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Abstract

The interaction of the Palaeo-Pacific and Palaeo-Asian Oceans is an enigmatic issue as their
temporal and spatial features are controversial. To address this issue, we present a systematic
study of large volumes of early Permian volcanic rocks and intrusions developed in the East
Tianshan. The represented samples of basaltic andesites and rhyolites yield zircon crystallization
ages of 285.1 ± 5.9 Ma and 275.3 ± 1.8 Ma, respectively. The basalts have normal mid-ocean ridge
basalt (N-MORB) and arc-related geochemical signatures with high TiO2 contents, negative Rb,
Th, U, Nb and Ta anomalies and positive Eu anomalies. Basaltic andesites and andesites have
arc-related geochemical characteristics with moderate TiO2 contents and relatively negative
Nb, Ta and Ti anomalies, together with slightly negative to positive Eu anomalies. The rhyo-
lites show an affinity with A2-type granite with high SiO2, K2OþNa2O, Fe/Mg, Ga, Zr, Nb, Y,
HFSE, REE and Y/Nb levels (>1.2). These geochemical data suggest that the rocks formed in a
supra-subduction zone. The presence of high ϵNd(t) values ofþ4.6 toþ8.2 and low (87Sr/86Sr)i
(0.70342–0.70591) values indicates that the volcanic rocks originated from a depleted mantle.
We propose that oblique subduction with slabs breaking off gave rise to transtension and to
the emplacement of large volumes of mantle-derived melts in the early Permian in the East
Tianshan, serving as an important record of the subduction zone of the Palaeo-Pacific Ocean.

1. Introduction

The Palaeozoic evolution of the Palaeo-Pacific Ocean is an enigmatic issue as its temporal and
spatial features are controversial. Some researchers believe that the Pacific Ocean did not
operate in the late Palaeozoic in central Asia and only affected NE Asia in the Early
Mesozoic, while others have proposed that the Palaeo-Pacific Ocean may have already oper-
ated in the Palaeozoic or even earlier (Xiao et al. 2010, 2015).

As part of the Palaeo-Pacific Ocean, the Palaeo-Asian Ocean was consumed to form the
Altaids (or the Central Asian Orogenic Belt, mainly developed from ~1.0 Ga to 250Ma), one of
the most important sites of juvenile crustal growth (Şengör et al. 1993; Şengör & Natal’in,
1996; Xiao et al. 2004, 2010, 2015, 2018; Windley et al. 2007; Domeier & Torsvik, 2014)
(Fig. 1). Therefore, the Altaids serve as an appropriate natural case for determining the
systematic anatomy of the Palaeozoic evolution of the Palaeo-Pacific Ocean.

Over decades of study, a consensus has gradually been reached that the Altaids were formed
through the successive lateral accretion of small continental blocks, arcs and accretionary
complexes (Coleman, 1989; Şengör et al. 1993; Dobretsov et al. 1995; Şengör & Natal’in,
1996; Ma et al. 1997; Gao et al. 1998; Buchan et al. 2002; Bazhenov et al. 2003; Li, 2004;
Xiao et al. 2004, 2008b, 2010; JY Li et al. 2006a; Windley et al. 2007; Shi et al. 2010), and through
the emplacement of immense volumes of magma in a lateral accretionary, post-collision and/or
intraplate extensional setting in the late Palaeozoic and early Mesozoic (Han et al. 1997, 1998,
2004; F Chen et al. 2000; Jahn et al. 2000; Wu et al. 2000, 2002; Jahn, 2004; ZH Chen et al. 2006;
Windley et al. 2007; Yuan et al. 2007; Mao et al. 2014c). To date, the architecture and style of
orogenic collages is controversial, and there are two general classes of models. One model
suggests that the Altaids formed through a prolonged and steady period of subduction–
accretion, followed by the oroclinal bending of a single, long-lived giant magmatic arc complex
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Fig. 1. (a) Schematic tectonic map of central Asia and adjacent regions (Şengör et al. 1993; Xiao et al. 2015). (b) Schematic geological map of Eastern Tianshan (modified after
XBGMR, 1993, and Xiao et al. 2004, 2010) showing the locations of the Permian volcanic rocks within the desert of the Turpan Basin. Major faults separate southern Tianshan,
central Tianshan, the Yamansu Arc and the Dananhu–Haerlik Arc.
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or continental sliver (Şengör et al. 1993; Şengör & Natal’in, 1996;
Yakubchuk et al. 2004; Johnston et al. 2013; Xiao et al. 2018).
Conversely, another hypothesis suggests that the Altaids may have
grown through the subduction and accretion of multiple oceanic
basins accompanied by the development of individual magmatic
arc terranes and microcontinents (Coleman, 1989; Dobretsov
et al. 1995; Ma et al. 1997; Buchan et al. 2002; Windley et al.
2007; Xiao et al. 2004, 2008a, 2009, 2010, 2015). Geologists agree
that the Altaids underwent an important tectonic transition in the
Permian, but it is debated whether the Palaeo-Pacific Ocean had
closed (Coleman, 1989; Han et al. 1998; Li, 2004; Xiao et al.
2004, 2006, 2010; Zhou et al. 2004; JY Li et al. 2006a; Wang
et al. 2006; Qin et al. 2011).

The Chinese East Tianshan is the easternmost segment of the
Tianshan mountain range in the southern Altaids; it occupies a
key position in the Altaids (Fig. 1). In the early Permian, large
volumes of volcanic rock and intrusions developed along regional
fault belts and/or extensive basins of the East Tianshan (Fig. 1b;
Table 4 further below), creating a unique opportunity to study
the geological evolution of the southern Altaids. Geologists have
conducted systematic studies of Cu–Ni ore-bearing mafic–
ultramafic intrusions (Ma et al. 1997; Zhu et al. 2002; Xiao
et al. 2004, 2010; Zhou et al. 2004; JY Li et al. 2006b; Mao et al.
2006, 2008, 2012, 2014c; Zhao et al. 2006a; Ao et al. 2010; Chen
et al. 2011; Qin et al. 2011), and diverse models have been applied
to the Permian geological evolution of the East Tianshan (e.g. the
post-collision model (Han et al. 1998; Zhou et al. 2004; JY Li et al.
2006a; Wang et al. 2006; Qin et al. 2011), the oblique subduction
model (Xiao et al. 2004, 2006, 2010; Mao et al. 2008; Ao et al. 2010)
and the mantle plume model (Pirajno et al. 2008; Qin et al. 2011;
Su et al. 2012; Tang et al. 2013). The Permian volcano of the East
Tianshan has rarely been reported. Permian volcanic rocks
in Turpan Basin contains basalt, andesite, dacite and rhyolite,
offering new and detailed information on patterns of magmatism
in relation to their regional geology and tectonic settings. This
paper provides a detailed account of the occurrence and formation
of magma relative to the geodynamic development of the southern
margin of the Altaids in the Permian.

2. Geological setting

The Chinese East Tianshan is a 300 km wide and 1500 km long
orogenic collage (Xiao et al. 2004, 2006, 2008a, b, 2010) consist-
ing of the following tectonic units: South Tianshan, Central
Tianshan, the Yamansu Arc and the Dananhu–Haerlik Arc
(Fig. 1).

The South Tianshan, located between the Central Tianshan
Arc and Tarim Craton (Fig. 1), includes various Silurian–
Carboniferous rocks, including turbidites, ophiolites (Silurian –
late Carboniferous), cherts, volcaniclastic rocks, mélanges and
Devonian – early Carboniferous high-pressure metamorphic
rocks (eclogite and blueschist) (Windley et al. 1990; Ma et al.
1997; Gao et al. 1998; Li, 2004; Xiao et al. 2004).

The Central Tianshan Arc situated between the Aqikekuduke–
Shaquanzi and Kawabulake–Xingxingxia faults (Fig. 1) includes a
Precambrian amphibolite facies basement, Palaeozoic plutons and
volcanic rocks. The Precambrian basement consists of gneisses,
quartz schists, migmatites and marbles dated from 900 to 1900
Ma (Gu et al. 1990; Xiu et al. 2002; Liu et al. 2004; Zhang et al.
2004; Hu et al. 2006, 2010; Li et al. 2009; Shi et al. 2010).
Palaeozoic arc volcanic rocks, volcanic clastics and intrusions also
formed from the Ordovician to early Permian (Li et al. 2001;

Li, 2004; Zhang et al. 2004; Sun et al. 2006; Guo et al. 2007;
Hu et al. 2007; Mao et al. 2014a). The Aqikuduke fault belt is
marked by Palaeozoic ophiolites, ductile strike-slip faults and
mafic–ultramafic intrusions (Windley et al. 1990; Shu et al.
1999; Xiao et al. 2004, 2008a; Wu et al. 2005; Mao et al. 2006).

The Yamansu Arc comprises Devonian–Carboniferous calc-
alkaline andesites, basalts, rhyolites, tuffs and volcaniclastic rocks
interbedded with fine-grained clastic rocks and carbonates that
have undergone sub-greenschist facies metamorphism, together
with granitic intrusions (Ji et al. 1994; Yang et al. 1996, 1998;
Ma et al. 1997; Gu et al. 1999; Xiao et al. 2004).

The Dananhu–Haerlik Ordovician–Carboniferous Island
Arc located between the Kalameili and Kangguer faults (Fig. 1b)
consists of Ordovician to Permian tholeiites to calc-alkaline
mafic–felsic lavas, volcanoclastics, tuffs and clastic sediments
(Ma et al. 1997; Xiao et al. 2004; Hou et al. 2005; Tang et al.
2006). Abundant arc-related granitic intrusions range in age from
the Ordovician to early Permian (Li et al. 2004; FW Chen et al.
2005; Hou et al. 2005; Sun et al. 2005; Chao et al. 2006; Guo et al.
2006; Mao et al. 2010). The earlier Permian mafic–ultramafic
complex zone is located along the southern margins of the arc
and stretches across several hundreds of kilometres (Ma et al.
1997; Mao et al. 2002; Han et al. 2004; Xiao et al. 2004; Zhou
et al. 2004; Qin et al. 2011).

