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A large interest in developing commercial Location-Based Services (LBS) and the necessity
of implementing emergency call services, have led to the intensive development of techniques
for mobile users’ localisation. In this paper, a Public Land Mobile Networks (PLMN) -based
technique for initial position determination is proposed as an alternative to satellite-based
methods in environments with obstructed satellite signals. Two positioning models, based on
handset available Received Signal Strength (RSS) measurements from Global System for
Mobile Communications (GSM) base stations and the use of Support Vector Machine (SVM)
algorithms, are proposed. Performances of proposed models are verified using field measure-
ments, collected in a suburban environment. Models are analysed in terms of positioning
accuracy, complexity and latency, and compared to some other promising PLMN-based
techniques. Using proposed SVM-based positioning models a median error of 4·3 m–6·2 m
and latency of less than a second can be achieved.
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1. INTRODUCTION. Over recent years, there has been an intensive develop-
ment of techniques for mobile users’ localisation. This phenomenon arose from the
necessity of mobile operators to implement emergency call services (E112 (CGALIES,
2002) and E911 (FCC, 2001), for Europe and USA, respectively). On the other hand,
development of positioning techniques led to the launch of various commercial LBS
(Location-Based Services), (Filjar et al., 2008). Nowadays, satellite infrastructure,
through its most popular system – the Global Positioning System (GPS) – is widely
used to estimate mobile users’ position. However, limitations of this approach are
vulnerability to multipath and shadowing in urban canyons (Wang et al., 2012) and
weak signal levels in indoor environments. As an alternative to GPS, Public Land
Mobile Networks (PLMN) -based techniques, which use terrestrial cellular network
infrastructure, mostly using Global System for Mobile Communications (GSM),
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Digital Communication System (DCS) or Universal Mobile Telecommunications
System (UMTS) can be used. These techniques have not yet reached the accuracy of
satellite-based techniques. Nevertheless, they can provide location information in both
indoor and built-up outdoor environments.
Generally, PLMN-based positioning techniques can be based on Received Signal

Strength (RSS), Time of Arrival (TOA), Time Difference of Arrival (TDOA),
Angle of Arrival (AOA), power delay profile or by a combination of previously stated
parameters (Sun et al., 2005). Depending on the approach, these techniques can
have different impacts on both the network and handset. The time-based methods
(TOA/TDOA) require the deployment of Location Measurement Units (LMUs), the
network elements that estimate the real time difference between the base stations
(BSs). At the same time, the handset typically requires software modifications to
enable positioning functionality with such methods. The AOA-based methods require
the implementation of adaptive antenna arrays and specialised receivers at the BSs, by
which the direction of signal arrival can be estimated. On the other hand, RSS-based
techniques do not require any extra measurement hardware in the handsets and BSs,
nor strict synchronisation between BSs.
The work presented in this paper aims at initial position determination of a mobile

user using the PLMN’s RSS measurements. We used RSS measurements from the
BSs of the world’s most widespread PLMN system –GSM. Nonetheless, the presented
methodology can also be applied in other contemporary cell-based PLMNs (DCS,
UMTS, LTE, etc), since the process of measuring and reporting RSS values back from
mobile station (MS) to the network represents standard procedure in all of them.
On the opposite of the initial position determination approach investigated in this
paper, there are tracking algorithms that use time series of location dependent infor-
mation in order to improve overall positioning accuracy (Zaidi and Mark, 2005).
However, they are beyond the scope of this paper.
For finding the nonlinear relation that exists between RSS measurements and

spatial coordinates within observed area, Support Vector Machine (SVM) algorithms
(Bishop, 2006; Shawe-Taylor and Cristianini, 2004) were used. SVM represents a
group of pattern analysis algorithms intended for solving nonlinear classification, re-
gression or novelty detection problems. Based on the type of a problem, they can
be roughly classified into Support Vector Classification (SVC) and Support Vector
Regression (SVR) algorithms (Bishop, 2006). The capability of resolving nonlinear
problems was the main motivation for using SVM. SVM algorithms are considered as
optimisation techniques, where determining the relation in a set of data corresponds to
solving a convex optimisation problem, and hence provides a global optimal solution
(Bishop, 2006; Shawe-Taylor and Cristianini, 2004). Moreover, due to the property of
sparseness (Bishop, 2006), SVM algorithms have high on-line execution speed, which
makes them a good solution for real-time applications with low latency requirements.
Regarding positioning, SVM algorithms were previously used either as SVC

classifiers of area (Xuereb and Debono, 2010) or SVR estimators of position (Sun and
Guo, 2005; Jiyan et al., 2011; Wu et al., 2007). Sun and Guo (2005) and Jiyan et al.
(2011) used simulated TOA measurements for mobile users’ position estimation based
on least-square SVM (LS-SVM) and weighted LS-SVM, respectively, i.e. a quadratic
loss function was used in the optimisation criterion. Both models were implemented
for simulated environments and their practical implementation requires that base and
mobile stations have precisely synchronised clocks. Moreover, the transmitting signal
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must be labelled with a timestamp in order for the receiver to discern the distance
the signal has travelled. In Wu et al. (2007), positioning models were implemented
using field measurements. For each measurement location, its fingerprint was taken
and stored in a database, which was used for model training and verification.
Each fingerprint contained RSS values from n BSs and coordinates of the location.
Two approaches were proposed for solving the problem of missing RSS values in
some database fingerprints due to a different radio visibility of detected BSs within
the observed area. In both approaches, a linear ε-insensitive loss function was used
in the optimisation criterion. In the first approach, a novel kernel function (Sum of
Exponentials, SoE), which discards the part of feature-to-feature calculation involving
the missing RSS values, was proposed. However, this could easily make a kernel value
deviate from the true value if too many feature terms are thrown away. In the second
approach, Radial Basis Function (RBF) was applied and missing RSS values were
replaced with zeros, which do not quantify the true signal levels of distant BSs in the
right manner.
In this paper two models for initial position determination based on RSS measure-

