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We propose a characteristic function based test for conditional independence, appli-
cable to both cross-sectional and time series data. We also derive a class of deriva-
tive tests, which deliver model-free tests for such important hypotheses as omitted
variables, Granger causality in various moments and conditional uncorrelatedness.
The proposed tests have a convenient asymptotic null N(0,1) distribution, and are
asymptotically locally more powerful than a variety of related smoothed nonpara-
metric tests in the literature. Unlike other smoothed nonparametric tests for condi-
tional independence, we allow nonparametric estimators for both conditional joint
and marginal characteristic functions to jointly determine the asymptotic distribu-
tions of the test statistics. Monte Carlo studies demonstrate excellent power of the
tests against various alternatives. In an application to testing Granger causality, we
document the existence of nonlinear relationships between money and output, which
are missed by some existing tests.
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1. INTRODUCTION

Conditional independence is a widely maintained condition and encompasses
many important hypotheses in econometrics and statistics (Dawid, 1979, 1980).
Let X , Y , and Z be random vectors. Then Y is said to be independent of Z
given X , denoted as Y⊥Z |X , if the joint distribution function of (Y, Z) condi-
tional on X is equal to the product of the conditional marginal distribution func-
tions of Y and Z .

To motivate, we provide a few examples. The first example is the Markov
property. A time series {Xt } is said to be a Markov process of order one if
Xt+1⊥(Xt−1,Xt−2, . . .)|Xt . For a Markov process, the current variable Xt con-
tains all useful information in predicting the future behavior of {Xt }. This property
is broadly used in economics and finance (e.g., Easley and O’Hara, 1987; Rust,
1994). When it holds, one can capture the full dynamics of {Xt } by using a time
series model with one lag only.

The second example is non-Granger causality (Granger, 1969, 1980). For two
time series {Zt} and {Yt }, {Zt } does not Granger-cause {Yt } in distribution if
Yt⊥Zt−1

t−q |Y t−1
t−p , where Zt−1

t−q = (Zt−1, . . . , Zt−q), Y t−1
t−p = (Yt−1, . . . ,Yt−p), and

p, q are lag orders. If this hypothesis is rejected, Zt−1
t−q is useful in predicting

the future distribution of {Yt }. Granger (1969) proposes an F test for Granger
causality in a linear regression setup, which is widely applied in empirical studies.
However, this test may miss important nonlinear phenomena, such as the asym-
metric effect of monetary policies (Kim and Nelson, 2006) and the asymmetric
behavior of asset returns (Campbell, 1992; Peiró, 1999).

The third example is the missing at random property, which is often assumed in
treatment response analysis (e.g., Hahn, Todd, and Klaauw, 2001; Wang, Linton,
and Hardle, 2004). A sample is said to be missing at random if missingness does
not depend on the conditioning variables in the sample (Rubin, 1976). Specif-
ically, suppose Y is an outcome, X is a covariate, and Z is a binary indicator
for treatment, which is equal to 1 if Y is observed and 0 otherwise. Then Y is
missing at random conditional on X , if Y⊥Z |X . When this assumption holds,
one can obtain consistent estimation by throwing away the unobservable sub-
sample and can point-identify the treatment effect in response analysis. How-
ever, abuse of this assumption may render inconsistent estimation, which is called
selectivity bias in the literature (Heckman, 1976; Little, 1985). Horowitz and
Manski (2000) and Manski (2000, 2003, 2007) show that without this assump-
tion, one can only obtain interval estimation for the treatment effect rather than
point-identify it.

The last example is exogeneity. Suppose Y = g(X,U), where g(·, ·) is an
unknown function, X is an observed covariate, and U is an unobservable error.
Then X is exogenous if X⊥U . To test exogeneity, researchers (e.g., Blundell and
Horowitz, 2007; Lee, 2013) introduce an instrumental variable Z for X and show
that X is exogenous if and only if Y⊥Z |X . Exogeneity is fundamental to econo-
metric modeling and inference. Models that suffer from endogeneity problems
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require different estimation methods, which are usually less efficient than those
when X is exogenous.

Motivated by widespread applications, a growing literature focuses on testing
the hypothesis of conditional independence. Su and White (2007, 2008) develop
nonparametric tests based on some weighted distances between characteristic
functions and between densities respectively. Song (2009) proposes a test for
conditional independence between two continuous random variables based on
the Rosenblatt transforms. Huang (2010) develops a nonparametric test using a
maximal nonlinear conditional correlation. Su and White (2012) test conditional
independence via a local polynomial quantile regression. Bouezmarni, Rombouts,
and Taamouti (2012) and Taamouti, Bouezmarni, and El Ghouch (2014)
develop nonparametric copula-based tests for conditional independence and non-
Granger causality in distribution respectively. Bouezmarni and Taamouti (2012)
test conditional independence by comparing conditional distribution functions, and
Linton and Gozalo (2014) propose a test using the empirical distribution function.
Finally, Su and White (2014) propose two smoothed empirical likelihood ratio
tests, and Huang, Sun, and White (2016) develop an integrated conditional moment
test based on a distance between restricted and unrestricted probability measures.

In this paper, we propose a new characteristic function-based test for condi-
tional independence using a nonparametric regression approach. The proposed
test has the following features.

First, the test can detect a class of local alternatives that converge to the null
hypothesis at a faster rate than existing smoothed nonparametric tests for condi-
tional independence in the literature. Let dx , n and h = h(n) denote the dimension
of X , the sample size and the bandwidth, and we test whether Y⊥Z |X holds. Then
the rate of local alternatives for the test is n−1/2h−dx /4, which is faster than the
rate of local alternatives for such nonparametric tests as Su and White (2007,
2008, 2014), Huang (2010), and Bouezmarni et al. (2012). The latter all depend
on the dimensions of other variables as well as dx .

Second, by differentiating the proposed omnibus test statistic, we obtain a class
of derivative tests that can be used to gauge patterns of conditional dependence,
including model-free tests for omitted variables, Granger causality in various
moments, and conditional uncorrelatedness. The derivative test for omitted vari-
ables is asymptotically more powerful than the smoothed nonparametric tests of
Fan and Li (1996), Lavergne and Vuong (2000), and Aı̈t-Sahalia, Bickel, and
Stoker (2001).

Third, unlike other smoothed nonparametric tests for conditional independence,
we use a single bandwidth in estimating both conditional joint and marginal
characteristic functions. The corresponding nonparametric estimators jointly de-
termine the asymptotic distribution of the test statistic. This avoids the delicate
business of choosing multi-bandwidths, and results in a significantly better size
for the test in finite samples due to fewer negligible higher order terms.

Finally, the test applies to both cross-sectional and time series data, and has
a convenient asymptotic null N(0,1) distribution. We require the conditioning
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vector X to have a continuous distribution, but allow Y and Z to have either
discrete or continuous distributions or a mixture of them.

In Section 2, we state the hypothesis of conditional independence. In Section 3,
we construct the omnibus test statistic. We then derive the asymptotic distribu-
tion of the test statistic in Section 4 and its asymptotic local power in Section 5.
Section 6 develops a class of derivative tests. In Section 7, we study the finite sam-
ple performance of the test. Section 8 considers an application to testing nonlinear
Granger causality between money and output. Section 9 concludes. All proofs are
given in the Mathematical Appendix. Computer codes to implement the test are
available from the authors upon request.

2. CONDITIONAL INDEPENDENCE AND HYPOTHESIS OF INTEREST

Let X , Y , and Z be random vectors of dimension dx , dy , and dz respectively.
Suppose we have an identically distributed but weakly dependent random sam-
ple {Xt ,Yt , Zt }n

t=1. Denote f (·|·) as the conditional density (or mass) function
of one random vector given another. For convenience, f (·|·) is referred to as a
conditional density below. However, we allow Y and Z to have either discrete or
continuous distributions or a mixture of them. Our null hypothesis of conditional
independence is

H0 : P [ f (y,z|X)= f (y|X) f (z|X)] = 1 for any (y,z) ∈ R
dy+dz . (1)

The alternative hypothesis is

HA : P [ f (y, z|X) �= f (y|X) f (z|X)]> 0 for some non-negligible values of (y, z). (2)

As the Fourier transform of f (y,z|x), we can use the conditional character-
istic function to represent H0 equivalently. Denote the conditional characteristic
functions as

φyz(u,v,x) = E
[
ei(u′Yt +v ′ Zt )|Xt = x

]
,

φy(u,x)= E
(
eiu′Yt |Xt = x

)
, φz(v,x)= E

(
eiv ′Zt |Xt = x

)
,

where E(·|Xt = x) and cov(·, ·|Xt = x) denote the values of the corresponding
conditional expectation and covariance evaluated at Xt = x . Furthermore, define
a conditional generalized covariance

σ(u,v,x) = cov
(
eiu′Yt ,eiv ′ Zt |Xt = x

)
, (u,v) ∈ R

dy+dz . (3)

Straightforward algebra shows that

σ(u,v,Xt )= φyz(u,v,Xt )−φy(u,Xt )φz(v,Xt ). (4)

For a strictly stationary time series {Yt }, when Zt = Yt−k and Xt =
(Yt−1, . . . ,Yt−k+1)

′, σ(u,v,x) could be viewed as a generalized partial auto-
covariance because its partial derivative

∂2

∂u∂v
σ(u,v,x)|(u,v)=(0,0) = −cov(Yt ,Yt−k |Xt = x)
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is the conventional partial autocovariance function (PACF). This extends the
concept of generalized autocovariance function of Hong (1999). The function
σ(u,v,x) can capture any type of pairwise conditional partial dependence over
various lags, including nonlinear time series with zero partial autocovariance,
such as bilinear, nonlinear moving average, and ARCH/GARCH processes. To see
this, we rewrite σ(u,v,x) using the Taylor series expansion:

σ(u,v,x) =
∞∑

m=0

∞∑
l=0

(iu)m (iv)l

m!l!
cov

(
Y m

t ,Y
l
t−k |Xt = x

)
.

Intuitively, when all moments of Yt exist, testing whether σ(u,v,x)= 0 is equiv-
alent to testing whether Y m

t and Y l
t−k are partially uncorrelated for any pair of

(m,l), where m,l = 0,1,2, . . . .
With the definition of σ(u,v,x), we can rewrite H0 and HA equivalently as

follows:

H0 : P [σ(u,v,Xt )= 0] = 1 for any (u,v) ∈ R
dy+dz (5)

versus

HA : P [σ(u, v, Xt ) �= 0]> 0 for (u, v) in some set with positive Lebesgue measure.

(6)

It is important to emphasize that we must check (5) for all (u,v) ∈ Rdy+dz

rather than only a subset of R
dy+dz . On the other hand, by differentiating

σ(u,v,Xt ) with respect to u and/or v at the origin, we can infer patterns of con-
ditional dependence (cf. Section 6).

3. NONPARAMETRIC REGRESSION BASED TESTING

3.1. Generalized Nonparametric Regression

Given a sample {Xt ,Yt , Zt }n
t=1, we can estimate σ(u,v,Xt ) and check whether

it is identically zero for all (u,v) ∈ Rdy+dz . We estimate φyz(u,v,x), φy(u,x),
and φz(v,x) nonparametrically. Since these functions are generalized regres-
sion functions (e.g., φyz(u,v,x) = E[ei(u′Yt +v ′ Zt )|Xt = x]), we use a pth order
local polynomial regression. Because φy(u,x) and φz(v,x) can be obtained from
φyz(u,v,x) by setting v = 0 and u = 0 respectively, we only need to estimate
φyz(u,v,x).

To estimate φyz(u,v,x), we consider the following local weighted least squares
problem:

minβ∈Cdx p+1

n∑
t=1

∣∣∣∣∣∣ei(u′Yt +v ′ Zt )−β0 −
∑

1≤|j|≤p

β ′
j(Xt − x)j

∣∣∣∣∣∣
2

Kh(Xt − x),

where x ∈ R
dx ,u ∈ R

dy ,v ∈ R
dz . (7)
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Here, we use the notations of Masry (1996a,b) and Su and White (2012).
Denote j1, . . . , jdx as non-negative integers, j ≡ ( j1, . . . , jdx ), |j| = ∑dx

j=1 ji ,

x j = ∏dx
i=1 x ji

i ,
∑

0≤|j|≤p ≡ ∑p
k=0

∑
0≤ j1,..., jdx ≤k, j1+···+ jdx =k , βj ≡ βj(x,u,v) ≡

1
j! D|j|φyz(u,v,x) with D|j|φyz(u,v,x) = ∂ |j|φyz(u,v,x)

∂ j1 x1···∂ jdx xdx
and j! = ∏dx

i=1 ji !.

In addition, β denotes the parameter vector formed by stacking the βj vectors in
lexicographic order. If we define Nl = (l + dx − 1)!/[l!(dx − 1)!], the number
of distinct dx -tuples j with |j| = l, and N = ∑p

l=1 Nl , then β is a N × 1 vector.
Moreover, Kh(x)= h−dx K ( x

h ), where K : Rdx → R is a kernel and h = h(n) is a
bandwidth. The solution to (7) is given as

β̂ ≡ β̂(u,v,x) = (X ′W X)−1 X ′W Q, x ∈ R
dx , (8)

where X is a n × N matrix formed by stacking the (Xt − x)j vectors in lexi-
cographic order as the tth row, W = diag[Kh(X1 − x), . . . ,Kh(Xn − x)], and
Q = [

ei(u′Y1+v ′ Z1), . . . ,ei(u′Yn+v ′ Zn)
]′. Then φ(u,v,x) can be estimated by the

local intercept estimator β̂0(u,v,x), namely,

φ̂yz(u,v,x) =
n∑

t=1

Ŵ

(
Xt − x

h
,x

)
eiu′Yt +iv ′Zt , (9)

where Ŵ (t,x) ≡ e′
1Sn(x)−1[1, t(p)]′K (t)/hdx , e1 = (1,0, . . . ,0)′, Sn(x) =

X ′W X , and t(p) denotes the vector formed by stacking the t j vectors in lexi-
cographic order.

