Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2016), 30, 313-328.
© Cambridge University Press 2015 0890-0604/15
doi:10.1017/S0890060415000487

Formulating constraint satisfaction problems for the
inspection of configuration rules

ANNA TIDSTAM,' JOHAN MALMQVIST,' ALEXEY VORONOV,?> KNUT AKESSON,? anD
MARTIN FABIAN?

! Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden
2Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

(Recervep July 14, 2014; Acceptep April 6, 2015)

Abstract

Product configuration is when an artifact from a product family is assembled from a set of predefined components that can
only be combined in certain ways. These ways are defined by configuration rules. The product developers inspect the con-
figuration rules when they develop new configuration rules or modify the configuration rules set. The inspection of
configuration rules is thereby an important activity to avoid errors in the configuration rules set. Several formulations of
constraint satisfaction problems (CSPs) are proposed that facilitate the inspection of configuration rules in propositional
logic (IF-THEN, AND, NOT, OR, etc.). Many of the configuration rules are so called production rules; that is, a config-
uration rule is an IF-THEN expression that fires when the IF condition is met. Several configuration rules build chains that
fire during the product configuration. It is therefore important not only to inspect single configuration rules but also to ana-
lyze the effect of multiple configuration rules. Formulating the tasks as variations of the CSP can support the inspection
activity. More specifically, we address the reformulation of configuration rules, testing of feature variant combinations,
and counting of item quantities from an item set. The suggested CSPs are tested on industrial vehicle configuration rules
for computational performance. The results show that the time for achieving results from the solving of the CSP is within
seconds. Our future work will be to implement the various CSPs into a demonstrator that could be tested by product
developers.

Keywords: Configuration Rules; Constraint Satisfaction Problem; Product Configuration; Propositional Logic

1. INTRODUCTION fore important to distinguish categories of representation and
reasoning methods. The categorization of reasoning methods
in this paper is rule-based, model-based, and case-based
methods (Junker, 2006). Included in the description of the
categories is an identification of inferable, inheritable, and re-
lational representations (Chakraborty, 2010):

Product configuration is the activity to assemble one artifact
from a set of predefined components when taking into ac-
count a set of restrictions on how the components can be com-
bined (Mittal & Falkenhainer, 1990). The artifact is then
called a product variant of the product family (Soininen
et al., 1998). There are several methods for how to represent
the product variants, as well as there are several methods for
how to reason if a specific product variant belongs to a
product family. It is originally the representation that is pre-
sented visually during the inspection activity. The representa-
tion methods thereby outline the possibilities for how the in-
spection of configuration rules could take place. Furthermore,
this paper introduces reasoning methods as a complement to
the representation method in order to facilitate the inspection.
To describe this research work and its limitations, it is there-

¢ Rule-based methods contain formulas that have either
true or false values. Rule-based representations are used
for variant-rich products that are mass customized, for ex-
ample, vehicle configurations. The rule-based representa-
tion has the disadvantage that it is difficult to manually
analyze the combined effect of several rules. The rules
may act as a chain of rules that allows or forbids product
variants unexpectedly. Chains of rules can be detected by
applying reasoning methods, and the chain itself is one
example of a new rule that was inferable from the existing
rules set. A rule-based reasoning method executes actions
Reprint requests to: Anna Tidstam, Horsalsvigen 7A, Goteborg 412 58, based on conditions. The ordering of the rules decides
Sweden. E-mail: tidstam @ gmail.com when actions are taken, which could determine the solu-

313

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

mailto:tidstam@gmail.com
https://doi.org/10.1017/S0890060415000487

314

tion. An application of rule-based reasoning methods is
medical diagnosis (Shortliffe, 1976).

o Model-based methods are based on a structure, for ex-
ample, a tree structure. Model-based representations
could contain inheritable knowledge through links be-
tween objects, for example, is-a, instance-of, and part-
of links. A feature model (Batory et al., 2006) is an exam-
ple of the model-based representation, where the links be-
tween objects in a tree structure represent configuration
rules. A model-based reasoning method searches/builds
a structure, for example, a decision tree.

o (Case-based methods are based on the creation of data-
bases, for example, relational databases. Each product
variant is stored as a string of variable values in the da-
tabase. If a product variant is not found in the database, it
has to be manually verified by product developers,
which causes delays in the order-to-delivery process.

This paper studies the inspection of rule-based representation
in propositional logic (AND, NOT, OR, IF-THEN, etc.). The
system architecture of a rule-based system is shown in Figure 1.
The inference engine in the figure has a reasoning method, and
this paper uses a reasoning method for solving variations of
constraint satisfaction problem (CSP; Tsang, 1993). The choice
of rule-based representation gives, as stated above, the pres-
ence of inferable rules, which the reasoning methods can help
in analyzing. The inferable rules are stored in the working mem-
ory as facts during the execution of the inference engine. The
facts and configuration rules can then be delivered from the in-
ference engine to the user through a user interface. The user
interface presents the configuration rules using a certain
visualization method (graphs, tables, lists, etc.).

Each time a product variant is developed or updated, the
configuration rules set needs to be modified. A facilitating ap-
proach is to introduce features (Krebs et al., 2004). The features
describe product functionality and are thus independent of spe-
cific artifacts, here called items. An industrial example of rule-
based representation including features is described as follows:

1. Feature variants are product features offered in varia-
tions to the customers. Groups of feature variants de-
scribing a similar product feature are called feature fam-
ilies. Examples of feature variants for five feature
families are the following:

Queries,
Results
Inference User
Engine Interface
\— Facts,
How/Why?

