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Summary

Methylation and acetylation of histone H3 at lysine 27 (H3K27) regulate chromatin structure and gene
expression during early embryo development. While H3K27 acetylation (H3K27ac) is associated with
active gene expression, H3K27 methylation (H3K27me) is linked to transcriptional repression. The aim
of this study was to assess the profile of H3K27 acetylation and methylation (mono-, di- and trimethyl)
during oocyte maturation and early development in vitro of porcine embryos. Oocytes/embryos were
fixed at different developmental stages from germinal vesicle to day 8 blastocysts and submitted to an
immunocytochemistry protocol to identify the presence and quantify the immunofluorescence intensity
of H3K27ac, H3K27me1, H3K27me2 and H3K27me3. A strong fluorescent signal for H3K27ac was
observed in all developmental stages. H3K27me1 and H3K27me2 were detected in oocytes, but the fluor-
escent signal decreased through the cleavage stages and rose again at the blastocyst stage. H3K27me3
was detected in oocytes, in only one pronucleus in zygotes, cleaved-stage embryos and blastocysts.
The nuclear fluorescence signal for H3K27me3 increased from the 2-cell stage to 4-cell stage embryos,
decreased at the 8-cell and morula stages and increased again in blastocysts. Different patterns of the
H3K27me3 mark were observed at the blastocyst stage. Our results suggest that changes in the H3K27
methylation status regulate early porcine embryo development as previously shown in other species.
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Introduction

Normal embryo development involves important re-
arrangements in the chromatin structure. This change
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includes a global reprogramming of epigenetic marks
starting following fertilization, which is required to
create a totipotent state zygote (Fraser & Lin, 2016).
Epigenetic marks are essential elements of the cell ma-
chinery that functionally interprets DNA sequences.
These marks contribute to the establishment of cell
identity by regulating gene expression patterns that
are specific for each cell lineage (Chen & Pei, 2016).
In addition to regulate gene expression, epigenetic
marks are also involved in the regulation of other
critical events during embryogenesis in mammals,
including genomic imprinting, inactivation of the X
chromosome and reprogramming of the two parental
haploid genomes into one diploid genome (Morris,
2009; Hales et al., 2011).

Important epigenetic marks involved in the reg-
ulation of early embryo development include DNA
methylation, non-coding RNAs and post-translational
modifications of specific residues in nucleosomal
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histones, such as acetylation and methylation (Novina
& Sharp, 2004; Cook & Blelloch, 2013; Beaujean, 2014;
Dallaire & Simard, 2016; Ambrosi et al., 2017). Histone
acetylation usually occurs on the lysine residues of
core histones and neutralizes the basic charge of
these residues, therefore decreasing their affinity for
DNA (Hasan & Hottiger, 2002). Histone acetylation
is almost invariably associated with activation of
gene transcription, and is involved in the regulation
of cell totipotency and proliferation events during
cell reprogramming and embryo development (Wang
et al., 2007; Rodriguez-Sanz et al., 2014). For instance,
acetylation of histone H3 at lysine 27 (H3K27ac) plays
an important role in the maintenance of pluripotency
and regulation of key developmental genes in stem
cells (Creyghton et al., 2010; Pasini et al., 2010).

Conversely, methylation of H3K27 (H3K27me) is
usually associated with transcriptional repression, pro-
moting stable and heritable gene silencing (Schwartz &
Pirrotta, 2007). Trimethylation of H3K27 (H3K27me3)
regulates lineage specification by temporarily re-
pressing genes involved in development and cell
differentiation of pluripotent cells (Surface et al., 2010;
Shpargel et al., 2014). Indeed, genes associated to
organogenesis, morphogenesis and embryonic devel-
opment are temporarily suppressed by H3K27me3
until the time when their transcription is required
(Boyer et al., 2006).

It is well established that mammalian embryos
undergo several epigenetic modifications during early
development (Boland et al., 2014). Nonetheless, the
regulatory mechanism of lineage commitment is
still not fully known. Understanding how different
species organize their chromatin following fertilization
is fundamental for comprehending the epigenetic
regulation of early embryonic development and may
help to determine improved conditions for in vitro
embryo production. Therefore, the objective of this
study was to evaluate the profile of acetylation and
methylation of histone H3 at lysine 27 during oocyte
maturation and early development in vitro of porcine
embryos.

Materials and Methods

Unless otherwise indicated, chemicals were purchased
from Sigma Chemical Company (Sigma-Aldrich,
Oakville, ON, Canada).

