs we have
coordinates σ± ∈ SZ±

N ≡ �±
N where Z± are the strictly positive (negative) integers and

(σ−, σ+) → σ− ∨ s ∨ σ+

is one-to-one �−
N × �+

N → Cs . Clearly P(Cs) = Qs and given a point σ̄ ∈ Cs with
P(σ̄ ) = � then

W+
s (�) = {P(σ̄−, s, σ+)|σ+ ∈ �+

N },
W−
s (�) = {P(σ−, s, σ̄+)|σ− ∈ �−

N }. (6.9)
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Now the map�N given by

�N(σ) = �−1
N (P(σ ))

gives the desired correspondence between the two coordinate systems.

6.2. Decomposition in finite volume. Our goal is to find a representation of the SRB
measure in terms of the coordinates (ξ−, s, ξ+). Let us define

νN = �Nµ̃N .

We will decompose the measure µ̃N in a convolution of different probability measures
and then discuss their image under the map �N . Since the volume N is kept fixed in this
subsection, we will omit it in the notation. Recall that µ̃ = limT→∞ µ̃T with

µ̃T (dσ) = 1

ZT
eHT (σ )m̄(dσ).

Write σ = σ− ∨ s ∨ σ+ and decompose the maximum entropy measure as

m̄(dσ) = m̄(dσ−|s)m̄(dσ+|s)b(ds) (6.10)

where m̄(dσ±|s) is the measure m̄ on �±
N conditioned on s and b is the counting measure

on SN . Similarly decompose the Hamiltonian

HT (σ) = H+
T (σ )+H−

T (σ )

into terms depending mostly on the σ+ or σ−:

H+
T (σ ) =

T∑
i=1

h+(τ iσ ), H−
T (σ ) =

T∑
i=0

h+(τ−iσ ). (6.11)

Define on �+
N the probability measure, depending parametrically on s and σ−:

µ̃T
s,σ−(dσ+) = 1

ZT (s, σ−)
eH

+(σ−∨s∨σ+)m̄(dσ+|s) (6.12)

where

ZT (s, σ−) =
∫
eH

+(σ−∨s∨σ+)m̄(dσ+|s). (6.13)

Let σs = σ−
s ∨ s ∨ σ+

s be the symbolic representation of the center �s of Qs and set

ĨT (σ ) = H−
T (σ )−H−

T (σ
− ∨ s ∨ σ+

s ).

We can then write our measure as

µ̃T (dσ) = eĨT (σ )µ̃T
s,σ−(dσ+)µ̃Ts (dσ−)b(ds) (6.14)

where

µ̃Ts (dσ
−) = ZT (s, σ

−)
ZT

eH
−
T (σ

−∨s∨σ+
s )m̄(dσ−|s). (6.15)

The following proposition characterizes the images under� of µT
s,σ− , µTs and ĨT .
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PROPOSITION 10.
(a) The limit µ̃s,σ− = limT→∞ µ̃Ts,σ− exists, and νs,ξ− = �µs,σ− is the normalized

Lebesgue measure |JN(s, ξ−)|−1 dξ+ on JN(s, ξ−) where ξ− is given by �(σ− ∨
s ∨ σ+

s ) = (ξ−, s, 0) and |JN(s, ξ−)| is the Lebesgue measure of JN(s, ξ−).
(b) The limit µ̃s = limT→∞ µ̃Ts exists, and νs = �µs is a positive Borel measure of

finite mass on IN (s).
(c) The functions ĨT ◦�−1 converge uniformly on MN to a Hölder continuous function

I(ξ−, s, ξ+). The function I(ξ−, s, ξ+) can be extended to a Hölder continuous
function M̂N .

Proof. Since these claims are rather standard we will be brief.
(a) Let

H̄T (σ ) =
T∑
i=1

h+(τ iσ )+
T∑
i=0

h−(τ−iσ )

where h−(τ−iσ ) = λ−(P(σ )) with

λ−(�) = −log det(
−1− L−(X−1(�))). (6.16)

Define the measure

µ̄T (dσ) = 1

Z̄T
eH̄T (σ )m̄(dσ )

and its image ν̄T = �Nµ̄
T . It is well known that ν̄ ≡ limT→∞ ν̄T exists and is absolutely

continuous with respect to the Lebesgue measure with a continuous density. Thus, its
restriction to Qs is given in the ξ± coordinates as

ν̄s (dξ
+, dξ−) = gs(ξ

+, ξ−) dξ+ dξ−

with g continuous.
On the other hand, we may decompose ν̄ as we did µ above and get