Fig. 1. System architecture for a rule-based system. Adapted from Cloud
Billing Service, by H.-D. Wehle, 2011. http:/www.ibm.com/developer-
works/cloud/library/cl-devcloudmodule/. Copyright 2011 by IBM Corp.
Adapted with permission.

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

A. Tidstam et al.

e Manual or automatic gearbox feature variants:
{GMAN, GAUT}

e Engine type feature variants: {ENGI, ENG2,
ENG3}

e Engine options feature variants: {EVO, HPLOW,
HPMED, HPHIG}

e Engine liters feature variants: {/.6L, 2.0L, 2.2L,
2.5L, 3.0L}

o Steering feature variants: {L, R}

2. Items are needed for manufacturing the product variant
(e.g., product components, CAD files, software, docu-
ments etc.). In this industrial example, there are two
physical items:

o Gearbox items: {ITM001, ITM002}

3. Configuration rules are logical expressions that either
allow or forbid combinations of feature variants and
items. Configuration rules with only feature variants
are called feature variant combination rules. An exam-
ple of a feature variant combination rule is the following:

o 1 (GMAN) THEN ((R AND (ENG1 anD (NoT (EVO) or
ENGI1 anp EVO ano HPLOW) or (ENG2 AND 2.5L
oR (ENGI anxp EVO aNnp HPLOW) or (L AND
(ENG1 anD (NoT EVO or (ENGI aNnD EVO AND
HPLOW) or (ENG2 anp (2.5L or 3.0L))))) orR
(ENG3 anND (I1.6L or 2.0L) aAND HPLOW))))).

Items are implied (1r-THEN) with a feature variant combina-
tion as the IF condition, and the inclusion of the item as the
THEN action. The group of items implied from a feature variant
combination is commonly known as a Bill of Material
(Bucki, 2015). The operational semantic of (IF-THEN) for pro-
duction systems is known as production rules (Object Man-
agement Group, 2009). In this paper the implication of items
is called item usage rules:

e IF (GMAN AND ENGI) THEN ITM001
e IF (GMAN AND (NOT (ENG1))) THEN ITM002

In this example, the vehicle configuration rules were pre-
sented as a list. The list is one common visualization method
for configuration rules used during their inspection. The in-
spection of configuration rules is done during the develop-
ment of the configuration rules. The development process
for configuration rules will now be presented, in order to
describe when and how inspection takes place.

1.1. Inspection of configuration rules

For mass customization, the development of configuration
rules precedes the sales configuration, as shown in Figure 2.
No product configurations can thereby be manufactured be-
fore the configuration rules set is complete, which generates

http://www.ibm.com/developerworks/cloud/library/cl-devcloudmodule/
http://www.ibm.com/developerworks/cloud/library/cl-devcloudmodule/
http://www.ibm.com/developerworks/cloud/library/cl-devcloudmodule/
https://doi.org/10.1017/S0890060415000487

Formulating CSPs for the inspection of configuration rules

315

Product Develop
modification configuration
request rules
1
Feat.ure Item usage
variant rules
combination
rules

Select feature

Customer —— /] :
variants

| Create list of
items

[Manufacture
Lol

re | Physical
| configuration

product

Visualization of
configuration rules,
Product developers

Sales

configurator

Fig. 2. Development of configuration rules precedes the arrival of customers and the manufacturing.

a high number of configuration rules for variant-rich pro-
ducts.

The process of developing configuration rules could be de-
scribed with several activities, as shown in Figure 3. The au-
thoring of new or modified configuration rules includes
elicitation, interpretation, formalization, and implementation.
The inspection, computation, and testing ensure that the
configuration rules set is complete and correct. The release
is when the configuration rules are frozen and made available
to the sales and manufacturing departments. As can be seen in
the figure, the inspection of configuration rules is a central ac-
tivity, from which iterations can be both initiated and ended.
The current aid during the inspection of configuration rules is
the visualization tool of the product data management system.
The visualization tool applies a certain visualization method
for the configuration rules (e.g., lists, tables, matrices, graphs,
trees etc.). This paper will use matrices as the visualization

method in order to show the research results. The matrix-
based visualization was first proposed as a concept by Bertin
(1983).

The matrix-based visualization method is now explained
by comparing it to a list-based visualization. A list is defined
as several rows, which are not further divided into columns,
as shown in Table 1.

The matrix does, however, have both rows and columns,
and can thereby use symbols, (e.g., an x), for the relationships
between rows and columns. The previously shown list-based
item usage rules have in Table 2 been visualized with a matrix.

Inspection of rule-based representations is challenging for
a product developer when the number of configuration rules
is high, as well as when there are many feature variants in one
single configuration rule. For instance, there are about 10!
possible vehicle configurations reported from a Renault
product family (Astesana et al., 2010b), and 10'* vehicle

Faulty configuration

Faulty CR
Product LElicitatc
modification = CRs
request Computational
Interpret, result
CRsin Y formalize and |
natural | implement CRs [L CR query
language
/ || Inspect | |
CR L CRs
suggestion C
oglp“te - Inspected
Rs CRs
CR query
Test CRs [~
1 R(i;z;se - Developed
CRs
Authoring methods, CR visualization Configurator Virtual models,

Editor tool

Prototypes

Fig. 3. Inspection of configuration rules is the activity where the majority of decisions about iterations is taking place.