ments are presented. In the first model, a SVR algorithm was applied. In contrast to
Wu et al. (2007), we propose the use of a Laplace kernel function where missing
RSS values in database fingerprints are replaced with a fixed value below the receiver
threshold, which was later shown to provide better performances. Moreover, a quad-
ratic ε-insensitive loss function was used in the optimisation criterion in order to
suppress large output errors. Regarding the second positioning model, a novel method
for location estimation based on the combination of both SVC and SVR algorithms
was introduced. Precisely, we used the space-partitioning principle, where a user is first
localised in a smaller sub-area of the observed geographical environment, after which
a regression algorithm is used for determining the exact spatial coordinates of the
user’s position. The main motivation in this case was to investigate the impact of the
sub-area size reduction, in which the user is initially located, on the accuracy per-
formance of the later applied SVR positioning algorithm. Both types of positioning
model were implemented and tested using field RSS measurements, collected in a
suburban area from a GSM network, optimized for customer services.
The remainder of this paper is organised as follows: Section 2 gives an overview of

related research regarding PLMN-based positioning. The proposed network-based
positioning method is introduced in Section 3. The implementation of positioning
models is described in Section 4. Performances of proposed models, regarding ac-
curacy, complexity and latency, are investigated in Section 5. Conclusions are drawn
in Section 6.

2. RELATED WORK. There are a number of standardised positioning
solutions for GSM (3GPP TS 43.059, 2008) and UMTS (3GPP TS 25.305, 2008).
The simplest PLMN-based positioning technique is based on Cell-ID information
(Sun et al., 2005). Although it requires no changes on the side of existing PLMN
networks or handsets, positioning accuracy depends strictly on the size of the cell,
the radius of which can extend up to 35 km in rural areas. One of the approaches
for improving accuracy is combining the Cell-ID information with the Timing
Advance (TA) parameter in GSM (3GPP TS 43.059, 2008) or Round Trip Time
(RTT) parameter in the UMTS network (3GPP TS 25.305, 2008). The main drawback
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of these approaches is that usually only one timing parameter, belonging to the serving
BS (or Node B), can be obtained. Hence, the mobile user is localised in a ring of a
certain radius around the serving BS, or in a part of the ring, in the case of sectored
BS. Spirito and Mattioli (1999) have tested the Cell-ID + TA trilateration method
using TA parameters collected during field trials in urban and rural environments.
However, since TA parameters from only one BS are available at a time, this tech-
nique cannot be implemented using standardised GSM signalling. In the case of
UMTS, it is possible to obtain more than one RTT parameter when there are two or
more Node Bs in the active set (e.g. in the case of soft/softer handover). For simulated
urban environments, the obtained 67th percentile positioning error was 60m to
100 m (60 m–100 m|67%) depending on the number of available RTT parameters
(Borkowski and Lempiäinen, 2006). Nevertheless, the RTT parameter is not available
in all UMTS networks. The Adaptive Enhanced Cell-ID (AECID) positioning
method, introduced in Wigren (2007), combines Cell-ID information of serving and
neighbouring BSs with TA and signal strength measurements. The results obtained in
a field trial (Shi and Wigren, 2009) showed that the AECID method can achieve
accuracy more than four times better than the Cell-ID+TA. Further enhancements to
the AECID method, with the aim of fully exploiting TA and RTT measurements, are
presented in Wigren (2012).
Most of the other positioning algorithms enrich the Cell-ID information with RSS

measurements. Simulation results using statistical modelling of RSS (Roos et al.,
2002) achieved accuracy of 320 m|67%. The use of the Okumura propagation model
for modelling probability distribution functions of RSS values (Yamamoto et al.,
2001) achieved accuracy of 53 m|67% when tested on field data in an urban environ-
ment. RSS Multiple Path-loss Exponent Algorithm (RSS-MPLE) positioning
algorithm, which estimates unknown propagation parameters of the path-loss model
and determines MS position based on the RSS measurements and known BSs
positions, achieved accuracy of 160 m|67% in a simulated environment (Zeytinci et al.,
2013). However, the implementations of previously mentioned positioning models
require knowledge of BSs positions, transmitted powers, antenna directions, heights,
gains and radiation patterns, etc.
The other very popular direction in positioning is utilisation of fingerprinting

algorithms, such as Database Correlation Method (DCM) (Laitinen et al., 2001)
and Artificial Neural Networks (ANN) (Hassoun, 1995). These algorithms require
databases with measured or simulated data to be created prior to the position
estimation. Although creating a database with field measurements can be quite
time-consuming, this approach allows positioning without the need of knowing and
modelling radio propagation conditions of certain environments. Regarding data
correlation algorithms, the most often used are the Nearest Neighbour (NN), k
Nearest Neighbours (kNN) and Weighted kNearest Neighbours (WkNN) algorithms
(Bhatia and Vandana, 2010). A DCM model constructed from field RSS measure-
ments achieved an accuracy of 74 m|67% in suburban and 44 m|67% in urban
environments, using the NN algorithm (Laitinen et al., 2001). AWkNN-based model
achieved average positioning error of 112 m in a real urban environment (Lakmali
et al., 2007). Regarding ANN models, an accuracy of 50 m|67% was achieved using
field RSS measurements from urban environments (Takenga et al., 2006). An ANN
model, trained using an Extended Kalman Filter (EKF), on the opposite of commonly
used gradient descent schemes, achieved positioning errors of 55 m–70m with low
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error variance (Anne et al., 2004). The use of time-delayed neural networks with
sequential field RSS measurements achieved an accuracy of 110 m|67% (Fung et al.,
2012).
As mentioned before, a few SVM-based solutions have also been proposed.