ν̄s (dξ
+, dξ−) = eĪ(ξ

−,s,ξ+)νs,ξ−(dξ+)ν̄s(dξ−)

for some Borel measure ν̄s and continuous Ī. Hence we conclude that νs,ξ− is absolutely
continuous with respect to the Lebesgue measure on JN(s, ξ−):

νs,ξ−(dξ+) = fs,ξ−(ξ+) dξ+

where fs,ξ−(ξ+) is continuous in all variables.
Let now Au be the map A restricted to the unstable manifold. We get then

(Auνs,ξ−)(dξ+
1 ) = det(L̃+(�(ξ−, s, ξ+)))−1fs,ξ−(ξ+) dξ+

1 , (6.17)

where A(�(ξ−, s, ξ+)) = �(ξ−
1 , s1, ξ

+
1 ).

From the definition of µ̃s,σ− (6.12), one concludes that τµs,σ− = z(s, σ−)eh+
µs1,σ

−
1

where we have set τσ = σ1 and z(s, σ−) = limT→∞ ZT−1(s, σ
−)Z−1

T (s, σ−).
From this it follows that

(Auνs,ξ−)(dξ+
1 ) = z̃(s, ξ−) det(L̃+(�(ξ−, s, ξ+)))−1fs,ξ−(ξ+

1 ) dξ
+
1 (6.18)
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so that we have fs1,ξ−
1
(ξ+

1 ) = z̃(s, ξ−)fs,ξ−(ξ+). We can now fix s, ξ− and choose

s−n, ξ−−n and J−n ⊂ J (s−n, ξ−−n) so that An
u maps J−n bijectively onto J (s, ξ−). It follows

that

fs,ξ−(ξ+) =
n∏
i=1

z̃(s−i , ξ−
−i )fs−n,ξ−−n(ξ

+−n)

with ξ+−n ∈ J−n. By expansiveness of Au the intervals J−n shrink exponentially and the
right-hand side of the above equation converges to a ξ+-independent limit. Clearly this
limit is fixed by the fact that νs,ξ− is a probability measure.

(b) In statistical mechanics terms µ̃s is the Gibbs measure for spins σ− in the
half-space of negative time, with s ∨ σ+ as boundary conditions in non-negative times.
The T → ∞ limit then follows from exponential decay of interactions guaranteed by the
Hölder property of h+.

(c) We have

I(ξ−, s, ξ+) = lim
T→∞

T∑
i=0

λ+(A−i (�N(ξ−, s, ξ+)))− λ+(A−i (�N(ξ−, s, 0))). (6.19)

By Hölder continuity of λ+ the summand is bounded in absolute value by

C(N)d(A−i (�N(ξ−, s, ξ+)),A−i (�N(ξ−, s, 0))) ≤ C(N)2−iη.

Hence the limit as T → ∞ exists. The extension follows immediately from the
representation (6.19). �

To summarize, the SRB measure for AN in the m = (ξ−, s, ξ+) coordinates can be
written as

ν(dm) = eI(m)1J (s,ξ−)(ξ
+)b(ds)νs(dξ−) dξ+

|J (s, ξ−)| . (6.20)

6.3. Decomposition in the infinite volume limit. We are interested in the limit as N →
∞ of the above measures but to study the projected SRB measure we will decompose νs ,
extracting from it a finite-dimensional part ξM of the unstable coordinate ξ+. Thus let us
fix an integer M and for N > M write R�N = R�M × R�N\�M and ξ+ = (ξM, ξ

⊥)
accordingly. The actual value of M we need to study the projected SRB measure will be
fixed in the following section. We can rewrite (6.19) as

IN(m) = lim
T→∞

T∑
i=0

(λ+(A−i (�N(ξ−, s, ξ+)))− λ+(A−i (�N(ξ−, s, (0, ξ⊥)))))

+ lim
T→∞

T∑
i=0

(λ+(A−i (�N(ξ−, s, (0, ξ⊥))))− λ+(A−i (�N(ξ−, s, 0))))

≡ JN(m)+ KN(m′) (6.21)

where the triple (ξ−, s, ξ⊥) was denoted by m′. Let M′
N be the set of all m′ = (ξ , s, ξ⊥)

such that (ξ , s, ξ⊥, ξM) ∈ MN for some ξM . Clearly M′
N ⊂ SN × C

N,M
r = M̂′

N where

C
N,M
r is the cube of side r in R�N/�M . Given ξ⊥ ∈ CN,Mr , we set

{ξM | (ξM, ξ⊥) ∈ JN(s, ξ−)} ≡ JN(m
′) ⊂ CMr (6.22)
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while, given ξM ∈ CMr , we set

{ξ⊥ | (ξM, ξ⊥) ∈ JN(s, ξ−)} ≡ J⊥
N (s, ξ

−, ξM) ⊂ CN,Mr . (6.23)

Finally, let the projection of the set JN(s, ξ−) to the ξ⊥-direction, i.e. to R�N \�M , be
denoted by J⊥

N (s, ξ
−). Clearly we have

J⊥
N (s, ξ

−) =
⋃

ξM∈CMr
J⊥
N (s, ξ

−, ξM).