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000487

316

Table 1. Example of list-based
visualization of item usage rules

IF (GMAN AND ENGI) THEN ITM00!
IF (GMAN AND (NOT (ENGI)) THEN ITM002

configurations from a Mercedes-Benz product family (Kiibler
etal., 2010). The vehicle configuration rules might forbid ve-
hicle configurations that should be allowed, or they may allow
vehicle configurations that cannot be assembled. Some of
these problems can be discovered as late as on the manufac-
turing floor, which might result in costly manual adjustments
or renegotiations of the order with the customer. To prevent a
proliferation of errors from development to manufacturing,
the configuration rules should be inspected before they are re-
leased to the sales and manufacturing departments. The iden-
tified research gap is the lack of examples for how the inspec-
tion of configuration rules can be supported by the solutions
to various formulations of the CSP.

This paper proposes the modeling and solving of the CSP as
an aid during the inspection of configuration rules. This is in line
with researchers who emphasize the importance of visualizing
configuration rules (e.g., Baumeister & Freiberg, 2010; Tidstam
etal., 2012). The paper will show examples for how the product
developers could take advantage of CSP variations during the
inspection. The paper is therefore directed both to readers
with a background in product development and to computer sci-
entists interested in constraint satisfaction. There are three tasks
where reasoning methods could aid the inspection of configura-
tion rules, which gives the following research question:

Which formulations of the CSP can make the inspection of
configuration rules in propositional logic more efficient,
when it comes to

a. the reformulation of configuration rules,
b. the testing of feature variant combinations, and
c. the counting of item quantities from an item set?

1.2. Research approach

This research paper is one of several papers from a research
project conducted in collaboration among three Swedish au-
tomotive companies. Numerous workshops identified the
need for improved support for the visualization of configura-
tion rules. The inspection activities that are addressed in this

Table 2. Example of matrix-based visualization of item usage

rules

Item ID GMAN ENGI ENG2 ENG3
ITM001 X X

ITM002 X X

ITM002 X X

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

A. Tidstam et al.

paper are identified by all three studied companies to have po-
tential for improved computer support. A literature review
was then conducted to compare the findings from the work-
shops with the already published literature on development
of configuration rules. The literature review in Section 2 sur-
veys the questions stated by product developers during the de-
velopment of configuration rules. Then, described in Section
3, ause case scenario is described where the findings from the
literature review are discussed in terms of the inspection of
configuration rules. Section 4 describes a computational
model for rule-based configuration: the computational model
CSP. The computation model will be slightly modified for
each addressed inspection activity, and those modifications
are found in Section 5. The solution of the CSP will be pre-
sented together with a visualization of configuration rules
in Section 6. The computational feasibility was evaluated
and presented together with the case study. The conclusions
are described in Section 7. The formulations of the CSP var-
iations were developed by iteratively demonstrating their so-
lutions in a matrix of configuration rules. This iteration was
conducted internally among the coauthors, as well as exter-
nally with product developers at the case company. The
evaluation of the research results has also been done with
the usability tests of a visualization tool described in Tidstam
et al. (2012). The usability tests focused on the visualization
tool itself, and this paper is complementary describing the
CSP variations that were used.

2. LITERATURE REVIEW

The needs of product developers during inspection of config-
uration rules were first addressed in Sinz et al. (2003 by intro-
ducing formal methods. Questions from product developers
during the inspection of configuration rules were listed and ad-
dressed. Similarly, Astesana et al. (2010a, 20105) found ques-
tions from product developers when developing vehicle config-
uration rules. These questions have been categorized and
summarized in Table 3. The categories used were never allowed
feature variant or item, testing feature variant combinations,
reformulation of configuration rules, and counting quantities
from item sets. As can be seen in the table, there are multiple
questions for each category. Two of the categories also refer
to questions found at the two reviewed studies, which points
at a coherent situation at the two automotive manufacturing
companies Renault and Daimler. The use case scenario in the
following section will discuss how these development ques-
tions are managed during the inspection of configuration rules.

Configuration problems can be formulated as constraint
problems (Tsang, 1993). Constraint problems are problems
with three characteristic attributes: variables, their domains,
and constraints. Variables are objects that can take on a variety
of values. The set of possible values for a given variable is
called its domain. Constraints impose limitations on the values
that a variable, or a combination of variables, may be assigned.

A solution or a valid assignment is an assignment of a single
value from its domain to each variable such that no constraint is

https://doi.org/10.1017/S0890060415000487

Formulating CSPs for the inspection of configuration rules

317

Table 3. Comparison between questions during development of configuration rules in propositional logic

Never

Allow. Feat.

Question Var./Item

Count.
Quant. From
Item Sets

Reform. of
Config. Rules

Test. Feat. Var,
Combin.