For SVR models that use RSS measurements (Wu et al., 2007), field tests in
metropolitan areas resulted in a median error of 75 m–100 m. Using simulated TOA
data, a LS-SVM model (Sun and Guo, 2005) achieved an accuracy of 55 m|67%, while
a weighted LS-SVM model (Jiyan et al., 2011) achieved a mean error of 35 m.

3. POSITIONING METHOD. In the case of the network-based positioning
method proposed in this paper, the separate positioning model is to be defined for
each BS site of a GSM network, based on real measurement data collected in its
coverage area. The overall functioning of the proposed positioning algorithm is
illustrated in Figure 1. Estimation of the unknown position of a mobile user is done
based on the RSS values of the serving and six neighbouring BSs, which the MS
measures at its current position. The MS periodically measures signal levels of serving
and neighbouring BSs as part of standardised procedure, which allows monitoring of
a mobile user’s mobility in idle mode or handover during the established call. The MS
sends measured RSS values to its serving BS in the form of RxLev parameters as a
part of the standardised Measurement Report. The serving BS forwards the measured
RSS values via the Base Station Controller (BSC) to a Serving Mobile Location
Centre (SMLC), where the position of the mobile user is calculated (Figure 1). Since
the transfer of seven RSS values, measured from the serving and six neighbouring
BSs, is supported by the existing GSM signalling, the implementation of the proposed
positioning technique does not require any changes to handsets. Some changes,
regarding the implementation of the SMLCs in the network and the deployment of
positioning models in SMLCs, are needed on the network side. In the SMLC, the
separate positioning model for each GSM BS site, which is within jurisdiction of that

Figure 1. Illustration of overall functioning of the proposed positioning method.
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SMLC, is to be implemented. Selection of an appropriate positioning model is
done based on the Cell-ID of BS with the highest RSS value reported through
the Measurement Report. The reason for not choosing the positioning model of
serving BS is due to some system functionalities (ping-pong handover effect, load
balancing, etc.) that can lead to the situation where the serving BS is not the one
closest to the MS.
After the selection of the corresponding positioning model, RSS values from the

Measurement Report are mapped to the corresponding model inputs (MIs). Each
positioning model has seven inputs, which are the RSS values of the particular set of
BSs, so-called relevant BSs. For each model, the top seven BSs with the highest
probability of radio visibility throughout the model coverage area (i.e. which signal
level is above reception threshold in most locations) are chosen as the relevant BSs.
The mapping was introduced in order to cope with the fact that at different locations
within the model coverage area, different BSs are visible. During the mapping process,
measured RSSs from BSs that are not relevant for the chosen positioning model are
discarded. On the other hand, missing MIs, that do not have corresponding RSS
values in the Measurement Report, are entered with the threshold value of−110 dBm.
Addressing a fixed value of −110 dBm to unobserved relevant BSs also provides
a solution for cases where less than six neighbouring BSs are observed in the
Measurement Report.
After the mapping is finished, the selected positioning model in the SMLC is used

to estimate coordinates of the user’s current position based on MIs, by using
SVR (simple SVR model) or combination of SVC and SVR algorithms (combined
SVC&SVR model). In the first case, the coordinates are estimated directly based
on MIs, whereas in the second case, the mobile user is first located in a smaller area
using SVC, after which precise position is determined using SVR.
In order to be used for positioning, SVR and SVC&SVR models have to be

previously trained. In off-line phase, the set of collected fingerprints is used to train the
model and determine the relation which links measured RSS values to a certain area
(in the case of SVC) or specific position (in the case of SVR). The training process
consists of mapping data from its original space to a feature space of higher dimen-
sionality, where nonlinear relations within the set of data can be represented by using
simple linear functions (Bishop, 2006). The problem of increased complexity, as the
result of introduced feature space, is solved using special kernel functions. Kernel
functions implicitly introduce a feature space by using the so-called “kernel trick”
(Bishop, 2006), which eliminates the actual need of knowing the mapping function
and provides the same computational complexity as in original space. In the on-line
phase, after the model is trained, the learned relations are used to estimate the
area (SVC) and/or coordinates (SVR) of a mobile user’s current position based on
measured RSS values.
Concerning the existence of training and on-line phase, SVM-based models are

close to ANNs. However, the significant advantage of the SVM over ANN is that
ANN can suffer from multiple local minima, whereas, due to convex optimisation,
the solution provided by SVM is global and unique (Burges, 1998; Bishop, 2006).
Moreover, ANNs use empirical risk minimisation, while SVMs use structural risk
minimisation (Burges, 1998), which seeks to prevent over-fitting by incorporating a
regularisation parameter. Hence, SVMs are less prone to over-fitting to training data
and provide good generalisation performance.
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4. POSITIONING MODELS IMPLEMENTATION. Two types of
positioning models were implemented: simple SVR and combined SVC&SVR. In
the case of the SVC&SVR model, a SVR sub-model is designed to estimate a user’s
position in the smaller part of the originally observed geographical area. Due to the
smaller size of the sub-area, the fingerprints collected within it and used for SVR sub-
model training are more similar in terms of both RSS values and spatial coordinates.
This provides better initial conditions for the interpolation of the unknown position
coordinates, based upon the obtained RSS measurements. The influence of the
sub-area size reduction on the model positioning accuracy was inspected by dividing
the entire coverage area into four and 16 sub-areas and creating two sub-types of
SVC&SVRmodel, SVC&SVR2×2 and SVC&SVR4×4, respectively. Model generation
(training) and later verification was done using field data gathered during a measure-
ment campaign, carried out with the drive-test system in the territory of Belgrade city.
Implementation of the proposed positioning models was done in MATLAB, using the
SVM toolbox (Gun, 1998).

