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SUMMARY
This paper proposes a novel control framework for a single-master/multi-slave teleoperation system
to grasp and handle an object, considering nonlinearity and uncertainty in the dynamics of the slaves
and time-varying delay in the communication channel. Based on passive decomposition approach,
the dynamics of the slaves are decomposed into two decoupled systems, and then two higher order
sliding mode controllers are designed to control them. Also, a synchronization control methodology
for the master is developed. Stability is fully studied using the passivity property and Lyapunov
theorem. Finally, simulation and practical results confirm that the control system works well against
the conditions.

KEYWORDS: Cooperative robotic system; Higher order sliding mode control; Locked system;
Shape system; Single-master/multi-slave; Synchronization control; Teleoperation.

1. Introduction
Teleoperation is used to enable humans to manipulate dangerous, remote, or delicate tasks via
robotic manipulators with enhanced safety at lower cost and better accuracy. A teleoperation sys-
tem includes a master subsystem, which is manipulated by an operator, and some slave subsystems
handling the remote environment. They are interconnected via a wireless communication link that
may induce time delays on reference signals.1 These time delays in a closed-loop system can affect
the whole stability.2 Therefore, in order to accomplish a desired task in a remote environment under
communication time delays, each subsystem must have its own local control system to guarantee
stability.

Recently, cooperative teleoperation systems have drawn a great deal of attention. In compari-
son to conventional teleoperation systems, they have big distinct advantages such as better dexterity,
improved handling capability, better loading capacity, and enhanced robustness due to redundancy.
Hence, they have found vast applications in medical surgery, space station maintenance, and han-
dling large and heavy objects. Depending on the application, there are different formations of master
and slaves to form a cooperative teleoperation system. In single-master/multi-slave (SMMS) tele-
operation systems, an operator collectively controls multiple slave robots in order to accomplish a
common task through a communication channel. Accordingly, a control methodology for facing the
challenges is necessary.

Different control methods have been proposed for cooperative systems, and the majority of them
such as hybrid position/force control3–5 and impedance control6 are based on “rigid grip condition.”
This term means that the internal grasping shape among the slave robots is maintained rigidly in a

∗ Corresponding author. E-mail: bayati.mahdi@aut.ac.ir

https://doi.org/10.1017/S0263574719000791 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000791
https://orcid.org/0000-0001-6835-7100
https://orcid.org/0000-0002-0045-4729
mailto:m.farahmandrad@alumni.basu.ac.ir
mailto:s_ganjefar@basu.ac.ir
mailto:alit@aut.ac.ir
mailto:bayati.mahdi@aut.ac.ir
https://doi.org/10.1017/S0263574719000791


476 Novel cooperative teleoperation framework

way. This condition restricts applications of the SMMS systems since the internal grasping shape
must be controlled in some applications. This condition is not usually reached unless the objects
are rigid and the rigid fixtures are available.7 A decentralized adaptive coordinated control method
without force sensor for grasping a common object using multiple manipulators has been proposed
in ref. [8] in which the rigid contact and the rolling contact between the object and the robots have
been analyzed, and it is assumed that the object’s center of mass is measurable. Furthermore, a
decentralized adaptive and nonadaptive position/force controller for control of cooperative robots
has been employed in ref. [9]. Since each robot has been separately controlled, independently of the
other robots, load distribution between them is unknown, and thus, this method is not suitable for
applications with high precision.

Few studies can be found on “passive decomposition” for handling an object.7, 10–12 Lee et al.
have utilized passive decomposition for bilateral teleoperation between single master and multi-
ple cooperative slave robots in the presence of constant time delays in order to design a control
system.7, 10 In refs. [7, 10], the dynamics of the slaves have been decomposed into two decoupled
systems, that is, locked and shape systems. A Proportional-Integral controller has been developed
for the locked system, and a Proportional-Derivative (PD) controller has been developed for the
shape system. However, the method is only applicable for point mass mobile robots. In refs. [11,12],
three robot manipulators have been used that their dynamics are supposed to be known. The shaped
and locked systems are controlled by two PD controllers in ref. [11], while they are controlled by
two Proportional-Integral-Derivative controllers in ref. [12]. In ref. [13], a novel stabilization con-
trol framework for a certain class of nonholonomic mechanical systems based on passivity has been
proposed. In ref. [14], passive decomposition has been used to design the feed-forward action and
the disturbance observer to estimate human force for haptic devices without on-board force sensors.
In ref. [15], nonholonomic passive decomposition to split the kinematics of the two wheeled mobile
robots into the grasping/first-person view-centering behavior and the teleoperation-related behavior
has been used.

There are some other important relevant research studies needed to be discussed in detail. In
ref. [16], adaptive control architectures have been developed for SMMS robotic systems in the pres-
ence of constant but unknown communication delays. The dynamics of the cooperative system have
been expressed based on the measurable point of the object. In ref. [17], an adaptive neural network
controller for SMMS teleoperation considering time-varying delays for multiple mobile manipula-
tors carrying a common object in a cooperative manner has been proposed. In ref. [18], a multi-agent
system has been applied to a teleoperation system. Moreover, a formation controller for the SMMS
teleoperation system with time-varying delays and quantization has been developed. The output sig-
nals of the master robot and the slave agents are quantized before transmitting. In ref. [19], a PD
controller to enforce position tracking, formation control, force reflection, and collision-free trajec-
tories for an SMMS teleoperation system in the presence of constant time delays has been presented,
and finally, the control framework is validated through experimental results.