We may then rewrite the SRB measure (6.20) as

νN(dm) = ρN(dm
′)ϑNm′(dξM), (6.24)

where

ρN(dm
′) = eKN(m

′)1J⊥
N (s,ξ

−)(ξ
⊥)b(ds)νNs(dξ−) dξ⊥

|JN(s, ξ−)|
ϑNm′(dξM) = eJN(m)1JN(m′)(ξM) dξM.

Clearly for every finite N and every continuous function TN on MN we can write∫
TN(m)νN(dm) =

∫
ρN(dm

′)
∫
ϑNm′(dξM)TN(m).

We now want to show that we can take the limit of this identity.

PROPOSITION 11. There exist a bounded Hölder continuous function J on M̂, a Borel
measure ρ(dm′) of finite mass on M̂′ and a Borel set J (m′) in CMr such that given a
continuous function T on M∞ we have the decomposition∫

T (m)ν(dm) =
∫
ρ(dm′)

∫
ϑm′(dξM)T (m)

where
ϑm′(dξM) = eJ (m)1J (m′)(ξM) dξM.

Proof. We show first that the functions JN converge to a bounded Hölder continuous
function on M̂ . For this observe that

λ+(�N(ξ−, s, ξ+))− λ+(�N(ξ−, s, (0, ξ⊥)))
=

∑
i∈�N

(λ(τi�
N(ξ−, s, ξ+))− λ(τi�

N(ξ−, s, (0, ξ⊥)))). (6.25)

By the Hölder continuity of λ (5.8) we have

|λ(τi�
N(ξ−, s, ξ+))− λ(τi�

N(ξ−, s, (0, ξ⊥)))|
≤ Cεd(τi�

N(ξ−, s, ξ+), τi�
N(ξ−, s, (0, ξ⊥)))γ

≤ Cε

( ∑
j

2−|j||�Nj−i(ξ
−, s, ξ+)− �Nj−i(ξ

−, s, (0, ξ⊥))|
)γ
.
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From the regularity property of �N at fixed (s, ξ−) we infer

|�Nk (ξ−, s, ξ+)−�Nk (ξ
−, s, (0, ξ⊥))| ≤ Ce−c dist(k,�M) (6.26)

so that
|λ+(�N(ξ−, s, ξ+))− λ+(�N(ξ−, s, (0, ξ⊥)))| ≤ CMε (6.27)

uniformly in N . Observe finally that from (6.27) we get

|λ+(A−i (�N(ξ−, s, ξ+)))− λ+(A−i (�N(ξ−, s, (0, ξ⊥))))| ≤ CMe
−ciε (6.28)

because �N(ξ−, s, (0, ξ⊥)) and �N(ξ−, s, ξ+) are on the same leaf of the unstable
foliation. Convergence follows from convergence of λ, A and �N . �

We will next prove that the masses of the measures ρN are uniformly bounded, i.e. that
ρN(M′

N) < C with C independent from N .
The set JN(s, ξ−) can be written as

JN(s, ξ
−) =

⋂
i∈�N

JN i(s, ξ
−)

where
JN i(s, ξ

−) = {ξ+ | YNi (m) ∈ Usi}
where Us is the interval spanning the unstable side of the rectangle Qs of the Markov
partition of the linear map A. Moreover YN(m) = X−1(�N(ξ−, s, ξ+)) is a Hölder
continuous function such that |δξMYNi (m)| ≤ Ce−β|i|.

Let us define the functions (R±(ξ⊥))i = C±
i ξ

⊥
i where theC±

i = 1±Ce−ω|i| for suitable
C and ω. We can then define the two sets

K±
N (s, ξ

−) = R±(J⊥
N (s, ξ

−, 0)).