Oocyte collection and in vitro maturation

Ovaries from prepubertal gilts were collected from
a local abattoir and transported to the laboratory in
0.9% NaCl at 30 to 35°C. Cumulus–oocyte complexes
(COCs) were aspirated from 3-mm to 6-mm diameter

follicles using an 18-gauge needle. Only COCs sur-
rounded by a minimum of three cumulus-cell layers,
with an evenly granulated cytoplasm were selected
for in vitro maturation (IVM). Groups of 20 to 25
COCs were cultured in 100 µl of maturation medium
under mineral oil, in a humidified atmosphere of
5% CO2 and 95% air at 38.5°C. Maturation medium
consisted of TCM-199 (Life Technologies, Burlington,
ON, Canada), supplemented with 0.1 mg/ml cysteine,
0.91 mM sodium pyruvate, 3.05 mM D-glucose,
0.5 µg/ml follicle-stimulating hormone (FSH; SIOUX
Biochemical Inc.), 0.5 µg/ml luteinizing hormone (LH,
SIOUX Biochemical Inc.), 10 ng/ml epidermal growth
factor (EGF; Life Technologies), 20 µg/ml gentamicin
(Life Technologies), 1 mM dibutyryl cyclic adenosine
monophosphate (dbcAMP), and 20% (v/v) porcine
follicular fluid. After 22 h, the oocytes were transferred
to the same maturation medium, but without FSH, LH,
and dbcAMP for an additional 22 to 24 h, under the
same conditions.

In vitro fertilization (IVF) and in vitro culture (IVC)

Matured oocytes were freed from cumulus cells by
vortexing in TCM 199 HEPES-buffered medium (Life
Technologies) supplemented with 0.1% hyaluronidase
for 7 min. The denuded oocytes were washed in the
same medium before being transferred to fertilization
medium.

The oocytes were washed twice in fertilization
medium, which consisted of Tris-buffered medium
(TBM) supplemented with 2.5 mg/ml fatty acid-free
bovine serum albumin (BSA), and placed in 90 µl drops
of the same medium. A pool of fresh semen collected
from 3–4 fertile boars was left at 18°C for 24 h and then
centrifuged at 4000 rpm for 3 min. Supernatant was
discarded and the sperm pellet was re-suspended in
1 ml of fertilization medium and homogenized. The
semen was centrifuged again (4000 rpm for 2 min),
the supernatant was discarded and the sperm pellet
was re-suspended in 500 µl of fertilization medium.
Sperm concentration was adjusted to obtain a final
concentration of 2,000 live sperm/oocyte. Sperm and
oocytes were co-incubated for 4 h under mineral oil at
38.5°C, in 5% CO2 in air and 100% humidity.

After IVF, the oocytes were washed three times in
porcine zygote medium (PZM-3) supplemented with
3 mg/ml BSA and then cultured in the same medium
under mineral oil. Culture conditions were humidified
atmosphere of 5% CO2 and 95% air at 38.5°C. Cleavage
and blastocyst rates were determined at 48 h and
7 days after IVF, respectively.

Immunocytochemistry

Oocytes/embryos were fixed at the following develop-
mental stages: germinal vesicle (GV) and metaphase II
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(MII) oocytes, pronuclear (PN; 18 hours post fertiliza-
tion – hpf), 2-cell stage (2C; 36 hpf), 4-cell stage (4C;
48 hpf), 8-cell stage (8C; 72 hpf), D6 blastocysts (D6;
144 hpf) and D8 blastocysts (D8; 192 hpf). Samples
were rinsed in PBS, fixed in 4% paraformaldehyde
for 15 to 20 min and stored at 4°C in PBS with
0.2% TritonX-100 and 0.3% BSA. Cell permeabilization
was performed with 0.5% Triton X-100 in PBS
with 0.3% BSA for 1 h at 37°C. Oocytes/embryos
were then washed twice (10 min each) in blocking
solution (3% BSA and 0.2% Tween-20 in PBS) and
exposed overnight at 4°C to primary antibodies
diluted in blocking solution (1:1000). Polyclonal rabbit
anti-H3K27 acetyl (Abcam; ab4729), anti-monomethyl
H3K27 (Upstate; 07–448), anti-dimethyl H3K27 (Up-
state; 07–452), and anti-trimethyl H3K27 (Upstate; 07–
449) were used as primary antibodies. Samples were
then washed three times for 20 min each in blocking
solution and incubated for 2 h at room temperature
in the presence of 1:1000 diluted Alexa Flour 488
goat anti-rabbit (Molecular Probes, Eugene, OR,
USA) secondary antibodies. Finally, the samples were
washed three times (20 min each) in blocking solution.
For the second wash, the solution was supplemented
with 10 µg/ml DAPI (4´,6-diamidino-2-phenylindole)
for DNA staining. Oocytes/embryos were mounted
on microscope slides using a drop of Mowiol and
examined by epifluorescence using a Nikon eclipse
80i microscope (Nikon, Tokyo, Japan) with ×200
magnification. Images were individually recorded
using a Retiga 2000R monochrome digital camera
(Qimaging, BC, Canada). The exposure gains and
rates were consistent between samples. Fluorescence
intensities were quantified by using Image J analysis
(Schneider et al., 2012). Control samples from each
developmental stage were processed as described
above, but the primary antibody was omitted. Images
from 183 oocytes/embryos were analyzed.