Additionally, a teleoperation scheme has been presented for a single master and a group of
wheeled robots in the presence of constant time delays in ref. [20]. The bilateral teleoperation system
includes a haptic device, an overhead camera, and a group of nonholonomic robots. The teleoperation
scheme has been implemented and demonstrated in an indoor environment. The proposed algorithm
ensures that the robot avoids collision with the neighbor robots and the obstacles in the environ-
ment. In ref. [21], the problem of dexterous robotic grasping by means of a telemanipulation system
including a single master and two slave manipulators has been presented. In order to achieve a sta-
ble rigid grasp, a centralized adaptive force-position controller and a linear velocity observer for
the slave robots have been proposed. However, the stability analysis does not consider communica-
tion time delays. In ref. [22], design of an SM/MS nonlinear teleoperation system is presented. The
communication between the master and slave robots is reached through extended state convergence
architecture. Lyapunov–Krasovskii theory is utilized to prove stability and determine the control
gains of the teleoperation system. However, the stability analysis does not consider communication
time delays. In ref. [23], the formation problem of SM/MS teleoperation system in the presence of
the intermittent communications has been proposed. Using small-gain technique, the authors suggest
a control scheme achieving formation in the situation where the master and slaves are allowed to
communicate with their neighbors only at some irregular discrete time instants. It is shown that the
slave robots mimic the movement of the master robot with a desired relative distance.
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The purpose of this research study is to control a cooperative teleoperation robotic system which
consists of SMMS robots to grasp and handle an object. Using passive decomposition theory, the
dynamics of the multiple slave robots are decomposed into two decoupled systems, shape and locked
systems, with uncertainty in their dynamics. The reason behind this decision is that secure and tight
cooperative grasping can be achieved by locally controlling the decoupled shape system regardless of
the communication delay and the human command.7 To deal with time-varying delay, uncertainties,
and nonlinearities of the cooperative teleoperation system, two control methodologies are proposed
for the master and cooperative sides. For the master system, a synchronization control methodol-
ogy for achieving the desired objective is developed.24 For the cooperative system, two higher order
sliding mode controllers (HOSMC) are designed to control the locked system and the shape sys-
tem. Since classical sliding mode control (SMC) has some intrinsic problems such as chattering
phenomenon,25 the HOSMC have been suggested. Additionally, since HOSMC is a robust control
technique for nonlinear systems operating under uncertain conditions, it can cope with uncertainty
in the dynamics of the shape system and the locked system. The passivity of the closed-loop system
is also examined.

The novelty of this paper is that a comprehensive scenario has been developed for the cooperative
teleoperation system in which nonlinearity in the dynamics of the telemanipulators, uncertainty in
the dynamics of the slave robots, and time-varying delay in the communication channel have been
considered with the new advanced HOSMC controllers in practice. The proposed control frame-
work would be useful in many significant applications, for instance, where many slave robots are
needed to cooperatively manipulate objects with a high grasping precision or where the workplace
is located in a remote and uncertain environment so that human intervention is crucial for successful
task completion.

The rest of this essay is organized as follows. In Section 2, formulation and modeling of the coop-
erative teleoperation robotic system are introduced. Passive decomposition is explained in Section 3.
Sections 4 and 5 present the control methodology and the stability analysis, respectively. Simulations
and experimental results are presented in Sections 6 and 7. Eventually, it finishes with a conclusion
in Section 8.

2. Dynamics of SM/MS Teleoperation Systems
A general SMMS robotic system consists of one master with m-DOF and N slave robots with ni-DOF.
Dynamic equation of a robotic system can be expressed as26{

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm)= τm + JT
m(qm)Fh,

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi)= τi + JT
i (qi)Fi,

(1)

where the subscript m denotes the master and the subscript i = 1, . . . ,N denotes the slaves;
qm ∈ Rm×1 and qi ∈ Rni×1 are the joint angle vectors of the robot; Mm(qm) ∈ Rm×m and Mi(qi) ∈ Rni×ni

are the symmetric and positive definite inertia matrices; Cm(qm, q̇m) ∈ Rm×m and Ci(qi, q̇i) ∈ Rni×ni

are the matrices of Coriolis and centrifugal forces; gm ∈ Rm×1 and gi ∈ Rni×1 are the vectors of gravi-
tational forces; τm ∈ Rm×1 and τi ∈ Rni×1 are the control generalized force to be designed; Fh ∈ Rm×1 is
the operational force vector and Fi ∈ Rni×1 is the external force vectors; and Jm ∈ Rm×m and Ji ∈ Rni×ni

are Jacobian matrices. Important properties of the dynamic equation of (1) can be stated as follows:26

• Property 1
For a manipulator with revolute joints, the inertia matrices Mm(qm) and Mi(qi) are symmetric
positive-definite for all qm ∈ Rm×1 and qi ∈ Rni×1.

• Property 2
The matrices Ṁm(qm)− 2Cm(qm, q̇m) and Ṁi(qi)− 2Ci(qi, q̇i) are skew-symmetric. Thus,
q̇T

m

(
Ṁm(qm)− 2Cm(qm, q̇m)

)
q̇m = 0 and q̇T

i

(
Ṁi(qi)− 2Ci(qi, q̇i)

)
q̇i = 0 for all qm, q̇m ∈ Rm×1 and

qi, q̇i ∈ Rni×1.