Are there feature variants that are not allowed for any
allowed configuration? (Sinz et al., 2003) X
Are there items that are not included in any allowed
configuration? (Sinz et al., 2003) X
For any given item, is there at least one allowed
configuration for it? (Astesana et al., 2010a, 2010b) X
Is there at least one allowed configuration for a partial
configuration? (Astesana et al., 2010a, 2010b)
Given a list of partial configurations, does it represent
every allowed configuration? (Astesana et al.,
2010a, 2010b)
Is it possible to remove any feature variant from a
configuration rule without modifying the set of
allowed configurations? (Astesana et al., 2010a,
2010b)
Given a set of configuration rules, which is the
smallest set of feature variants needed to their
authoring? (Astesana et al., 2010a, 2010b)
Are there allowed configurations with more than one
item from a set of mutually exclusive items? (Sinz
et al., 2003)
Is there an allowed configuration that does not have
any item from a set of items? (Astesana et al.,
2010a, 2010b)
Is there an allowed configuration that uses two or more
items from a set of items? (Astesana et al., 2010a,
2010b)

violated. A problem may have one, many, or no solutions. A
problem that has one or more solutions is said to be satisfiable;
otherwise, it is unsatisfiable. Typical analysis of constraint prob-
lems is to determine whether a solution exists, finding one or all
solutions, finding whether a partial instantiation can be extended
to a full solution, and finding an optimal solution relative to a
given cost function. Such tasks are referred to as CSPs.

CSPs for finite-domain variables belong to the set of NP-
complete problems (Cook, 1971), and to date there is no algo-
rithm known that can solve an arbitrary problem instance with
a time complexity that is better than exponential in the size of
the input (Hertli et al., 2011). However, if a problem instance
possesses special structure, then the instance is polynomial-
time solvable (Aspvall & Plass, 1979; Dowling & Gallier,
1984; van Maaren, 2000).

Configuration problems do not belong to any of the known
polynomial-time solvable classes. Still, many solvers are able
to solve the configuration problems described in this paper
within a reasonable time, much faster than the theoretically
predicted worst-case running time. An explanation for this
discrepancy is highly technical and outside the scope of
this paper (for an explanation, see Voronov, 2013).

Solving CSPs is typically done as a combination of several
search-based algorithms, and these algorithms exploit the fac-
tored representation of the problem; that is, the problem is
composed of variables each of which has a value within the

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

variable domain (Russell & Norvig, 2003). General purpose
heuristics are used to cut away large portions of the search
space by identifying variable and value combinations that
violate the constraints. This cutting away of the search space
is what allows solvers to efficiently solve complex problems.

3. USE CASE SCENARIO FOR INSPECTION
OF RULE-BASED CONFIGURATION

The actor in the use scenario is the product developer respon-
sible for the engines. The task is to inspect the configuration
rules for the engine, because there have been some recent
new engine developments and there may be some necessary
development of the configuration rules set. New feature var-
iants for the new engines have already been established early
in the vehicle development project, so there is no risk that fea-
ture variants are missing. In addition, before the engines were
developed, the new items were established. However, there is a
risk that the new items do not have any or have faulty item
usage rules, or that the allowed feature variant combination
rules do not align with what should be offered to the customers.
The use case scenario will now discuss the questions that were
found during the literature review and exemplified in Table 3:

¢ Never allowed feature variant/item is a verification that
is not done through inspection of the configuration rules

https://doi.org/10.1017/S0890060415000487

318

by a dedicated product developer responsible for a certain
set of items. This question is rather a verification that can be
executed by anyone for the complete configuration rules
set. The question is therefore not considered in the use
case scenario when the configuration rules are inspected.

Testing feature variant combinations is a method for
avoiding inspecting the configuration rules. The feature
variant combinations are calculated from the feature var-
iant combination rules. The product developer for engines
could use this method for discovering if there are some
feature variant combinations that are allowed, but should
be forbidden. The opposite could of course also be the
case, that there are some feature variant combinations
that are forbidden, but should be allowed. If either of
these two cases occurs, there are faulty configuration
rules that should be found and updated. It is the product
developer for engines who is responsible for detecting
the need of modifications in the configuration rules set.

Reformulation of configuration rules is a task that is
performed either by the product developer or by a sup-
porting configuration rule specialist. The inspection of
the item usage rules and feature variant combination
rules is heavily dependent on the visualization of config-
uration rules. When a certain set of configuration rules
are visualized together, it may be beneficial to reformu-
late the configuration rules in order to make the config-
uration set coherent or for any other wish the product de-
veloper will have on the visualization. There are several
variations of the CSP developed in this paper for the re-
formulation of configuration rules.

Counting quantities from item sets is an analysis of
the item usage rules. The product developer has to
make sure that each allowed configuration also has the
correct engine items. This is done by studying the
item usage rules, in order to detect if there are any
gaps between the item usage rules and the feature variant
combination rules. These gaps typically occur if there

Table 4. Formal definitions of mathematical concepts

A. Tidstam et al.

are new feature variants introduced to the feature fami-
lies that are included in the item usage rules for engines.

The use case scenario is exemplified further in the next sec-
tion, where the CSP variations developed in this paper will
also be described. A computation model will be created, be-
cause it is the basis for the vehicle configuration. Each CSP
variation will be described together with a subsection show-
ing how its solution could be implemented in a visualization
of vehicle configuration rules. The time efficiency of those
solutions to the CSP variations executed on vehicle config-
uration rules will be measured in the last section.