From the property of the function Y it follows that, for suitable C and ω we have

J⊥
N (s, ξ

−, ξM) ⊂ K+
N (s, ξ

−) for every ξM ∈ CMr ,
J⊥
N (s, ξ

−, ξM) ⊃ K−
N (s, ξ

−) for every ξM ∈ CMr/2.
From this it follows that∫
eKN(m

′)1J⊥
N (s,ξ

−)(ξ
⊥) dξ⊥ ≤

∫
eKN(m

′)1K+
N (s,ξ

−)(ξ
⊥) dξ⊥

∫
eIN(m)1JN(s,ξ−)(ξ

+) dξ+ ≥ e−CJ
∫
eKN(m

′)1K−
N (s,ξ

−)(ξ
−)1CMr/2(ξM) dξ

⊥ dξM.

The following lemma will allow us to compare the right-hand sides of the two above
inequalities.

LEMMA. For ξ⊥ ∈ CN,Mr we have |KN(s, ξ−, R±(ξ⊥))− KN(s, ξ−, ξ⊥)| ≤ C.

Proof. KN(s, ξ−, ξ⊥) is given by (6.21). We can write

KN(s, ξ−, ξ⊥) =
∑
i

KNi(s, ξ−, ξ⊥).
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We start bounding the term with i = 0. We have

|KN0(s, ξ
−, R±(ξ⊥))− KN0(s, ξ

−, ξ⊥)|
≤ |λ+(�N(ξ−, s, (0, R±(ξ⊥))))− λ+(�N(ξ−, s, (0, ξ⊥)))|
≤

∑
i

|λ(τi�
N(ξ−, s, (0, R±(ξ⊥))))− λ(τi�

N(ξ−, s, (0, ξ⊥)))|. (6.29)

We may now proceed as after (6.25), replacing (6.26) by

|�Nk (ξ−, s, (0, R±(ξ⊥)))−�Nk (ξ
−, s, (0, ξ⊥))| ≤ Ce−c dist(k,�M)e−ω|i|

and bounding (6.29) by Cε. As in (6.28) we obtain that

|KNi(s, ξ−, R±(ξ⊥))− KNi(s, ξ−, ξ⊥)| ≤ Ce−c|i|ε,

which yields the claim. �

Using the above lemma it follows that∫
eKN(m

′)1J⊥
N (s,ξ

−)(ξ
⊥) dξ⊥∫

eIN(m)1JN(s,ξ−)(ξ+) dξ+ ≤ C.

The boundedness of the measure ρN(dm′) follows from the above estimate and the fact
that ν(dm) is a probability measure.

Let T (m) now be a continuous function on M̂. Form ∈ M̂ define PNm ∈ M̂ to be the
point that coincides with m on �N and is extended periodically outside �N , i.e. PNm is
also in M̂N ; see comment before (2.4). Set TN(m) = T (PNm). The continuity of T and
the weak convergence of νN imply∫

T (m)ν(dm) = lim
N→∞

∫
TN(m)νN(dm).

Decomposing as in §6.2, we get∫
T (m)ν(dm) = lim

N→∞

∫
bN(ds)νNs(dξ

−)
∫
νN,s,ξ−(dξ+)T̃N (m)

with
T̃ (m) = eI(m)T (m)

and

νN,s,ξ− = eIN(m)1JN(s,ξ−)(ξ
+) dξ+

|JN(s, ξ−)| .

By the weak convergence of both measures,∫
T (m)ν(dm) =

∫
b(ds)νs(dξ

−) lim
N→∞

∫
νN,s,ξ−(dξ+)T̃N (m).

We can rewrite the last limit as

lim
N→∞

∫
νN,s,ξ−(dξ+)T̃N = lim

N→∞

∫
ρN,s,ξ−(dξ⊥)gN(m′)
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where

gN(m
′) =

∫
1JN(m′)(ξM)T̃N (m) dξM.

Now let
JK(m′) =

⋂
N>K

⋂
i∈�N/�K

⋂
ξi

JN(m̄
′); (6.30)

i.e. we take the union over N ≥ K and m̄′ such that PKm̄′ = PKm
′. Note that JK(m′)

depends onm′ only through PKm. Set

gK(m′) =
∫

1JK(m′)(ξM)T̃K(m) dξM.

By compactness there is a subsequence of the measures ρN,s,ξ− that converges weakly
to some ρs,ξ− . Moreover, gK(m′) are bounded measurable functions in CKr , hence they
can be approximated by continuous ones on sets whose complements have arbitrary small
Lebesgue measure and thus arbitrarily small ρN,s,ξ− measure, uniformly in N . Hence we
get the limit

lim
i→∞

∫
ρNi ,s,ξ−(dξ+)gK(m′) =

∫
ρs,ξ−(dξ+)gK(m′).