Since grasping an object and tracking a desired trajectory can be performed in the task space, the
master and slave robot dynamics are written directly in it as:

Ẋk = Jk(qk)q̇k, k = m, i. (2)
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Fig. 1. Shape and locked systems in the cooperative teleoperation system.

After further differentiation of (2), Ẍk is written as

Ẍk = Jk(qk)q̈k + J̇k(qk)q̇k, k = m, i, (3)

where Ẋm, Ẍm ∈ Rm×1 and Ẋi, Ẍi ∈ Rni×1 are the end-effector velocity and acceleration vectors,
respectively. Substituting (2) and (3) into (1), the dynamics can be written as follows:{

Mxm(Xm)Ẍm + Cxm(Xm, Ẋm)Ẋm + Gxm(Xm)= Um + Fh,

Mxi(Xi)Ẍi + Cxi(Xi, Ẋi)Ẋi + Gxi(Xi)= Ui + Fi,
(4)

where Uk = J−T
k (qk)τk, Xk (k = m, i) is the vector of the task space coordinates. Also,

Mxk(Xk)= J−T
k (qk)Mk(qk)J

−1
k (qk),

Cxk(Xk, Ẋk)= J−T
k (qk)

(
Ck(qk, q̇k)− Mk(qk)J

−1
k (qk)J̇k(qk)

)
J−1

k (qk),

Gxk(Xk)= J−T
k (qk)gk(qk).

n =∑N
i ni denotes the total degree of freedom of the N slave robots. Hence, the group dynamics of

the N slave robots in the task space can be expressed as

Mx(X)Ẍ + Cx(X, Ẋ)Ẋ + Gx(X)= U + F, (5)

where

X = [XT
1 , · · · , XT

N]T ∈ Rn×1,

U = [UT
1 , · · · ,UT

N]T ∈ Rn×1,

F = [FT
1 , · · · , FT

N]T ∈ Rn×1,

Mx = diag[Mx1, · · · ,MxN] ∈ Rn×n,

Cx = diag[Cx1, · · · ,CxN] ∈ Rn×n,

Gx = [GT
x1, · · · ,GT

xN]T ∈ Rn×1.

According to the properties 1 and 2, Mx(X) is symmetric and positive-definite. Also, Ṁx(X)−
2Cx(X, Ẋ) is skew-symmetric.26

3. Passive Decomposition
In this section, based on passive decomposition introduced in ref. [27], the n-DOF dynamics of
the multiple slave robots in (5) are decomposed into two decoupled systems: the (n-m)-DOF shape
system describing the coordination aspect (e.g., the internal group formation of the multiple robots)
and the m-DOF locked system describing the overall motion of the robots and the grasped object.
Shape and locked system coordinates are defined by XS and XL, respectively (see Fig. 1). The grasping
shape function (XS) is defined by relative position of the robots’ end effectors as
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XS =
⎛
⎜⎝

X1 − X2
...

XN−1 − XN

⎞
⎟⎠, (6)

and also, XL is the average of the robots coordinates.
Considering the tangent-space decomposition in ref. [28], the velocity of the group dynamics (5)

can be decomposed into the locked system velocity ẊL ∈ Rm and the shape system velocity ẊS ∈ Rn−m

such that

⎛
⎝ẊL

ẊS

⎞
⎠=

⎛
⎜⎜⎜⎜⎝
�1(X) �2(X) · · · �N(X)

I −I · · · 0
...

...
. . .

...

0 0 · · · −I

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=:S(X)∈Rn×n

⎛
⎜⎜⎜⎜⎝

Ẋ1

Ẋ2

...

ẊN

⎞
⎟⎟⎟⎟⎠, (7)

where �i(X), (i = 1, . . . ,N) is given by

�i(X)=
[
Mx1(X1)+ Mx2(X2)+ · · · + MxN(XN)

]−1
Mxi(Xi). (8)

Using the fact that �i(X) in (8) is nonsingular and the following property:

�1(X)+�2(X)+ · · · +�N(X)= I, (9)

we can show that S(X) is nonsingular. Since it is assumed that the two robots are utilized to grasp a
rigid object, (7) can be simplified to the following form:(

ẊL

ẊS

)
=
[
�1(X) �2(X)

I −I

] (
Ẋ1

Ẋ2

)
. (10)

After decomposition in (10), the group inertia of (5) is now block-diagonalized such that

S−T(X)Mx(X)S
−1(X)=

[
ML(X) 0

0 MS(X)

]
, (11)

where ML(X) and MS(X) are symmetric and positive definite inertia matrices for the locked system
and the shape system, respectively. We also define compatible decompositions of (10) as(

UL

US

)
= S−T

(
U1

U2

)
,

(
FL

FS

)
= S−T

(
F1

F2

)
, (12)

S−TMx
d

dt
(S−1)+ S−TCxS−1 =

[
CL CLS

CSL CS

]
. (13)

Then, using (10), the group dynamics of (5) can be decoupled as follows:

ML(X)ẌL + CL(X, Ẋ)ẊL + GL︸ ︷︷ ︸
Locked system dynamics

+ CLS(X, Ẋ)ẊS︸ ︷︷ ︸
Coupling

= UL + FL, (14)

MS(X)ẌS + CS(X, Ẋ)ẊS + GS︸ ︷︷ ︸
Shape system dynamics

+ CSL(X, Ẋ)ẊL︸ ︷︷ ︸
Coupling

= US + FS, (15)

where CL(X, Ẋ) and CS(X, Ẋ) are locked and shape Coriolis matrices. UL and US are the applied
forces to the locked system and the shape system. FL and FS are the environmental forces affecting
the overall robots motion and the internal grasping force, respectively. GL and GS are the locked and
shape vectors of the gravitational forces.
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Fig. 2. Block diagram of the delayed cooperative teleoperation system.