4. COMPUTATION MODEL FOR RULE-BASED
CONFIGURATION WITH FEATURES AND
ITEMS

A rule-based configuration with features and items can be
transformed into a CSP (Tsang, 1993). A CSP is a triple of
variables X, domains D, and constraints C. More formally,
a CSP is a triple

P=(X,D,C), (1)

where X = (x|, x2, . . ., x,) is a u-tuple of variables, D = (D,
D,, ..., D,)is au-tuple of corresponding finite domains, and
C=/{Cy, C,,...,C,} is a set of constraints.

A constraint C;j is a pair (Rs,, S;), where Rg, is a relation on
the variables in S; = scope(C;) and scope(Cj)C X is the set of
variables over which C; is defined. In this paper, the config-
uration rules are restricted to propositional formulas over
atomic propositions x; = v, where v € Dy.

This paper uses some concepts that should be formally de-
fined (Table 4). A configuration is a function f: X — D (the
function f has elements from X as arguments and elements
from D as function values), which is defined for all x; € X
(for all x; that belong to X). A complete assignment f is

Symbol Description Example
Xp = (XE.1» XE2s - « + » XEm) m-tuple of feature families (engine type, engine options, . . . , s steering)
X = (XL], X2y v o v s XL,,> n-tuple of items (ITMO001, ITM002, . . ., ITEM015>

Dy =Dk, Dry, . .., Dim) m-tuple of corresponding sets of feature
variants

Dy = ({true, false})X!! Boolean domains for the items

Cr = {Cr1, Cr2, ..., Cgj} Set of feature variant combination rules

G ={C1, Cra, . .., Cik} Set of item usage rules

({ENG1, ENG2, ENG3}, {EVO, HPLOW,
HPMED, HPHIG} . . ., {L, R}

({true, false}, {true, false}, . . .,

{true, false})

{if (GMAN) THEN ((R AND (ENG1 AND (NOT
EVO) or (ENGI axp EVO anp HPLOW) or
(ENG2 anD 2.5L or (ENG1 aNp EVO AND
HPLOW) or (L AND (ENG1 anD (NoT EVO or
(ENG1 anxp EVO anp HPLOW) or (ENG2
AND (2.5L or 3.0L))))) or (ENG3 anD (1.6L
OR 2.0L) AND HPLOW)), . . . }

{if (GMAN anp ENG1) THEN ITMOO1, 1Ir (GMAN
AND (NoT (ENG1)) THEN ITMO002, . . . }

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000487

Formulating CSPs for the inspection of configuration rules

allowed when its domain values for each variable forms a so-
lution to the CSP. In other words, allowed configurations are
the ones that satisfy all configuration rules from Cg. A partial
configuration is a partial function g : X — D defined for vari-
ables x; € Y C X. (means for all x; that belong to the subset Y
of X). We will call a partial assignment allowed if and only if it
can be extended to an allowed complete configuration; that is,
there exists a function / defined for X\ Y (means all elements
in X excluding the elements in Y'), such that the function val-
ues of g and & together form a solution.

In a rule-based configuration with features and items, a
configuration is an assignment of feature variants from which
a set of items is derived. Each feature family must be assigned
exactly one feature variant. Feature families X and items Xi
become variables, sets of feature variants Dr and the true or
false values of items D; become domains, and feature variant
combination rules Cr and item usage rules C; become con-
straints. More formally, the rule-based configuration with fea-
tures and items is according to Eq. (2) a triple

P =<(Xg ® X1, Dp ® Dy, Cr U Cy), 2

where Xg = (Xg1, Xg2, - . . , XEm) 1S an m-tuple of feature
families, X1 = {x11, X12, . - . , X1, i a n-tuple of items, Dg
= (Dg1, Dg2, - . . , Dg,y) is an m-tuple of corresponding
sets of feature variants, Dy = {true, false}‘xl‘ is the Boolean
domains for the items, Cg = {Cg1, Cpp, . . . , Cg;} is a set of
feature variant combination rules, and C; = {Cy;, Cia2, - . . »
Cix} is a set of item usage rules.

Note that the & symbol used here is to show that X only
has the domain values from Dg and not Dy, even though the
two domains exist in the CSP. The same is true for X;, which
can only have domain values from D;. The number of items in
Xp is given from the vertical lines symbolizing the magnitude,
|X1|. The number of {true,false} tuples should correspond to
the number of items in X;. Finally, the symbol for union U
simply creates a configuration rules set consisting of both
CF and C].

The next section will describe the CSP variations devel-
oped for automated reasoning during the inspection of con-
figuration rules.

5. VARIATIONS OF CSP ADDRESSING
INSPECTION ACTIVITIES

The inspection activities will now be addressed as variations
of the CSP. The addressed inspection activities are festing
feature variant combinations, counting quantities from item
sets, and reformulation of configuration rules.

5.1. Testing feature variant combinations

The testing of feature variant combinations is the testing of
partial configurations. A partial configuration has fewer fea-
ture variants than a complete configuration. A partial config-

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

319

uration is allowed if it can be extended to at least one allowed
complete configuration. The number of allowed feature var-
iant combinations is much lower than the number of allowed
product configurations. The testing of feature variant combi-
nations is therefore a time-efficient alternative to the testing of
complete configurations.