4.1. Data Collection. All proposed positioning models were developed for a BS
site of the Serbian national mobile network operator Mobilne Telefonije Srbije
(MTS), located in a suburban, flat terrain area, with densely spaced lower residential
buildings. For collecting RSS data within the observed area, a Radio Network
Analyser – a Rohde&Schwarz TSMQ (R&S®TSMQ) –was used as network scanner.
The reason for choosing network scanner rather than a handset in off-line phase was
to obtain as many RSS readings per measurement location as possible, in order to get
better insight into the radio visibility of BSs within the observed area and choose
relevant BSs more properly. Geographic coordinates of measurement points were
obtained using a differential GPS receiver, which has a median positioning error of
less than 5m. Measured RSS and GPS data were acquired using a laptop computer
equipped with ‘R&S Romes v4’ software.
The geographical area from which the measurements are used to train the SVR and

SVC&SVR models and furthermore in which the proposed models can estimate the
users’ positions, is referred to as the model area. The shape of this area was chosen to
be circular, centred on the position of the MTS BS site for which the models were
developed. To determine the radius of the model area, the measurement points where
the highest measured RSS was received from the chosen cell were selected first. Next,
the radius was chosen (in 100m steps) so that more than 99·9% of the observed
measurement points were inside this area. This kind of limitation had to be introduced
in order to minimise the model area size. This procedure resulted in a database of
measurements obtained from 31 391 points inside a 1 km radius from the chosen BS
site. The geographical area to which proposed positioning models refer is given in
Figure 2. The green “+” sign denotes the position of the MTS BS. The values of x and
y coordinates are defined relative to the position of the MTS BS site, which was used
as the reference. Seven relevant GSM BSs with the highest probability of radio
visibility throughout the observed model area were determined, and their RSS values
were used as model inputs.

4.2. Models design. We considered the mobile user’s position determination as a
two-dimensional (2D) problem. Hence, the SVR model is implemented with two sub-
models, SVRx and SVRy, responsible for determining the relation between measured
RSS values and x, and RSS values and y coordinates, respectively. Together these two
sub-models form the SVR model for positioning in a 2D space, as presented in
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Figure 3. The RSS measurements from an unknown location are mapped into seven
MIs, which are then forwarded to the SVRx and SVRy sub-models, used for
estimating x and y coordinates, respectively.
In the case of the SVC&SVR model, the observed model area is divided into four

(SVC&SVR2×2) and 16 (SVC&SVR4×4) subareas, as shown in Figures 4a and 4b,
respectively. These models are designed as cascade structures, consisting of SVC
layer(s) and SVR layer. The SVC&SVR2×2 and SVC&SVR4×4 model structures are
presented in Figures 5 and 6, respectively.

Figure 2. SVR and SVC&SVR model area.

Figure 3. SVR model structure.
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The SVC layers are responsible for estimating the sub-area where the mobile user
currently resides, which represents the multiclass problem (Hsu and Lin, 2002). In the
case of the SVC&SVR2×2 model, this problem was solved by using four binary SVC
classifiers, in the so-called “one-against-all” approach (Rifkin and Klautau, 2004).
This approach decomposes the multiclass problem of M classes into M independent
binary classification tasks. On the other hand, in the case of the SVC&SVR4×4 model,
the multiclass problem was solved using a nested structure, where the “one-against-
all” approach was applied in two stages. First, the mobile user is located in the sub-
area of the same size as in the SVC&SVR2×2 model (sub-areas I–IV in Figure 4b), by
using four binary SVC classifiers (SVC layer I). In the following step, the mobile
user is located in one of the four smaller zones of the sub-area from previous layer
(zones 1–16 in Figures 4b), by using four SVC classifiers designed for solving the

Figure 4. Division of the model area into subareas for: a) SVC&SVR2×2 and b) SVC&SVR4×4.

Figure 5. SVC&SVR2×2 model structure.
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multiclass problem in the observed sub-area (SVC layer II). Afterwards, x and
y coordinates of the mobile user’s current position are estimated by the appropriate
SVR sub-model of the SVR layer. The SVR sub-models have the same structure as the
previously described SVRmodel in Figure 3 and their number equals the total number
of model sub-areas. The reason for introducing the nested structure, as opposed to
“one-versus-all” approach with 16 binary SVC classifiers in one layer, is in the
reduction of the amount of training data required, and thus the time needed for
training SVC sub-models, which will be shown later in Section 5.
In the case of the SVC&SVR models, the RSS values measured at one location are

mapped into the corresponding seven MIs, which are the input of the first SVC layer
(for the SVC&SVR2×2 model, the only one). Each SVCi sub-model of the first SVC
layer (i=1..4 for SVC&SVR2×2 or i=I..IV for SVC&SVR4×4) represents a binary
classifier that provides information whether the user is in sub-area i or not. Regarding
the standard formulation of the SVC (Burges, 1998, Bishop, 2006), the SVCi sub-
model can have two possible outputs “−1” (if the input RSS vector is measured at a
location belonging to sub-area i) or “1” (if it does not belong to that sub-area). That
means, if gi is the model function of a trained SVCi classifier, then the output of the
SVCi (noted as fi in Figures 5 and 6) is the sign of the gi function evaluated at current
MIs. Therefore, the subarea i is chosen as the correct one if the SVCi sub-model has
generated value “−1” at its output.
However, the problem with this approach is the possible ambiguity in classification,

e.g. none of the SVCi sub-models has generated “−1” or few of them have. Hence, the
output of each binary SVCi classifier is modified to be the gi function evaluated
at current MIs. Therefore, the decision about correct sub-area is made based on the
minimum output value of all SVC sub-models (Hsu and Lin, 2002). In other words,
the mobile user is located in sub-area i if the output of the corresponding SVCi sub-
model has the minimum value, compared to the outputs of all other SVC sub-models.