Results

H3K27ac was detected in the nuclei of GV and in the
DNA of MII oocytes. Strong fluorescent signals were
observed in both PN and in 2C and 4C stages. The
fluorescent signal decreased at the 8C stage but in-
creased again in D6 and D8 blastocysts (Figs 1 and 2).

The fluorescent signal for H3K27me1 was intense
in GV and MII oocytes, but decreased markedly in
cleaved-stage embryos. The fluorescent signal was
barely detectable in zygotes, 2C, 4C and 8C embryos,
but intensity increased in D6 and D8 blastocysts (Figs 1
and 2).

H3K27me2 revealed a strong fluorescent signal
in GV and MII stage oocytes, but very weak or
absent signal in PN of zygotes. Cleaved-stage embryos

showed weak or no fluorescent signal for H3K27me2,
but all nuclei were H3K27me2 positive in D6 and D8
blastocysts (Figs 1 and 2).

Strong fluorescence intensity for H3K27me3 was
detected in GV and MII oocytes. In zygotes, only
one of the pronuclei was H3K27me3 positive (Fig. 3).
H3K27me3 signal was detected in 2C and 4C stages,
but 8C embryos and D6 blastocysts showed very weak
or no fluorescent signal (Figs 1 and 2). The fluorescent
pattern in D8 blastocyst varied from absence of
fluorescent signal (7 embryos), mixture of fluorescent
positive and negative cells (19 embryos), to only
inner cell mass (ICM) positive staining (three embryos;
Fig. 4).

Discussion

Epigenetic changes are known to regulate the pro-
gramming of the genetic information carried over by
the oocyte and the sperm to the new developing
embryo and control totipotency and cell lineage com-
mitment (Lu & Zhang, 2015; Ancelin et al., 2016). To
gain additional insights into the epigenetics changes
that occur at early embryo stages we have evaluated
the global profile of H3K27 acetylation, mono-, di-,
and trimethylation during in vitro development of
porcine embryos. H3K27 methylation is catalyzed
by the transcriptional repressors Polycomb group
(PcG) proteins, which form two chromatin modifying
complexes, Polycomb Repressive Complex 1 and
Complex 2 (PRC1 and PRC2) (O’Meara & Simon,
2012; Williams et al., 2014). Removal of this epigenetic
mark can make undifferentiated normal (Patel et al.,
2012) or cancerous cells (Gannon et al., 2013; Ciarapica
et al., 2014) susceptible to differentiation. H3K27me3
is a Polycomb repressed state, which is functionally
opposed by actively transcribed chromatin (O’Meara
& Simon, 2012). Conversely, H3K27ac is generally
enriched in promoters of active genes (Tie et al., 2009;
O’Meara & Simon, 2012) and can antagonize PcG activ-
ity by competing with the placement of the H3K27me3
mark (Schwartz et al., 2010). Consistent with this, it
has been shown that H3K27ac and H3K27me3 have
dynamic and complementary temporal profiles during
embryogenesis (Tie et al., 2009).

In this study, H3K27me3 was detected in immature
and matured oocytes, which is in accordance with
others studies in pigs (Park et al., 2009; Cao et al.,
2015; Xie et al., 2016) and cattle (Ross et al., 2008). In
zygotes, only one of the two pronuclei was positive for
this mark. A similar pattern of H3K27me3 staining in
zygotes was reported in other studies in pigs (Young
et al., 2007; Park et al., 2009), cattle (Breton et al., 2010)
and mice (Erhardt et al., 2003; Santos et al., 2005). We
believe that the H3K27me3 positive was the female
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Figure 1 Distribution of acetylated, mono-, di- and tri-methylated H3K27 in porcine oocytes and embryos. Panels show
representative images of immature (GV stage) and mature (MII stage) oocytes, zygotes (PN stage), 2-cell (2C), 4-cell (4C)
and 8-cell (8C) stage embryos, and day 6 (D6) and day 8 (D8) blastocysts.