Arrange the Nl dx -dimensional tuples as a sequence in a lexicographical order
(with the highest priority to the last position), so that ϕl(1) ≡ (0,0, . . . ,l) is the
first element in the sequence and ϕl(Nl )≡ (l,0, . . . ,0) is the last element. Define
μj = ∫

Rdx x jK (x)dx and a N × N matrix

S =

⎛⎜⎜⎜⎝
S0,0 S0,1 · · · S0,p
S1,0 S1,1 · · · S1,p
...

...
. . .

...
Sp,0 Sp,1 · · · Sp,p

⎞⎟⎟⎟⎠ ,
where Si, j is a Ni × Nj matrix whose (l,s) element is μϕi (l)+ϕj (s). Denote S−1 =
(Si, j )0≤i, j≤p with Si, j being a Ni × Nj matrix, and Xh being a n × N matrix
formed by staking the [(Xt − x)/h]j vectors in lexicographic order as the t th row.
By Fan and Gijbels (1996) and Hjellvik, Yao, and Tjøstheim (1998), we have

φ̂yz(u,v,x) = 1

nhdx g(x)

n∑
t=1

[ p∑
l=0

S0,p
(

Xt − x

h

)
(l)

]
K

(
Xt − x

h

)
eiu′Yt +iv ′ Zt [1+oP (1)]

≡ 1

nhdx g(x)

n∑
t=1

D

(
p,

Xt − x

h

)
K

(
Xt − x

h

)
eiu′Yt +iv ′ Zt [1+oP(1)] (10)
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uniformly in x ∈ G, where g(x) is the density of Xt and G is any compact subset

in the interior region with g(x) > 0. Here,
(

Xt−x
h

)
(l)

denotes the (Nl−1 + 1)th to

the Nl th elements of the tth row of Xh . We can easily check that when p = 1 (the
local linear case), D(1, Xt −x

h )= 1. Given (10), we obtain the conditional marginal

estimators φ̂y(u,x)= φ̂yz(u,0,x) and φ̂z(v,x)= φ̂yz(0,v,x) immediately.
We note that the nonparametric estimators for φyz(u,v,x), φy(u,x), and

φz(v,x) only involve smoothing over Xt . This differs from nonparametric estima-
tors for f (y,z|x) and f (y|z,x), both of which involve smoothing over Yt , Zt ,Xt ,
and their convergence rates are inversely related to dx + dy + dz . It also differs
from nonparametric estimation for E(eiu′Yt |Xt , Zt ), which involves smoothing
over Xt and Zt , and the convergence rate is inversely related to dx + dz . The
reduction in curse of dimensionality due to the use of a regression approach
makes our test asymptotically more powerful than the existing smoothed non-
parametric tests of H0 in the literature, including those of Su and White (2007,
2008, 2014), Huang (2010) and Bouezmarni et al. (2012). See Section 5 for more
discussion.

3.2. Nonparametric Based Test Statistic

Under H0, σ(u,v,Xt ) = 0 a.s. for all u, v. Therefore, we can test H0 by using
the quadratic form

M̂ = 1

n

n∑
t=1

∫∫
|σ̂ (u,v,Xt )|2a(Xt )dW1(u)dW2(v), (11)

where σ̂ (u,v,Xt )= φ̂yz(u,v,Xt )− φ̂y(u,Xt )φ̂z(v,Xt ), a : G→R+ is a weight-
ing function for Xt , W1 : Rdy → R+ and W2 : Rdz → R+ are right-continuous
weighting functions of u,v that weigh sets symmetric about the origin equally.
The weighting function a(·) is commonly used in the literature (e.g., Hjellvik
et al., 1998; Aı̈t-Sahalia et al., 2001; Chen and Hong, 2010). For example, since
nonparametric estimation at sparse extreme observations is inaccurate, a suit-
ably truncated function a(·) can alleviate the influence of unreliable estimates,
although the test with a truncated function may miss derivations from the null
hypothesis in the tail distribution of Xt . The use of W1(u) and W2(v) allows us
to check many points for u,v. One example is the N(0,1) cumulative distribution
function (CDF).

Our test statistic is a standardized version of (11), namely,

ŜM = (
nhdx/2M̂ − B̂

)
/
√

V̂ , (12)

where

B̂ = h−dx/2
∫∫ [

1−|φ̂y (u, x)|2
]

dW1(u)
∫ [

1−|φ̂z (v, x)|2
]

dW2(v)a(x)dx

×
∫

D2(p,τ)K 2(τ)dτ , (13)
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V̂ = 2
∫ [∫∫

|�̂y(u1 +u2, x)|2dW1(u1)dW1(u2)

∫∫
|�̂z(v1 + v2, x)|2dW2(v1)dW2(v2)

]
a2(x)dx

×
∫ [∫

D(p,τ )D(p,τ +η)K (τ )K (τ +η)dτ
]2

dη, (14)

and �̂s(u + v,x)= φ̂s(u + v,x)− φ̂s(u,x)φ̂s(v,x) for s = y or z.
The factors B̂ and V̂ are the estimators for the asymptotic mean and asymptotic

variance of (11). When the dimensions of X , Y , or Z are high, the calculation of
ŜM involves high-dimensional integration. One can use numerical integration or
simulation techniques.

Both B̂ and V̂ in (13) and (14) are derived underH0 as the sample size n → ∞.
However, they may not approximate well the mean and variance of (11) in finite
samples respectively, which may lead to a poor size for the test. To fix this, we
also consider a finite-sample version of ŜM :

ŜMn = (
nhdx/2 M̂ − B̂n

)
/
√

V̂ , (15)

where

B̂n = hdx/2
n∑

t=1

n∑
s=1

a(Xt )Ŵ

(
Xs − Xt

h
,Xt

)2 ∫∫
|ε̂y(u,Xs )ε̂z(v,Xs )|2dW1(u)dW2(v),

with ε̂y(u,Xs) = eiu′Ys − φ̂y(u,Xs) and similarly for ε̂z(v,Xs ). Both ε̂y(u,Xs)
and ε̂z(v,Xs ) could be viewed as estimated generalized residuals. One could also
replace V̂ by a finite-sample version, but our simulations show that ŜMn in (15)
has performed reasonably well in finite samples.

4. ASYMPTOTIC DISTRIBUTION

To derive the asymptotic distribution of ŜM in (12) under H0, we first impose
regularity conditions.

Assumption A.1. Let (�,F , P) be a complete probability space. (a) The
stochastic process {Xt ,Yt , Zt } is strictly stationary absolutely regular on
Rdx +dy+dz with β-mixing coefficients satisfying

∑∞
j=1 j2β( j)δ/(1+δ) < C for

some 0 < δ < 1
3 ; (b) the marginal density g(x) of Xt is positive, bounded and

continuously differentiable in x ∈ G ⊂ Rdx up to order p + 1, where G is a com-
pact support of the weight function a(·) defined in Assumption A.4(b) below.

Assumption A.2. Let φyz(u,v,x), φy(u,x), φz(v,x) be the conditional char-
acteristic functions of (Yt , Zt ), Yt and Zt given Xt = x respectively. For each
pair (u,v) ∈ R

dy+dz , φyz(u,v,x), φy(u,x), and φz(v,x) are continuously differ-
entiable with respect to x ∈ G up to order p + 1.

Assumption A.3. K : Rdx → R+ is a product of some univariate kernel k,
i.e., K (u)=∏dx

j=1 k(uj ), where k : R → R+ satisfies the Lipschitz condition and
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is symmetric about zero, bounded, and square-integrable with
∫∞
−∞ u2k(u)du =

μ2 < ∞. The functions Hj(u) = u j K (u) for all j with 0 ≤ | j | ≤ 2 p + 1 are
Lipschitz continuous.

Assumption A.4. (a) W1 : Rdy → R+ and W2 : Rdz → R+ are nondecreasing
right-continuous functions that weigh sets symmetric about zero equally, with∫
R

dy ‖u‖4dW1(u) <∞ and
∫
Rdz ‖v‖4dW2(v) <∞; (b) a : G →R+ is a bounded

continuous function.

Assumptions A.1 and A.2 impose conditions on the data generating process
(DGP). Assumption A.1(a) is standard for application of a central limit theo-
rem for degenerate U statistics of a weakly dependent process (e.g., Tenreiro,
1997). The β-mixing condition restricts the degree of temporal dependence in
(Xt ,Yt , Zt ), which is generally adopted in nonparametric time series analysis;
see, e.g., Hjellvik et al. (1998), Su and White (2007, 2008) and Chen and Hong
(2010). A variety of time series processes, such as ARMA, bilinear and ARCH,
satisfy the β-mixing condition (Fan and Li, 1999). The β-mixing condition could
be relaxed to the α−mixing condition; see Su and White (2012). Assumption
A.1(b) rules out discrete distributions for Xt . However, we could extend our test
to cover the discrete case for Xt in a similar way to Su and White (2008). Note that
the components of Yt and Zt can be either continuous or discrete random variables
or a mixture of them, and Assumption A.2 holds if f (y,z|x), f (y|x), f (z|x) are
continuously differentiable with respect to x ∈ G up to order p + 1.

Assumptions A.3 and A.4 impose conditions on various weighting functions.
Because we use a local polynomial regression, the second order kernel is appropri-
ate. In comparison, Su and White (2007, 2008) require using higher order kernels.
Assumption A.4 imposes mild conditions on W1(u),W2(v) and a(x), ensuring
the existence of the integrals in (12). Many functions satisfy Assumption A.4(a),
examples being the CDFs with finite fourth order moments. For convenience,

we can use product forms W1(u)=∏dy
i=1w(ui ) and W2(v)=∏dz

i=1w(vi ), where
w(·) is a univariate CDF.

We now derive the asymptotic distribution of ŜM under H0.

THEOREM 1. Suppose Assumptions A.1–A.4 hold, and the bandwidth

h = cn−λ for 2
dx+4p+4 < λ <

2
3dx

, where 0< c <∞. Then ŜM
d→ N(0,1) under

H0 as n → ∞.

Theorem 1 requires p> dx/2−1, where p is the local polynomial order. Thus,
we can use the simple local linear estimation (p = 1)when dx ≤ 3, but have to use
a higher order local polynomial when dx ≥ 4. This is due to the need to control
the nonparametric estimation bias. As mentioned by Li and Racine (2007, p. 87),
fitting a pth order local polynomial with the second order kernel is similar to
using a r th order kernel for local constant estimation, where r = 2 (�p/2�+ 1).
We can show that our results require r > dx/2 for local constant estimation. We do
not impose any restriction on dy and dz because ŜM only involves smoothing
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on Xt and so the convergence rate only depends on dx . This differs from the
existing nonparametric tests for conditional independence (e.g., Su and White,
2007, 2008; Huang, 2010; Bouezmarni et al., 2012), which involve smoothing of
dx + dy + dz or at least dx + dz dimensions. For example, Su and White’s (2007)
Assumption A.2 implies dx + dz < 4r/3, while Su and White (2008) require
dx + dy + dz ≤ 7 even when a higher order kernel is used.

It is important to emphasize that we use the same bandwidth h in estimating
φyz(u,v,x), φy(u,x), and φz(v,x). As a result, the conditional joint and marginal
characteristic function estimators have the same convergence rate and jointly
determine the limiting distribution of ŜM . In contrast, the existing smoothed tests
in the literature use different bandwidths to estimate joint and marginal functions
of interest (e.g., regression functions, density functions, or characteristic func-
tions), and carefully control the relative speeds for the bandwidths so that non-
parametric marginal estimators converge faster than their joint counterparts and
have no impact on the asymptotic distributions of the tests. This approach is taken
by Fan and Li (1996), Lavergne and Vuong (2000), Aı̈t-Sahalia et al. (2001),
Su and White (2007, 2008, 2014), and Su and Ullah (2009). However, while the
marginal estimators converge faster than the joint estimators, their convergence
rates may be close to each other. Thus, ignoring the impact of the marginal esti-
mators may lead to a poor size performance in finite samples. In contrast, by using
the same bandwidth, we provide a better asymptotic approximation, which yields
a better size performance in finite samples, as is confirmed in our simulation study
below. We also avoid the delicate business of choosing multi-bandwidths.

Theorem 1 allows a wide range of admissible rates for the bandwidth h. In prac-
tice, one could choose h via simple rules of thumb. However, it is desirable to use
data-driven methods to choose h. While the bandwidth based on cross-validation
is asymptotically optimal for estimation of σ(u,v,x) in terms of the mean squared
error, it may not be optimal for our test. For testing problems, the central con-
cern is about Type I and Type II errors. In different but related contexts, Gao and
Gijbels (2008) and Sun, Phillips, and Jin (2008) propose some novel methods to
choose a data-driven bandwidth by considering a tradeoff between Type I and
Type II errors. Specifically, based on the Edgeworth expansion of the asymptotic
distribution of a test statistic under a local alternative, Gao and Gijbels (2008)
choose h to maximize the power of their test subject to a control of Type I
error, and Sun et al. (2008) choose h to minimize a weighted average of Type I
and Type II errors. It is possible to extend these approaches to ŜM . Nevertheless,
the analytical expressions for the leading terms of the two type errors of ŜM are
rather involved. This is beyond the scope of this paper and will be pursued in a
subsequent study.