Early Permian volcanic rocks occur around the Kalatage
and Dananhu Palaeozoic geological inlier in the Turpan Basin
(Figs 1b, 2). They are classified as a middle Permian Aerbashayi
Formation (XBGMR, 1993; Zhu et al. 2002; Mao et al. 2014c) com-
posed of basalts and basaltic andesites interbedded with minor
rhyolites in the lower formation and with tuffs, rhyolites and
dacites in the upper formation. The Aerbashayi Formation uncon-
formably covers the upper Carboniferous Qishan Formation or the
Ordovician–Silurian Volcanic Arc Group (or the lower Devonian
Kaltage Formation) and is unconformably overlain by the upper
Permian Kula Formation, the low Jurassic Sangonghe Formation
and the Quaternary.

A number of early Permian mafic complexes occur along
faults of the Kalatage inlier (Mao, 2014). Adjacent are
Ordovician (Devonian)–Jurassic low-grade volcanic rocks, volca-
niclastic rocks and clastic sediments (Tang et al. 2006; Mao et al.
2010, 2014b, c, 2015). The Ordovician–Silurian Volcanic Group
(or lower Devonian Kaltage Formation) consists of calc-alkaline
basic–felsic volcanic and volcaniclastic rocks, including basalts,
andesites, dacites, rhyolites and volcaniclastic rocks (Qin et al.
2001; WQ Li et al. 2006; Tang et al. 2006; Mao et al. 2010,
2014b, c, 2015). The ages of these rocks are poorly constrained
(e.g. the lower Devonian (Qin et al. 2001; Tang et al. 2006),
the Ordovician to Devonian (Mao et al. 2010, 2014b, 2015;
Mao, 2014) or the Ordovician–Silurian (WQ Li et al. 2006)).
The lower Devonian Dananhu Formation, which unconformably
overlies Ordovician–Silurian Arc volcanic sequences, consists
of biogenic carbonates, clastic sediments and interbedded
volcanic rocks. The Upper Carboniferous (Pennsylvanian)
Qishan Formation, unconformably overlying the lower
Devonian Dananhu Formation, consists of calc-alkaline basaltic
and andesitic volcanic rocks, tuffs and clastic sediments. The
lower Permian Aqikebulake Formation (P1a) consists of basic–
felsic volcanic rocks and sediments. The upper Permian Kula
Formation consists of clastic sediments, and the Triassic is absent
in the area. The lower Jurassic Sangonghe Formation contains
black shales, shaly sandstones, sandstones, and coalbeds, which
lie unconformably on older strata.
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3. Sampling and petrography

Figures 1b and 2 show that early Permian volcanic rocks are located
in the Turpan Basin and around the Kalatage and Dananhu
Palaeozoic geological inlier (Fig. 2). In this study, we mainly research
rocks around the Kalatage Palaeozoic geological inlier. Our study
reveals a geological section of the southern margins of the Kalatage
inlier (Fig. 3). In this section (Fig. 3), early Permian volcanic rocks
are mainly composed of clastic sedimentary, amygdaloidal basalts,
basalts, basaltic andesites and andesites interbedded with minor
rhyolites. From north to south, early Permian volcanic rock forma-
tions can be divided into six volcanic–sedimentary sequences. At
the bottom are amygdaloidal basaltic andesites and coherent vol-
caniclastic rocks (11TH01), which unconformably cover the upper
Carboniferous Qishan Formation and Ordovician–Silurian vol-
canic sequences. Next is the sedimentary sequence, which is
unconformably covered at the base of volcanic rocks. The third

sequence unconformably located on the second sedimentary
sequence is composed of sedimentary rocks and interbedded with
rhyolites (11TH02 and 13TH01), and a sequence of conglomerates
is positioned at the bottom of the sequence. The fourth sequence
unconformably covering the third sequence is composed of amyg-
daloidal basaltic andesites (11TH03 and 13TH03) and coherent
volcaniclastic rocks interbedded with a few basalts and rhyolite,
which are unconformably covered with a thin layer of rhyolites
(11TH04). Thick purple to grey amygdaloidal basalts and volcani-
clastic rocks unconformably covering the fourth sequence occur in
the upper part of the volcanic formation (11TH05). At the top is a
sequence of purple amygdaloidal andesites (11TH06) and volcani-
clastic rocks, which are unconformably covered on the fifth
sequence and by the low Jurassic Sangonghe Formation. The sec-
tion suggests a pattern of volcanic eruption varying from basic to
intermediate-felsic.
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To determine themagma composition and age of volcanic rocks
in the Turpan Basin, different types of volcanic rocks collected
from the Kalatage inlier were analysed for whole rock major, rare
earth and trace elements; Sr–Nd isotopic compositions; and basal-
tic andesites and rhyolite for zircon laser ablation – inductively
coupled plasma – mass spectormetry (LA-ICP-MS) U–Pb dating.
The sampling locations are shown in geological cross-sections
presented in Figures 2 and 3.

Basalts include fine-grained, porphyritic and vesicular types
that are greyish-green and brown to purple. The rocks present
typical quench textures with abundant phenocrysts (5–40 %)
embedded within a fine-grained groundmass (Fig. 4a, b, c).
Plagioclase (5–15 %) with a composition of An51–An62, clinopyr-
oxene aggregates and subordinate orthopyroxene (2–20 %) with a
composition of Wo45–Wo50, En37–En44 and Fs6–Fs16) are of the
phenocryst phases along with minor Fe–Ti oxides (1–3 %). The
fine-grained groundmass is composed of plagioclase, glass, olivine
and Ti-magnetite. Some basalt samples have long plate plagioclase
phenocrysts of 0.5–3 cm length and fine-grained olivine phenoc-
rysts (with a composition of Mg#= 65–74 and Cr#= 1–38).

The basaltic andesites and andesites, which are brown to purple,
are mainly porphyritic and vesicular and exhibit typical quench
textures with abundant phenocrysts (30–50 %) embedded within
a fine-grained groundmass (Fig. 4d, e). Plagioclase (30–45 %)
and clinopyroxene aggregates (2–5 %) are of the phenocryst
phases. The fine-grained groundmass is composed of plagioclase,
glass, olivine and Ti-magnetite.

The rhyolites include fine-grained, porphyritic and vesicular
types that are grey-white, brown or purple. Rhyolites have a typical
porphyritic texture with a few quartz and alkali feldspars as phe-
nocrysts in an aphanitic matrix of the same minerals (Fig. 4f).
Quartz phenocrysts are euhedral and 1–3 mm in diameter and
are associated with euhedral alkali feldspar phenocrysts of 1–5 mm
length. Accessory minerals include zircon, apatite and titanite.

4. Analytical techniques

4.a. Geochronology

Zircon grains were separated using conventional heavy liquid and
magnetic techniques. Representative zircon grains were handpicked

200˚
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Fig. 3. The geological section for the Permian volcanic rocks in the southern part of the Kalatage inlier.

Fig. 4. Microphotographs of volcanic samples around the Kalatage inlier in the Turpan Basin, NW China. (a, b, c) Basalts; (d) basaltic andesites; (e) andesite;
(f) rhyolite. Ol – olivine; Px – pyroxene; Pl – plagioclase; Qz – quartz.
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under a binocular microscope and mounted in an epoxy resin
disc. We used the Sensitive High-Resolution Ion Microprobe
(SHRIMP) and LA-ICP-MS zircon U–Pb dating technique to
complete the two samples. To identify internal features of the
zircons (zoning, structures, alteration, fractures, etc.), cathodo-
luminescence (CL) images were collected using a Cameca elec-
tron microprobe for SHRIMP based at the Chinese Academy
of Geological Sciences (Beijing), and LA-ICP-MS dating was
conducted at the SEM-EDS-EBSD-CL Laboratory of Peking
University (Beijing).

4.a.1. SHRIMP zircon U–Pb dating
The SHRIMP experiments were carried out at the Chinese
Academy of Geological Sciences (Beijing). U–Th–Pb isotopic
analyses were performed using SHRIMP-II. Further details on
the analysis of zircons using SHRIMP are described in Song
et al. (2002b). Inter-element fractionation ion emissions of zircon
were corrected relative to RSES reference TEMORA 1 (417 Ma;
Black et al. 2003). Data reduction was carried out using the
Isoplot/Ex v. 2.49 program (Ludwig, 2001).

4.a.2. LA-ICP-MS zircon U–Pb dating
Experiments were carried out at the LA-ICP-MS Laboratory of
the University of Science and Technology of China. Uranium,
Th and Pb concentrations were calibrated using 29Si as an internal
standard and NIST SRM 610 as an external standard. 207Pb/206Pb
and 206Pb/238U ratios were calculated using GLITTER 4.0
(Johnson et al. 2008) and were then corrected using Harvard
zircon 91500 as an external standard. The 207Pb/235U ratio
was calculated from the 207Pb/206Pb and 206Pb/238U values.
Common Pb was corrected according to the method proposed
by Andersen (2002). Weighted mean U–Pb ages and concordia
plots were processed using ISOPLOT 3.0. The procedure is
described at length in Xie et al. (2008).