PN given that polyspermic zygotes having more
than two PNs also contained only one positive PN.
However, Ross et al. (2008) observed an asymmetric
staining pattern in bovine embryos at PN stage and
proposed that the female PN was the one positive
for H3K27me3. They have also observed that both
pronuclei in parthenogenetically activated embryos
were H3K27me3 positive, which further confirms that
the positive PN in fertilized zygotes is derived from
the oocyte.

We have observed that the fluorescent intensity
for H3K27me3 decreases at the 8-cell stage. This
finding is in line with other reports in porcine (Park
et al., 2009) and bovine embryos (Ross et al., 2008;
Breton et al., 2010). Interestingly, we observed different
patterns of H3K27me3 fluorescent staining in D8
blastocysts, which included embryos with no stained
cells, embryos with a mix of positive and negative cells,
embryos with all the cells stained, and embryos with
only the ICM stained. A previous study by Park et al.

(2009) did not detect H3K27me3 in porcine blastocysts
at D6 of development (144 hpf). Conversely, Gao et al.,
(2010) reported that levels of H3K27me3 increased in
hatched blastocysts. Along with our observations, data
from those studies suggest that H3K27me3 pattern in
porcine blastocysts may differ from other species given
that intense fluorescence signal for H3K27me3 was
found in bovine (Ross et al., 2008) and murine (Erhardt
et al., 2003) blastocysts.

Monomethylated H3K27 was detectable in GV and
MII stage oocytes, which is in agreement with a
previous study in porcine embryos (Park et al., 2009).
However, we observed that H3K27me1 was present
in only one PN, while similar fluorescent signal in
both PNs was reported in the previous study (Park
et al., 2009). As H3K27me1 becomes detectable in
the male pronucleus several hours after fertilization,
one possibility is that the pronuclear development
stage of zygotes evaluated in our study was different
from the previous study. In mice, H3K27me1 signal
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Figure 2 Fluorescence intensity for H3K27ac (A), H3K27me1 (B), H3K27me2 (C) and H3K27me3 (D) in porcine oocytes and
developing embryos. GV = germinal vesicle oocytes, MII = metaphase II oocytes, PN = pronuclear stage zygotes, 2C =
two-cell stage embryos, 4C = four-cell stage embryos, 8C = eight-cell stage embryos, D6 = day 6 blastocysts, D8 = day 8
blastocysts.

Figure 3 H3K27me3 immunofluorescence image of a polyspermic zygote showing one stained and two non-stained PNs. (1)
DNA stained with DAPI. (2) H3K27me3 fluorescent signal.

is mainly present in the female PN (Erhardt et al.,
2003; Van Der Heijden et al., 2005), but the signal
increased during male PN formation (Erhardt et al.,
2003; Santos et al., 2005; Van Der Heijden et al., 2005).
The H3K27me1signal from 2C to the blastocyst stage
observed in this study corroborates with findings from
a previous study (Park et al., 2009).

We observed absence or weak fluorescent intensity
for H3K27me2 in zygotes, which differs from previous
studies in mice reporting intensive H3K27me2 signal
in PNs of mice zygotes (Erhardt et al., 2003). Con-
versely, we observed a prominent fluorescent signal
for H3K27me2 in D6 and D8 IVF blastocysts, while
another study reported that H3K27me2 levels were
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Figure 4 H3K27me3 immunofluorescence image day 8 blastocysts. (1) Embryo with absence or weak H3K27me3 fluorescent
signal. (2) Embryo with strong H3K27me3 fluorescent signal in all the cells. (3) Embryo with strong H3K27me3 fluorescent
signal only in the ICM cells.

nearly undetectable in porcine blastocysts produced
by parthenogenetic activation (Huang et al., 2015).
Differences between fertilized and parthenogenetic
embryos have been reported regarding other histone
modifications including H3K9ac and H3K27ac (Huang
et al., 2015).

Intensive fluorescent signal for H3K27ac was
observed in oocytes, in both PNs of zygotes, and all
developmental stages from 2C to blastocyst. However,
the intensity of the fluorescent signal decreased in
8C-stage embryos. A similar pattern of H3K27ac in
porcine embryos was reported in a previous study by
Zhou et al. (2014).

In summary, our study revealed that the global pat-
tern of acetylation and mono-, di- and trimethylation
of the H3K27 changes during in vitro development
of porcine embryos. Based on published literature,
our findings suggest that porcine embryos produced
by IVF may differ from embryos of other species
regarding the global changes in H3K27, including
the pattern of H3K27me3 at the blastocyst stage and
H3K27me2 in zygotes. Our findings may provide
a base for further investigation of the mechanistic
relevance of each epigenetic change occurring in
the H3K27 for the regulation of early embryo
development.
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