• Property 3
The decomposed dynamics (14) and (15) have the following properties4:

1. ML(X) and MS(X) are symmetric and positive definite.
2. ṀL(X)− 2CL(X, Ẋ) and ṀS(X)− 2CS(X, Ẋ) are skew-symmetric.
3. CLS(X, Ẋ)+ CT

SL(X, Ẋ)= 0.
4. The kinetic energy and the total environmental/control supply rates are decomposed into

sum of those of the locked and the shape systems.

4. Control Methodology
The purpose of the control signals is to coordinate the object through manipulating the master far
from the slave environment as well as providing a tele-presence feeling for the human operator.
Communication time delays can destabilize an SMMS teleoperation system. Therefore, a control
methodology by which the closed-loop stability is guaranteed is required. For this purpose, a syn-
chronization controller is designed for the master and two HOSMCs are designed for the cooperative
system (i.e., the shape and the locked systems). Figure 2 depicts the block diagram of such a delayed
cooperative teleoperation system.

4.1. Master control
em denotes the position error vectors and is defined as

em = Xm − XL(t − Tb), (16)

where Tb is the time-varying delay. The control objective is to drive the coordination errors em to
zero. In order to achieve such an objective, the following synchronization signal is proposed:

Ẋmr = Ẋm + λem, (17)

where λ is the positive diagonal matrix. After differentiating (17) and substituting the tracking error
into the differentiation result,

Ẍmr = Ẍm + λ
(
Ẋm − (1 − Ṫb)ẊL(t − Tb)

)
. (18)

After some algebraic manipulations, the dynamic equation of motion of the master is rewritten based
on the synchronization signal Ẋmr:

Mm(Xm)(Ẍmr)+ Cm(Xm, Ẋm)(Ẋmr)+ϒm(Xm, em, ėm)= Um + Fh, (19)

where

ϒm(Xm, em, ėm)= Mm(Xm)(−λėm)+ Cm(Xm, Ẋm)(−λem)+ Gm. (20)
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Fig. 3. Higher order sliding mode structure.

In order to achieve the objective, the following controller is proposed:

Um = Mm(Xm)
(
−λ(Ẋm − (1 −

.

Tb )ẊL(t − Tb)
))

+ Cm(Xm, Ẋm)(−λem)+ Gm + τ̄m + Mm(Xm)
.

Tb ψm,

(21)

where

τ̄m = −Km
(
Ẋm + λem

)= −KmẊmr. (22)

Km is the positive diagonal matrix and
∣∣Ṫb

∣∣ ≤
.

Tb . A new term in the control signal, which is called
ψm, has been considered. Its value will be obtained in the stability proof. After substituting the control
law (21) into (19), the closed-loop dynamics for the master system is obtained as:

Mm(Xm)(Ẍmr)+ Cm(Xm, Ẋm)(Ẋmr)= −KmẊmr + Fh + Mm(Xm)
.

Tb ψm

− Mm(Xm)ẊL(t − Tb)
( .

Tb − Ṫb
)
.

(23)

4.2. Coordination control
The SMC problem for the nonlinear system defined in (14) and (15) is to design the control laws UL

and US such that the final closed-loop system is stable and follows a desired position for all possible
values of uncertainty in the robot dynamics. SMC theory is extensively utilized due to its attractive
features such as good robustness, good transient performance, and fast response. The tracking control
problem can be achieved through keeping the system trajectory on the sliding surface s(t)= 0.

The sliding surface of classical SMC for a second-order nonlinear systems has the following form:

s(t)=
( d

dt
+ λ

)k−1
e, (24)

where k is the relative degree of the system and e is the tracking error. As previously mentioned,
the major drawback of SMC is the chattering phenomenon. To avoid this problem and to overcome
uncertainty in the robot dynamics, higher order SMC scheme for the locked and the shape systems
is proposed. In the second-order SMC, since the time derivative of the control input is defined, the
degree of the system is increased to k + 1. Therefore, the sliding surface will be changed to

s(t)=
( d

dt
+ λ

)k
e. (25)

The control derivative function appears in the first differentiation of the equation. Since the plant
control signal can be considered as the continuous output of a first-order dynamic system like an
integrator, this HOSMC does not have noticeable chattering in the control (see Fig. 3).29, 30

Two controllers, UL and US (i.e., the control actions for the locked and shape systems,
respectively), are designed as follows according to item 3 of property 3:(

UL

US

)
=
(

CLS(X, Ẋ)ẊS

CSL(X, Ẋ)ẊL

)
+
(

TL

TS

)
,

ẊT
LCLS(X, Ẋ)ẊS + ẊT

S CSL(X, Ẋ)ẊL = 0.