The ŜM test applies to both cross-sectional and time series data. Under H0,
it has an asymptotic N(0,1) distribution and is asymptotically pivotal. In com-
parison with Su and White’s (2012) test, ŜM is pivotal for not only martingale
difference sequence observations, but also data with weak dependence.
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5. ASYMPTOTIC LOCAL POWER

To compare the relative efficiency of the ŜM test with some existing nonpara-
metric tests for conditional independence in the literature, we first consider the
following class of local alternatives:

H1(an) : f (y,z|x)= f (y|x) f (z|x)+ anq(y,z|x), (16)

where q(y,z|x) is bounded and continuously differentiable up to order p +1 with
respect to x ∈ G, with q(y,z|x) �= 0 and

∫∫
q(y,z|x)dydz = 0 for all x ∈ G.

The term anq(y,z|x) characterizes the departure from H0, and an is the rate at
which the deviation vanishes to 0 as n → ∞. For notational simplicity, we have
suppressed the dependence of f (y,z|x) on n. By Fourier transform, we obtain

φyz(u,v,x) = φy(u,x)φz(v,x)+ anδ(u,v,x),

where δ(u,v,x) = ∫∫
ei(u′y+v ′z)q(y,z|x)dydz, with

γ ≡
∫∫∫

|δ(u,v,x)|2dW1(u)dW2(v)a(x)g(x)dx <∞.

THEOREM 2. Suppose Assumptions A.1–A.4 and H1(an) with an =
n−1/2h−dx/4 hold, and the bandwidth h = cn−λ for 2

dx+4p+4 < λ <
2

3dx
, where

0< c<∞. Then, the power of ŜM satisfies P
[
ŜM ≥ zα|H1(an)

]→ 1−�(zα−
γ /

√
V ) as n → ∞, where �(·) is the N(0,1) CDF, zα is the one sided critical

value of N(0,1) at significance level α, and

V = 2
∫ [∫∫

|�y (u1 +u2, x)|2dW1(u1)dW1(u2)

∫∫
|�z(v1 + v2, x)|2dW2(v1)dW2(v2)

]
a2(x)dx

×
∫ [∫

D(p,τ )D(p,τ +η)K (τ )K (τ +η)dτ
]2

dη, (17)

with �s(u + v,x)= φs(u + v,x)−φs(u,x)φs(v,x) for s = y or z.

Theorem 2 shows that the ŜM test has nontrivial power against H1(an) with
an = n−1/2h−dx/4. In terms of Pitman’s criterion, it is asymptotically more
efficient than the nonparametric tests of Su and White (2007, 2008, 2014),
Huang (2010), Bouezmarni et al. (2012), Bouezmarni and Taamouti (2014), and
Taamouti et al. (2014). This is because ŜM only involves dx -dimensional smooth-
ing, whereas the aforementioned tests involve smoothing of dx + dy + dz or at
least dx + dz dimensions. Thus, they can only detect local alternatives with a rate
of n−1/2h−(dx+dy+dz)/4 or n−1/2h−(dx+dz)/4. On the other hand, Huang’s (2010)
test can detect local alternatives with a rate of n−1/2h−dx/2n−1/4

X (pnqn)
1/2, where

pn → ∞ and qn → ∞ are the maximum orders of nonparametric series approxi-
mations, and nX → ∞ is the number of grid points of X . This rate is slower than
n−1/2h−dx/4 since nX , pn,qn can grow only as a power function of lnn.

It should be noted that the tests of Su and White (2012) and Huang et al. (2016)
can detect H1(an) with an = n−1/2, which is faster than an = n−1/2h−dx/4 for the
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ŜM test. However, this conclusion is peculiar to the class of smooth type local
alternatives in (16). Suppose we consider

H2(an,bn) : φyz(u,v,x) = φy(u,x)φz(v,x)+ anδ

(
u,v,

x − c

bn

)
,

where, given each pair (u,v), δ(u,v, ·) is bounded and continuously differentiable
up to order p +1 in the interior of G, c is a constant, an → 0, bn → 0 as n → ∞,
a2

nbn = n−1h−dx/2, and h = o(bn). This type of local alternative has been con-
sidered by Rosenblatt (1975), Horowitz and Spokoiny (2001) and Su and White
(2008) among others. It can arise (e.g.,) when

f (y,z|x)= f (y|x) f (z|x)+ anq(y,z|x),
where q(y,z|x)= q0(y,z)l

( x−c
bn

)
, q0(y,z) is bounded and square-integrable with

q0(y,z) �= 0,
∫∫

q0(y,z)dydz = 0, and l(·) is bounded and continuously differ-
entiable up to order p + 1, possibly with unbounded support. Under this kind of
local alternative, the deviation of H2(an,bn) from H0 has a nonsmooth spike at
location c. That is, Yt and Zt display strong mutual dependence when Xt takes
values in a neighborhood of point c but little elsewhere. The shrinkage parameter
bn measures the effective size of the neighborhood of point c, and an controls the
speed at which the deviation of H2(an,bn) from H0 vanishes to 0. It is not diffi-
cult to see that the departure of H2(an,bn) from H0 is of order an when Xt takes
values in the neighborhood of c with size bn , but is of a higher order for any other
distinct point of Xt on the compact set G. See DGP.P3 for a time series example
in Section 7.

We now derive the asymptotic power of the ŜM test under H2(an,bn).

THEOREM 3. Suppose Assumptions A.1–A.4 hold and the bandwidth
h = cn−λ for 2

dx +4p+4 < λ < 2
3dx

, where 0 < c < ∞. Then, under H2(an,bn)

with an → 0, bn → 0, a2
nbn = n−1h−dx/2, and h = o(bn), we have

P
[
ŜM ≥ zα|H2(an,bn)

]→ 1 −�(zα−κ/√V ) as n → ∞, where κ = a(c)g(c)∫∫∫ |δ(u,v,w)|2dW1(u)dW2(v)dw.

Theorem 3 implies that ŜM has nontrivial power under H2(an,bn)

with anb1/2
n = n−1/2h−dx/4. This is because under H2(an,bn), the

noncentrality parameter of ŜM depends on the squared departure∫∫∫ |σ(u,v,x)|2dW1(u)dW2(v)a(x)g(x)dx = a2
nbna(c)g(c)

∫∫∫ |δ(u,v,w)|2
dW1(u)dW2(v)dw. The ŜM test is asymptotically more efficient than the
tests of Su and White (2007, 2008, 2012, 2014), Huang (2010), Bouezmarni
et al. (2012), Bouezmarni and Taamouti (2014), and Taamouti et al. (2014)
under H2(an,bn). The latter cannot detect the rate anb1/2

n = n−1/2h−dx/4, due
to additional smoothing of other variables. For Su and White’s (2012) test, a
careful inspection shows that its noncentrality parameter depends on the integral∫
σ(u,v,x)ψ(x)dx = an

∫
δ
(
u,v, x−c

bn

)
ψ(x)dx = anbnψ(c)

∫
δ(u,v,w)dw for

some smooth weighting function ψ(x). The rate anbn can be faster than n−1/2,
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rendering Su and White’s (2012) test unable to detect H2(an,bn). For example, if
dx = 1, h = n−1/2, bn = h5/6 and an = n−1/2h−2/3, then an

∫
δ
(
u,v, x−c

bn

)
ψ(x)dx

is of order anbn = n−7/12, which is faster than n−1/2. Hence, Su and White’s
(2012) test fails to detect H2(an,bn) in this example. Similarly, although Huang
et al.’s (2016) test can detect the rate n−1/2 for H1(an), it may fail to detect
H2(an,bn).

6. INFERENCE ON PATTERNS OF CONDITIONAL DEPENDENCE

When H0 is rejected, one may like to gauge possible reasons of rejection,
which can provide valuable information for modeling economic relationships. For
example, if we know that two variables have conditional dependence in mean,
then we can use a conditional mean model.

As is well known, the characteristic function can be differentiated to obtain var-
ious moments (when these exist). As the omnibus test ŜM is based on the condi-
tional characteristic function, we can develop a class of derivative tests to capture
various patterns of conditional dependence. The derivative tests can check various
hypotheses of interest, including omitted variables, Granger causality in various
moments, and conditional uncorrelatedness. As an important feature, these deriva-
tive tests are all model-free.

6.1. Inference on Conditional Dependence of Various Moments

Suppose the m-th order moment of Yt exists. For σ(u,v,x) in (3), taking the m-th
order partial derivative with respect to u at u = 0, we obtain

σ (m)(0,v,x) = ∂mσ(u,v,x)

∂um
|u=0 = imcov

(
Y m

t ,e
iv ′ Zt |Xt = x

)
, (18)

for any m = 1,2, . . . . Under the null hypothesis

H
(m)
0 : P

[
cov

(
Y m

t ,e
iv ′ Zt |Xt

)= 0
]= 1 for all v ∈ R

dz , (19)

we have σ (m)(0,v,x) = 0 for all v ∈ Rdz and all x ∈ G. Thus, we can test
H
(m)
0 in (19) by examining whether σ (m)(0,v,x) = 0. Denote the estimator

of σ (m)(0,v,x) as σ̂ (m)(0,v,x) = ∂m

∂um σ̂ (u,v,x)|u=0. Based on the notation of

σ̂ (u,v,x)= φ̂yz(u,v,x)− φ̂y(u,x)φ̂z(v,x), we have

σ̂ (m)(0,v,x) = ∂m

∂um
φ̂yz(u,v,x)|u=0 − ∂m

∂um
φ̂y(u,x)|u=0φ̂z(v,x),

where

∂m

∂um
φ̂yz(u,v,x)|u=0 = 1

nhdx g(x)

n∑
t=1

D

(
p,

Xt − x

h

)
K

(
Xt − x

h

)
imY m

t eiv ′ Zt [1+oP (1)]
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and

∂m

∂um
φ̂y(u,x)|u=0 = 1

nhdx g(x)

n∑
t=1

D

(
p,

Xt − x

h

)
K

(
Xt − x

h

)
imY m

t [1 + oP(1)].

Similar to the construction of ŜM , we use the following quadratic form to test
H
(m)
0 in (19):

M̂(m) = 1

n

n∑
t=1

∫ ∣∣σ̂ (m)(0,v,Xt )
∣∣2a(Xt )dW2(v).

Following the proof of Theorem 1, we can show that under H(m)0 in (19) and other
regularity conditions,

ŜM
(m) = [

nhdx/2M̂(m)− B̂(m)
]
/
√

V̂ (m) d→ N(0,1),

where

B̂(m) = h−dx/2
∫∫ [

φ̂(2m)
y (0,x)− ∣∣φ̂(m)y (0,x)

∣∣2][1−|φ̂z(v,x)|2
]
dW2(v)a(x)dx

×
∫

D2(p,τ )K 2(τ )dτ,

V̂ (m) = 2
∫∫∫ [

φ̂(2m)
y (0,x)−|φ̂(m)y (0,x)|2]2∣∣�̂z(v1 + v2,x)

∣∣2dW2(v1)dW2(v2)a
2(x)dx

×
∫ [∫

D(p,τ )D(p,τ +η)K (τ )K (τ +η)dτ
]2

dη,

with φ̂(s)y (0,x)= ∂s

∂us φ̂y(u,x)|u=0.
Moreover, to improve the size of the test in finite samples, we can use a finite

sample version of ŜM
(m)

, denoted as ŜM
(m)
n , by replacing B̂(m) with its finite

sample version

B̂(m)n = hdx/2
n∑

t=1

n∑
s=1

a(Xt )Ŵ

(
Xs − Xt

h
, Xt

)2 [
Y m

s − φ̂(m)y (0, Xs)
]2
∫ ∣∣ε̂z(v, Xs)

∣∣2 dW2(v).

We now discuss the primary case of p = 1. The ŜM
(1)

test checks whether
cov(Yt ,eiv ′ Zt |Xt ) = 0, which is equivalent to the model-free hypothesis of
E(Yt |Xt , Zt )= E(Yt |Xt ), i.e., Zt is not an omitted variable. In a cross-sectional
context, Fan and Li (1996) and Lavergne and Vuong (2000) develop nonparamet-
ric tests for omitted variables using a weighted average of squared conditional
mean estimates of residuals. Aı̈t-Sahalia et al. (2001) also consider a nonpara-

metric test for omitted variables in a time series context. As ŜM
(1)

only involves
dx -dimensional smoothing, it is more powerful than the tests of Fan and Li (1996),
Lavergne and Vuong (2000) and Aı̈t-Sahalia et al. (2001). The latter all involve
(dx + dz)-dimensional smoothing and are therefore asymptotically less efficient.