Figure 6. SVC&SVR4×4 model structure.
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If there is more than one SVC layer, as in the SVC&SVR4×4 model, the MIs are next
forwarded to the corresponding group of four SVC sub-models in SVC layer II
(Figure 6) and the same procedure is applied. After determining the final sub-area in
which the mobile user is located, the MIs are forwarded to the corresponding SVRi

sub-model (i=1..4 for SVC&SVR2×2 or i=1..16 for SVC&SVR4×4). Next, the chosen
SVRi sub-model estimates x and y coordinates of the mobile user’s current position.

4.3. Models implementation and optimisation. The proposed positioning models
were implemented in MATLAB. The training and later verification of models was
done on an Intel Core 2 Quad Processor @2.4 GHz with 2GB of RAM. The overall
measurement database was randomly divided into three separated data sets for
training, cross-validation (Hassoun, 1995) and later verification, consisting of 15%,
35% and 50% of measurements, respectively.
In the case of the SVR model, the entire training data set was used. However, in the

case of the SVC&SVR2×2 model, only the SVCi sub-models (i=1..4) were trained with
data originating from the entire model area, while the SVRi sub-models (i=1..4) were
trained with the subset of the original training set, containing only the measurements
from the corresponding subarea i. Moreover, in the case of the SVC&SVR4×4 model
with the nested structure, each SVCk sub-model (k=1..16) of the SVC layer II was
trained with the subset of training data originating from the corresponding sub-area i
(i=I..IV) and SVRk sub-model (k=1..16) of the SVR layer with the subset of training
data originating from the corresponding sub-area k.
During the training process, a quadratic ε-insensitive loss function was used in the

optimisation criterion (Shawe-Taylor and Cristianini, 2004) in order to suppress large
output errors. Since the result of the model training depends highly on the choice of
the kernel function, its parameters and the cost parameter C in the optimisation
criterion, the cross-validation procedure was performed in order to determine their
optimal values and prevent over-fitting of the positioning model to the noise training
data. The cross-validation of all the models was done using the same cross-validation
data set. Regarding the choice of kernel function, the performances of Exponential
RBF, Laplace, Generalized T-Student and Cauchy kernel functions were tested. For
each type of kernel function, proposed models were optimally trained so that the
average positioning error of each model, calculated on cross-validation data set, was
minimal. Positioning error (distance error, DE), was defined as the Euclidian distance
between the actual and estimated position of a mobile user. The Laplace kernel was
chosen as the best solution for modelling the relation between RSS measurements and
spatial coordinates, since it produced minimal average DE for the proposed models.

5. PERFORMANCE ASSESSMENT
5.1. Models accuracy verification. The positioning accuracy of previously

optimally trained SVR, SVC&SVR2×2 and SVC&SVR4×4 models was next verified
using the remaining 50% of measurement data. The accuracy verification results are
presented in Table 1 and the cumulative distribution functions (CDFs) of DEs are
overlapped in Figure 7. Both the SVR and SVC&SVR models have demonstrated
good accuracy performances in terms of median and 67% DE. In addition, in the case
of the SVC&SVR models, an improvement of accuracy is observed compared to the
SVR model. Due to better initial conditions for solving the regression problem, as
a result of reducing the SVR model area size, the decrease of average, median and
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67% DE can be noted. Moreover, the improvement in accuracy can be noted with
the increase of the number of subareas. Compared to the SVR model, the biggest
improvement was in terms of the reduction of medium sized DEs, which mostly
influenced the value of 67% DE. On the other hand, both the SVR and SVC&SVR
models have demonstrated poorer accuracy performances regarding 95% DE, due
to a certain number of large DEs. Large DEs are associated with the measurement
locations in which, due to specific propagation conditions, the number of reported
RSS values belonging to relevant BSs has dropped unexpectedly, compared to other
nearby measurement locations. By entering a fixed threshold value of −110 dBm
in the places of missing MIs, the true information about the position of MS relative to
those relevant BSs is lost. In some cases, especially where less than three relevant BSs
were observed, this led to situations in which after mapping, the RSS fingerprint
obtained at one measurement location became more similar to RSS fingerprints ob-
tained at some distant locations, than to those gathered nearby. The existence of these
types of points in the training set (spatially distant with similar MIs) has created worse
conditions for solving the regression problem. Hence, the models have produced large

Table 1. Accuracy verification results of SVR, SVC&SVR2×2 and SVC&SVR4×4 models, in comparison
with SVR SoE, kNN, ANN and EKF trained ANN.

Models

Probability of
selecting correct

subarea
Average
DE [m]

Median
DE [m]

67%
DE [m]

95%
DE [m]

DE standard
deviation [m]

SVR 1 65·1 6·2 47·2 301 114
SVC&SVR2×2 0·956 62·5 5·1 42·8 293·4 118·2
SVC&SVR4×4 0·872 62·2 4·3 31·6 317 125·9
SVR SoE 1 229·3 204·5 264·6 497·4 134
kNN (k=1) 1 68 15·1 57·1 294·7 113·6
ANN 1 81·8 72·4 90·2 176·7 57·3
EKF ANN 1 84 72 95 184 56·4

Figure 7. Comparison of DE CDFs: SVR, SVC&SVR2×2, SVC&SVR4×4, SVR SoE, kNN, ANN
and EKF trained ANN.
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DEs for the test points similar to them. However, as will be shown later, this approach
of handling missing MI values has proved to be more robust compared to Wu et al.
(2007). In the case of the SVC&SVRmodels, 95% DE is influenced additionally by the
cases where the subarea is incorrectly selected. It should be noted that the variance
of the DE in these models can be significant. For instance, if the SVC layer(s) selected
the adjacent sub-area to the actual one, DE may not be large. On the other hand, if the
selected sub-area is not adjacent to the correct one, the DE could be very large.
Likewise, there is no strict rule for behaviour of the DEs in the incorrect sub-areas.
Hence, in the case of the SVC&SVR2×2 model, where in 95% of cases the correct
sub-area was selected, the benefit of reducing model area size seems to overcome the
problem of selecting incorrect sub-area and the value of 95% DE decreased, compared
to the SVR model. In the case of the SVC&SVR4×4 model, the incorrect selection of
subarea in SVC layer I increased the probability of selecting the sub-area in SVC layer
II that is not adjacent to the correct one, and therefore, resulted in somewhat bigger
95% DE.
The big variance in achieved DEs (the large number of small DEs and the certain