(26)
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This equality with item 4 of property 3 implies that the decoupling procedure does not generate or
dissipate any mechanical power. As a result of decoupling in (26), the shape and the locked system
dynamics can be expressed as

ML(X)ẌL + CL(X, Ẋ)ẊL + GL = TL + FL, (27)

MS(X)ẌS + CS(X, Ẋ)ẊS + GS = TS + FS. (28)

4.2.1. Control of the locked system. In this part, the second-order sliding mode controller for the
locked system is designed. The switching function sL for the locked system is defined as follows:

sL =
( d

dt
+ λL

)2

eL = ëL + 2λLėL + λ2
LeL, (29)

where eL = XL − Xm(t − Tf ) is the tracking error of the locked system. Since the time delay between
the locked system and the master robot is time-varying, its derivative exists in the derivative of the
tracking error of the locked system as:

ėL = ẊL − (
1 − Ṫf

)
Ẋm
(
t − Tf

)
. (30)

Tf is the value of the time-varying delay for the forward communication channel from the master
system to the cooperative system. λL in (29) is a positive diagonal matrix. After differentiating (29)
and substituting the tracking error into the differentiation result,

ṡL = ...
XL − ...

Xm(t − Tf )+ Ṫ f

...
Xm(t − Tf )+ 2λL

(
ẌL − Ẍm(t − Tf )

)
+ 2λL

(
Ṫ f Ẍm(t − Tf )

)+ λL
2
(
ẊL − Ẋm(t − Tf )

)+ λL
2
(
Ṫ f Ẋm(t − Tf )

)
, (31)

and assuming the uncertainty in the robot dynamics with differentiating the dynamic model for the
locked system,

˙̂ML(X)ẌL + M̂L(X)
...
XL + ˙̂CL(X, Ẋ)ẊL + ĈL(X, Ẋ)ẌL + ˙̂GL = ṪL + ḞL. (32)

Now, assume that the upper bound on the rate of changes in the time delay is known
(∣∣Ṫf

∣∣ ≤
.

Tf
)
.

Second-order SMC increases the system degree to one more. Therefore, there is no need to know the
time delay of the communication channel. In fact, the control signal requires only the upper bound
of the first derivative of the time delay which is not actually a tight limit. It is possible to predict
the upper bound of the time delay and its derivatives according to ref. [31]. SMC law for the locked
system is proposed as follows:

ṪL = ML

((
1 −

.

Tf
)...
Xm(t − Tf )− 2λL

(
ẌL − Ẍm(t − Tf )

)− λ2
L

(
ẊL − Ẋm(t − Tf )

))
− 2λL

( .

Tf Ẍm(t − Tf )
)− λL

2
( .

Tf Ẋm(t − Tf )
)+ (

CL + CL
T
)
ẌL

+ CL
(
Ẍm(t − Tf )− 2λLėL − λ2

LeL
)+ ĊLẊL + ĠL − ḞL − kLsign (sL)+

.

Tf MLψ̇L, (33)

where kL is a positive diagonal matrix and it is assumed that FL is measured accurately. In the control
signal, a new term which is called ψ̇L has been considered. Its value will be obtained in the stability
proof. After substituting (33) into (32), the closed-loop dynamics for the locked system is obtained as

ML(X)ṡL + CL(X, Ẋ)sL + kLsign(sL)= −φL

− ML(X)
( .

Tf − Ṫf
)(...

Xm(t − Tf )+ 2λLẌm(t − Tf )+ λ2
LẊm(t − Tf )

)+
.

Tf ML(X)ψ̇L. (34)

φL = [φL1 φL2]T , |φLj| ≤ ξLj is defined as the upper bound of the uncertainty. Also, ξLj is a bounded
positive constant.

4.2.2. Control of the shape system. To provide a safe and smooth grasping, an HOSMC is proposed
for the shape system. The control objective of the shape system is XS → Xd

S where Xd
S ∈ Rn−m is

https://doi.org/10.1017/S0263574719000791 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000791


Novel cooperative teleoperation framework 483

a constant desired grasping shape that can be time-varying. Using a similar approach, the sliding
surface, the dynamic model, and the control signal TS for the shape system can be obtained as follows:

sS =
( d

dt
+ λS

)2
eS = ëS + 2λSėS + λ2

SeS, (35)

ṡS = ...
e S + 2λSëS + λ2

SėS = (...
XS − ...

X
d
S

)+ 2λS
(
ẌS − Ẍd

S

)+ λS
2
(
ẊS − Ẋd

S

)= 0, (36)

where eS = XS − Xd
S is the tracking error of the shape system and λS is a positive diagonal matrix. Xd

S
can be time-varying. Each robotic system has a particular duty. Therefore, Xd

S must be determined
with respect to its particular duty and, in turn, a particular shape is reached. However, we confine our
attention to a constant Xd

S for brevity. Cooperative grasping can be achieved by locally controlling
the decoupled shape system regardless of the communication delay and the human command. So,
the time delay has no effect on the tracking error of the shape system and its derivatives,

ėS = ẊS − Ẋd
S. (37)

Also,

˙̂MS(X)ẌS + M̂S(X)
...
XS + ˙̂CS(X, Ẋ)ẊS + ĈS(X, Ẋ)ẌS + ˙̂GS = ṪS + ḞS, (38)

ṪS = MS
(...
Xd

S − 2λSëS − λ2
SėS
)+ (

CS + CT
S

)
ẌS

+ CS
(
Ẍd

S − 2λSėS − λ2
SeS
)+ ĊSẊS + ĠS − ḞS − kS.sign(sS). (39)

The closed-loop dynamics for the shape system is

MSṡS + CSsS = −φS − kSsign(sS), (40)

where φS is defined the same as that for the locked system.