The ŜM
(m)

test can be applied to check Granger causality in mth moment.
Put Xt = Y t−1

t−p = (
Yt−1, . . . ,Yt−p

)′ and Zt = Xt−1
t−q = (

Xt−1, . . . ,Xt−q
)′ for
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lag orders p,q . Then the null hypothesis becomes H
(m)
0 : E(Y m

t |Y t−1
t−p ,Xt−1

t−q ) =
E(Y m

t |Y t−1
t−p), i.e., there is no Granger causality in the mth moment of Yt from

Xt−1
t−q . The choice of m = 1 delivers a test for Granger causality in mean. Com-

pared with Granger’s (1969) F test, ŜM
(1)

is model-free, and it is powerful in
capturing not only linear but also various nonlinear relationships in mean, includ-
ing ARCH-in-mean effects (Engle, Lilien, and Robins, 1987), threshold effects
(Tong and Lim, 1980), and functional coefficient autoregressive effects (Priestley,
1988; Chen and Tsay, 1993). Nishiyama, Hitomi, Kawasaki, and Jeong (2011)
also propose a model-free test for Granger causality in mean and high order
moments. Their test could achieve the parametric rate an = n−1/2 for a class
of smooth local alternatives H(m)1 (an) : Y m

t = g(Y t−1
t−p)+anκ(Y

t−1
t−p ,Xt−1

t−q), where
g(·) and κ(·) are smooth functions. However, under a class of nonsmooth local

alternatives H(m)2 (an,bn) : Y m
t = g(Y t−1

t−p)+anκ
(
Xt−1

t−q

)
l
( Y t−1

t−p−c
bn

)
, where κ(·) and

l(·) satisfy certain regularity conditions, ŜM
(m)

could be asymptotically more
powerful than Nishiyama et al.’s (2011) test. In addition, unlike Nishiyama et al.’s

(2011) test, ŜM
(m)

has a convenient asymptotic null N(0,1) distribution. Our

simulations below show that ŜM
(1)

outperforms Nishiyama et al.’s (2011) test in
finite samples.

6.2. Inference on Conditional Correlation Between Moments

Suppose the m-th and l-th order moments of Yt and Zt exist respectively. Then
taking the m-th and l-th order partial derivative of σ(u,v,x) with respect to (u,v)
at the origin, we obtain

σ (m,l)(0,0,x)= ∂m+lσ(u,v,x)

∂um∂vl
|(u,v)=(0,0) = im+lcov

(
Y m

t , Zl
t

∣∣Xt = x
)

(20)

for any m = 1,2, . . . ; l = 1,2, . . . . Under the null hypothesis

H
(m,l)
0 : P

[
cov

(
Y m

t , Zl
t

∣∣Xt
)= 0

]= 1, (21)

we have σ (m,l)(0,0,x)= 0 for all x ∈ G. Like in Section 6.1, we have

σ̂ (m,l)(0,0, x) = ∂m+l

∂um∂vl
φ̂yz(u,v, x)|(u,v)=(0,0)− ∂m

∂um
φ̂y(u, x)|u=0

∂l

∂vl
φ̂z(v, x)|v=0,

where

∂m+l

∂um∂v l
φ̂yz(u, v, x)|(u,v)=(0,0) = 1

nhdx g(x)

n∑
t=1

D

(
p,

Xt − x

h

)
K

(
Xt − x

h

)
im+l Y m

t Zl
t [1+oP (1)]

and

∂ l

∂vl
φ̂z(v,x)|v=0 = 1

nhdx g(x)

n∑
t=1

D

(
p,

Xt − x

h

)
K

(
Xt − x

h

)
il Z l

t [1 + oP(1)].
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Then we can use the statistic

M̂(m,l) = 1

n

n∑
t=1

a(Xt )
∣∣σ̂ (m,l)(0,0,Xt )

∣∣2 (22)

to check conditional uncorrelatedness between Y m
t and Zl

t given Xt . We could

prove that under H(m,l)0 and suitable regularity conditions, a standardized version

of M̂(m,l), namely

ŜM
(m,l) = [

nhdx/2 M̂(m,l)− B̂(m,l)
]
/
√

V̂ (m,l) d→ N(0,1),

where

B̂(m,l) = h−dx/2
∫ [

φ̂(2m)
y (0, x)− ∣∣φ̂(m)y (0, x)

∣∣2][φ̂(2l)
z (0, x)− ∣∣φ̂(l)z (0, x)

∣∣2]a(x)dx

×
∫

D2(p,τ )K 2(τ )dτ,

V̂ (m,l) = 2
∫ [

φ̂(2m)
y (0, x)− ∣∣φ̂(m)y (0, x)

∣∣2]2[
φ̂(2l)

z (0, x)− ∣∣φ̂(l)z (0, x)
∣∣2]2

a2(x)dx

×
∫ [∫

D(p,τ )D(p,τ +η)K (τ )K (τ +η)dτ
]2

dη.

Again, to improve the size of the test in finite samples, we can use a finite sample

version of ŜM
(m,l)

, denoted as ŜM
(m,l)
n , by replacing B̂(m,l) and V̂ (m,l) respec-

tively with

B̂(m,l)n = hdx/2
n∑

t=1

n∑
s=1

a(Xt)Ŵ

(
Xs − Xt

h
,Xt

)2

ê(m)y (0,Xs)
2ê(l)z (0,Xs)

2,

V̂ (m,l)
n = 2hdx/2

∑
1≤r<s≤n

[
n∑

t=1

a(Xt )Ŵ

(
Xs − Xt

h
,Xt

)
Ŵ

(
Xr − Xt

h
,Xt

)

×ê(m)y (0,Xs)ê
(l)
z (0,Xs)ê

(m)
y (0,Xr )ê

(l)
z (0,Xr )

]2

,

where ê(m)y (0,Xs)= Y m
s − φ̂(m)y (0,Xs) and e(l)z (0,Xs)= Zl

s − φ̂(l)z (0,Xs).
The choice of derivative orders (m,l) allows us to examine various condi-

tional correlations between the powers of Yt and Zt . For example, the choice
of (m,l) = (1,1) yields a model-free test for conditional uncorrelatedness
(i.e., cov(Yt , Zt |Xt ) = 0). For a time series {Yt } and a lag order k ≥ 2, we
put Zt = Yt−k and Xt = Y t−1

t−k+1 = (Yt−1, . . . ,Yt−k+1). Then γ (k, yt−1
t−k+1) =

cov(Yt ,Yt−k |Y t−1
t−k+1 = yt−1

t−k+1) is the well-known PACF. It follows that ŜM
(1,1)

is a weighted average of squared PACFs and could be used to test whether a
higher lag order conditional on lower lag orders is significant in a nonparametric

autoregression. Compared with the commonly used t statistic, ŜM
(1,1)

not only
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avoids the misspecification problem, but is also powerful in detecting nonlinear
dependence.

7. MONTE CARLO STUDY

We now study the finite sample performance of the ŜM test for Granger causal-
ity in a time series context. We compare ŜM with the tests of Granger (1969),
Su and White (2007, 2012) and Nishiyama et al. (2011). For the derivative tests

ŜM
(m)

and ŜM
(m,l)

, we consider the primitive cases of m = 1 and (m,l)= (1,1).

Here, ŜM
(1)

checks whether Zt is an omitted variable in modeling E(Yt |Xt ), and

ŜM
(1,1)

checks conditional uncorrelatedness between Yt and Zt given Xt .

To examine the size and power of ŜM, ŜM
(1)
, ŜM

(1,1)
, we consider the

following DGPs:

DGP.S1: Yt = 0.5Yt−1 + ε1,t ;
DGP.S2: Yt =√

htε1,t ,ht = 0.01 + 0.5Y 2
t−1;

DGP.S3: Yt =√
h1,tε1,t ,h1,t = 0.01 + 0.9h1,t−1+ 0.05Y 2

t−1,

Zt =√
h2,tε2,t ,h2,t = 0.01 + 0.9h2,t−1+ 0.05Z2

t−1;
DGP.P1: Yt = 0.5Yt−1 + 0.5Zt−1 + ε1,t ;
DGP.P2: Yt = 0.5Yt−1Zt−1 + ε1,t ;
DGP.P3: Yt = 0.5Yt−1 + 4ϕ(Yt−1/0.1)Zt−1 + ε1,t , ϕ(x)= 1√

2π
e−x2/2;

DGP.P4: Yt = 0.4Yt−1 + 0.2Z2
t−1 + ε1,t ;

DGP.P5: Yt = 0.3 + 0.2log(ht )+
√

htε1,t ,ht = 0.01 + 0.5Y 2
t−1 + 0.3Z2

t−1;
DGP.P6: Yt = 0.5Yt−1 + 0.5Zt−1ε1,t ;
DGP.P7: Yt =√

htε1,t ,ht = 0.01 + 0.5Y 2
t−1 + 0.25Z2

t−1;
DGP.P8: Yt =√

h1,tε1,t ,h1,t = 0.01 + 0.1h1,t−1+ 0.4Y 2
t−1 + 0.5Z2

t−1,

Zt =√
h2,tε2,t ,h2,t = 0.01 + 0.9h2,t−1+ 0.05Z2

t−1.

Here Zt = 0.5Zt−1 +ε2,t except in DGP.S3 and DGP.P8, and {ε1,t} and {ε2,t} are
two mutually independent i.i.d.N(0,1) sequences. All DGPs except DGP.P3 and
DGP.P5 are investigated by Su and White (2008). DGP.P3 is an example of the
class of nonsmooth local alternatives H2(an,bn) considered in Section 5, where
Yt depends on Zt−1 when and only when Yt−1 takes values in a narrow interval
of 0, and DGP.P5 is an ARCH-in-mean process proposed by Engle et al. (1987).
These DGPs cover a wide range of linear and nonlinear time series. Here, we
test whether Yt is independent of Zt−1 conditional on Yt−1, that is, whether Zt

Granger-causes Yt at lag order 1. We use DGP.S1–S3 to examine the sizes of
the tests and DGP.P1–P8 to examine the powers. All DGPs except DGP.P1 have
nonlinear dependence in mean or variance or both. Under DGP.P4–P8, the null
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hypothesis of conditional uncorrelatedness holds, and under DGP.P6–P8, the null
hypothesis of no Granger causality in mean holds.

For ŜM , ŜM
(1)

and ŜM
(1,1)

, following Aı̈t-Sahalia et al. (2001) and Chen
and Hong (2010), we choose the Gaussian kernel and a(Xt) = 1(|Xt | ≤ 1.5),
where 1(·) is the indicator function and Xt is standardized by its sample mean
and standard deviation. We have also tried the Gaussian weighting function for
a(·) and the results are similar to the truncated weighting function. We choose the
N(0,1) CDF for both W1(·) and W2(·) and choose the bandwidth h = n−4/17.

For the tests of Su and White (2012) and Nishiyama et al. (2011), we fol-
low their simulation designs. For Su and White’s (2007) test, we follow Su and
White (2007) to choose the fourth order kernel k(u) = 1

2
√

2π
(3 − u2)e−u2/2. To

make Su and White’s (2007) test and ours comparable, we choose h1 = n−4/17

and h2 = n−1/3, which satisfy Assumption A.2 in Su and White (2007). Since
smoothed nonparametric tests are usually sensitive to the choice of bandwidth, we
use the local bootstrap proposed by Paparoditis and Politis (2000) and modified
by Su and White (2008). Conditional on a sample {Xt ,Yt , Zt }n

t=1, we draw a boot-
strap sample {X∗

t ,Y
∗
t , Z∗

t }n
t=1 as follows: (i) draw {X∗

t } from the smoothed ker-

nel density f̃b(x) = n−1∑n
t=1 Kb,hb(Xt − x), where Kb,hb (x) = h−dx

b Kb(x/hb)
with Kb(·) being a product of a univariate bootstrap kernel kb(·) and a re-
sampling bandwidth hb; (ii) given X∗

t , t = 1, . . . ,n, draw Y ∗
t and Z∗

t indepen-
dently from the smoothed conditional densities f̃ (y|X∗

t ) = ∑n
s=1 Kb,hb (Ys − y)

Kb,hb (Xs − X∗
t )/

∑n
r=1 Kb,hb(Xr − X∗

t ) and f̃ (z|X∗
t ) = ∑n

s=1 Kb,hb(Zs − z)
Kb,hb (Xs − X∗

t )/
∑n

r=1 Kb,hb(Xr − X∗
t ); (iii) repeat steps (i) and (ii) B times

given each sample {Xt ,Yt , Zt }n
t=1. The argument for the validity of the local boot-

strap here is the same as that of Su and White (2008) and hence is omitted. For
each DGP, we generate 500 data sets with n = 100,200 respectively and we set
B = 100. We use the Gaussian kernel and hb = n−4/17 as the bootstrap kernel and
resampling bandwidth.

Table 1 reports the empirical sizes of various tests under DGP.S1–S3 at both

10% and 5% significance levels, using the bootstrap. The tests ŜM , ŜM
(1)

, and

ŜM
(1,1)

have reasonable sizes. The tests of Granger (1969), Su and White (2007,
2012) and Nishiyama et al. (2011) also have good sizes.