The complexity and interplay between configuration rules
make it difficult to establish whether a new configuration rule
is correct. For example, adding a configuration rule that for-
bids configurations that should normally be allowed is clearly
undesirable. Product developers normally have some partial
configurations they check if the configuration rules set is giv-
ing the expected results. This check can be facilitated if these
partial configurations are stored as reference configurations.
These configurations must always be possible to build, and
if any of them becomes forbidden due to some added or mod-
ified configuration rule, then more thorough analysis is re-
quired. The reference configurations, as well as their counter-
part forbidden reference configurations, are illustrated in
Figure 4. Reference configurations can also be used as posi-
tive and negative examples for model-based diagnosis (Fel-
fernig et al., 2004).

Verification of reference configurations P; can be done by
treating each reference configuration as an extra feature var-
iant combination rule, and then checking for allowed config-
urations. No items or item usage rules need to be considered
for verifying the reference configurations. More formally, the
verification of a reference configuration is according to Eq. (2)
defined as follows:

P=Xr® B, DrdJ, CFrU JU Py, (3)

where Xg = (xg 1, Xg2, . . . , XEu) 18 an m-tuple of feature fam-
ies, Dp =(Dg1, Dg3, . . . , Dg,,) is an m-tuple of correspond-
ing sets of feature variants, Cg = {C,1, Cgp, ..., Cg;} is aset
of feature variant combination rules, and P; is the reference
configuration with index i.

By checking if this CSP has a solution, it is verified that a
complete reference configuration satisfies a complete config-
uration. This can be done in time proportional to the number
of configuration rules. An alternative approach would be to

Forbidden configurations

Reference
configurations
(always buildable)

All configurations

Forbidden
reference
configurations

(never buildable) Allowed

configurations

Fig. 4. Configuration space, with dashed mark-outs for configurations
derived from reference configurations.

https://doi.org/10.1017/S0890060415000487

320

verify whether a partial reference configuration satisfies a new
configuration rule. Verifying whether a partial configuration sa-
tisfies a set of configuration rules is an NP-complete problem,
and to date the best known algorithms require an amount of
time that, in the worst case, is exponential to the number of
the variables that are not in the scope of the partial configuration.

5.2. Counting quantities from item sets

Item usage rules imply items from feature variants. Because
there are no configuration rules between items, it is easy for
item usage rules to be formulated in such a way that, for ex-
ample, a configuration is missing some items. At-least-one
condition must be satisfied for steering wheels, chassis, ca-
bin, windscreen, and so on. Many of these examples also
have a corresponding at-most-one condition; for example, a
vehicle typically has only one steering wheel. Together, at-
least-one and at-most-one conditions form exactly-one condi-
tions. Exactly-one conditions can be illustrated as in Figure 5,
which shows that every allowed configuration should have
exactly one item. The issue is that there is no feedback from
the product data management system about what kind of con-
ditions the items meet.

How to avoid introducing problems when reformulating
item usage rules, as well as how to discover opportunities
to improve the structure of other configuration rules, is con-
sidered in the next subsection. To make sure that no two items
from a set of items bound by an exactly-one condition ever
appear in the same configuration, it is necessary to look at
the item usage rules of these items. Exactly-one condition
can be split into two conditions: at-most-one and at-least-
one. We will look at these two conditions.

5.2.1. Verifying at-most-one condition

To find out whether a pair of items u € Xj and v € Xj can
ever appear together in the same configuration, the following

Allowed configurations

No items

One item

Two items LR
All configurations

(b)

Fig. 5. Configurations for two items. (a) Without exactly one condition:
some configurations with one item, some with two, and some with none.
(b) With exactly one condition: all configurations have exactly one item,
and there are no configurations with no item or several items.

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

A. Tidstam et al.

configuration problem derived from Eq. (2) can be created
that will have no allowed configurations if the items are mu-
tually exclusive:

P =(Xp ® X1, Dp ® Dy, Cr U {CY, C1}), “4)

where Xg = (Xg1, XF2, - - - » XF.m) 18 an m-tuple of feature fam-
ilies, X; = (u, v) is items u and v, Dg = (D1, Dg2, - . . , Dgm)
is an m-tuple of corresponding sets of feature variants, D; =
{true,false}? is the Boolean domain for the items u and v, Cg
={Cr1,Crp, ..., Cg,} is aset of feature variant combination
rules, Cy is item usage rule for item u, and Cy is item usage
rule for item v.

If there are allowed configurations in this new configura-
tion problem, then items u and v can be included together
for some allowed configuration of the original problem. If
there are no allowed configurations in the new problem,
then the items are mutually exclusive in the original problem.

For a mutually exclusive set with more than two items, a
new configuration problem must be formulated for each
pair of items in the set.

5.2.2. Verifying at-least-one condition

To make sure that at least one item from a set S C X is se-
lected for every configuration, an additional configuration
rule can be added that states that not all items from S should
be false (not included for the configuration). Thus, if the cor-
responding CSP is satisfiable, there exists at least one config-
uration that includes none of the items from S. It is possible to
formulate the following configuration problem derived from

Eq. (2):
P=Xr®S,Dr® D1, Cr U Cr U {Aess)), ()

where Xp = (Xp1, Xp2, - . . » Xgn) 18 an m-tuple of feature
families, X; = (x11, X12, . . . , X1,) IS @ n-tuple of items, S is
a subset of Xy, Dp = (Df,1, Dg2, - - . , Dp,y) is an m-tuple
of corresponding sets of feature variants, D; = {true, false}!S!
is the Boolean domain for the items in S, Cr = {Cg, Cr2,
..., Cg, j} is a set of feature variant combination rules, and
C is the subset of item usage rules for the items in S.