5. Stability Analysis
This section discusses stability analysis for the proposed SMMS system in the presence of the com-
munication time-varying delays. Also, the new terms in the control signals (21) and (33) will be
achieved.

• Theorem
Consider that the master system (19) is controlled by the synchronization control law. Also, the
locked system (32) and the shape system (38) are controlled by the higher order SMC laws. Then, the
signals Ẋmr, sL, and sS are bounded. Moreover, the position tracking errors asymptotically converge
to zero for any bounded time-varying delay with a known upper bound on the rate of changes in the
time delay. Consider the human operator is passive with Ẋmr(t) as the output and Fh(t). Thus, there
is a constant value, kh ∈ R+, such that

−
t∫

0

Fh
T(σ )Ẋmr(σ )dσ ≥ −kh. (41)

• Proof
Consider Lyapunov’s function candidate as

V = Vm + VL + VS, (42)

where Vm, VL, and VS are given by

Vm = 1

2
ẊT

mrMmẊmr +
t∫

0

−Fh
T(σ )Ẋmr(σ )dσ + kh, (43)

VL = 1

2
sT

LMLsL, (44)
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VS = 1

2
sT

S MSsS. (45)

The time derivative of Vm is

V̇m = ẊT
mrMmẌmr + 1

2
ẊT

mrṀmẊmr − Fh
TẊmr. (46)

Using Eq. (19) and the fact that Ṁm − 2Cm is a skew-symmetric matrix, V̇m is simplified as

V̇m = ẊT
mr

(
− CmẊmr − KmẊmr + Fh + Mm

.

Tb ψm − MmẊL(t − Tb)
( .

Tb − Ṫb
))

+ 1

2
ẊT

mrṀmẊmr − Fh
TẊmr

= ẊT
mr

(
− CmẊmr − KmẊmr + Fh + Mm

.

Tb ψm − Mm

ẊL(t − Tb)
( .

Tb − Ṫb
))+ 1

2
ẊT

mr

(
Cm + Cm

T
)
Ẋmr − Fh

TẊmr.

(47)

After some simplifications, Eq. (47) becomes

V̇m = −ẊT
mrKmẊmr + ẊT

mrMm

.

Tb ψm − ẊT
mrMmẊL(t − Tb)

( .

Tb − Ṫb
)

≤ −ẊT
mrKmẊmr + ẊT

mrMm

.

Tb ψm − ẊT
mrMm

.

Tb

(
1 + sign

(
ẊL(t − Tb)

))
ẊL(t − Tb).

(48)

According to Eq. (48), it is assumed that ψm =
(

1 + sign
(
ẊL(t − Tb)

))
ẊL(t − Tb). After this

assumption and some simplifications,

V̇m = −ẊT
mrKmẊmr + ẊT

mrMm

( .

Tb sign
(
ẊL(t − Tb)

)+ Ṫb

)
ẊL(t − Tb)

≤ −ẊT
mrKmẊmr ≤ 0.

(49)

Since Km is a positive diagonal matrix, it is proved that V̇m ≤ 0. The time derivative of VL is

V̇L = sT
LMLṡL + 1

2
sT

LṀLsL. (50)

Using Eq. (34) and the fact that ṀL − 2CL is a skew-symmetric matrix, V̇L is simplified as:

V̇L = sT
L

(
− CLsL − kLsign(sL)− ˙̃MLẌL − M̃L

...
XL − ˙̃CLẊL − C̃LẌL − ˙̃GL

+
.

Tf MLψ̇L − ML
( .

Tf − Ṫf
)(...

Xm(t − Tf )+ 2λLẌm(t − Tf )+ λ2
LẊm(t − Tf )

))
+ 1

2
sT

LṀLsL = sT
L

(
− CLsL − kLsign(sL)−

(
C̃L + C̃

T
L

)
ẌL − M̃L

...
XL − ˙̃CLẊL − C̃LẌL

− ˙̃GL +
.

Tf MLψ̇L − ML
( .

Tf − Ṫf
)(...

Xm(t − Tf )+ 2λLẌm(t − Tf )+ λ2
LẊm(t − Tf )

))
+ 1

2
sT

L

(
CL + CL

T
)
sL = sT

L

(
− kLsign(sL)− φL − ML

( .

Tf − Ṫf
)(...

Xm(t − Tf )

+ 2λLẌm(t − Tf )+ λ2
LẊm(t − Tf )

)+
.

Tf MLψ̇L

)
= −sT

LkLsign(sL)− sT
LφL

− sT
LML

( .

Tf − Ṫf
)(...

Xm(t − Tf )+ 2λLẌm(t − Tf )+ λ2
LẊm(t − Tf )

)
+ sT

L

.

Tf MLψ̇L. (51)
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After some simplifications, Eq. (51) becomes

V̇L = −sT
LkLsign(sL)− sT

LφL − sT
LML

( .

Tf − Ṫf
)(...

Xm(t − Tf )+ 2λLẌm(t − Tf )

+ λ2
LẊm(t − Tf )

)
+ sT

L

.

Tf MLψ̇L

≤ −sT
LkLsign(sL)− sT

LφL + sT
L

.

Tf MLψ̇L − sT
LML

.