We also consider the results based on asymptotic critical values. For each
DGP, we simulate 1,000 data sets with n = 100,200,500,1,000 respectively. The
results for our tests, which are reported in the online Supplementary Material,
are similar to those based on bootstrap critical values, especially for the size
performance. This confirms the advantage of allowing the nonparametric esti-
mators of both conditional joint and marginal characteristic functions to jointly

determine the asymptotic distributions of ŜM , ŜM
(1)

, and ŜM
(1,1)

. Since these
tests have achieved reasonable sizes using asymptotic approximation, it is not sur-
prising to observe the inappreciable role of bootstrap approximation. In contrast,
the tests of Su and White (2007) and Nishiyama et al. (2011) suffer from severe
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TABLE 1. Size of tests under DGP.S1–S3

SW07 SW12 ŜM NHKJ11 ŜM(1) ŜM(1,1) LIN
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.S1
n = 100 0.056 0.098 0.048 0.106 0.044 0.082 0.056 0.108 0.034 0.078 0.048 0.088 0.050 0.106
n = 200 0.050 0.076 0.056 0.094 0.040 0.096 0.060 0.106 0.044 0.094 0.046 0.092 0.052 0.102

DGP.S2
n = 100 0.062 0.116 0.048 0.108 0.064 0.106 0.052 0.114 0.064 0.118 0.052 0.104 0.047 0.103
n = 200 0.066 0.122 0.052 0.100 0.076 0.116 0.074 0.128 0.072 0.134 0.050 0.120 0.057 0.108

DGP.S3
n = 100 0.048 0.080 0.038 0.094 0.048 0.106 0.064 0.120 0.052 0.120 0.074 0.120 0.042 0.094
n = 200 0.048 0.094 0.048 0.096 0.064 0.098 0.062 0.114 0.062 0.108 0.064 0.108 0.046 0.102

Notes: (i) SW07 and SW12 denote the tests of Su and White (2007) and Su and White (2012), NHKJ11 denotes
Nishiyama et al.’s (2011) test, and LIN denotes Granger’s (1969) F test; (ii) the results for all tests except LIN are
based on bootstrap critical values.

overrejection/underrejection when using asymptotic critical values, but they have
remarkable improvement using the bootstrap. Moreover, we examine the perfor-
mance of all the tests using h = cn−4/17 with c = 0.5,1.5. The results are similar
to those with c = 1. To examine the effect of increasing the dimension of con-
ditioning variables, we also consider testing whether Yt⊥Zt−1|(Yt−1,Yt−2). The
results show that ŜM tends to overreject under H0 when n is small, but the size
improves as n increases. The results with c �= 1, dx �= 1 and the use of the Gaussian
weighting function a(·) are reported in the online Supplementary Material.

We now turn to examine power. Table 2 reports the rejection rates of various
tests under DGP.P1–P8 at the 10% and 5% levels, using bootstrap critical values.
We have also used the empirical critical values obtained under H0 to compute
size-corrected power so as to compare all tests on an equal ground. The results on
the relative performance among the tests, reported in the online Supplementary
Material, are similar to those based on bootstrap critical values. Table 2 shows
that Granger’s (1969) F test is most powerful under DGP.P1, which has a lin-
ear Granger causality relationship. In DGP.P2–P3, there exist linear relationships
between Yt and Zt−1 conditional on Yt−1. Interestingly, Granger’s (1969) F test
has little power against DGP.P2 but good power against DGP.P3. This is because
under DGP.P2, the weights with which Yt−1 takes values symmetric about 0
average to 0. In contrast, under DGP.P3, the weight ϕ(Yt−1/0.1) is always positive
no matter whether Yt−1 is positive or negative.

The ŜM test is powerful in detecting all DGP.P1–P8, and is generally more
powerful than Su and White’s (2007) test. This is consistent with our analysis on
the relative efficiency between our test and Su and White’s (2007) test. In addition,
although Su and White’s (2012) test could achieve the parametric convergence
rate under H1(an), it is less powerful than ŜM against several DGPs, especially
DGP.P3, which is a nonsmooth local alternative under H2(an,bn). It is interesting

to observe that ŜM
(1)

is powerful in capturing various forms of Granger causality
in mean under DGP.P1–P5 and is robust to higher order conditional dependence

such as ARCH effects under DGP.P6–P8. Moreover, ŜM
(1)

is more powerful than

Nishiyama et al.’s (2011) test. Similarly, ŜM
(1,1)

is powerful in capturing various
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TABLE 2. Power of tests under DGP.P1–P8

SW 07 SW 12 Ŝ M NHKJ11 Ŝ M
(1)

Ŝ M
(1,1)

LIN
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.P1
n = 100 0.428 0.550 0.956 0.992 0.860 0.920 0.266 0.362 0.938 0.966 0.924 0.976 1.00 1.00
n = 200 0.786 0.850 1.00 1.00 0.990 0.996 0.332 0.424 0.998 1.00 0.994 1.00 1.00 1.00

DGP.P2
n = 100 0.362 0.510 0.566 0.764 0.778 0.852 0.194 0.296 0.902 0.938 0.924 0.970 0.206 0.290
n = 200 0.676 0.762 0.952 0.980 0.974 0.988 0.222 0.322 0.992 0.996 0.994 1.00 0.215 0.286

DGP.P3
n = 100 0.090 0.150 0.154 0.254 0.190 0.264 0.072 0.136 0.238 0.384 0.236 0.358 0.260 0.357
n = 200 0.188 0.290 0.268 0.420 0.384 0.538 0.090 0.154 0.576 0.688 0.578 0.720 0.500 0.617

DGP.P4
n = 100 0.130 0.212 0.376 0.562 0.234 0.346 0.078 0.130 0.402 0.540 0.050 0.112 0.175 0.267
n = 200 0.152 0.256 0.774 0.872 0.512 0.632 0.064 0.126 0.712 0.836 0.042 0.086 0.149 0.219

DGP.P5
n = 100 0.552 0.682 0.624 0.798 0.578 0.720 0.122 0.222 0.234 0.372 0.072 0.144 0.191 0.264
n = 200 0.844 0.922 0.952 0.992 0.898 0.960 0.142 0.244 0.372 0.510 0.072 0.120 0.149 0.227

DGP.P6
n = 100 0.674 0.802 0.412 0.700 0.882 0.946 0.116 0.186 0.110 0.202 0.044 0.088 0.250 0.344
n = 200 0.944 0.982 0.936 0.994 0.998 1.00 0.090 0.156 0.120 0.174 0.020 0.052 0.223 0.310

DGP.P7
n = 100 0.366 0.504 0.244 0.514 0.476 0.648 0.054 0.100 0.062 0.118 0.034 0.088 0.163 0.243
n = 200 0.598 0.740 0.640 0.870 0.806 0.914 0.068 0.122 0.078 0.148 0.058 0.114 0.147 0.227

DGP.P8
n = 100 0.278 0.384 0.134 0.272 0.344 0.494 0.050 0.112 0.090 0.148 0.042 0.094 0.175 0.268
n = 200 0.404 0.560 0.334 0.582 0.686 0.830 0.084 0.136 0.080 0.154 0.050 0.102 0.215 0.167

Notes: See the notes in Table 1.

forms of conditional correlation between Yt and Zt−1, and is robust to serial
dependence in higher order moments. Indeed, under DGP.P4–P8, for which there
exists no conditional correlation between Yt and Zt−1 but there exists serial

dependence in higher order moments, the rejection rates of ŜM
(1,1)

are close to

the nominal significance levels, implying that ŜM
(1,1)

has robust reasonable sizes.

Finally, we note that ŜM
(1,1)

is powerful in capturing some nonlinear Granger
relationships in mean such as DGP.P2, whereas Granger’s F test is silent about
this DGP.

8. APPLICATION TO GRANGER CAUSALITY BETWEEN MONEY AND
OUTPUT

The relationship between money and output has attracted substantial sustained
interest from macroeconomists and policy makers. This issue not only reflects the
causal relationship between nominal economic variables (e.g., money) and real
economic variables (e.g., output), but also involves the important problem about
whether monetary policy is neutral. Many studies have investigated the relation-
ships between output and money, including Sims (1972, 1980), Christiano and
Ljungqvist (1988), Stock and Watson (1989), and Friedman and Kuttner (1993).
The results vary with different sample periods. In fact, a stream of economic
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theories imply a nonlinear relationship between money and output. The sources
of nonlinear effects between money and output may include nonlinear wage
indexation and price adjustment (Kandil, 1995), asymmetric preference of the
central bank’s monetary policy (Nobay and Peel, 2003), nonlinearity of aggre-
gate supply and demand curves, and so on. However, most empirical studies have
employed linear Granger causality tests, which may have little power for nonlin-
ear relationships.

In this section, we will use our tests to study various Granger causalities
between money and output. We use U.S. monthly data in the period
1959:M1-2012:M6, with 642 observations. We measure output by monthly
Industrial Production Index (IPI). Following Psaradakis, Ravn, and Sola (2005),
we use three monetary variables—the narrow money supply M1, the broad
money supply M2 and the Federal Funds rate (ir), as the proxies for the U.S. mon-
etary policy. We logarithmically transform IPI, M1, M2, denoted as i pi, m1, m2
respectively. All data except the interest rate are seasonally adjusted. We check
stationarity of the data by the augmented Dickey–Fuller test. The results suggest
that i pi, m1, m2, ir are integrated of order 1, and the differenced series, denoted
as �i pi, �m1, �m2, �ir , are weakly stationary. Since the Federal Reserve
Board adjusts its target interest rate by a multiple of 25 basis points, not by a
percentage of the interest level, it is more appropriate to assume its difference
rather than its logarithmic difference to be stationary (Bae and de Jone, 2007).
We test various Granger causalities among these differenced series. The plots of
these differenced series are given in the online Supplementary Material.

Granger’s (1969) F test checks whether output (�i pi ) and money (�m1,�m2,
�ir ) Granger-cause each other in the following linear regressions:

�i pit = α0 +α1�i pit−1 +·· ·+αp�i pit−p +β1�mt−1 +·· ·+βq�mt−q + ε1t , (23)

�mt = α0 +α1�mt−1 +·· ·+αp�mt−p +β1�i pit−1 +·· ·+βq�i pit−q + ε2t , (24)

where �m denotes�m1,�m2, or �ir .
In comparison, ŜM

(1)
checks the hypotheses of no Granger causality in mean:

E
(
�i pit |�mt−1

t−q,�i pi t−1
t−p

)= E
(
�i pit |�i pi t−1

t−p

)
,

E
(
�mt |�i pi t−1

t−q,�mt−1
t−p

)= E
(
�mt |�mt−1

t−p

)
,

and ŜM checks the hypotheses of no Granger causality in distribution:

f
(
�i pit ,�mt−1

t−q |�i pi t−1
t−p

)= f
(
�i pit |�i pi t−1

t−p

)
f
(
�mt−1

t−q |�i pi t−1
t−p

)
,

f
(
�mt ,�i pi t−1

t−q |�mt−1
t−p

)= f
(
�mt |�mt−1

t−p

)
f
(
�i pi t−1

t−q |�mt−1
t−p

)
,

where �mt−1
t−s = (�mt−1, . . . ,�mt−s), and �i pi t−1

t−s = (�i pit−1, . . . ,�i pit−s),

with s = p,q . The ŜM
(1)

test checks whether past money (output) growths are
useful in predicting the mean of future output (money) growths. The ŜM test
checks whether past money (output) growths are useful in predicting the dis-
tribution of future output (money) growths. We note that density forecasts for
macroeconomic variables have been important for such decision makers as
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central banks (Diebold, Hahn, and Tay, 1999; Clements, 2004; Casillas-Olvera
and Bessler, 2006).

We apply ŜM , Su and White’s (2007) test, ŜM
(1)

and Granger’s (1969) F test
to investigate various Granger causalities between output and money. All the data

are standardized to have zero mean and unit variance. For ŜM and ŜM
(1)

, we
use the Gaussian kernel, the weighting function a(Xt) = 1(|Xt | ≤ 1.5), and the
N(0,1) CDF for W1(·) and W2(·). We set the bandwidth h = h∗n−3/[2(4+dx)],
where h∗ is the least squares cross-validated (LSCV) bandwidth for estimat-
ing E(Yt |Xt ). For Su and White’s (2007) test, we use the same kernel func-
tion and bandwidths as Su and White (2007), i.e., the fourth order kernel, and
h1 = h̃∗n1/(8+dx+dz)−1/(4+dx+dz), h2 = h∗n1/(8+dx )−1/(4+dx), where h̃∗ is the
LSCV bandwidth for estimating E(Yt |Xt , Zt ). We choose the Gaussian kernel
as the bootstrap kernel, and set the resampling bandwidth hb = n−1/[dx (dx+4)],
which satisfies Assumption A.8 in Paparoditis and Politis (2000). We use B = 200
bootstrap iterations and obtain the LSCV bandwidths in each iteration. We also
consider the following two bandwidths: (1) fix h∗ = h̃∗ = dx for both the original
data and bootstrap samples; (2) select the LSCV bandwidths h∗ and h̃∗ using the
original data and hold them fixed in bootstrap iterations. The results are similar to
Table 3 and are not reported here.