number of large DEs) caused deviation of the average DE from the median DE, for
both the SVR and SVC&SVR models.
However, it should be noted that both the SVR and SVC&SVR models

were designed for the purpose of initial position determination. The shape of the
DE cumulative distribution functions of proposed models is favourable for the use
of overlaid tracking algorithms that would, presumably, filter out large distance
errors and additionally improve the positioning performances (mostly average DE).
Moreover, by introducing an overlaid tracking algorithm to the SVC&SVR models,
where the value of 95% DE is influenced additionally by the incorrect sub-area
selection, the benefit of reducing sub-area size, to which SVR is applied, is expected to
be more notable. However, this will be the subject of further research.
To credibly verify the performances of the proposed SVR, SVC&SVR2×2 and

SVC&SVR4×4 models, we have applied the exact same field data to some of the most
promising techniques from Section 2: SVR with SoE kernel function – SVR SoE (Wu
et al., 2007), DCM (Laitinen et al., 2001), ANN (Takenga et al., 2006) and EKF
trained ANN (Anne et al., 2004). SVR SoE was chosen in order to credibly verify the
proposed approach for handling missing RSS values in the database. DCM was
chosen because it is considered to be one of the best fingerprinting algorithms, whereas
the ANN and EKF trained ANN were chosen because of the promising results
published (the best performances among all the related works that have been verified
with the field measurements). Regarding DCM, we have tested both kNN andWkNN
algorithms for the values of k ranging from 1 to 10. Although WkNN is commonly
known to outperform the respective kNN algorithms, in our case, the best per-
formances were observed for k=1, i.e. for the basic NN model. Due to good
properties of ANN and EKF trained ANN models regarding required training times,
they were tested for different numbers of model inputs in order to find the best model
in terms of accuracy that can be implemented using the gathered field data. The best
performance was obtained for models with 32 MIs, i.e. when seven highest RSSs from
the Measurement Report were mapped to RSS values belonging to 32 relevant BSs.
The accuracy verification results for SVR SoE, kNN (k=1), ANN and EKF trained
ANN (EKF ANN) models are presented in Table 1, while corresponding DE CDFs
are plotted in Figure 7. The proposed SVR and SVC&SVR models have shown
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somewhat better performance than the kNN model. On the other hand, they have
quite outperformed the SVR SoE model. The poor performance of SVR SoE model
can be explained as the consequence of using the SoE kernel. Instead of entering a
fixed value (e.g. the threshold value of−110 dBm) in place of the missingMIs, the SoE
kernel discards the part of fingerprint-to-fingerprint calculation involving the missing
MIs (e.g. if one fingerprint contains RSS measurements from all seven relevant BSs
and the other only three, the SoE kernel discards four valuable RSSs in fingerprint-to-
fingerprint calculation). Hence, this approach is less suitable for areas with bigger
variations in radio visibility of relevant BSs. The proposed SVR and SVC&SVR
models have demonstrated better performances in terms of median and 67% DE
compared to ANN and EKF ANN. However, due to a higher number of MIs
(relevant BSs) in the case of ANN and EKF ANN, the number of cases in which after
mapping, the RSS fingerprint obtained at one location is more similar to the RSS
fingerprints obtained at some remote locations, reduced. Hence, the number of large
DEs decreased, resulting in a smaller 95% DE compared to the SVR and SVC&SVR
models.
The overall presented results show that the SVR and SVC&SVR models can

provide good positioning accuracy in terms of the median and 67%DE.Moreover, the
SVC&SVR models showed improvement compared to the SVR model. As mentioned
before, a certain number of large DEs, especially in the case of the SVC&SVR models
(as the result of incorrect subarea selection) can be further reduced by introducing an
overlaid tracking algorithm. Hence, the benefit of reducing the subarea size in the case
of the SVC&SVR models is expected to be more notable.

5.2. Models complexity and latency. Besides the time needed for creating the
measurement database, the complexity of the proposed models is considered as the
time required for optimal model training. All proposed models have long training
times, mostly due to the training set size (Table 2). Moreover, dividing the model area
into sub-areas and increasing the number of SVC and SVR sub-models augments
complexity significantly. However, the further increase in the number of sub-areas
does not have significant influence on the total training time because of the nested

Table 2. Models complexity and latency.

Models Complexity Latency

Number of SVC/SVR
sub-models Training time (hours)

SVC
layer I

SVC
layer II

SVR
layer*

Avg.
training
time per
SVC

sub-model
in SVC
layer I

Avg.
training
time per
SVC

sub-model
in SVC
layer II

Avg.
training
time per
SVR

sub-model
in SVR
layer

Total
training
time per
model

Avg. time
for MS
position
estimation
(seconds)

SVR – – 2 – – 17·02 34·04 0·25
SVC&SVR2×2 4 – 8 16·62 – 0·65 71·68 0·57
SVC&SVR4×4 4 16 32 16·62 0·34 0·03 72·88 0·69

* Each SVR sub-model consists of SVRx and SVRy sub-models.
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structure used. Although the required number of SVC classifiers is bigger than in the
“one-against-all” approach, the SVC sub-models of the second layer are trained only
with part of the original training set, which significantly reduces training time.
It should be noted that times presented in Table 2 are obtained using an Intel Core 2

Quad Processor with 2GB of RAM. By using newer versions of processors, training
times would be shorter. Generally, training complexity of SVM is between O(N2) and
O(N3) with N being the number of training samples (Bottou et al., 2007). For com-
parison, ANN has complexity of O(N ) (training time around six hours in our case).
However, there are some prominent methods for speeding up the training process by
using decomposition, such as sequential (Platt, 1999) or combination of parallel and
sequential minimal optimisation (Dong et al, 2005). They can reduce complexity of
SVM to nearly O(N ) and therefore significantly decrease required training times.
In spite of everything, the proposed models are quite efficient in the on-line phase

due to the SVM property of sparseness. This implies that prediction for new input in
the on-line phase depends only on the kernel function evaluated at a subset of the
training data points, called support vectors (Bishop, 2006). Since the average time
needed for each model to provide positioning information is less than a second, the
proposed models can be considered as good solutions for positioning purposes.