We need to estimate∫
ρN,s,ξ−(dξ⊥)((gN(m′)− gK(m′)))

=
∫
ρN,s,ξ−(dξ⊥) ·

∫
(1JN(m′)(ξM)T̃N(m)− 1JK(m′)(ξM)T̃

K(m)) dξM.

By continuity of T , we have that ‖T̃N − T̃ K‖∞ → 0 as N,K → ∞. Thus it suffices to
show ∫

ρN,s,ξ−(dξ⊥)
∫
(1JN(m′)(ξM)− 1JK(m′)(ξM))T̃

K(m) dξM (6.31)

tends to zero as N,K → ∞. Since JN(m′) ⊂ JK(m′) the difference between the
characteristic functions is non-zero only if there exists a j ∈ �N and m′, m̄′, with
PKm̄

′ = PKm
′, such that

Yj (PNm
′, ξM) /∈ Usj ,

Yj (m̄
′, ξM) ∈ Usj .

Moreover, on the support of ρN,s,ξ− we have

Yj(PNm
′, ξ̃M) ∈ Usj

for some ξ̃M . Recall that Yj(m) = ξ+
j + εj(m) and forK ≥ |j| we have

|εj(PNm
′, ξM)− εj(m̄

′, ξM)| ≤ Cεe−c(K−|j|)

and for |j| ≥ M

|εj(PNm
′, ξM)− εj(PNm

′, ξ̃M)| ≤ Cεe−c(|j|−M).
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Thus we may conclude that (6.31) is bounded by Ce−cK and therefore

lim
N→∞

∫
ρN,s,ξ−(dξ⊥)gN(m′) = lim

K→∞

∫
ρs,ξ−(dξ+)gK(m′).

Since PK+1m̄
′ = PK+1m

′ implies PKm̄′ = PKm
′ we get JK+1(m′) ⊂ JK(m′). Defining

the measurable set
J (m′) =

⋂
K

JK(m′)

we get by dominated convergence

lim
K→∞ gK(m′) =

∫
1J (m′)(ξM)T̃ (m) dξM

whereby the proof is completed. �

7. The projected SRB measure
We now turn to the study of the projected SRB measure and to the proof of Proposition 1
and Theorem 2. We work with general N ≤ ∞ and suppress the N-dependence if no
confusion can arise.

Recall that �0 : M → T is the projection to the torus at the origin of � expressed
in the (ξ−, s, ξ+) coordinate representation for � . �0 is continuous on M and for fixed
s, ξ− is real-analytic in ξ+. Let T (ψ) be a continuous function from T to R and M < N

to be fixed later. By definition of the projection and Proposition 11,∫
T

T (ψ)P∗µ(dψ) =
∫
T (�0)µ(d�) =

∫
ρ(dm′)

∫
dξM T (�0(m

′, ξM))a(m′, ξM)
(7.1)

where we set
a(m′, ξM) = eJ (m)1J (m′)(ξM). (7.2)

Let ωm′ (dψ) be the image under �0 of the measure l(m′, ξM) = a(m′, ξM) dξM , i.e.

ωm′ (A) = l(�0(m
′, ·)−1(A)).

Then (7.1) may be written as∫
T

T (ψ)P∗µ(dψ) =
∫
ρ(dm′)

∫
T

ωm′ (dψ)T (ψ) (7.3)

and we need to study next under what conditions the measure ωm′ is absolutely continuous
with respect to the Lebesgue measure on the torus T.

In the ± coordinates of T we have �0 = (ψ+, ψ−) with ψ+ = ξ0 + O(ε). It will
be convenient to change coordinates on M by solving ξ0 in terms of ψ+. Thus write
ξM = (ξ0, ξ) and let fm′ξ be the inverse of ξ0 → ψ+(m′, ξ0, ξ). Then the map � ◦ fm′ξ
provides coordinates (m′, ξ, ψ+) on M and in particular we get for φ = �0 ◦ fm′ξ

φ(m′, ξ, ψ+) = (ψ+, ψ−(m′, ξ, ψ+)) (7.4)

where ψ− is continuous inm′ and real-analytic in ξ, ψ+. The measure ωm′ is the image of
a◦fm′ξ dψ+ dξ under the map φ. Our objective is to show that provided a non-degeneracy
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condition is satisfied ωm′ is absolutely continuous with respect to the Lebesgue measure
dψ+ dψ−. Since a is bounded it suffices to show φ(dψ+ dξ) is absolutely continuous.

Clearly, the absolute continuity fails if the function ψ− in (7.4) is constant in ξ .
This turns out to be both a necessary and a sufficient condition, as we will now set out
to prove.