4.b. Geochemistry and isotopic studies

Major oxide and trace element experiments were carried out at
the analytical laboratory of the Beijing Research Institute of
Uranium Geology. Major elements were determined by X-ray
fluorescence (XRF) spectrometry with analytical errors of less
than 5 %. A loss on ignition (LOI) was determined after igniting
the sampled powder at 1000 °C for 1 hour. Trace elements,
including rare earth, were identified by ICP techniques, analytical
procedures of which are described in Zhou et al. (2002). Rb–Sr
and Sm–Nd isotopic ratios were measured with a Finnigan
MAT262 thermal ionization mass spectrometer (TIMS) housed
at the Laboratory for Radiogenic Isotope Geochemistry of the
Institute of Geology and Geophysics, Chinese Academy of
Sciences, Beijing. Measurements were carried out following
the isotope dilution procedures developed by Chen et al.
(2000) and Zhou et al. (2002). A static multi-collection mode
was used for the measurements. A traditional cation exchange
technique was adopted for chemical separation. Mass fractionation
corrections for Sr and Nd isotopic ratios were based on 86Sr/
88Sr= 0.1194 and 146Nd/144Nd= 0.7219. Repeated measurements
of La Jolla Nd standard and NBS987 during the measurement
period gave values of 143Nd/144Nd= 0.511861 ± 9 (2σ) and 87Sr/
86Sr= 0.710254 ± 10 (2σ), respectively. Total procedural blanks
for Sr and Nd are valued at ~10−9 and ~10−11 g, respectively.

5. Results

Two new zircon U–Pb dates for andesite and rhyolite are presented
in Figure 4 and Table 1, respectively. Major and trace elements and
Sm–Nd and Rb–Sr isotope data for the volcanic rocks are listed in
Tables 2 and 3, respectively.

5.a. The age of basaltic andesites and rhyolite

Zircons separated from the basaltic andesite rocks (13TH03) are
mostly colourless, transparent and well crystallized, with grain
sizes of 100 to 200 μm diameter. CL images show that most of
the zircons have a single composition and rhythmic zones typical
of basic magmatic rocks, and some grains have dark and bright
rims and black to dark cores, indicating that they are xenocrystic
(Fig. 5a). SHRIMP U–Pb isotopic analytical results on zircon
grains taken from the andesite sample are listed in Table 1 and
are presented in Figure 5b. The samples are plotted along the
concordant line with three groups of zircon U–Pb isotopic ages
(Fig. 5b): 11 analysed zircons yield a 206Pb/238U weighted average
age of 285.1 ± 5.9Ma (MSWD= 2.3, n= 11), which we interpret as
the crystallization age of the andesite; six analysed zircons yield a
206Pb/238U weighted average age of 357 ± 13 Ma (MSWD = 2.9,
n= 6), and two zircon grains yield a 206Pb/238U age of 427 ± 7
Ma and 453 ± 10 Ma, respectively. These grains present quite
complicated CL formations with dark or bright rims and black
to dark cores, indicating that they are xenocrystic.

Zircons separated from the rhyolite (11TH04) are mostly col-
ourless, transparent and well crystallized with grain sizes of 100 to
200 μm diameter, and CL images show that all of the zircons
include special mottled patches with rhythmic zones (Fig. 5c).
LA-ICP-MS U–Pb isotopic analytical data for zircon grains taken
from the rhyolite sample are listed in Table 1 and are presented in
Figure 5d. The samples concentrate in a small area along the con-
cordia line (Fig. 5d), and 19 analysed zircons yield a 206Pb/238U
weighted average age of 275.3 ± 1.8 Ma (MSWD= 1.8, n= 19).

An early Permian volcanism eruption was reported in the
Turpan (Zhu et al. 2002) Basin and Shaerhu area of the Turpan
Basin (285 Ma, Mao et al. 2014c; Table 4). Our analysis results
show that the rhyolite erupted after the basaltic andesites, sug-
gesting a c. 10 Ma volcanism eruption range of 285 to 275 Ma
occurring in the early Permian.

5.b. Geochemical characteristics

Data on the major trace elements Rb–Sr and Sm–Nd are listed in
Tables 2 and 3, respectively. Amygdale basalt, basaltic andesite and
andesite show relatively variable high LOI (1.37–3.43 %), as the
amygdales fill volatile-water-enriched minerals (e.g. carbonate
and chlorite) not completely removed through the crushing
process.

5.b.1 Major elements
The basalts present relatively high TiO2 (2.14–2.59 %), CaO (8.01–
8.85 %), MgO (5.37–6.53 %) and Mg# (49.5–54.8) levels and lower
alkali levels (Na2Oþ K2O = 3.58–3.93 %, K2O/Na2O= 0.06–0.10)
and are classified as tholeiitic magma in a FeOt/MgO–SiO2 dia-
gram (Fig. 6b; Myashiro, 1974). Compared to the basalt, the basal-
tic andesites (trachyandesite) present lower TiO2 (1.13–1.45 %),
CaO (2.18–3.43 %) and MgO (3.63–4.9 %, Mg#= 48–58) levels
and higher alkali levels (Na2O þ K2O= 3.85–6.32 %). The andes-
ites (trachyandesites) present SiO2 levels of 58.17 to 60.52 %, CaO
levels of 8.01 to 8.85 %, MgO levels of 5.37 to 6.53 %, Mg# levels
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Table 1. U–Pb SHRIMP and LA-ICP-MS isotopic data of zircon ages for the basaltic andesites and rhyolite from the Kalatage area in the Turpan Basin, NW China

13TH03: basalt–andesite by SHRIMP

Sample

Element contents (ppm)
and ratio Isotopic ratio Isotopic age (Ma)

U Th Pb (t) Th/U 207Pb/206Pb 1σ (%) 207Pb/235U 1σ (%) 206Pb/238U 1σ (%) 208Pb/232Th 1σ 206Pb/238U 1σ

1 97 90 3.7 0.96 0.0508 17.3 0.3 17.5 0.0433 2.4 264 22 273.5 6.4

2 182 134 11.6 0.76 0.0542 6.6 0.54 7 0.0729 2.2 435 17 453.4 9.6

3 351 120 17.9 0.35 0.0497 7.7 0.4 7.9 0.0585 1.9 319 33 366.5 6.8

4 80 48 3.9 0.62 0.0446 20.7 0.34 20.9 0.0553 2.5 292 42 347.2 8.4

5 1743 1153 102.5 0.68 0.0552 1 0.52 2.1 0.0684 1.8 415 8 426.7 7.4

6 102 54 4 0.55 0.0558 14.7 0.34 14.8 0.0446 2.3 274 35 281.1 6.4

7 488 323 18.9 0.68 0.0532 6.9 0.33 7.2 0.0447 1.9 270 13 281.7 5.2

8 213 103 8.3 0.5 0.046 15.5 0.28 15.6 0.0441 2.1 269 33 278.4 5.7

9 350 193 17.2 0.57 0.0543 5.5 0.42 5.8 0.0567 1.9 368 17 355.5 6.6

10 588 675 24.4 1.19 0.0558 11.2 0.36 11.4 0.0469 2 335 15 295.4 5.7

11 157 205 6.3 1.35 0.0453 12.3 0.29 12.5 0.0457 2.2 279 12 288 6.1

12 167 119 8.5 0.73 0.0552 7.2 0.45 7.5 0.0591 2 357 18 369.9 7.3

13 365 187 14.2 0.53 0.0535 11.9 0.33 12.1 0.0447 2 291 29 281.7 5.6

14 252 92 10.1 0.38 0.0543 7.3 0.35 7.5 0.0463 2 273 21 291.5 5.7

15 275 164 10.3 0.62 0.047 7.5 0.28 7.7 0.0433 1.9 269 12 273 5.2

16 132 97 6.2 0.76 0.0465 14.8 0.34 15 0.0537 2.2 317 24 337.2 7.1

17 320 335 13.1 1.08 0.0482 7.8 0.31 8.1 0.0472 1.9 281 11 297.1 5.6

18 111 61 5.6 0.57 0.05 11.8 0.4 12 0.0578 2.2 335 32 362.2 7.7

19 163 180 6.6 1.14 0.051 7.2 0.33 7.5 0.0469 2 285 10 295.2 5.9

11TH04: rhyolite by LA-ICP-MS

Sample

Element contents (ppm) and
ratio Isotopic ratio Isotopic age (Ma)

U Th Pb (t) Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ

1 1473 848 114 0.58 0.06051 0.00216 0.35259 0.01158 0.04245 0.00039 306.7 8.7 268 2.4

2 348 234 38 0.67 0.05511 0.00192 0.33327 0.01108 0.04403 0.00041 292.1 8.4 277.7 2.5

3 345 146 23 0.42 0.054 0.00231 0.32563 0.01297 0.04406 0.00044 286.2 9.9 277.9 2.7

4 320 1160 19 3.63 0.05824 0.00256 0.35714 0.01718 0.0439 0.00052 310.1 12.9 277 3.2

5 1537 872 104 0.57 0.05632 0.00197 0.33461 0.01139 0.04296 0.00043 293.1 8.7 271.2 2.7

6 249 120 22 0.48 0.0512 0.00168 0.31322 0.00998 0.04433 0.0004 276.7 7.7 279.6 2.5

7 191 68 14 0.36 0.05397 0.00184 0.32836 0.01088 0.04429 0.00041 288.3 8.3 279.4 2.5

8 1420 938 109 0.66 0.05169 0.00171 0.30917 0.01024 0.0432 0.00041 273.5 7.9 272.6 2.6

9 1291 699 92 0.54 0.0552 0.00213 0.32847 0.01221 0.04351 0.00046 288.4 9.3 274.5 2.9

10 1202 728 94 0.61 0.05163 0.00178 0.31032 0.01062 0.04326 0.00043 274.4 8.2 273 2.7