6. CONCLUSION. In this paper, two SVM-based models for initial position
determination based on RSS measurements from the world’s most widespread PLMN
system –GSM –were proposed. Nonetheless, the presented methodology can also be
applied in other contemporary cell-based PLMNs (DCS, UMTS, LTE, etc). Models
were implemented using field RSS measurements gathered from a GSM network
optimised for customer services. The first model is implemented using the SVR
algorithm. For the second model, the novel space-partitioning principle is introduced
so that the user is first localised in a smaller sub-area using the SVC algorithm, after
which the SVR algorithm is applied for estimating exact spatial coordinates. Both
model types have demonstrated good accuracy in terms of median and 67% DE, when
tested with field measurements. Moreover, the use of the space-partitioning principle
and the reduction of the area size, to which the SVR algorithm applies, have provided
an improvement compared to the SVR model. In the case of the SVC&SVR4×4

model, median DE was reduced to 4·3 m, while 67% DE was reduced to 31·6 m. The
proposed positioning models have outperformed the SVR-based positioning solution
with the SoE kernel function and achieved a smaller median and 67% DE, compared
to kNN, ANN and EKF trained ANN models, when tested using the same field
measurements. The proposed models showed somewhat poorer performances in terms
of 95% DE as a result of the specific fingerprints in the database used (spatially distant
locations with similar MIs) and additionally, in the case when the space-partitioning
principle is used, as the result of incorrect sub-area selection. However, the problem of
large positioning errors can be further mitigated using an overlaid tracking algorithm.
Due to the SVM property of sparseness, the proposed positioning models have high

on-line execution speed and provide latency of less than a second. Hence, they can be
considered as a good solution for providing location information to a broad range
of LBS.
The achieved positioning accuracy and low latency indicate that the proposed

positioning technique can be considered as a good alternative to satellite-based
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positioning in environments where satellite signals are obstructed. However, tests in
more environments, such as urban and highly rural areas, will be necessary in order to
further verify our localisation approach.

REFERENCES

Anne, K.R., Kyamakya, K., Erbas, F., Takenga, C. and Chedjou, J.C. (2004). GSM RSSI-based
positioning using extended Kalman filter for training artificial neural networks. Proceedings of the
60th IEEE Vehicular Technology Conference, Los Angeles, USA.

Bhatia, N. and Vandana. (2010). Survey of nearest neighbor techniques. International Journal of Computer
Science and Information Security, 8, 302–305.

Bishop, C.M. (2006). Pattern recognition and machine learning. Springer Science + Business Media.
Borkowski, J. and Lempiäinen, J. (2006). Practical network-based techniques for mobile positioning
in UMTS. EURASIP Journal on Applied Signal Processing, 2006: 012930.

Bottou, L., Chapelle, O., DeCoste, D. and Weston, J. (2007). Support Vector Machine Solvers. In:
Large-Scale Kernel Machines, MIT Press.

Burges, C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining
and Knowledge Discovery, 2, 121–167.

Dong, J., Krzyzak, A. and Suen, C.Y. (2005). Fast SVM Training Algorithm with Decomposition
on Very Large Data Sets. IEEE Transactions on Pattern Analysis and Machine Learning, 27, 603–618.

CGALIES (European Commission). (2002). Coordination Group on Access to Location Information for
Emergency Services (CGALIES). Report on implementation issues related to access to location information
by emergency services (E112) in the European Union. http://ec.europa.eu/echo/civil_protection/civil/
pdfdocs/cgaliesfinalreportv1_0.pdf Accessed 25 March 2014.

FCC. (Federal Communication Commission). (2001). FCC Wireless 911 Requirements. http://transition.
fcc.gov/pshs/services/911-services/enhanced911/archives/factsheet_requirements_012001.pdf Accessed
25 March 2014.

Filjar, R., Jezic, G. and Matijasevic, M. (2008). Location-Based Services: A Road Towards Situation
Awareness. The Journal of Navigation, 61, 573–589.

Fung, S.H., Lu, B.C. and Hsu, Y.T. (2012). Learning location from sequential signal strength based on
GSM experimental data. IEEE Transactions on Vehicular Technology, 61, 726–736.

Gun, S.R. (1998). MATLAB Support Vector Machine Toolbox. http://www.isis.ecs.soton.ac.uk/resources/
svminfo/. Accessed 25 March 2014.

Hassoun, M.H. (1995). Fundamentals of artificial neural networks. MIT press.
Hsu, C.W. and Lin, C.J. (2002). A comparison of methods for multiclass Support Vector Machines. IEEE
Transactions on Neural Networks, 13, 415–425.

Jiyan, H., Guan, G. and Qun, W. (2011). Robust location algorithm based on weighted least-squares
Support Vector Machine (WLS-SVM) for non-line-of-sight environments. International Journal of the
Physical Sciences, 6, 5897–5905.

Laitinen, H., Lahteenmaki, J. and Nordstorm, T. (2001). Database correlation method for GSM location.
Proceedings of the 53rd IEEE Vehicular Technology Conference, Rhodes, Greece.

Lakmali, B.D.S., Wijesinghe, W.H.M.P., De Silva, K.U.M., Liyanagama, K.G. and Dias, S.A.D.
(2007). Design, implementation & testing of positioning techniques in mobile networks. Proceedings
of the 3rd International Conference on Information and Automation for Sustainability, Melbourne,
Australia.