Let ξ ′ = (ξ⊥, ξ) so that m ∈ M is given by m = (ξ−, s, ξ ′, ψ+). For a multi-index
n = (ni)i∈�\o denote by |n| := ∑ |ni| and by supp n the set of i such that ni �= 0.

PROPOSITION 12. Suppose that for some m ∈ M, there exist integer k ≥ 0 and a
multi-index n �= 0 such that

∂k
ψ+∂n

ξ φ(m) �= o. (7.5)

Then for every m ∈ M there exists k(m) ≥ 0 and n(m) �= 0 such that (7.5) holds.
Moreover there exists an integer M such that we may assume supp n(m) ⊂ �M and
|n(m)| < M for all m.

Proof. Suppose for some m no such k and n exist. By real analyticity of φ in ψ+ and
ξ this means φ(ξ−, s, ξ, ψ+) is constant in ξ for all ψ . Going back to the coordinates
(ξ−, s, ξ+) we infer that the rank of the map Dξ+�0(ξ

−, s, ξ+) is one for all ξ+ on the
domain. Since the map ξ+ → �0(ξ

−, s, ξ+) equals the projection P to the origin applied
to the embedding S+

�′ given by Proposition 4, with � ′ = �(ξ−, s, 0), it follows that the
rank of Dξ+PS+

�′ (ξ+) equals one for all ξ+ ∈ R
�. But the image of R

� under S+
�′ is

dense in T so by continuity the rank equals one for all � ∈ T . This in turn implies that
φ(ξ−, s, ξ, ψ+) is constant in ξ for all s, ξ−, ψ , i.e. the condition (7.5) holds nowhere.
This takes care of the first claim.

The second claim is non-vacuous only for N = ∞. Thus suppose for all m ∈ M,
k(m) ≥ 0 and n(m) �= 0 exist such that (7.5) holds. By continuity it holds in a
neighborhood of m with the same k(m) and n(m) and thus by compactness of M we
infer the existence of M < ∞. �

We continue now the study of the measure ωm′ supposing the condition (7.5) holds.
We choose the M in (7.1) as in Proposition 12. Given a point m = (m′, ξ̃ , ψ̃+) let us fix
k(m) to be the smallest of the k satisfying (7.5). Then we may write, for (ξ, ψ+) in some
neighborhoodU(m) of the origin,

ψ−(m′, ξ̃ + ξ, ψ̃+ + ψ+)− ψ−(m′, ξ̃ , ψ̃+) = (ψ+)k(m)f (m′, ξ, ψ+)

with f real-analytic in (ξ, ψ+) and f (m′, ξ, 0) a non-constant function.

LEMMA 4. There exist a neighborhood V (m) of the origin in R�M such that the image
of the Lebesgue measure under the map F : V (m) → R2 given by (ξ, ψ+) →
(ψ+, (ψ+)kf (m′, ξ, ψ+)) is absolutely continuous with respect to the Lebesgue measure
in R2.

Proof. See Appendix A. �

By compactness we may cover J (m′) by a finite number of such neighborhoods and
conclude the absolute continuity of ωm′ for each m′:

ωm′(dψ) = ωm′(ψ) dψ
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with ωm′ (ψ) non-negative and integrable. Thus (7.3) becomes∫
T

T (ψ)P∗µ(dψ) =
∫
ρ(dm′)

∫
T

ωm′ (ψ)T (ψ) dψ. (7.6)

Since, by construction,
∫
ωm′ (ψ) dψ ≤ C for all m′ we can conclude, by the Fubini–

Tonelli theorem, that P∗µ(dψ) = η(ψ) dψ with η(ψ) = ∫
ρ(dm′)ωm′ (ψ) in L1(T).

We will now turn to the proof of Proposition 1, i.e. we will characterize the systems for
which the projection is singular.

LEMMA 5. Suppose (7.5) is violated. Then the unstable manifold is a product of curves

W+(�) = ×i∈� γi(�)

where γi(�) : R → Ti is an embedding to the torus at i ∈ �.

Proof. From the proof of Proposition 12 we know that the map DPS+
�(ξ) has rank 1

for every ξ ∈ R�N . Thus the vectors vi(�, ξ) = ∂ξiPS
+
�(ξ) ∈ R2 are parallel. Since

vo = (0, 1)+ O(ε0) �= 0 there exist functions λi(�, ξ), real-analytic in ξ ∈ U , such that

vi = λivo. (7.7)

Let P+ be the orthogonal projection in R2�N to the unstable space E+ of A0 and let

f� = P+S+
�.