11 1604 1148 126 0.72 0.05333 0.00172 0.32182 0.01006 0.04393 0.0004 283.3 7.7 277.1 2.5

12 1578 1050 121 0.67 0.051 0.00152 0.3095 0.00903 0.04381 0.00039 273.8 7 276.4 2.4

13 1527 980 113 0.64 0.04991 0.00166 0.306 0.00992 0.04421 0.00046 271.1 7.7 278.8 2.8

14 850 415 58 0.49 0.05351 0.00223 0.32037 0.01253 0.04361 0.00049 282.2 9.6 275.2 3

15 951 471 61 0.49 0.05183 0.00193 0.31147 0.01123 0.04393 0.00045 275.3 8.7 277.2 2.8

16 1309 784 93 0.6 0.05167 0.00251 0.3108 0.01703 0.04362 0.00044 274.8 13.2 275.2 2.7

17 914 458 71 0.5 0.05371 0.00206 0.31361 0.01188 0.04264 0.00049 277 9.2 269.2 3
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Table 2. Major (wt %) and trace element (ppm) data for the Permian volcanic rocks from the Kalatage area in the Turpan Basin, NW China

Sample 11TH05-1 11TH05-2 11TH05-7 11TH05-9 11TH03-13 11TH03-8 13KL50-2 13KL50-4 13KL50-5 11TH01-7 11TH01-9 11TH06-2 11TH06-3

Rock types Basalts Basaltic andesites Andesites

SiO2 46.74 46.27 46.50 47.49 54.99 51.38 53.51 51.77 51.10 60.52 60.42 58.63 58.17

TiO2 2.14 2.59 2.55 2.38 1.13 1.45 1.13 1.23 1.24 0.92 0.93 0.85 0.85

Al2O3 16.95 16.03 16.10 17.48 16.20 16.29 18.04 17.73 17.62 15.51 15.48 16.33 16.33

Fe2O3T 12.56 13.95 14.04 12.75 7.61 9.88 9.36 10.55 10.46 6.77 6.99 8.90 9.11

MnO 0.18 0.19 0.19 0.17 0.15 0.19 0.20 0.18 0.23 0.08 0.10 0.32 0.32

MgO 6.53 6.11 6.19 5.37 4.45 4.90 3.63 4.26 4.40 1.82 2.47 1.57 1.84

CaO 8.85 8.04 8.01 8.62 8.00 5.53 7.39 6.78 6.20 4.60 3.97 2.34 2.55

Na2O 3.38 3.62 3.53 3.59 3.43 4.23 3.64 4.67 5.00 4.00 3.87 6.24 5.94

K2O 0.20 0.31 0.34 0.34 0.42 2.09 0.51 0.24 0.24 3.97 3.82 2.52 2.55

P2O5 0.30 0.41 0.41 0.40 0.40 0.51 0.30 0.32 0.31 0.39 0.39 0.43 0.42

LOI 2.08 2.39 2.05 1.37 3.11 3.43 2.24 2.18 3.17 1.37 1.52 1.81 1.84

Total 99.91 99.91 99.91 99.96 99.89 99.88 99.95 99.92 99.98 99.95 99.96 99.94 99.92

Mg# 54.8 50.5 50.7 49.5 57.7 53.6 47.5 48.5 49.5 38.5 45.2 29.1 32.0

V 197 265 272 226 172 177 231 306 329 156 158 5.17 7.74

Cr 22.1 63.8 64.8 46.9 128 164 26.6 43.2 40.8 68.6 83.1 3.19 1.95

Co 52.5 51.3 51.8 43.3 26.3 34.8 27.6 35.8 34.5 19.1 23.1 2.52 2.68

Ni 72.5 59 62.9 50.8 52.5 80.5 21.8 25 24.8 35.9 39.4 0.691 0.653

Rb 1.65 1.87 2.03 1.95 3.33 41.4 5.32 1.75 1.85 51.8 54.2 27.1 27.9

Sr 523 363 365 403 647 581 497 489 504 922 1090 433 396

Y 36.4 42 41.6 37.8 27.4 38.2 29.3 29.2 29.8 24.3 25 68.7 73

Nb 3.07 4.43 4.31 4.07 4.67 8.87 3.71 3.77 3.8 4.37 4.33 10.8 11.3

Mo 0.28 0.79 0.48 0.44 0.28 1.08 0.90 0.39 0.55 0.73 0.82 1.45 1.67

Cs 0.88 1.66 1.41 0.34 0.85 0.69 0.14 0.23 0.16 0.36 0.47 0.51 0.57

Ba 110 105 101 97.2 388 1344 232 175 157 945 999 644 726

La 8.6 12.3 12.2 11.3 18.9 32.3 10.5 10.6 10.9 18.6 19.6 30.8 32.4

Ce 24.8 33.3 33 30.3 41.1 69.9 23.9 24.7 25.3 39.2 41.4 74.6 78.6

Pr 4.02 5.16 5.1 4.79 5.74 9.41 3.75 3.78 3.8 5.29 5.63 11.2 11.4

Nd 20 25.8 25.1 24 25.5 39.6 18.6 18.4 19.1 22.6 24.2 50.2 52.5

Sm 5.73 6.82 6.7 5.8 5.55 7.84 4.67 4.73 4.88 4.79 5.32 11.8 12

Eu 1.93 2.33 2.29 2.21 1.61 2.12 1.54 1.61 1.65 1.25 1.46 4.02 3.99

Gd 5.77 6.93 6.7 6.34 5.15 7.32 5.14 4.76 5.14 4.88 4.67 11.2 12

Tb 1.13 1.31 1.35 1.21 0.875 1.25 0.949 0.937 0.924 0.767 0.871 2.04 2.17

Dy 6.99 8.45 8.35 7.33 5.23 7.37 5.01 5.22 5.26 4.6 4.84 13.4 13.8

Ho 1.33 1.59 1.52 1.39 1.01 1.38 1.08 1.05 1.01 0.89 0.94 2.53 2.63

Er 4.19 4.83 4.43 4.13 3.05 3.88 3.09 3.13 3.3 2.62 2.72 7.87 8.19

Tm 0.60 0.70 0.71 0.63 0.48 0.64 0.51 0.45 0.48 0.39 0.50 1.24 1.31

Yb 3.75 4.64 4.64 4.07 2.97 3.82 3.48 2.83 3.32 2.63 2.65 8.41 8.81

Lu 0.60 0.70 0.70 0.62 0.46 0.62 0.46 0.42 0.46 0.38 0.44 1.32 1.37

Ta 0.19 0.37 0.31 0.25 0.26 0.50 0.16 0.18 0.21 0.24 0.25 0.58 0.57

Tl 0.08 0.06 0.03 0.02 0.01 0.19 0.02 0.04 0.02 0.20 0.21 0.05 0.06

Pb 1.41 1.98 1.56 4.13 8.19 2.19 2.43 2.48 5.80 5.24 6.42 7.20

Bi 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.04 0.10 0.01 0.01

(Continued)
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Table 2. (Continued )

Sample 11TH05-1 11TH05-2 11TH05-7 11TH05-9 11TH03-13 11TH03-8 13KL50-2 13KL50-4 13KL50-5 11TH01-7 11TH01-9 11TH06-2 11TH06-3