TABLE 3. Granger causality tests between money and output

H0: �ipi does not Granger cause �m H0: �m does not Granger cause �ipi
�m1 �m2 �ir �m1 �m2 �ir �m1 �m2 �ir �m1 �m2 �ir

LIN ŜM(1) LIN ŜM(1)

p = 1,q = 1 0.798 0.557 0.000 0.165 0.220 0.055 0.332 0.491 0.034 0.430 0.625 0.035
p = 1,q = 2 0.144 0.232 0.000 0.000 0.175 0.010 0.581 0.739 0.052 0.685 0.295 0.015
p = 1,q = 3 0.000 0.098 0.000 0.000 0.025 0.020 0.684 0.329 0.111 0.385 0.145 0.085
p = 2,q = 1 0.848 0.466 0.000 0.085 0.175 0.005 0.364 0.432 0.094 0.660 0.660 0.145
p = 2,q = 2 0.282 0.232 0.000 0.000 0.085 0.000 0.662 0.679 0.188 0.830 0.520 0.130
p = 2,q = 3 0.000 0.089 0.000 0.000 0.035 0.000 0.722 0.341 0.296 0.400 0.340 0.150
p = 3,q = 1 0.855 0.413 0.000 0.105 0.180 0.010 0.280 0.336 0.139 0.500 0.365 0.085
p = 3,q = 2 0.218 0.185 0.000 0.015 0.020 0.005 0.551 0.579 0.302 0.690 0.230 0.060
p = 3,q = 3 0.000 0.071 0.000 0.000 0.025 0.010 0.714 0.286 0.349 0.285 0.160 0.085

SW07 ŜM SW07 ŜM
p = 1,q = 1 0.345 0.190 0.000 0.025 0.075 0.015 0.855 0.525 0.000 0.425 0.130 0.000
p = 1,q = 2 0.570 0.825 0.015 0.000 0.075 0.020 0.890 0.265 0.710 0.450 0.015 0.000
p = 1,q = 3 0.185 0.975 0.055 0.000 0.135 0.040 0.960 0.840 0.825 0.150 0.025 0.010
p = 2,q = 1 0.370 0.230 0.005 0.000 0.045 0.000 0.070 0.050 0.005 0.415 0.145 0.000
p = 2,q = 2 0.110 0.540 0.000 0.000 0.040 0.000 0.645 0.715 0.815 0.310 0.045 0.000
p = 2,q = 3 0.315 0.870 0.015 0.000 0.025 0.000 0.530 0.875 0.700 0.150 0.045 0.005
p = 3,q = 1 0.000 0.065 0.005 0.050 0.050 0.000 0.790 0.290 0.080 0.520 0.110 0.000
p = 3,q = 2 0.095 0.170 0.025 0.010 0.005 0.000 0.115 0.275 0.165 0.595 0.020 0.000
p = 3,q = 3 0.135 0.405 0.015 0.005 0.015 0.000 0.025 0.260 0.545 0.105 0.010 0.000

Notes: (i) LIN and SW07 denote Granger’s (1969) F test and Su and White’s (2007) test; (ii) numbers in the main
entries are p-values; (iii) the p-values of Granger’s (1969) test are calculated using the Fq,n−p−q distribution;

(iv) the p-values of Su and White’s (2007) test and the ŜM, ŜM(1) tests are based on 200 bootstrap iterations.
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The top half of Table 3 reports the results of Granger’s (1969) F test and the

ŜM
(1)

test. For Granger’s (1969) F test, we observe that at the 5% level, all three
monetary variables do not Granger-cause output, suggesting ineffectiveness of
monetary policy. This is consistent with Uhlig’s (2005) linear VAR based conclu-
sion that monetary policy shocks have no clear effect on real GDP. The results
of Granger’s (1969) F test also suggest that the growth of M2 does not respond
to the growth of output, and the growth of M1 responds to the growth of out-
put only at the third order lag. However, it rejects the null hypothesis that �i pi
does not Granger-cause �ir at any lag, which may indicate the existence of a

linear Taylor rule (Taylor, 1993). Compared with Granger’s (1969) F test, ŜM
(1)

reveals stronger evidence of Granger causalities in mean from output to money.

Based on ŜM
(1)

, �i pi Granger-causes �m1 at the second and third order lags,

and Granger-causes �m2 at the third order lag. Thus, ŜM
(1)

documents the
existence of nonlinear Granger causalities in mean and provides justification for
modeling the relationship between money and output by a nonlinear conditional
mean model.

The bottom half of Table 3 reports the results of Su and White’s (2007) test
and the ŜM test. Comparing the results of Su and White’s (2007) test with those
of Granger’s (1969) F test, we find no significant difference between them. That
is, Su and White’s (2007) test cannot detect any additional relationship between
money and output beyond Granger’s (1969) F test. However, ŜM documents
strong evidence against the hypothesis that output does not Granger-cause money
for all three monetary variables and at all lag orders, except for �m2 at p = 1.
This implies that the Federal Reserve Board responds to economic conditions and
uses monetary polices to stimulate recovery or curb overheating. Moreover, ŜM
shows that interest rate is effective in stimulating the economy at all lag orders,
and there is one month lag for M2 to affect output. We find no evidence against
ineffectiveness of M1 in affecting the economy, and it might not be difficult to
understand this given the development of financial markets and direct financing.
To sum up, the results of ŜM indicate strong evidence against distributional non-
Granger causality between money and output. This is consistent with the recent
use of nonlinear models to capture the relationship between money and output in
the literature.

We note that we find Granger causality in mean from output to broad money
supply (with a p-value of 0.025), but do not find Granger causality in distribu-
tion for the case of p = 1,q = 3 (with a p-value of 0.135). This contradiction
might be caused by the power loss of testing Granger causality in distribution
when the DGP is a Granger causality in mean process. That is, if the true

DGP is a Granger causality in mean process, then ŜM
(1)

will be more power-
ful than ŜM . This is because ŜM checks the whole distribution, which could
be viewed as checking a weighted average of Granger causality effects in all
moments and so is not efficient when the truth is a Granger causality in mean
process.
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Moreover, the results of ŜM
(1)

and ŜM reveal the existence of Granger causal-
ity in distribution rather than Granger causality in mean between money and out-
put for most cases. The distributional effectiveness of monetary policy implies
that the effects of monetary policy may be underestimated by a conditional mean
model. Our results are consistent with Lee and Yang (2012), who document
Granger causality in an output-money quantile relationship, particularly in the
tails of the output growth distribution. This may indicate that the Federal Reserve
Board intervenes in the economy when it is overheated or is in recession, and
remains idle when the economy grows moderately. From the evidence it appears,
the distributional Granger causality relationship provides a more comprehensive
picture on the role of monetary policy.

9. CONCLUSION

Conditional independence is a widely maintained condition and encompasses
many important hypotheses in econometrics and statistics, such as the Markov
property, non-Granger causality, missing at random and exogeneity. In this paper,
we have proposed a new test for conditional independence via a nonparamet-
ric regression approach in combination with the use of conditional characteris-
tic function. Our nonparametric regression approach makes the test only involve
smoothing over conditioning variables. As a result, the test alleviates the effect
of the curse of dimensionality problem and is asymptotically more powerful than
the existing smoothed nonparametric tests for conditional independence under
a class of local alternatives. Moreover, by using a single bandwidth, we allow
the nonparametric estimators of both conditional joint and marginal characteris-
tic functions to jointly determine the asymptotic distribution of the test. Because
of better asymptotic approximation, the test has significantly better size than the
existing smoothed nonparametric tests in finite samples. On the other hand, the
use of the conditional characteristic function allows us to infer patterns of con-
ditional dependence. By taking appropriate partial derivatives, our approach can
generate a variety of model-free tests for omitted variables, Granger causality
in various moments, and conditional uncorrelatedness respectively. In particular,
the derivative test for omitted variables is asymptotically more powerful than the
smoothed nonparametric tests of Fan and Li (1996), Lavergne and Vuong (2000)
and Aı̈t-Sahalia et al. (2001).

Simulations show that in comparison with Granger’s (1969) F test and
Nishiyama et al.’s (2011) test for Granger causality in mean, and Su and White’s
(2007, 2012) tests for Granger causality in distribution, the proposed tests have
reasonable size and excellent power against various alternatives in finite samples.
We apply our tests to investigate Granger causality between money and output,
and document strong evidence on some nonlinear relationships. Our findings jus-
tify the use of nonlinear models for linking money and output.

Our approach could be extended in several directions. For example, we might
test conditional independence between Y and Z given X when Y is only partially
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observed, or to test the hypothesis of constant conditional dependence, i.e., the
joint dependence of (Y, Z) given X does not depend on the values of X (noting
that conditional independence almost everywhere does not imply independence
(Phillips, 1988)). We may also use the characteristic function to test strict station-
arity by replacing the conditioning random variable X with deterministic time t or
normalized time t/n and considering whether a finite-dimensional distribution of
a time series changes over time. All these problems will be pursued in subsequent
studies.

Supplementary material to this article is provided in “Supplementary Material
to ‘Characteristic Function Based Testing for Conditional Independence: A Non-
parametric Regression Approach’”, which is available at Cambridge Journal
Online (journals.cambridge.org/ect).
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Peiró, A. (1999) Skewness in financial returns. Journal of Banking and Finance 23, 847–862.
Phillips, P.C.B. (1988) Conditional and unconditional statistical independence. Journal of Economet-

rics 38, 341–348.
Priestley, M.B. (1988) Nonlinear and Nonstationary Time Series Analysis. Academic Press.
Psaradakis, Z., M.O. Ravn, & M. Sola (2005) Markov switching causality and the money-output

relationship. Journal of Applied Econometrics 20, 665–683.
Rosenblatt, M. (1975) A quadratic measure of deviation of two-dimensional density estimates and a

test of independence. Annals of Statistics 3, 1–14.
Rubin, D.B. (1976) Inference and missing data. Biometrika 63, 581–592.
Rust, J. (1994) Structural estimation of markov decision processes. In R.F. Engle & D.L. McFadden

(eds.), Handbook of Econometrics, vol. 4, pp. 3081–3143. Elsevier.
Sims, C.A. (1972) Money, income, and causality. American Economic Review 62, 540–552.
Sims, C.A. (1980) Macroeconomics and reality. Econometrica 48, 1–48.
Song, K. (2009) Testing conditional independence via rosenblatt transforms. Annals of Statistics 37,

4011–4045.
Stock, J.H. & M.W. Watson (1989) Interpretating the evidence on money-income causality. Journal

of Econometrics 40, 161–181.
Su, L. & A. Ullah (2009) Testing conditional uncorrelatedness. Journal of Business and Economic

Statistics 27, 18–29.
Su, L. & H. White (2007) A consistent characteristic function-based test for conditional independence.

Journal of Econometrics 141, 807–834.
Su, L. & H. White (2008) A nonparametric hellinger metric test for conditional independence. Econo-

metric Theory 24, 829–864.
Su, L. & H. White (2012) Conditional independence specification testing for dependent process with

local polynomial quantile regression. Advances in Econometrics 29, 355–434.
Su, L. & H. White (2014) Testing conditional independence via empirical likelihood. Journal of

Econometrics 182, 27–44.
Sun, Y., P. Phillips, & S. Jin (2008) Optimal bandwidth selection in heteroskedasticity-autocorrelation

robust testing. Econometrica 76, 175–194.
Taamouti, A., T. Bouezmarni, & A. El Ghouch (2014) Nonparametric estimation and infer-

ence for conditional density based granger causality measures. Journal of Econometrics 180,
251–264.

Taylor, J. (1993) Discretion versus policy rules in practice. Carnegie-Rochester conference Series on
Public Policy 39, 195–214.

Tenreiro, C. (1997) Loi asymptotique des erreurs quadratiques intégrées des estimateurs a noyau
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MATHEMATICAL APPENDIX

Throughout the appendix, we denote

M̂h = nhdx/2M̂ = hdx/2
n∑

t=1

∫∫
|σ̂ (u,v, Xt )|2a(Xt )dW1(u)dW2(v),

and εyz(u,v, Xs) = ei(u′Ys+v ′ Zs)−φyz(u,v, Xs ),εy(u, Xs )= εyz(u,0, Xs ),εz(v, Xs )=
εyz(0,v, Xs ). In addition, ξt = (X ′

t ,Y
′
t , Z ′

t )
′, C ∈ (0,∞) is a generic bounded constant that

may vary from case to case, A∗ denotes the conjugate of A, and Re(A) denotes the real
part of A.

Proof of Theorem 1. Under H0 : φyz(u,v, x) = φy(u, x)φz (v, x), we can decompose
σ̂ (u,v, x) as follows:

σ̂ (u,v,x) = [
φ̂yz(u,v,x)−φyz(u,v,x)

]−φz(v,x)
[
φ̂y(u,x)−φy(u,x)

]
−φy(u,x)

[
φ̂z(v,x)−φz(v,x)

]− [
φ̂y(u,x)−φy(u,x)

][
φ̂z(v,x)−φz(v,x)

]
.

(A.1)

According to (A.1), we decompose M̂h as follows:

M̂h = hdx/2
n∑

t=1

∫∫ {∣∣φ̂yz −φyz
∣∣2 + ∣∣φy

∣∣2∣∣φ̂z −φz
∣∣2 + ∣∣φz

∣∣2∣∣φ̂y −φy
∣∣2

+2Re
[
φyφ

∗
z (φ̂z −φz )(φ̂y −φy )

∗]−2Re
[(
φ̂yz −φyz

)
φ∗

y
(
φ̂z −φz

)∗]
−2Re

[(
φ̂yz −φyz

)
φ∗

z
(
φ̂y −φy

)∗]+ ∣∣(φ̂y −φy
)(
φ̂z −φz

)∣∣2
−2Re

[(
φ̂yz −φyz

)(
φ̂y −φy

)∗(
φ̂z −φz

)∗]+2Re
[(
φ̂y −φy

)
φ∗

y
]∣∣φ̂z −φz

∣∣2
+2Re

[(
φ̂z −φz

)
φ∗

z
]∣∣φ̂y −φy

∣∣2}a(Xt )dW1(u)dW2(v)=
10∑

i=1

Ti , say, (A.2)

where φ̂yz ≡ φ̂yz(u,v, Xt ), φ̂y ≡ φ̂y(u, Xt ), φ̂z ≡ φ̂z(v, Xt ), φyz ≡ φyz(u,v, Xt ), φy ≡
φy(u, Xt ), φz ≡ φz(v, Xt ). We shall analyze each of these terms {Ti }10

i=1 in (A.2) to iden-
tify the leading terms that determine the asymptotic distribution of our test statistic. The
leading terms are given by Propositions A.1–A.7 below.