Since S+
� is a real-analytic embedding in R2�N and P+ is one-to-one on the image of

S+
� we conclude that f� is a real-analytic diffeomorphism of R�N . Let us change the

parameterization of W+(�) using f� , i.e. let S̃+
� = S+

� ◦ f−1
� and ṽi = ∂ξiPS̃

+
� . Then

P+S̃+
�(ξ) = ξ

and hence P+ṽi = δio. On the other hand, by (7.7)

ṽi = ∂ξiPS̃
+
� = vo ◦ f−1

�

∑
j

λj ◦ f−1
� ∂ξif

−1
�j
.

Thus, combining these identities with P+vo �= 0, we infer that
∑

j λj ◦ f−1∂ξif
−1
j = 0.

Therefore ṽi vanishes identically for i �= o. Hence PS̃+
ψ (ξ) depends on ξ only through ξo.

Let τi for i ∈ �N be the translation (τi�)j = �i+j and on ξ similarly. Then
Pi S̃

+
�(ξ) = PS̃+

τi�
(τiξ). Therefore, PiS̃

+
�(ξ) = γi(�, ξi) for a γi satisfying the claim

of the lemma. �

Denote by O = X(0) the fixed point of A. Observe that, due to the periodic boundary
conditions, all components of O are equal to the same valueψO . Thus all the curves γi(O)
are identical. Since the restriction of A to the�M -periodic points of T is AM we may infer
that ×� W

+
1 (ψO) ⊂ W+(O). Thus γi(O) = W+

1 (ψO) and we have obtained

W+(O) = ×� W
+
1 (ψO). (7.8)

Let Ã = X̃−1AX̃ where X̃ = ×� X1. Then (7.8) implies W̃+(0) = ×i W
+
A (0) where

W̃+(�) andW+
A (ψ) are the unstable manifolds of the map Ã and of the linear torus mapA.
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Due to the density of W+
A (0), we get that for any � ∈ T

W̃+(�) = ×� W
+
A (�i). (7.9)

Indeed given � ∈ T we can always find a sequence of points �n ∈ W̃+(0) such that
limn→∞ �n = � . Observe that W̃+(�n) = ×� W

+
A ((�n)i) because W̃+(�n) = W̃+(0).

Let now W̃+
r (�n) be the sphere of radius r and center �n in W̃+(�n). Due to the

continuity of the unstable foliation, it follows that, for every positive r , W̃+
r (�n) converges

to W̃+
r (�). This proves (7.9).

Observe now that, for every� = (cie
+
i )i∈� ∈ W̃+(0), we have that Ã(�) = (c′ie

+
i )i∈�,

where we can write c′i = λ+ci + fi(�) with f defined and continuous on W̃+(0).
If � �∈ W̃+(0) we can again approximate it by a sequence �n. The continuity of the
map Ã implies that the limit of f (�n) exists and is independent of the chosen sequence.
Finally, we obtain

(Ã�)i = A�i + fi(�)e+,

which proves our proposition. �

8. Perturbative characterization of singular couplings
Proposition 1 gives a geometric characterization of the singular couplings. This charac-
terization, however, is not directly testable for a given interaction F . We want to discuss
here a more practical although less general way to decide whether a given interaction F
is singular. For this purpose we will write F = εG with G = O(1) and ε small. From
Proposition 12 and its proof we get immediately the following lemma.

LEMMA 6. Given G if rank(∂εDPS+
�(0)|ε=0) �≡ 1 then there exists ε0, depending on G but

not on N , such that for all ε ≤ ε0 the coupled system AN , given by (2.1) and (2.2) with
F = εG, is non-degenerate.

It is rather easy to compute explicitly ∂εDPS+
�(0)|ε=0.

LEMMA 7. If rank(∂εDPS+
�(0)|ε=0) ≡ 1 then ∂e+i

f−(�) ≡ 0.

Proof. Observe that the first order in ε of the matrix ∂ξi∂ξj PS
+
�(0) is the 2 × 2 matrix

obtained by selecting in the 2�×� matrix χ+(�), see §4, the rows relative to the + and
− directions of�o and the i,j columns. If rank(∂εDPS+

�(0)|ε=0) = 1 then for every i and j
we have det(∂ε∂ξi∂ξj PS

+
�(0)|ε=0) = 0. By the choice of the ++ part of the matrix χ+(�),

see comment before (4.12), we get that, to the first order, det ∂ξi∂ξj PS
+
�(0) = 0 for every

f unless i = o or j = o.
Expanding (4.17) at first order in ε we get that

det(∂ε∂ξi∂ξoPS+
�(0)|ε=0) = (T−1

1 ∂e+i
f−)(�).