Rock types Basalts Basaltic andesites Andesites

Th 0.28 0.38 0.33 0.31 1.68 3.39 0.27 0.32 0.34 2.08 2.26 1.19 1.27

U 0.11 0.14 0.12 0.10 0.64 0.99 0.15 0.16 0.22 0.77 0.87 0.37 0.42

Zr 337 399 386 355 285 494 115 104 108 266 279 239 207

Hf 7.07 8.61 8.54 7.78 6.55 10.10 3.07 3.00 3.51 6.38 6.93 5.17 4.33

Nb/La 0.36 0.36 0.35 0.36 0.25 0.27 0.35 0.36 0.35 0.23 0.22 0.35 0.35

Sample 11TH06-6 13KL50-7 13KL50-10 11TH04-12 11TH04-13 13KL52-2 13KL52-3 11TH02-1 11TH02-3 11TH02-5 13TH01-1 13TH01-2

Rock types Andesites Rhyolites

SiO2 58.24 58.47 59.62 73.07 73.73 72.61 73.94 83.54 80.98 82.27 82.36 82.48

TiO2 0.85 0.85 0.84 0.06 0.07 0.07 0.09 0.09 0.08 0.08 0.10 0.08

Al2O3 16.37 18.20 17.21 12.64 12.14 13.00 13.35 8.86 8.15 7.97 8.83 8.59

Fe2O3T 8.86 7.05 7.30 1.83 1.89 1.69 1.64 0.91 0.39 1.07 0.24 0.19

MnO 0.34 0.16 0.12 0.06 0.05 0.05 0.07 0.02 0.02 0.07 0.02 0.01

MgO 1.63 1.17 1.42 0.28 0.37 0.38 0.28 0.15 0.18 0.36 0.53 0.41

CaO 2.23 4.19 4.99 0.76 0.86 0.36 0.67 0.51 2.66 1.64 1.05 1.19

Na2O 5.97 5.74 4.47 1.01 0.76 0.67 3.22 4.76 4.41 4.01 4.67 4.37

K2O 3.16 0.90 0.63 9.01 8.81 10.35 5.99 0.10 0.06 0.08 0.07 0.05

P2O5 0.43 0.46 0.43 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02

LOI 1.86 2.76 2.93 1.12 1.30 0.77 0.74 0.99 2.86 2.38 2.06 2.55

Total 99.94 99.95 99.96 99.85 99.98 99.96 99.98 99.94 99.79 99.93 99.95 99.94

Mg# 30.0 27.9 31.2 26.4 31.6 34.3 28.2 28.2 51.0 43.7 84.0 83.5

V 6.55 83.1 75.9 9.53 11.3 3.11 5.02 19.1 22.5 22 9.33 7.49

Cr 2.85 9.46 1.41 2.91 5.81 2.68 2.3 4.88 4.11 5.05 1.06 3.18

Co 2.8 13.3 11.3 0.23 0.21 0.22 0.27 0.85 0.33 3.19 0.14 0.15

Ni 1.01 7.91 2.71 0.735 0.623 2.19 0.898 1.33 1.4 3.99 0.32 1.70

Rb 36.5 14.8 9.93 93.7 83.9 103 66.4 2.8 1.39 2.7 2.25 1.68

Sr 491 430 450 86.5 90.6 49.3 115 63.8 107 126 96.10 146.00

Y 77.3 39.6 33.7 66.7 67 83.8 75.3 34.7 33.2 21.6 39.20 36.90

Nb 11.9 5.66 4.91 19.6 18.5 23.9 26.1 10.5 9.37 7.62 11.80 10.70

Mo 1.41 1.82 0.76 0.35 0.54 0.50 0.58 0.52 0.11 0.13 10.80 9.05

Cs 0.69 0.62 0.42 0.28 0.23 0.45 0.48 0.19 0.07 0.26 0.15 0.13

Ba 782 370 280 1032 859 543 639 20.1 22.1 21.2 48.70 38.10

La 34.2 16.4 15.4 40.9 36.6 38.2 41.2 19.5 12.7 4.54 18.40 15.30

Ce 83.1 37.2 35.8 98 88.1 89.1 98.2 44.4 29.6 11.5 38.00 30.90

Pr 12.2 5.57 5.37 13.8 12.4 12.8 13.8 5.92 4.47 1.67 5.57 4.38

Nd 55.9 27.2 25.8 56.3 50.1 54.2 58.4 23.1 17.9 7.35 22.00 17.10

Sm 12.7 6.37 6.13 12.9 11.1 12.9 14 4.81 3.97 2.23 5.46 4.30

Eu 4.23 2 1.9 0.92 0.76 0.79 0.84 0.42 0.31 0.24 0.38 0.30

Gd 12.4 6.66 6.1 12.1 9.82 13.4 13.3 4.33 3.81 2.16 4.99 4.46

Tb 2.43 1.19 1.17 2.42 2.06 2.55 2.54 0.92 0.81 0.50 1.07 0.97

Dy 14.4 7.04 6.43 14.9 12.6 14.9 14.8 5.94 4.98 3.1 6.55 5.95

Ho 2.83 1.33 1.2 2.84 2.58 2.94 2.92 1.22 1.11 0.69 1.32 1.43

Er 8.76 4.24 3.38 8.68 8.53 8.46 8.04 4.57 3.81 2.09 4.44 4.75

(Continued)

S Altaids early Permian forearc transtension 183

https://doi.org/10.1017/S0016756819001006 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756819001006


of 49.5 to 54.8, alkali levels of Na2O þ K2O= 5.10–9.13 %, K2O/
Na2O= 0.14–0.99 and low TiO2 levels of 0.84 to 0.93 %. They are
metaluminous with A/CNK values of between 0.81 and 1.01.

The rhyolites are highly siliceous (SiO2= 72.61–83.54 %), rich
in total alkalis (Na2OþK2O= 4.09–11.02 %), but low in Al and Ti,
with Al2O3= 7.97–13.35 % and TiO2= 0.06–0.10 %. The rhyolites
have relatively low ferromagnesian compositions (MgO = 0.15–
0.53 % and Fe2O3t= 0.19–1.89 %). They are metaluminous to
weakly peraluminous with A/CNK values ranging from 0.67 to
1.03 and with A/NK values ranging from 1.06 to 1.19 (Table 2).
The rhyolites can be divided into low- and high-silica types with
apparent geochemical differences between them and with SiO2

levels ranging from 72.61 to 73.94 % (11TH04 and 13KL52) and
from 80.98 to 83.54 % (11TH02 and 13TH01), respectively. The
high-silica samples present obviously lower K2O and Al2O3 levels
than the low-silica samples (K2O= 0.05–0.10 % and 5.99–10.35 %
and Al2O3= 7.97–8.86 % and 5.99–10.35 % respectively), showing
that the high-silica rocks underwent an advanced fractionation of
K-feldspar. In summary, the different types of volcanic rock are
alkaline to subalkaline series magma, and the SiO2 content of
the samples ranges from 46.27 % to 83.54 % (Fig. 5). The samples
are classified as basalts, basaltic andesites (basaltic trachyande-
sites), andesites (trachyandesites) and rhyolites in a total alkali–
silica (TAS) diagram (Fig. 6a; Le Maitre et al. 1989), and the basalts
and basaltic andesites are composed of tholeiitic seriesmagma (Fig. 6b;
Myashiro, 1974). As demonstrated by the binary diagrams (Figs 6, 7),
the rocks show positive correlations between SiO2 and TiO2, Al2O3,
CaO, MgO, MnO, P2O5, Cr, Ni, Co and Sr levels and
negative correlations between SiO2 and K2O, Y and Zr levels.

5.b.2. Trace and rare-earth elements
The basalts display uniform enrichment of light rare earth
elements (LREEs) across the chondrite-normalized REE plots with
(La/Yb)N ratios of 1.65 to 1.99 (Fig. 8a). They show slightly positive
Eu anomalies (δEu= 1.03–1.11), suggesting that plagioclase
fractionated and accumulated throughout the evolution of the
parental magma. In the primitive mantle-normalized spider
diagram (Fig. 8b), basalts are characterized by low HFSE (high-
field-strength elements)/LREE ratios (Nb/La = 0.35–0.36); an

enrichment of Pb, Sr, Zr and Hf; and relatively negative Rb, Th,
U, Nb and Ta anomalies. These features are similar to those
of continental N-MORB/E-MORB-type basalts (Condie, 1989;
Wilson, 1989), suggesting that the extension of basins reached
maximum levels in middle and late stages of extensional volcanic
movement.

The basaltic andesites display LREE enrichment chondrite-
normalized REE patterns ((La/Yb)N= 2.16–6.07) with slightly
negative to positive Eu anomalies (δEu= 0.86–1.04) (Fig. 8c). In
the primitive mantle-normalized spider diagram, the samples
show a moderate enrichment of large-ion lithophile elements
(LILE; e.g. Rb, Ba, U, Th, K and Sr), Pb, Zr and Hf elements
and negative Nb, Ta and Ti anomalies (Fig. 8d).

The andesites present REE and trace element chemical features
similar to those of the basaltic andesites with LREE enrichment
chondrite-normalized REE patterns ((La/Yb)N= 2.63–5.31) and
slightly negative to positive Eu anomalies (δEu= 0.79–1.07)
(Fig. 8e). The samples are characterized by an enrichment of
LREE, Rb, Ba, Th, U, K, Pb elements and by relatively negative
Nb, Ta and Ti anomalies in the primitive mantle-normalized
spider diagram (Fig. 8f).

Rhyolites are highly fractionated magmas with high silica, high
alkali, low TiO2 and ferromagnesian compositions. The chondrite-
normalized REE plot yields two tightly clustered groups where
low-silica rhyolites present higher REE levels and more enriched
Rb, Ba, K, Pb, Zr and Hf elements (Fig. 8g, h). The high-silica rhyo-
lites display depleted Rb, Ba and K levels, suggesting that the rocks
underwent varying degrees of K-feldspar fractionation. They are
characterized by tetrad effect patterns (V and/or M type) (Zhao
et al. 1992, 2002; Jahn et al. 2001) (Fig. 8g) with a strong negative
Eu anomaly (Eu/Eu* = 0.18–0.33). The samples are characterized
by non-CHARAC (charge-and-radius-controlled) trace element
behaviours with Rb, K, Pb, Zr and Hf enrichment; relatively high
negative Nb anomalies; pronounced negative Ba, Sr and Eu
anomalies consistent with feldspar fractionation; and negative Ti
anomalies with titanite/ilmenite fractionation (Fig. 8h). These
trace features may be attributed to intense interactions between
high-fractionation magmas and aqueous hydrothermal fluids
(likely rich in F and Cl) (Zhao et al. 1992, 2002; Jahn et al. 2001).

Table 2. (Continued )

Sample 11TH06-6 13KL50-7 13KL50-10 11TH04-12 11TH04-13 13KL52-2 13KL52-3 11TH02-1 11TH02-3 11TH02-5 13TH01-1 13TH01-2

Rock types Andesites Rhyolites

Tm 1.34 0.71 0.58 1.49 1.59 1.44 1.19 0.75 0.64 0.32 0.72 0.69

Yb 8.94 4.01 3.62 10.30 10.50 9.32 8.05 4.98 3.95 2.18 4.45 3.90

Lu 1.40 0.58 0.51 1.67 1.64 1.33 1.23 0.70 0.58 0.33 0.65 0.64

Ta 0.57 0.29 0.31 1.12 1.04 1.53 1.55 0.62 0.57 0.48 1.11 0.95

Tl 0.05 0.07 0.04 0.86 0.89 0.90 0.78 0.03 0.03 0.02 0.09 0.06

Pb 7.34 3.49 3.66 13.60 9.74 17.30 17.50 4.77 3.83 3.03 4.80 4.46

Bi 0.02 0.02 0.05 0.03 0.04 0.14 0.15 0.03 0.03 0.05 0.02 0.01

Th 1.28 0.57 0.55 4.44 4.08 4.03 4.26 11.30 10.10 7.94 9.34 6.49

U 0.42 0.28 0.30 1.72 1.54 1.49 1.57 3.55 2.65 2.32 2.20 2.27

Zr 245 180 161 739 685 446 454 252 207 191 152.00 139.00

Hf 4.76 4.73 4.46 26.00 23.80 16.20 16.70 8.53 7.45 6.29 6.89 5.36

Nb/La 0.35 0.35 0.32 0.48 0.51 0.63 0.63 0.54 0.74 1.68 0.64 0.70

184 Q Mao et al.

https://doi.org/10.1017/S0016756819001006 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756819001006


In summary, these volcanic rocks are characterized by variable
LREE-enriched patterns ((La/Yb)N= 1.49–6.07), a range of slightly
positive to highly negative Eu anomalies (Eu/Eu* = 0.18–1.11) and
relatively more depleted Nb, Ta, P and Ti elements from basalt to
rhyolite (Fig. 8). These features suggest that plagioclase played an
important role in partial melting and subsequent fractional
crystallization.