5.3. Reformulation of configuration rules

Reformulation of configuration rules can greatly benefit from
computation support. A product developer might want to vis-
ualize an item usage rule with a preferred set of feature var-
iants (Tidstam et al., 2012). This cabe done in order to facilitate
a better understanding of an item usage rule by showing it in
combination with other feature variants. The reformulation
only affects how the configuration rules are visualized to the
product developer. Reformulating item usage rules does not
change which items are applied for the allowed configurations.

The reformulation is similar to software code refactoring.
Refactoring is a process of changing a software system in
such a way that the external behavior of the code is not

https://doi.org/10.1017/S0890060415000487

Formulating CSPs for the inspection of configuration rules

altered, yet the internal structure of the code is improved
(Fowler et al., 1999). It should be noted that refactoring
was also introduced for knowledge bases (Baumeister et al.,
2004), which are related to configuration rules. Reformula-
tion was also proposed for feature models (Alves et al.,
2006; Thiim et al., 2009).

5.3.1. Reformulation of item usage rules

There could be more than one item usage rule that could
represent the same set of complete configurations for which
an item is included. When that situation occurs, it is possible
to reformulate the item usage rules for an item. Which item
usage rule that was formulated during the development of
configuration rules was hence nonambiguous. It is hence pos-
sible to use the item usage rules formulations interchange-
ably. We will with a CSP formulation determine if it is pos-
sible to add or remove feature variants from an item usage
rule, while preserving whether an item is included or not in-
cluded for each complete configuration. The formulation of
the CSP will be described in text and then by an equation.

The first consideration for the CSP formulation is that it
will be expressed for one single item. This has the following
consequences:

e The variable Xj will only consist of one item, and not an
n-tuple as for the previous CSP formulations. The CSP
has then to be solved for each item individually, and the
formulation will use the general item i.

e The domain for the item Dy is also only a single pair of
true and false values, because only one item will be con-
sidered.

e The set of item usage rules Cy will only contain the item
usage rule for item i, instead of the entire item usage
rules set.

The next step is to create copies of the CSP containing only
the single item i. This is necessary because the approach is to
remain with the original formulation of the item usage rule
but at the same time introduce the reformulated item usage
rule. Copies are therefore created for all feature families, fea-
ture variants, and feature variant combination rules, as shown
in Table 5. Shown in the table are also the copies of item i, its
domain {rrue,false}, and its item usage rule Ci.

Another consideration for the formulation of CSP is the set
of candidate feature families Yg. The candidate set contains
the feature families that are to be analyzed for possible refor-
mulation of the item usage rule. For the set of candidate fea-
ture families, there is a need of synchronization between the
original values and its copies. This synchronization is neces-
sary, because we are in the final step going to compare item i
with item. For example, when the candidate set of feature
families Yr contains the engine type with the value ENGI
as feature variant, the original problem also has the value
set to ENGI.

Finally, there is an additional constraint that the item 7 can-
not be included in a configuration at the same time as item '.

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

321

Table 5. The extension of the original CSP formulation that
also has copied values

Description Original Copy

Feature families Xr Xk
Items X; = (i) X = (")
Feature variants Dg Dg
Boolean domains for

items Dy = ({true, false}) Di = ({true,false})
Feature variant

combination rules Cr Ck

Item usage rules C for item i Cj for item i’

If this configuration problem has allowed configurations, it
indicates that the candidate set of feature families is not capa-
ble of uniquely determining the inclusion of the item, and
thus cannot be used to reformulate the item usage rule of
the item.

The formulation of the CSP will now be expressed more
formally. Let X denote the tuple of variables that correspond
to the original feature families. Let Xr denote the tuple of vari-
ables that will correspond to the copies of the feature families.
Let Dr and Df be the tuples of domains, for the original vari-
ables and the copies, respectively. Let Cr and Cy be the fea-
ture variant combination rules and item usage rules of the ori-
ginal feature families, and Cr and Cj be the copies. Let Yr C
Xk be a subset of feature families. The following CSP will an-
swer the question if Y contains feature families that could be
reformulating the item usage rule Cj for item i:

P = (Xr ® X1 ® Xr ® X1, Dr ® Dy ® Df ® Dy,
CEFUCIUCRFUCIU {iA-i'}
UAyer(F =v) < (¥ =), (6)

where Xg = (Xg1, XF2, - - - » Xpm) 18 an m-tuple of feature fam-
ilies, Xk is a copy of Xg, X; = (i) is a 1-tuple of item #, X{ is a
copy of X1, Dr = (Dg1, Dg2, - - . , D) is an m-tuple of cor-
responding sets of feature variants, Dg is a copy of Dg, Dy is
({true,false}}), Dj is a copy of Dy, Ck = {Cr1, Cr2, - - -,
Crj} is a set of feature variant combination rules, C is a
copy of Cg, Cj is the item usage rule for item i, Cy is a
copy of Cy, Yr is a subset of Xp and v is a value of xg.