Platt, J.C., (1999). Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In:
Advances in Kernel Methods: Support Vector Machines, MIT Press.

Rifkin, R. and Klautau, A. (2004). In defence of one-vs.-all classification. Journal of Machine Learning
Research, 5, 101–141.

Roos, T., Myllymäki, P. and Tirri, H. (2002). A statistical modelling approach to location estimation. IEEE
Transactions on Mobile Computing, 1, 59–69.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge University
Press.

Shi, L. and Wigren, T. (2009). AECID Fingerprinting Positioning Performance. Proceedings of the IEEE
GLOBECOM 2009, Honolulu, Hawaii, USA.

965SVM-BASED MODELS FOR POSITIONINGNO. 6

https://doi.org/10.1017/S0373463314000393 Published online by Cambridge University Press

http://ec.europa.eu/echo/civil_protection/civil/pdfdocs/cgaliesfinalreportv1_0.pdf
http://ec.europa.eu/echo/civil_protection/civil/pdfdocs/cgaliesfinalreportv1_0.pdf
http://ec.europa.eu/echo/civil_protection/civil/pdfdocs/cgaliesfinalreportv1_0.pdf
http://transition.fcc.gov/pshs/services/911-services/enhanced911/archives/factsheet_requirements_012001.pdf
http://transition.fcc.gov/pshs/services/911-services/enhanced911/archives/factsheet_requirements_012001.pdf
http://transition.fcc.gov/pshs/services/911-services/enhanced911/archives/factsheet_requirements_012001.pdf
http://www.isis.ecs.soton.ac.uk/resources/svminfo/
http://www.isis.ecs.soton.ac.uk/resources/svminfo/
http://www.isis.ecs.soton.ac.uk/resources/svminfo/
https://doi.org/10.1017/S0373463314000393


Spirito, M.A. and Mattioli, A.G. (1999). Preliminary experimental results of a GSM mobile phones
positioning system based on timing advance. Proceedings of the 50th IEEE Vehicular Technology
Conference, Amsterdam, Netherlands.

Sun, G. and Guo, W. (2005). Robust mobile geo-location algorithm based on LS-SVM. IEEE Transactions
on Vehicular Technology, 54, 1037–1041.

Sun, G., Chen, J., Guo, W. and Liu, K.J.R. (2005). Signal processing techniques in network-aided
positioning. IEEE Signal Processing Magazine, 22, 12–23.

Takenga, C.M., Wen, Q. and Kyamakya, K. (2006). On the accuracy improvement issues in GSM location
fingerprinting. Proceedings of the 64th IEEE Vehicular Technology Conference, Montreal, Canada.

Wang, L., Groves, P.D. and Ziebart, M.K. (2012). Multi-Constellation GNSS Performance Evaluation for
Urban Canyons Using Large Virtual Reality City Models. The Journal of Navigation, 65, 459–476.

Wigren, T. (2007). Adaptive Enhanced Cell-ID Fingerprinting Localization by Clustering of Precise
Position Measurements. IEEE Transactions on Vehicular Technology, 56, 3199–3209.

Wigren, T. (2012). Fingerprinting localisation using round trip time and timing advance. IET
Communications, 6, 419–427.

Wu, Z., Li, C., Ng, J.K. and Leung, K.R.P.H. (2007). Location estimation via Support Vector Regression.
IEEE Transactions on Mobile Computing, 6, 311–321.

Xuereb, D. and Debono, C.J. (2010). Mobile terminal location estimation using Support Vector Machines.
Proceedings of the 4th International Symposium on Communications, Control and Signal Processing,
Limassol, Cyprus.

Yamamoto, R., Matsutani, H., Matsuki, H., Oono, T. and Ohtsuka, H. (2001). Position location
technologies using signal strength in cellular systems. Proceedings of the 53rd IEEE Vehicular Technology
Conference, Rhodes, Greece.

Zaidi, R.Z. and Mark, L.B. (2005). Real-time mobility tracking algorithms for cellular networks based on
Kalman filtering. IEEE Transactions on Mobile Computing, 4, 195–208.

Zeytinci, M.B., Sari, V., Harmanci, F.K., Anarim, E. and Akar, M. (2013). Location estimation using
RSS measurements with unknown path loss exponents. EURASIP Journal on Wireless Communications
and Networking, 2013:178

3GPP TS 43.059 v8.1.0. (2008). Functional stage 2 description of Location Services (LCS) in GERAN.
http://www.etsi.org/deliver/etsi_ts/143000_143099/143059/08.01.00_60/ts_143059v080100p.pdf Accessed
25 March 2014.

3GPP TS 25.305 v8.1.0. (2008). User Equipment (UE) positioning in Universal Terrestrial Radio Access
Network (UTRAN); Stage 2. http://www.etsi.org/deliver/etsi_ts/125300_125399/125305/08.01.00_60/
ts_125305v080100p.pdf Accessed 25 March 2014.

966 MAJDA PETRIC AND OTHERS VOL. 67

https://doi.org/10.1017/S0373463314000393 Published online by Cambridge University Press

http://www.etsi.org/deliver/etsi_ts/143000_143099/143059/08.01.00_60/ts_143059v080100p.pdf
http://www.etsi.org/deliver/etsi_ts/143000_143099/143059/08.01.00_60/ts_143059v080100p.pdf
http://www.etsi.org/deliver/etsi_ts/125300_125399/125305/08.01.00_60/ts_125305v080100p.pdf
http://www.etsi.org/deliver/etsi_ts/125300_125399/125305/08.01.00_60/ts_125305v080100p.pdf
http://www.etsi.org/deliver/etsi_ts/125300_125399/125305/08.01.00_60/ts_125305v080100p.pdf
https://doi.org/10.1017/S0373463314000393