5.b.3. Sr–Nd isotope
The Permian volcanic rocks have 87Rb/86Sr ratios of 0.0106 to
2.616, 87Sr/86Sr ratios of 0.70348 to 0.71652 and a relatively low
initial Sr ((87Sr/86Sr)i = 0.70342–0.70591, i= 285 Ma). They have
147Sm/144Nd ratios of 0.1174 to 0.1615, high 143Nd/144Nd ratios
of 0.51275 to 0.51296 and relatively high (143Nd/144Nd)i
(0.51250–0.51269) and ϵNd(t) (4.6–8.2, t= 285 Ma) values (Fig. 9).
The basalts are characterized by the highest ϵNd(t) (ϵNd(t)=
7.1–7.6) values and the lowest (87Sr/86Sr)i ratios ((87Sr/86Sr)i =
0.70342–0.70363) (Fig. 9). Basaltic andesites present the lowest
ϵNd(t) value of 4.6 and moderate (87Sr/86Sr)i ratios ((87Sr/
86Sr)i= 0.70428) (Fig. 9). Andesites present moderate ϵNd(t) values
of 6.9 to 8.2 and (87Sr/86Sr)i ratios of ((87Sr/86Sr)i = 0.70390–
0.70401) (Fig. 9). Rhyolites present moderate ϵNd(t) values ranging
from 5.1 to 7.5 and the highest (87Sr/86Sr)i ratios ((87Sr/86Sr)i=
0.70522–0.70591) (Fig. 9). In summary, the volcanic rocks display
high ϵNd(t) values that vary little and strong variations in
(87Sr/86Sr)i ratios.

6. Discussion

6.a. Petrogenesis of Permian volcanic rocks

The mafic rocks are tholeiitic in nature. Their relatively high
Mg# values (48–58) together with their MgO (5.37–6.53 wt %),
Cr (22–65 ppm) and Ni content (51–73 ppm) indicate that mafic
magmas of the Turpan Basin were derived from a mantle source
and may have been produced from variably fractionated melts
and not from primitive magmas. In addition, the basalts are
enriched with LREEs, LILEs (e.g. Ba, K and Sr), Pb, Zr, Hf and ele-
ments depleted of HFSE (e.g. Nb (Nb/La = 0.35–0.36) and Ta),
strongly suggesting a subduction zone origin/arc affinity and
resembling primitive arc tholeiites (Pearce & Cann, 1973).
According to the Th/Yb vs Nb/Yb diagram (Fig. 10a; Pearce,
1982, 2008), the samples fall obliquely, crossing the mantle array
and showing that the samples evolved from N-MORB (normal
mid-ocean ridge basalt)-like sources with a significant degree
of fractional crystallization (FC) coupled with assimilation by
low radiogenic Sr but high Th levels. Moreover, the basalts display
relatively high ϵNd(t) (ϵNd(t) = 7.1–7.6) values; low (87Sr/86Sr)i
ratios ((87Sr/86Sr)i = 0.70342–0.70363); and depleted Rb, Th and
U elements (Fig. 8b), suggesting derivation from a depleted man-
tle source. The Tb (or Sm)/Yb ratio can be used to estimate the
depth of melting, as it is insensitive to the effects of fractional
crystallization (McKenzie &O’Nions, 1991; KWang et al. 2002).
The basalt to andesite samples have low (Tb/Yb)P (1.12–1.51 <
1.80) ratios, clearly showing that melting occurred in the
absence of garnet (K Wang et al. 2002). In the (La/Yb)p vs
(Tb/Yb)P diagram (Fig. 10b), our data fall below the garnet–
spinel transition line for peridotite and present nearly flat to
slightly fractionated chondrite-normalized heavy rare earth
elements (HREE) patterns ((La/Yb)N= 1.65–6.07), indicating
that primitive magma from these rocks may have originated
from a garnet-free mantle. In conclusion, it is inferred that theTa
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petrogenesis of the mafic rocks was dominated by a process of
mixing between basaltic magmas similar to MORBs from asthe-
nospheric (depleted end-member mantle) and arc-like magmas
(Wilson, 2001; Condie, 2005). Basaltic andesites and andesites
have arc-related geochemical characteristics that display mod-
erate TiO2 levels; LREE enrichment; LILE (e.g. Rb, Ba, U, Th,
K and Sr), Pb, Zr and Hf elements; negative Nb, Ta and Ti
anomalies; negative Nb, Ta and Ti anomalies; slightly negative
to positive Eu anomalies (δEu = 0.86–1.04); high ϵNd(t) values
of 4.6 to 8.2; and moderate (87Sr/86Sr)i ratios ((87Sr/
86Sr)i = 0.70390–0.70428). Most of the basalt, basaltic andesite
and andesite samples plot from the arc to N-MORB basalt fields
in the Hf–Th–Nb discrimination diagrams (Fig. 11a) and in the
volcanic arc basalt (VAB) and MORB fields in the Ce/Sr–Cr
discrimination diagrams, suggesting that these rocks formed
in a supra-subduction zone setting. All of these features indicate

that the basalts, basaltic andesites and andesite rocks are
mantle-derived and formed at the extensional basin in a supra-
subduction zone setting.

The rhyolites are highly siliceous and high in total alkali levels.
In general, the rocks are variably enriched with HFSE and REE.
The geochemical characteristics of rhyolites, including high SiO2,
K2OþNa2O, Fe/Mg, Ga, Zr, Nb, Y and REE levels, show an affinity
with A-type granites (Loiselle & Wones, 1979; Whalen et al. 1987).
According to the geochemical subdivision of A-type granites
illustrated by Eby (1992), including relatively high Y/Nb ratios
(2.84–3.62), the rhyolites belong to the A2 subtype (Fig. 10c). In
the discrimination diagrams (Fig. 11d), the rhyolite samples plot
from the volcanic arc to the plate granite field, suggesting that the
rhyolites formed in a supra-subduction zone setting.

The direct fractionation of mantle-derived tholeiitic magmas
constitutes an important source of A-type felsic rock petrogenesis
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Table 4. The ages of early Permian volcanic rocks and mafic–ultramafic intrusions from Altai to Beishan in China

Location Rock type Analysed mineral Analysis method Age(Ma) Reference

1. Huangshan–Jingerquan-

Huangshandong Norite Zircon SHRIMP 274 ± 3 Han et al. (2004)

Huangshan Gabbro Zircon SIMS 283.8 ± 3.4 Qin et al. (2011)

Diorite Zircon SHRIMP 269 ± 2.1 Zhou et al. (2004)

Xiangshan Gabbro Zircon SIMS 279.6 ± 1.1 Han et al. (2004)

Hulu Diorite Zircon LA-ICP-MS 274.5 ± 3.9 Sun et al. (2010)

2. Baishiquan Zircon

Baishiquan Gabbro Zircon LA-ICP-MS 280.4 ± 1.4 Mao et al. (2006)

Diorite Zircon SHRIMP 285 ± 10 Wu et al. (2005)

Gabbro Zircon SHRIMP 284.4 ± 8 Wu et al. (2005)

Gabbro–diorite Zircon SHRIMP 284 ± 9 Wu et al. (2005)

3. Haibaotan area

Haibaotan Gabbro Zircon SHRIMP 269.2 ± 3.2 JY Li et al. (2006b)

Baixingtan Plagioclase-bearing wehrlite Zircon LA-ICP-MS 277.9 ± 2.6 Wang et al. (2015)

4. Lubei-Qiatekaer Zircon

Qiatekaer Gabbro Zircon SHRIMP 277 ± 1.6 JY Li et al. (2006b)

5. Pobei-Cihai Zircon

Pobei No. 1 intrusion Olivine gabbro Zircon SIMS 284 ± 2.2 Qin et al. (2011)

Gabbro Zircon SHRIMP 278 ± 2 WQ Li et al. (2006)

Gabbro Zircon LA-ICP-MS 283.8 ± 1.1 Ao et al. (2010)

Hongshishan Olivine gabbro Zircon LA-ICP-MS 281.8 ± 2.6 Ao et al. (2010)

Bijiashan Gabbro Zircon SIMS 279.2 ± 2.3 Qin et al. (2011)

Chihai area Gabbro Zircon LA-ICP-MS 276.1 ± 0.63 Meng et al. (2014)

Basalt Zircon SHRIMP 277 ± 6 Li et al. (2012)

6. Kalatongke Zircon

Kalatongke Norite Zircon SHRIMP 287 ± 5 Han et al. (2004)

1. Turpan basin Zircon

Shaerhu area Rhyolite Zircon SIMS 286.7 ± 2.1 Mao et al. (2014)