But T−1
1 is a bounded linear operator, see §4, so that we must have ∂e+i

f−(�) ≡ 0,
which proves the lemma. �
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A. Appendix

Proof of Lemma 4. Suppressing the m′-dependence and denoting ψ+ by ψ , we need to
study the image η of Lebesgue measure under the map

F(ξ,ψ) = (ψ,ψkf (ξ, ψ))

in some neighborhoodU of the origin of Rd×R. By assumption, we may write for some n

f (z, 0) =
∑
|α|=n

aαz
α + O(|z|n+1)

where not all aα vanish. Thus h(z) := ∑
|α|=n ãαzα is a homogeneous polynomial of

degree n that does not vanish identically and so there exists v ∈ Rd , |v| = 1, such that
h(v) �= 0. Choosing an orthogonal matrix O such that Oed = v where ed = (0, . . . , 1) we
see that we may assume without loss that a(0,...,n) �= 0. Writing z = (u1, . . . , ud−1, s) and
defining the function

g(ψ, u, s) := ∂sf (z, ψ)

we may write
g(ψ, u, s) =

∑
r

br(ψ, u)s
r

so that in a neighborhood V of the origin of R
d−1 × R there exists a constant B such that

|br(ψ, u)| ≤ Br.

Moreover

bn(0, 0) = γ �= 0,

br (0, 0) = 0, for r < n.

Choose ρ > 0 such that

|bn+1(0, 0)s + bn+2(0, 0)s2 + · · · | < γ/2
for |s| ≤ ρ. Moreover let D = {s ∈ C | |s| < ρ}. Then the holomorphic function
g(0, 0, s) has an n-fold zero at 0 and no other zeros in D. Furthermore

|g(0, 0, s)| ≥ |γ |
2
ρn

for |s| = ρ. By continuity there is a neighborhood U of zero in Rd−1 × R such that for
(u,ψ) ∈ U

|g(u,ψ, s)| ≥ |γ |
4
ρn

for |s| = ρ. By Rouché’s theorem g(u,ψ, s) has exactly n zeros in D (counted with
multiplicity) when (u,ψ) ∈ U .

Fix (u,ψ) ∈ U and let s1, . . . , sm be the zeros of g(u,ψ, s) with multiplicities
n1, . . . , nm in D. Then

∏
i |(s − si )

ni | ≤ (2ρ)n for |s| ≤ ρ. Therefore,

φ(s) = g(u,ψ, s)∏
i (s − si)ni
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is analytic in D, has no zero in D, and is bounded in absolute value from below by

|γ |
4
ρn

/
(2ρ)n = |γ |

2n+2

on ∂D. By the maximum principle

φ(s) ≥ |γ |
2n+2

for all s ∈ D.
Fix now ψ+ �= 0. From the preceding discussion we infer that the function s →

(ψ+)kf ((u, s), ψ+) has m(ψ+) ≤ n critical points si(ψ+) and therefore k ≤ m(ψ+)
critical values ψ−

i . The function

ηu(ψ
+, ψ−) =

∫
ds δ(ψ− − (ψ+)kf ((u, s), ψ+))

is smooth in the complement of these critical values. Let ψ− ∈ Ui \ ψ−
i where Ui is a

small enough neighborhood ofψ−
i . Let sj be a critical point giving rise to the critical value

ψ−
i . Integrating over a small neighborhood Vj of sj we get∫
Vj

ds δ(ψ− − (ψ+)kf ((u, s), ψ+)) =
∫
Vj

ds δ(ψ− − ψ−
i − (ψ+)kαj (s)(s − sj )

nj )

where αj (s) is bounded away from zero in Vj . Performing the integration we obtain

ηu(ψ
+, ψ−) =

∑
j

aj (ψ
−, ψ+, u)(ψ− − ψ−

i )
(1/nj )−1

where aj is bounded in ψ− ∈ Ui and the sum runs over the critical points sj giving rise
to the critical value ψi . Hence, for each ψ+ �= 0, ηu(ψ+, ψ−) is integrable in ψ− with
integral bounded by 1. Thus, by the Fubini–Tonelli theorem, it is integrable in (ψ+, ψ−)
and by the same theorem the function

η(ψ+, ψ−) =
∫
du ηu(ψ

+, ψ−)

is integrable. It is the density of our measure η since the η measure of the set ψ+ = 0
vanishes. The claim is proved. �
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