PROPOSITION A.1. Under the conditions of Theorem 1, T1 = B1 + Ũ1 + oP (1),
where

B1 = h−dx/2
∫∫∫ [

1− ∣∣φyz(u,v, x)
∣∣2 ]dW1(u)dW2(v)a(x)dx

∫
D2(p,τ)K (τ)2dτ,

Ũ1 = 2

nh3dx/2

∑
1≤s<r≤n

U1(ξs ,ξr ),

and U1(ξs ,ξr ) = ∫∫∫ a(x)
g(x)D

(
p, Xs−x

h

)
D
(

p, Xr −x
h

)
K
(

Xs−x
h

)
K
(

Xr −x
h

)
Re
[
εyz(u,v, Xs )εyz(u,v, Xr )

∗]dW1(u)dW2(v)dx.
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PROPOSITION A.2. Under the conditions of Theorem 1, T2 = B2 + Ũ2 + oP (1),
where

B2 = h−dx /2
∫∫∫

|φy(u, x)|2
[
1−|φz(v, x)|2

]
dW1(u)dW2(v)a(x)dx

∫
D2(p,τ )K (τ )2dτ,

Ũ2 = 2

nh3dx /2

∑
1≤s<r≤n

U2(ξs ,ξr ),

and U2(ξs ,ξr ) = ∫∫∫ a(x)
g(x)D

(
p, Xs−x

h

)
D
(

p, Xr −x
h

)
K
(

Xs−x
h

)
K
(

Xr −x
h

)
|φy(u, x)|2

Re
[
εz(v, Xs)εz(v, Xr )

∗] ×dW1(u)dW2(v)dx.

PROPOSITION A.3. Under the conditions of Theorem 1, T3 = B3 + Ũ3 + oP (1),
where

B3 = h−dx /2
∫∫∫

|φz(v, x)|2
[
1− ∣∣φy(u, x)

∣∣2 ]dW1(u)dW2(v)a(x)dx
∫

D2(p,τ )K (τ )2dτ,

Ũ3 = 2

nh3dx /2

∑
1≤s<r≤n

U3(ξs ,ξr ),

and U3(ξs ,ξr ) = ∫∫∫ a(x)
g(x)D

(
p, Xs−x

h

)
D
(

p, Xr −x
h

)
K
(

Xs−x
h

)
K
(

Xr −x
h

)
|φz(v, x)|2

Re
[
εy(u, Xs )εy(u, Xr )

∗] ×dW1(u)dW2(v)dx.

PROPOSITION A.4. Under the conditions of Theorem 1, T4 = Ũ4 + oP (1), where

Ũ4 = 2
nh3dx /2

∑
s �=r U4(ξs ,ξr ), and U4(ξs ,ξr ) = ∫∫∫ a(x)

g(x)D
(

p, Xs−x
h

)
D
(

p, Xr −x
h

)
K
(

Xs−x
h

)
K
(

Xr −x
h

)
Re
[
φy(u, x)φz (v, x)∗εz(v, Xs)εy(u, Xr )

∗]dW1(u)dW2(v)dx.

PROPOSITION A.5. Under the conditions of Theorem 1, T5 = B5 + Ũ5 + oP (1),
where

B5 = −2h−dx /2
∫∫∫

|φy(u, x)|2
[
1−|φz(v, x)|2

]
dW1(u)dW2(v)a(x)dx

∫
D2(p,τ)K (τ)2dτ,

Ũ5 = 2

nh3dx/2

∑
s �=r

U5(ξs ,ξr ),

and U5(ξs ,ξr ) = −∫∫∫ a(x)
g(x)D

(
p, Xs−x

h

)
D
(

p, Xr −x
h

)
K
(

Xs−x
h

)
K
(

Xr −x
h

)
Re
[
φy(u, x)∗εyz(u,v, Xs )εz(v, Xr )

∗] dW1(u)dW2(v)dx.

PROPOSITION A.6. Under the conditions of Theorem 1, T6 = B6 + Ũ6 + oP (1),
where

B6 = −2h−dx /2
∫∫∫

|φz(v, x)|2
[
1− ∣∣φy(u, x)

∣∣2 ]dW1(u)dW2(v)a(x)dx
∫

D2(p,τ)K (τ)2dτ,

Ũ6 = 2

nh3dx/2

∑
s �=r

U6(ξs ,ξr ),

and U6(ξs ,ξr ) = −∫∫∫ a(x)
g(x)D

(
p, Xs−x

h

)
D
(

p, Xr −x
h

)
K
(

Xs−x
h

)
K
(

Xr −x
h

)
Re
[
φz(v, x)∗εyz(u,v, Xs )εy(u, Xr )

∗] dW1(u)dW2(v)dx.

PROPOSITION A.7. Under the conditions of Theorem 1, T7 +T8 +T9 +T10 = oP (1).
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Based on Propositions A.1–A.7, we can obtain the asymptotic centering factor B, and
the leading term U that determines the asymptotic distribution of the test statistic:

B =
6∑

i=1

Bi = h−dx/2
∫∫∫ [

1−|φy (u, x)|2
][

1−|φz (v, x)|2
]
dW1(u)dW2(v)a(x)dx

×
∫

K 2(τ)D2(τ)dτ, (A.3)

U =
6∑

i=1

Ũi = 2

nh3dx/2

∑
1≤s<r≤n

U(ξs ,ξr ),

where U(ξs ,ξr )=∑3
i=1 Ui (ξs ,ξr )+2

∑6
i=4 Ui (ξs ,ξr ).

Proposition A.8 provides the asymptotic distribution of U , which is a second order
degenerate U -statistic.

PROPOSITION A.8. Under the conditions of Theorem 1, U/
√

V
d→ N(0,1), where

V = 2
∫ [∫∫

|�y(u1 +u2, x)|2dW1(u1)dW1(u2)

∫∫
|�z(v1 + v2, x)|2dW2(v1)dW2(v2)

]
a2(x)dx

×
∫ [∫

D(p,τ )D(p,τ +η)K (τ )K (τ +η)dτ
]2

dη, (A.4)

with �s (a1 +a2, x)= φs(a1 +a2, x)−φs (a1, x)φs (a2, x) for s = y or z.

As the test is obtained by replacing the asymptotic centering factor B and the scaling
factor V by their estimators B̂ and V̂ , which are given in (13) and (14) respectively, we
shall show that replacing B and V by B̂ and V̂ does not affect the limiting distribution of
the test statistic.

PROPOSITION A.9. Under the conditions of Theorem 1, B̂ − B = oP (1) and
V̂ − V = oP (1).

The proof of Theorem 1 will be completed provided Propositions A.1–A.9 are proven,
which we turn to next. Since the proofs of Propositions A.1–A.7 are rather similar, for
space we only focus on the proofs of Propositions A.8 and A.9. A detailed proof for all
Propositions 1–9 is provided in the online Supplementary Material. �

Proof of Proposition A.8. Because E[U(ξs,ξ)] = E[U(ξ ′,ξr )] = 0 for any given
ξ and ξ ′, U = ∑

1≤s<r≤n U(ξs ,ξr ) is a second order degenerate U -statistic. Following
Tenreiro’s (1997) central limit theorem (the English version of this theorem has been
stated by Su and White, 2008, Theorem A.4, pp. 852–853.) for degenerate U -statistics

in a time series context, we have σ−1
n

∑
1≤s<r≤n U(ξs ,ξr )

d→ N(0,1) if the following

conditions hold: For some constants δ0 > 0, γ0 <
1
2 and γ1 > 0, (i) un(4+ δ0)= O(nγ0);

(ii) vn(2) = o(1); (iii) wn(2 + δ0/2) = o(n1/2), and (iv) zn(2)nγ1 = O(1), where σ 2
n =∑

1≤s<r≤n var[U(ξs ,ξr )],

un(p)= max

{
max

1≤i≤n
‖U (ξi ,ξ1)‖p,‖U (ξ1, ξ̄1)‖p

}
, vn(p)= max

{
max

1≤i≤n
‖Gn1(ξi ,ξ1)‖p,‖Gn1(ξ1, ξ̄1)‖p

}
,

wn(p)= ‖Gn1(ξ1,ξ1)‖p, zn(p)= max
1≤i≤n

max
1≤ j≤n

{‖Gnj (ξi ,ξ1)‖p,‖Gnj (ξ1,ξi )‖p,‖Gnj (ξ1, ξ̄1)‖p
}
,
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Gni (η,τ) = E
[
U(ξi ,η)U(ξ1,τ)

]
, ξ̄1 is an independent copy of ξ1, and ‖ · ‖p ={

E | · |p}1/p for p ≥ 1.

First, we calculate the asymptotic variance of U(ξs ,ξr ), namely σ 2
0 = var [U(ξs ,ξr )] =∫∫

U(ξs ,ξr )2d P(ξs )d P(ξr ). Since U(ξs ,ξr ) contains six terms, we need to calculate the
individual variances of these six terms as well as their fifteen pairwise covariances.
In calculation, we have used the following facts: (1) under H0, Yt is independent of Zt
conditional on Xt ; (2) the weighting functions W1(u),W2(v) weigh sets symmetric about
the origin equally, implying

∫∫
�y(u1 + u2, x)dW1(u1)dW1(u2) = ∫∫

�y(u1 − u2, x)
dW1(u1)dW1(u2),

∫∫
�z(v1 + v2, x)dW2(v1)dW2(v2) = ∫∫

�z(v1 − v2, x)
dW2(v1)dW2(v2); (3) similarly,

∫∫∫∫
�yz(u1 + u2,v1 + v2, x)dW1(u1)

dW1(u2)dW2(v1)dW2(v2) = ∫∫∫∫ [
φyz(u1 + u2,v1 + v2, x) − φyz(u1,v1, x)

φyz(u2,v2, x)
]
dW1(u1)dW1(u2)dW2(v1)dW2(v2) = ∫∫∫∫ [

φz(v1 + v2, x)
�y(u1 + u2, x) + φy(u1 + u2, x)�z(v1 + v2, x)

]
dW1(u1)dW1(u2)dW2(v1)dW2(v2).

By tedious but straightforward algebra, we obtain

σ 2
0 = h3dx

∫ [∫∫
|�y (u1 + u2, x)|2dW1(u1)dW1(u2)

∫∫
|�z (v1 + v2, x)|2dW2(v1)dW2(v2)

]
a2(x)dx

×
∫ [∫

D(p,τ )D(p,τ+η)K (τ )K (τ+η)dτ
]2

dη.

It follows that σ 2
n = ∑

1≤s<r≤n var[U(ξs ,ξr )] = n2

2 σ
2
0 [1 + o(1)]. Hence, we have

V = var (U)= 4
n2h3dx σ

2
n = 2

h3dx σ
2
0 [1+o(1)].

Now, we verify Conditions (i)–(iv). Since U(ξs ,ξr ) is a sum of six terms, the product
U(ξi ,η)U(ξj ,τ) contains 36 terms. All these terms have the same order of magnitude, and
here we verify the first term U1(ξi ,η)U1(ξj ,τ) only. For i �= 1,

E |U (ξi , ξ1)|q ∼ E

∣∣∣∣∫∫∫ a(x)

g(x)
D

(
p,

Xi − x

h

)
D

(
p,

X1 − x

h

)
K

(
Xi − x

h

)
K

(
X1 − x

h

)
× Re

[
εyz(u,v, Xi)εyz(u,v, X1)

∗]dW1(u)dW2(v)dx
∣∣q

= hqdx E

∣∣∣∣∫∫∫ a(Xi − τh)

g(Xi − τh)
D (p,τ )D

(
p,

X1 − Xi

h

)
K (τ )K

(
τ + X1 − Xi

h

)
×Re

[
εyz(u,v, Xi)εyz(u,v, X1)

∗]dW1(u)dW2(v)dτ
∣∣q = O

(
h(q+1)dx

)
,

so we have ‖U(ξi ,ξ1)‖q = O
(
hdx+dx/q

)
. By a similar argument, we can obtain the

same order of magnitude for ‖U(ξ1, ξ̄1)‖q , where ξ̄1 is an independent copy of ξ1. Hence,

Condition (i) holds for any δ0 > 0 and γ0 <
1
2 .