Shaerhu area Gabbro Zircon SIMS 286.5 ± 2.1

South to Kalatage area Andesite Zircon LA-ICP-MS 285.1 ± 5.9 This study

South to Kalatage area Rhyolite Zircon LA-ICP-MS 275.3 ± 1.8 This study

Dananhu area Basalt Whole rock Ar–Ar 270 ± 1 Zhou et al. (2006)

Turpan Basin Basalt Whole rock Ar–Ar 278 ± 1 Zhou et al. (2006)

Turpan Basin Basalt Whole rock Ar–Ar 281 ± 1 Zhou et al. (2006)

Turpan Basin Basalt Whole rock Ar–Ar 293 ± 2 Zhou et al. (2006)

Hami Basin Basalt Whole rock Ar–Ar 290 ± 1 Zhou et al. (2006)

2. Bogda-Haerlik Mountain

Baiyanggou Basalt Zircon LA-ICP-MS 295.8 ± 2.8 Chen et al. (2011)

Rhyolite Zircon LA-ICP-MS 293.3 ± 1.7 Chen et al. (2011)

Qijiaojing Rhyolite Zircon LA-ICP-MS 294.6 ± 2 Chen et al. (2011)

Hongshankou Rhyolite Zircon LA-ICP-MS 293.6 ± 2.2 Chen et al. (2011)

Cheguluquan Rhyolite Zircon LA-ICP-MS 293.6 ± 2.3 Chen et al. (2011)

Basalt Zircon LA-ICP-MS 294.5 ± 3.6 Chen et al. (2011)

(Continued)
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(Bonin et al. 1978; Turner et al. 1992; Han et al. 1997; Hollings et al.
2004; Mao et al. 2014c). The series of volcanic rocks in the Turpan
Basin exhibit high ϵNd(t) values, and rhyolites present ϵNd(t) values
of 5.1 to 7.5, suggesting that the rhyolites derived from the mantle.
The relatively strong negative Eu anomaly (Eu/Eu* = 0.18–0.33)
and spectacular tetrad effects observed from their REE distribution
patterns suggest that extensive magmatic differentiation played an
important role in magmatic processes, during which intense inter-
actions between the highly evolved magmas and aqueous hydro-
thermal fluids (likely rich in F and Cl) formed typical trace
elements and REE distributions (Zhao et al. 1992, 2002; Jahn
et al. 2001). Fractionation trends observed in the magmatic suite
are also clearly indicated by the rhyolitic rocks with their striking
depletions of Ba, Sr, P, Ti and Eu as shown from the spidergrams
and REE patterns (Fig. 8). The rhyolites present low MgO, Cr, Ni
and Co levels, consistent with the highly differentiated nature of
the magmas, which can be attributed to pyroxene and amphibole
fractions. Strong differences in K2O, Al2O3, Zr, Nb and Y content
levels of the two groups of rhyolites also suggest that the rocks
underwent varying degrees of K-feldspar and zircon fractionation.

Our studies reveal that the studied series of volcanic rocks
present SiO2 content levels of 46.27 % to 83.54 % (Fig. 6), contain-
ing basalts, basaltic andesites (trachyandesites), andesites (tra-
chyandesites) and rhyolites. Significant degrees of fractionation
are recorded from the geochemistry of the volcanic rocks, includ-
ing those illustrated by the binary diagrams (Fig. 7). The rocks
show positive correlations between SiO2 and K2O and Rb levels
and negative correlations between SiO2 and CaO, Al2O3, MgO,
TiO2, P2O5, Co, Ni, V, Co and Sr levels, indicating that the volcanic
rocks originate from the same source and that magmatic differen-
tiation was central to their generation as exemplified by the
fractionation of clinopyroxene, amphibole, ilmenite, apatite and
plagioclase. Fractionation trends observed in the magmatic suite
are also clearly indicated by variable LREE levels; slightly positive
to highly negative Eu anomalies (Eu/Eu* = 0.86–1.00); and more
depleted Nb, Ta, P and Ti elements originating from basalts to
rhyolites observed from the samples. For example, negative Eu
depletion requires magmas to undergo extensive feldspar frac-
tionation, and a negative Ti anomaly is often related to ilmenite
fractionation while a negative P anomaly is attributed to apatite

Table 4. (Continued )

Location Rock type Analysed mineral Analysis method Age(Ma) Reference

South margin of Bogda Mountain Basalt Whole rock Ar–Ar 273 ± 1 Zhou et al. (2006)

Basalt Whole rock Ar–Ar 276 ± 2 Zhou et al. (2006)

Basalt Whole rock Ar–Ar 270 ± 1 Zhou et al. (2006)

South margin of Haerlik Mountain Basalt Whole rock Ar–Ar 269 ± 1 Zhou et al. (2006)

Basalt Whole rock Ar–Ar 276 ± 1 Zhou et al. (2006)

Basalt Whole rock Ar–Ar 291 ± 1 Zhou et al. (2006)

3. Santanghu Basin

Basalt Whole rock Ar–Ar 266 ± 1 Zhou et al. (2006)

Basalt Whole rock Ar–Ar 272 ± 1 Zhou et al. (2006)

Basalt Whole rock Ar–Ar 273 ± 1 Zhou et al. (2006)

Basalt Whole rock Ar–Ar 266 ± 1 Zhou et al. (2006)

Tuff Zircon SIMS 286.1 ± 3.6 Wang (2013)

Andesite Zircon LA-ICP-MS 269.4 ± 5.9 Wang (2013)

4. Hongliuhe area

Basalt Whole rock Ar–Ar 278 ± 17 Pan et al. (2008)

5. Liuyuan area

Gabbro dike Zircon LA-ICP-MS 286 ± 2 Mao et al. (2012)

Diorite dike Zircon SHRIMP 272.7 ± 4.4 Zhang et al. (2011)

Diorite dike Zircon SHRIMP 291.4 ± 4.9 Zhang et al. (2011)

6. Wulunguhe

Zaheba area Rhyolite Zircon SHRIMP 279.8 ± 2.5 Li et al. (2013)

Zaheba area Rhyolite Zircon SHRIMP 276 ± 3 Li et al. (2013)

Zaheba area Rhyolite Zircon SHRIMP 276.2 ± 3.1 Li et al. (2013)

Qiakuertu Rhyolite Zircon LA-ICP-MS 279.5 ± 1.4 Tang et al. (2018)

Qiakuertu Basalt Zircon LA-ICP-MS 280.4 ± 1.3 Tang et al. (2018)

SIMS: secondary ice mass spectrometry.
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separation. All of these features and relations indicate that the vol-
canic rocks derived from the mantle, while their parent magmas
may have undergone extensive levels of magmatic fractionation,
during which intense interactions between residual melts and
aqueous hydrothermal fluids occurred (likely rich in F and Cl).

The basalts, basaltic andesites and andesites show relatively
high ϵNd(t) levels, revealing that their parent magmas mainly origi-
nated from a depleted mantle. The sample presents ϵNd(t) values of
4.6 to 8.2 and (87Sr/86Sr)i ratios of 0.70342 to 0.70591. The basalts
present the highest ϵNd(t) and lowest (87Sr/86Sr)i values, and the
basaltic andesites present the lowest ϵNd(t) values while rhyolites
present the highest (87Sr/86Sr)i ratios. These variations in Sr and
Nd isotopes observed between the different rocks suggest that
their parent magmas were partly contaminated with arc-crustal
components consistent with the Shaerhu complex (Mao et al.
2014) and with inherited zircon grains observed in the basaltic
andesites.

In summary, the studied rhyolites are the product of the strong
fractionation of depleted mantle-derived tholeiitic basic magma,

which may serve as a mechanism of A-type granite genesis. The
rocks originated from a depleted mantle and formed in a supra-
subduction zone setting. These results are consistent with the
fact that the Dananhu Arc was an island arc in the early
Permian (Xiao et al. 2004, 2010; Windley et al. 2007).

6.b. Accretionary tectonics of the southern Altaids

Our geochronology data indicate that the basaltic andesites and
rhyolites may have erupted in 286.5 ± 2.1 Ma and 275.3 ± 1.8
Ma, respectively. Our results also reveal that the rhyolites erupted
after the andesites in c. 10 Ma, and finally 10 Ma volcanism
occurred in the Turpan Basin from 285 Ma to 275 Ma in the early
Permian.

The early Permian is the key period for understanding the
welding process occurring between the Tarim Block and southern
active margins of the Palaeo-Asian Continent to the north (Ma
et al. 1997; Li, 2004; Xiao et al. 2004, 2006, 2008a, b, 2010,
2013; Windley et al. 2007).

In the early Permian, large volumes of volcanic rocks and intru-
sions formed in NE Xinjiang, NW China (Fig. 1b; Table 4). For
example, large volumes of mantle-derived basic–acidic volcanic
rock formed in the Turpan Basin (Ma et al. 1997; Zhu et al.
2002; Zhou et al. 2006; Mao, 2014; Mao et al. 2014c), mantle-
derived bimodal volcanism occurred from 296 Ma to 293 Ma in
the southern Bogda and Haerlik Mountains (Zhou et al. 2006;
Chen et al. 2011; Shu et al. 2011), and basalt formed rocks in
the Santanghu Basin (Zhao et al. 2006a; Zhou et al. 2006;
Wang, 2013). Early Permian alkali granitic intrusions occurred
in the Balikun–Harlik, Bogda and Dananhu areas (Gu et al.
1999; Mao et al. 2008; Yuan et al. 2010; Zhou et al. 2010).
Numerous Alaskan-type mafic–ultramafic intrusions of 269–285
Ma also occurred along large strike-slip shearing faults in the
East Tianshan (Table 4; Han et al. 2004; Xiao et al. 2004, 2010;
Zhou et al. 2004; JY Li et al. 2006b; Mao et al. 2006; Ao et al.
2010; Han et al. 2010; Qin et al. 2011). Finally, early Permian ada-
kites of 274 Ma have been found in the Sanchakou and Huangshan
areas (Li et al. 2004; Zhao et al. 2006b; Qin et al. 2009).