Tf

(
1 + sign

(...
Xm(t − Tf )

+ 2λLẌm(t − Tf )+ λ2
LẊm(t − Tf )

))(...
Xm(t − Tf )+ 2λLẌm(t − Tf )+ λ2

LẊm(t − Tf )
)
. (52)

According to Eq. (52), it is assumed that

ψ̇L =
(

1 + sign
(...
Xm(t − Tf )+ 2λLẌm(t − Tf )+ λ2

LẊm(t − Tf )
))

(...
Xm(t − Tf )+ 2λLẌm(t − Tf )+ λ2

LẊm(t − Tf )
)
. (53)

After some simplifications,

V̇L = −sT
LkLsign(sL)− sT

LφL + sT
LML

( .

Tf sign
(...
Xm(t − Tf )

+ 2λLẌm(t − Tf )+ λ2
LẊm(t − Tf )

)+ Ṫf

)(...
Xm(t − Tf )+ 2λLẌm(t − Tf )

+ λ2
LẊm(t − Tf )

)
≤ −sT

LkLsign(sL)− sT
LφL. (54)

Then, for j ∈ {1, . . . ,m}, Eq. (54) becomes

V̇L ≤
m∑

j=1

(− kLj|sLj| − φLjsLj
)
. (55)

After assuming |φLj| ≤ ξLj and some simplifications,

V̇L ≤
m∑

j=1

(− kLj|sLj| + |φLj||sLj|
)≤

m∑
j=1

(− kLj|sLj| + ξLj|sLj|
)
. (56)

To converge sL to zero, V̇L must be negative. Therefore, kLj and ξLj should be chosen such that
the inequality −kLj + ξLj < 0 is satisfied. Hence, with regard to this condition, it is proved that
V̇L ≤ 0. Using the same technique and the inequality −kSj + ξSj < 0, the time derivative of VS can
be obtained as

V̇S =
n−m∑
j=1

(− kSj|sSj| − φSjsSj
)≤ 0. (57)

Therefore, V̇ can be simplified as

V̇ = V̇m + V̇L + V̇S ≤ −ẊT
mrKmẊmr +

∑
i∈{L,S}

[− sT
i kisign(si)− sT

i φi
]≤ 0. (58)

After integrating Eq. (41) and using the inequality −kij + ξij < 0, it is easy to find∫ t

0
V̇ = V(t)− V(0)≤ −

∫ t

0
ẊT

mrKmẊmr

+
⎛
⎝∫ t

0

( ∑
i∈{L,S}

[
− sT

i kisign(si)− sT
i φi
])⎞⎠≤ 0. (59)
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So, we can find V(t)≤ V(0). Considering the fact that V(t)≥ 0, V(t)≤ V(0), and V̇(t)≤ 0, it is
possible to say that V(t) is a positive bounded decreasing function. Thus, it is concluded that all
terms in V(t) are bounded. Since all terms in V(t) are bounded, Ẋmr and si are bounded. Therefore,
Ẋmr, si ∈ L∞. Furthermore, according to the definition of the sliding surfaces, it is concluded that
eL, eS ∈ L∞. As a result, all the variables of (29) and (35) are bounded. In other words, ṡi ∈ L∞.
According to Corollary of Barbalat’s Lemma, limt→∞ |si| = 0. It is concluded that eL and eS asymp-
totically converge to zero, limt→∞ eL, eS → 0. On the other hand, according to the definition given in
Eq. (17) for Ẋmr and using the boundedness of this parameter (Ẋmr ∈ L∞), it is concluded that Ẋm and
em are bounded (Ẋm, em ∈ L∞). All the variables of (18) are bounded (Ẍmr ∈ L∞). Therefore, using
Corollary of Barbalat’s Lemma again, lim

t→∞ Ẋmr = 0. As previously mentioned, lim
t→∞ eL → 0. So, it is

concluded that the time derivative of Xm converges to zero, lim
t→∞ Ẋm → 0. Using this result and the

fact that lim
t→∞ Ẋmr = 0, it is concluded that em asymptotically converges to zero, limt→∞ em → 0. This

completes the proof of the theorem. �

6. Simulation Results
In this section, the performance of the proposed control scheme is shown by means of simulations
on a single master/dual slave system. All the manipulators are similar in the kinematic and dynamic
parameters and are modeled as 2-DOF serial link manipulators. The parameters used in the simu-
lations are m1 = m2 = 0.5 and l1 = l2 = 0.75, which are the masses and the lengths of the first and
the second links, respectively. Moreover, the masses in the robot dynamics are considered with %50
uncertainty as

m̂i = mi +
mi, |
mi| ≤ 0.25 i ∈ {1, 2}. (60)

It is supposed that two robot manipulators grasp and handle a rigid object with a known shape. Hence,
the desired grasp shape can be obtained with respect to the object’s shape. The set point for the shape
system is considered as

Xd
S = [0, 0.3]T , (61)

where 0.3m is the length of the object that is placed among the two manipulators in Y-direction. The
parameter values for the proposed controllers are

λ=
[

1 0
0 1

]
,

λL =
[

15 0
0 10

]
,

λS =
[

20 0
0 20

]
,

Km =
[

2 0
0 2

]
,

kL =
[

600 0
0 600

]
,

kS =
[

300 0
0 300

]
.