Next, we verify Condition (ii). Since for i �= 1,

E |Gn1(ξi ,ξ1)|q = E |U(ξ1,ξi )U(ξ1,ξ1)|q

∼ E

∣∣∣∣∫∫∫ a(x)

g(x)
D

(
p,

X1 − x

h

)
D

(
p,

Xi − x

h

)
K

(
X1 − x

h

)
K

(
Xi − x

h

)
× Re

[
εyz(u1,v1, X1)εyz(u1,v1, Xi )

∗]
×dW1(u1)dW2(v1)dx

∫∫∫
a(x ′)
g(x ′)D2

(
p,

X1 − x ′
h

)
K 2

(
X1 − x ′

h

)
× ∣∣εyz(u2,v2, X1)

∣∣2 dW1(u2)dW2(v2)dx ′
∣∣∣∣q
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= h2qdx E

∣∣∣∣∫∫∫ a(X1 − τh)

g(X1 − τh)
D (p,τ)D

(
p,τ + Xi − X1

h

)
K (τ)K

(
τ + Xi − X1

h

)
× Re

[
εyz(u1,v1, X1)εyz(u1,v1, Xi )

∗]
×dτdW1(u1)dW2(v1)

∫∫∫
a(X1 −ηh)

g(X1 −ηh)
D2(p,η)K 2 (η)

× ∣∣εyz(u2,v2, X1)
∣∣2 dW1(u2)dW2(v2)dη

∣∣∣∣q
= O

(
h(2q+1)dx

)
,

we have ‖Gn1(ξi ,ξ1)‖q = O
(
h(2+1/q)dx

)
. By a similar argument, we can obtain the same

order of magnitude for ‖Gn1(ξ1, ξ̄1)‖q . Consequently, Condition (ii) is satisfied.
Now, we verify Condition (iii). Since

E |Gn1(ξ1,ξ1)|q
= E |U(ξ1,ξ1)U(ξ1,ξ1)|q

∼ E

∣∣∣∣∫∫∫ a(x)

g(x)
D2

(
p,

X1 − x

h

)
K 2

(
X1 − x

h

)∣∣εyz(u1,v1,X1)
∣∣2 dW1(u1)dW2(v1)dx

×
∫∫∫

a(x ′)
g(x ′) D2

(
p,

X1 − x ′
h

)
K 2

(
X1 − x ′

h

)∣∣εyz(u2,v2,X1)
∣∣2 dW1(u2)dW2(v2)dx ′

∣∣∣∣q
= h2qdx E

∣∣∣∣∫∫∫ a(X1 − τh)

g(X1 − τh)
D2(p,τ )K 2 (τ )

∣∣εyz(u1,v1,X1)
∣∣2 dW1(u1)dW2(v1)dτ

×
∫∫∫

a(X1 −ηh)

g(X1 −ηh)
D2(p,η)K 2 (η)

∣∣εyz(u2,v2,X1)
∣∣2 dW1(u2)dW2(v2)dη

∣∣∣∣q
= O

(
h2qdx

)
,

we have wn(q)= O
(
h2dx

)= o(1). Hence, Condition (iii) holds.
To verify Condition (iv), for i �= j �= 1, we first calculate

E|Gnj (ξi ,ξ1)|q
= E

∣∣Ej
[
U(ξj ,ξi )U(ξ1,ξ1)

]∣∣q
∼ E

∣∣∣∣∫ [∫∫∫
a(x)

g(x)
D

(
p,

Xj − x

h

)
D

(
p,

Xi − x

h

)
K

(
Xj − x

h

)
K

(
Xi − x

h

)
×Re

[
εyz(u1,v1,Xj )εyz(u1,v1,Xi )

∗]
×dW1(u1)dW2(v1)dx

∫∫∫
a(x ′)
g(x ′) D2

(
p,

X1 − x ′
h

)
K 2

(
X1 − x ′

h

)
× ∣∣εyz(u2,v2,X1)

∣∣2 dW1(u2)dW2(v2)dx ′]d P(ξj )
∣∣∣q

= h2qdx E

∣∣∣∣∣
∫ [∫∫∫

a(Xj − τh)

g(Xj − τh)
D(p,τ )D

(
p,τ + Xi − Xj

h

)
K (τ )K

(
τ + Xi − Xj

h

)
× Re

[
εyz(u1,v1,Xj )εyz(u1,v1,Xi )

∗]dW1(u1)dW2(v1)dτ

×
∫∫∫

a(X1 −ηh)

g(X1 −ηh)
D2(p,η)K 2 (η)

∣∣εyz(u2,v2,X1)
∣∣2 dW1(u2)dW2(v2)dη

]
d P(ξj )

∣∣∣∣q
= O

(
h3qdx

)
.

By a similar argument, we can obtain E |Gnj (ξ1,ξi )|q = O
(
h3qdx+dx

)
, E |Gnj (ξ1, ξ̄1)|q =

O
(
h3qdx+dx

)
. It follows that zn(p) = O

(
h3dx

)
and Condition (iv) holds by setting

γ1 = 3λdx > 0. The desired asymptotic normality follows immediately. �
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Proof of Proposition A.9. We should prove: (i) B̂ − B = oP (1), and (ii) V̂ −V = oP (1).
Since the proofs of (i) and (ii) are similar, we focus on the proof of (i) here. We first
decompose

B̂ − B

= h−dx /2
∫∫∫

a(x)
{[

1−|φ̂y (u, x)|2
][

1−|φ̂z (v, x)|2
]− [

1−|φy (u, x)|2
][

1−|φz (v, x)|2
]}

×dW1(u)dW2(v)dx
∫

D2(p, τ)K 2(τ)dτ

= h−dx /2
∫∫∫ [|φy (u, x)|2 −1

][|φ̂z (v, x)|2 −|φz (v, x)|2
]
dW1(u)dW2(v)a(x)dx

×
∫

D2(p, τ)K 2(τ)dτ

+ h−dx /2
∫∫∫ [|φz(v, x)|2 −1

][|φ̂y(u, x)|2 −|φy (u, x)|2
]
dW1(u)dW2(v)a(x)dx

×
∫

D2(p, τ)K 2(τ)dτ

+ h−dx /2
∫∫∫ [|φ̂y (u, x)|2 −|φy (u, x)|2

][|φ̂z(v, x)|2 −|φz (v, x)|2
]
dW1(u)dW2(v)a(x)dx

×
∫

D2(p, τ)K 2(τ)dτ

= H1 + H2 + H3, say.

To show B̂ − B = oP (1), we should prove Hi = oP (1) for i = 1,2,3. Since the proofs of
Hi , i = 1,2,3, are rather similar, we focus on the proof of H1 = oP (1). We decompose
H1 as follows:

H1 = h−dx /2
∫∫∫ [|φy(u,x)|2 −1

]|φ̂z(v,x)−φz(v,x)|2dW1(u)dW2(v)a(x)dx

×
∫

D2(p,τ )K 2(τ )dτ

+2h−dx /2
∫∫∫ [|φy(u,x)|2 −1

]
Re
{[
φ̂z(v,x)−φz (v,x)

]
φz(v,x)

∗}dW1(u)dW2(v)a(x)dx

×
∫

D2(p,τ )K 2(τ )dτ

= H11 + H12, say.

We further decompose H11 as follows:

H11 ≤ 2h−dx/2
∫∫∫ [|φy(u, x)|2 −1

]∣∣φ̂z(v, x)− φ̄z (v, x)
∣∣2dW1(u)dW2(v)a(x)dx

×
∫

D2(p,τ)K 2(τ)dτ

+2h−dx /2
∫∫∫ [|φy(u, x)|2 −1

]∣∣φ̄z(v, x)−φz (v, x)
∣∣2dW1(u)dW2(v)a(x)dx

×
∫

D2(p,τ)K 2(τ)dτ

= H (1)
11 + H (2)

11 , say,
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and

H (1)
11 = 2

n2h5dx/2

n∑
s=1

∫∫∫ [|φy(u, x)|2 −1
] |εz(v, Xs )|2 dW1(u)dW2(v)

× a(x)

g2(x)
D2

(
p,

Xs − x

h

)
K 2

(
Xs − x

h

)
dx

∫
D2(p,τ)K 2(τ)dτ

+ 4

n2h5dx/2

∑
l<s

∫∫∫ [|φy(u, x)|2 −1
]
Re
[
εz(v, Xs )εz(v, Xl )

∗]dW1(u)dW2(v)

× a(x)

g2(x)
D

(
p,

Xs − x

h

)
D

(
p,

Xl − x

h

)
K

(
Xs − x

h

)
K

(
Xl − x

h

)
dx

×
∫

D2(p,τ)K 2(τ)dτ

= H (1,1)
11 + H (1,2)

11 , say.

It is straightforward to show E
∣∣H (1,1)

11

∣∣ = O
(
n−1h−3dx/2

)
. Put H (1,2)

11 = 4
n2h5dx /2 UH .

Following analogous reasoning to the proof of Proposition A.8, we can show that UH is a

second order degenerate U -statistic satisfying E |UH |2 = O(n2h3dx ). Thus, E
∣∣H (1,2)

11

∣∣2 =
O
(
n−2h−2dx

)
. Hence we have H (1,1)

11 = oP (1) and H (1,2)
11 = oP (1) by Markov’s inequal-

ity and Chebyshev’s inequality respectively. Following analogous reasoning to the proof of

Lemma 3, we obtain the squared bias term H (2)
11 = O

(
h−dx/2+2p+2)= o(1).

Now, we consider the H12 term. We decompose H12 as follows

H12 = 2h−dx/2
∫∫∫ [|φy(u,x)|2 −1

]
Re
{[
φ̂z(v,x)− φ̄z(v,x)

]
φz(v,x)

∗}dW1(u)dW2(v)a(x)dx

+2h−dx /2
∫∫∫ [|φy(u,x)|2 −1

]
Re
{[
φ̄z(v,x)−φz(v,x)

]
φz(v,x)

∗}dW1(u)dW2(v)a(x)dx

= H (1)
12 + H (2)

12 , say.

Since E
(
H (1)

12

)2 = O
(
n−1h−dx

)
, we have H12 = oP (1) by Chebyshev’s inequality. The

bias term H (2)
12 = O

(
h p+1−dx/2

)= o(1). Thus, we have proved H1 = oP (1). �

Proof of Theorem 2. Under H1(an), where σ(u,v, x) = φyz(u,v, x) −
φy(u, x)φz (v, x)= anδ(u,v, x), we can decompose

M̂h = hdx /2
n∑

t=1

∫∫ ∣∣σ̂ (u,v, Xt )
∣∣2 a(Xt )dW1(u)dW2(v)

= hdx /2
n∑

t=1

∫∫ ∣∣σ̂ (u,v, Xt )−σ(u,v, Xt )
∣∣2 a(Xt )dW1(u)dW2(v)

+ 2
n∑

t=1

∫∫
Re
{[
σ̂ (u,v, Xt )−σ(u,v, Xt )

]
σ(u,v, Xt )

∗}a(Xt )dW1(u)dW2(v)

+ hdx /2
n∑

t=1

∫∫
|σ(u,v, Xt )|2 a(Xt )dW1(u)dW2(v)

= hdx /2
n∑

t=1

∫∫ ∣∣(φ̂yz −φyz
)−φy

(
φ̂z −φz

)−φz
(
φ̂y −φy

)− (
φ̂y −φy

)(
φ̂z −φz

)∣∣2a(Xt )dW1(u)dW2(v)
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+ 2anhdx /2
n∑

t=1

∫∫
Re
{[
(φ̂yz −φyz)−φy(φ̂z −φz)−φz(φ̂y −φy )− (φ̂y −φy)(φ̂z −φz)

]
δ(u,v, Xt )

∗}
× a(Xt )dW1(u)dW2(v)

+ a2
nhdx /2

n∑
t=1

∫∫
|δ(u,v, Xt )|2 a(Xt )dW1(u)dW2(v)

=
10∑

i=1

Ti + M1 + M2, say,

where {Ti }10
i=1 are defined as in (A.2). Following the proof of Theorem 1, we can show

that
(∑10

i=1 Ti − B
)
/
√

V
d→ N(0,1) as n → ∞ under H1(an), where B and V are given

by (A.3) and (A.4) respectively.
Now, we show M1 = oP (1). We can decompose M1 into four terms, denoted as

M(i)
1 , i = 1, . . . ,4, and show M(i)

1 = oP (1) for i = 1, . . .4. Since the proofs of the M(i)
1

are similar, we focus on the proof of M(1)
1 = oP (1). We decompose

M(1)
1 = 2anhdx /2

n∑
t=1

∫∫
Re
{[
φ̂yz(u, v, Xt)− φ̄yz (u, v, Xt)

]
δ(u, v, Xt)

∗}a(Xt )dW1(u)dW2(v)

+2anhdx/2
n∑

t=1

∫∫
Re
{[
φ̄yz(u, v, Xt)−φyz (u, v, Xt)

]
δ(u, v, Xt)

∗}a(Xt )dW1(u)dW2(v)

= M(1,1)
1 + M(1,2)

1 , say.

It is straightforward to show E
∣∣M(1,1)

1

∣∣2 = O
(
hdx/2

)
and E

∣∣M(1,2)
1

∣∣ = O
(
n1/2hr+dx/4

)
.

Therefore, M(1,1)
1 = oP (1) and M(1,2)

1 = oP (1) by Chebyshev’s inequality and Markov’s

inequality respectively. It follows that M̂(1) = oP (1). Similarly, we can also show

M(i)
1 = oP (1) for i = 2,3,4. Therefore, M1 = oP (1).
We now turn to M2. By the weak law of large numbers, we have, as n → ∞,

M2 = n−1
n∑

t=1

∫∫
|δ(u,v, Xt )|2a(Xt )dW1(u)dW2(v)

p→ γ

=
∫∫∫

|δ(u,v, x)|2dW1(u)dW2(v)a(x)g(x)dx.

In addition, underH1(an), the asymptotic variance of M̂h , avar(M̂h )= avar
(∑10

i=1 Ti
)= V

given M1 = oP (1) and M2 − γ = oP (1). Consequently, we obtain the desired result of
Theorem 2. �

Proof of Theorem 3. Similar to the proof of Theorem 2. �
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