This form of magmatism is always connected to strike-slip tec-
tonics occurring at the same time. For example, Laurent-Charvet
et al. (2002, 2003) show that strike-slip shearing in the Chinese
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Tianshan and Altai mainly took place from 290 to 245 Ma. Other
studies show that the ductile deformation of the Kangguer–
Huangshan ductile zone formed from c. 260 to 247 Ma (Y Wang
et al. 2002; YT Wang et al. 2004; W Chen et al. 2005) and/or from
267 to 275 Ma (Wang et al. 2014).

This form of mantle-derived magmatism, which occurs along
extensional basins and strike-slip faults, has been widely reported
and discussed (Allen et al. 1995, 1997; Xiao et al. 2004, 2010;
Wang et al. 2009; Mao et al. 2014c). First, volcanic rocks occur
along dextral strike-slip faults and related extensive basins, exam-
ples of which include the Shaerhu Complex within a NW-trending
dextral strike-slip fault of the Dannanhu Arc of the early Permian
(Chen et al. 2011; Mao, 2014; Mao et al. 2014c); basaltic rocks
located along a NW-trending strike-slip fault within the
Santanghu Basin (Zhao et al. 2006a); and extensional volcanic
rocks positioned along NW-trending strike-slip faults of the
Turpan Basin (illustrated in this work). In addition, Allen et al.
(1995, 1997) have reported that the studied basins are connected
to strike-slip faults of the region dating to the late Permian to
Triassic. Second, many alkaline intrusions and mafic–ultramafic

complexes intruded along regional faults of NE Xinjiang. For
example, Dajiashan alkaline granites are exposed along the
Kalameili fault (Mao et al. 2008), mafic–ultramafic intrusions
developed in the Haibaotan Area (JY Li et al. 2006b), the
Kalatongke mafic–ultramafic complex is positioned in the Erqis
fault zone (Han et al. 2004), and Huangshan mafic–ultramafic
belts are positioned in the Kangguer–Huangshan ductile zone
(Xiao et al. 2004; Qin et al. 2011). Third, many syn-kinematic
intrusions formed along major shear zones of the Tianshan
Belt (e.g. in the Kangguer shear zones) (Wang et al. 2009, 2014;
Branquet et al. 2012). In summary, early Permian subduction-
related magmatism was correlated both in space and time with
Permian strike-slip faults and extensional structures. This geological
phenomenon has been widely studied and discussed. To date, a
number of geological models have been proposed, most notably
the mantle plume model (Pirajno et al. 2008; Qin et al. 2011; Su
et al. 2012; Tang et al. 2013), the oblique subduction and oblique
collision model (Mao et al. 2006; 2014c; Ao et al. 2010; Xiao et al.
2010), the post-collisional transtensional model (Allen et al. 1995,
1997; Wang et al. 2009, 2014; Branquet et al. 2012), the
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post-collisional slab break-off model (Yuan et al. 2010; Song et al.
2011; Deng et al. 2015; Du et al. 2018) and the post-collisional
extension model (Han et al. 1997; Mao et al. 2002; Zhu et al.
2002; Zhou et al. 2004; JY Li et al. 2006b; Wang et al. 2006;
Zhao et al. 2006a; Chen et al. 2011). Combining all of the data,
it can therefore be considered to represent an oblique subduction
of the Palaeo-Asian Ocean north of the Tarim Block (Ao et al.
2010; Xiao et al. 2010; Mao et al. 2014c), which may lead to trans-
tension, tectonic extrusion and plate tearing in the East Tianshan.
We conclude that early Permian magmatism was mantle-derived
and formed in a forearc transtensional setting.

From the above data, other arguments and regional geological
data, we propose a new tectonic scenario illustrated in Figure 12
that explains the emplacement of magmas along fault zones of dif-
ferent directions.

As demonstrated by Xiao et al. (2010) and Mao et al. (2014c),
the Palaeo-Asian Ocean and Tarim Block were obliquely sub-
ducted to the southern active margins of the Palaeo-Asian conti-
nent (Xiao et al. 2008b, 2010; Mao et al. 2014c), which predictably
led to the formation of extrusion tectonic, slab break-off (Tang
et al. 2011), strike-slip faults and to transtension in the forearc
of the East Tianshan (Chen et al. 2011; Mao et al. 2014c).

Forearc transtension may have occurred as a result of oblique
subduction in the East Tianshan, possibly with slab break-off proc-
esses (Tang et al. 2011). The depleted mantle rose along the faults
and spurred partial decompression melting to form volcanic rocks
and intrusions along regional faults. The associated strike-slip
faults cut the continental and/or arc blocks, carrying various fore-
arc slices extruded outward (Chen et al. 2011; Mao et al. 2014c).

The described transtensional events were characterized by
strike-slip faults and extensional basin formation, by the upwelling
of magmas into the faults, and by the emplacement of intrusive and
eruptive rocks into these basins and along deep strike-slip faults,

e.g. large volumes of volcanic rocks and intrusions in the
Turpan, Santanghu, Hongliuhe and Xiaoriquanzi basins and in
the Haibotan–Kalatage, Kalatongke, Huangshan–Jingerquan,
Lubei, Pobei–Cihai and Baishiquan mafic–ultramafic complexes
(Table 4). Furthermore, N-MORB-like basalts erupted in a heavily
extensional basin (e.g. the Turpan and Hongliuhe basins) (Fig. 12;
Table 4). The described geological processes echo those of the
Tanlu Fault in eastern China and those of the San Andreas
Fault in North America. These strike-slip fault systems developed
in the active continental margin, leading to the formation of
continental extensions and mantle-derived magmas and even
shaping the oceanic crust, e.g. the California Gulf. This system
may echo the Jinsha River –Ailaoshan – Red River large strike-slip
fault system extending through Yunnan Province from SW China
to northern Vietnam and the Sagaing fault of SE Asia as well as
large volumes of ultra-basic, basic, intermediate and felsic volcanic
rocks formed along the Jinsha River –Ailaoshan –Red River strike-
slip fault system of the late Oligocene to early Miocene (c. 27–22
Ma, Chung et al. 1997; Wang et al. 2001).

6.c. Implications for Palaeo-Pacific evolution

As noted above, interactions of the Palaeo-Pacific and Palaeo-
AsianOceans are an enigmatic issue due to their controversial tem-
poral and spatial features, spurring contrasting views (either the
Pacific Ocean only affected NE Asia in the Early Mesozoic, or
the Palaeo-Pacific Ocean already operated in the Palaeozoic or
even earlier (see Xiao et al. 2010, 2018)). The real cause of the
observed divergence is the mutual translation of the Palaeo-
Asian and Palaeo-Pacific Oceans in terms of temporal and spatial
features.

The Palaeo-Asian Ocean constituted the main oceanic body,
and its major branches extended from southern Mongolia to the
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north and from the Tarim and North China blocks to the south
(Fig. 1). When the southern limb (southern Mongolia) of the
Tuva Orocline rotated clockwise to collide with the Tarim and
North China blocks, the Palaeo-Pacific Ocean closed. Therefore,
the Palaeo-Asian Ocean formed part of the Palaeo-Pacific
Ocean called the Panthalassic Ocean (Domeier & Torsvik, 2014;
Xiao et al. 2015, 2018), and the timing of the closure of the
Palaeo-Asian Ocean is key to developing a stronger understanding
of the above-described process.

Located within the southernmost Altaids, the East Tianshan
records the final phase of the closure of the Palaeo-Asian Ocean
(Allen et al. 1993, 1995; Ma et al. 1997; Zhu et al. 2002;
Laurent-Charvet et al. 2003; Xiao et al. 2004, 2010, 2015, 2018;
Zhou et al. 2004; JY Li et al. 2006b; Mao et al. 2006, 2008, 2012,
2014c; JB Wang et al. 2006; Zhao et al. 2006b; B Wang et al.
2009, 2014; Ao et al. 2010; Yuan et al. 2010; Chen et al. 2011;
Qin et al. 2011; Song et al. 2011; Branquet et al. 2012; Deng
et al. 2015; Du et al. 2018). However, there has been no consensus
on the closure of the Palaeo-Asian Ocean in the East Tianshan.
Some researchers have argued that the closure of the Palaeo-
Asian Ocean in the East Tianshan occurred in the Carboniferous
(Allen et al. 1993, 1995; Laurent-Charvet et al. 2003; JBWang et al.
2006; B Wang et al. 2009, 2014), while others have proposed a
much later closure period occurring in the Permian or even in
the Triassic (Xiao et al. 2004, 2015, 2018; Mao et al. 2006, 2014c;
Ao et al. 2010; Domeier & Torsvik, 2014).

The former view is based on the fact that Devonian–
Carboniferous tholeiitic basalts and calc-alkaline andesites in this
region have been interpreted as island arc volcanic rocks (Ma et al.
1997; Rui et al. 2002; Song et al. 2002a; Xiao et al. 2004; Tang et al.
2006; Wan et al. 2006; Zhang et al. 2006; Wang et al. 2007).
However, this verifies the fact that subduction occurred in the
Carboniferous and does not serve as diagnostic evidence that sub-
duction ended in the Carboniferous. The data presented in this
paper provide solid evidence dating subduction processes later
to the Permian. Therefore, the subduction of the Palaeo-Pacific
Ocean may have been active in the Permian in the southern
Altaids.
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