(62)

The Linear Time-Invariant models of the hand and the environment can be stated as Fi = F∗
i + ZeẊi

and Fh = F∗
h − ZhẊm , where F∗

h and F∗
i are the external forces exerted by the human operator and

the environment on the end-effectors of the master and slave robots, respectively. Zh and Ze are the
operator’s hand impedance and the environment impedance, respectively. Since it is assumed that
the environment is passive in our structure, F∗

i in the above equation will be equal to zero. So, the
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Fig. 4. The operator’s external force in X and Y directions

Fig. 5. Position of the master and the locked systems in the presence of the time-varying delay.

object is considered as a mass-spring-damper model which generates the environmental forces. The
round-trip time-varying delay in the communication channel is

Tf = 0.1 sin(t)+ 0.2,

Tb = 0.1 sin(t)+ 0.15.
(63)

We aim to find the control signal TL, and thus all its terms must be known. To find the acceleration
vector, differentiators to take the derivatives of the position vector have been used. ψ̇L has appeared

in the derivative of the control signal ṪL (see the term
.

Tf MLψ̇L in Eq. (33) and also, Eq. (53)). There
is no need to calculate the third derivative of the position vector for the control signal TL because
TL does not include

...
Xm(t − Tf ). ṪL includes

...
Xm(t − Tf ) and TL includes

∫
ML

...
Xm(t − Tf ). To find it,

integration by parts formula in mathematics can be used. Therefore,∫
ML

...
Xm(t − Tf )= MLẌm(t − Tf )−

∫
ṀLẌm(t − Tf )dt

= MLẌm(t − Tf )−
∫ (

CL + CT
L

)
Ẍm(t − Tf )dt.

(64)

The bounded forces exerted on the master robot from the operator is shown in Fig. 4. The simulation
results for the single master/dual slave system are shown in Figs. 5–11. Figure 5 shows the time
responses of the end-effector position of the locked system with the master in the X–Y plane. As
clearly shown, the locked system accurately tracks the master position. Figure 6 depicts the shape
system that have reached the desired position in a short time. Figures 7 and 8 show the locked and
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Fig. 6. Trajectory tracking of the shape system.

Fig. 7. Trajectory tracking error of the locked system.

Fig. 8. Grasping shape error.

Fig. 9. Control torque of the master robot joints.

Fig. 10. Control torque of the first robot joints.

the shape tracking errors, respectively. As shown in these figures, the trajectory tracking error of the
shape and the locked systems rapidly converge to zero. Figure 9 illustrates the control signal of the
master. Finally, Figs. 10 and 11 depict the control signals of the first and the second slave robots,
respectively. There is no chattering in the control signals. They are smooth because the HOSMCs
have been employed. The simulation results reveal perfect trajectory tracking in the task space with
the time-varying communication delays for the shape and the locked systems.
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Fig. 11. Control torque of the second robot joints.

Fig. 12. Phantom Omni haptic device.

7. Experimental Study
The proposed control methodology has been implemented for a surgical robot at Realtime Systems
Lab at Amirkabir University of Technology. The first part concerns the experimental setup and the
other one represents the experimental results.

7.1. Experimental setup
The experimental setup of the teleoperation system can be separated into two parts, Phantom Omni
shown in Fig. 12 as the master side and 4-DOF RRPR surgical manipulator shown in Fig. 13 as
the slave side. The surgical manipulators have four links. The purpose of the manipulator is to be
employed as a surgical tool for beating heart surgery. Position tracking problem is considered in the
X–Y–Z directions. The dynamics of the robots are written in the task space. Additionally, the master
side is Phantom Omni device that helps the operator to command the position and the orientations
to the slaves in the 3D space feedback. The main loop is controlled through Matlab/Simulink and
Real-Time Windows Target.

7.2. Experimental results
One degree of freedom is considered and a sponge with size of 10 centimeters has been selected as
the object. Thus, the set point for the shape system can be expressed as:

Xd
S = [0.1, 0.05].

The variable delay is modeled in Simulink environment as

T = 0.2 + 0.2 sin(t).

Figures 14 and 15 illustrate the experimental results. Figure 14 depicts tracking the position for
the locked system. It reveals that the new method has suitable position tracking in the presence
of the time-varying delay. As clearly shown, the locked system accurately tracks the position of the
master system. Figure 15 depicts tracking the position for the shape system in terms of two directions,
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Fig. 13. 4-DOF RRPR surgical manipulator.

Fig. 14. Position of the master and the locked systems in the presence of the time-varying delay.

Fig. 15. Position of the shape system and Xd
S .

X and Y . The desired positions of the shape system have been reached during a short time. We find
that the relative position between the two slaves following the target trajectory with grasping the
object has been achieved. This is in agreement with the experimental result shown in Fig. 15.

8. Conclusion
A novel comprehensive control framework was proposed for the SMMS teleoperation robotic sys-
tem. The simulation and practical results revealed that the human operator can teleoperate the overall
behavior of the multiple slave robots and the grasped object under the control framework which
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ensures a secure and tight cooperative grasping among the slave robots regardless of the time-varying
communication delay and the human command. To deal with the nonlinearity in the dynamics of the
telemanipulators, the uncertainty in the dynamics of the slave robots, and the time-varying delay in
the communication channel, two control methodologies were successfully studied, simulated, and
tested for the master and the cooperative sides. First, a synchronization control methodology was
developed for the master system. Second, two HOSMCs in order to remove chattering effect caused
by classical SMC were designed for the shape and the locked systems. The simulation and practi-
cal results also revealed that the control framework works well against all of them. Eventually, the
closed-loop stability in the presence of the time-varying communication delay and convergence of
the tracking errors were proved after defining a particular Lyapunov function using Barbalet’s lemma.
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