The next section will describe another type of analysis of
item usage rules, which is not studying the formulation of sin-
gle item usage rules, but a user-specified set of item usage
rules.

5.3.2. Are all configurations implying an item also
implying another item?

Let u and v be the two items constituting Xy. A product de-
veloper might be interested in the relationship between the
items. For example, if u is selected, is it necessary to select
v; that is, does u implying v? Does this implication hold

https://doi.org/10.1017/S0890060415000487

322

both ways? To check whether u implies v, it is possible to cre-
ate a new configuration problem, which will have allowed
configurations if and only if the implication is violated:

P=Xe®X,De®D;, Ck UC{ UC{U {=(u—m)}), (7

where Xg = (Xg.1, XF2, - - - » XF.m) 18 an m-tuple of feature fam-
ilies, X is items (u, v), D = (Dg1, Dg2, . . . , Dg,y) is an
m-tuple of corresponding sets of feature variants, Dy is
({true, false})2 are Boolean domains for item u and v, Cg =
{CF,1, Cra, . .., Cg;} is a set of feature variant combination
rules, Cf is the item usage rules for item u, and Cj is the item
usage rules for item v.

Note that (—(z — v)) = (u A —v); that is, the problem will
have allowed configurations if it is possible to select item u
without selecting item v. To check whether the items imply
each other, such new configuration problem can be con-
structed twice.

5.3.3. Can two items ever be selected together?

It might be useful to discover that for no allowed configura-
tion two given items can be included together. Such knowl-
edge might be useful, for example, when reformulating
multiple independent items into a set of items bound by an ex-
actly-one constraint. It is possible to create a new configura-
tion problem, which will have allowed configurations if and
only if the items can be included together for some allowed
configuration of the original problem:

P=Xr®X1,Dr® Dy, Cx UC{ UC] U {uAv}), (8)

where Xg = (xg,1, X2, - - - , XE,u) 1S an m-tuple of feature fam-
ilies, Xy is items (u, v) Dg = (Dg1, Dg2, . . . , Dg,,) is an m-
tuple of corresponding sets of feature variants, D; = {true,
false}2 are Boolean domains for item u and v, Cp = {Cg,
Cea, ..., CF’_]‘} is a set of feature variant combination rules,
C{ is the item usage rules for item u, and Cj is the item usage
rules for item v.

5.3.4. Are two feature variants equivalent?

Two feature variants can be considered equivalent if one
feature variant implies the other and vice versa. This check
can be done the same way as for items.

5.3.5. Are two feature families equivalent?

Two feature families x; and x/; are equivalent if for each
feature variant vy € DY of feature family xk there is an equiva-
lent feature variant v,, € D’F, and the domain sizes are equal.

5.3.6. Is a feature variant redundant?

In the same way as for an item, it is possible to check
whether a feature variant can ever be selected. If the feature
variant is never possible to be selected, it is also redundant,
and can be deleted without any substantial consequences.
The CSP formulation analyzing the redundancy of a feature
variant does not need to consider any items of item usage

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

A. Tidstam et al.

rules. Furthermore, the only addition to the CSP formulation
is the forced selection of the possibly redundant feature
variant. If the CSP is then evaluated as satisfiable, it would
mean that the feature variant can be selected and is thereby
not redundant. The for this research paper formulated CSP
will only consider one feature variant at a time, and hence,
the additional constraint is modified for each feature variant
to be analyzed. The formulation of the configuration problem
analyzing the feature variant v from feature family xg,; for re-
dundancy is

P = <XF, DF, CF U {XF’J' = V}), (9)

where Xg = (Xg1, XF2, - - - » XF.m) 18 an m-tuple of feature fam-
ilies, Dr = (D1, Dgy, - . . , Dg,,) is an m-tuple of correspond-
ing sets of feature variants, Cg = {Cg 1, Crp, . .., Cr;} is aset
of feature variant combination rules, and v is the possibly re-
dundant feature variant from feature family xg ;.

5.3.7. Is a feature family redundant?

If all but one feature variant can never be selected for some
feature family, then the feature family can be seen as a con-
stant, and can be removed, with the configuration rules sim-
plified accordingly.

5.3.8. Is a feature variant combination rule redundant?

A configuration rule is redundant if the rest of the config-
uration rules imply it. Deleting a redundant feature variant
combination rule will not have any substantial consequences,
because there are other configuration rules that contain the
same logic information. Expressing the redundancy of a con-
figuration rule differently is to state that negating a redundant
configuration rule would give a contradiction in the config-
uration rules set. This is also realized from logic discussion.
A redundant configuration rule Cg; is implied by the rest of
the configuration rules, which is stated with (Cr\Cg;) = Cf,.
This expression should always be true, and its negation should
never be true. The negation is —(Cg\Cg;) = Cg;, Which
simplifies to (Cr\ Cr,;) A — C;. The last expression is a config-
uration rules set that has been modified only by the negation for
the redundant configuration rule. The formulation of a CSP for
analyzing the feature variant combination rules will therefore
not be satisfiable if a redundant configuration rule would be ne-
gated. This is the only modification to the original CSP, with the
additional comment that no items or item usage rules need to be
considered. The property can be checked as the absence of al-
lowed configurations in the following CSP:

P = (Xg, Dg, (Cp\Cr,) U {—Cg;}), (10)

where Xg = (Xg 1, XE2, . . - , XEm) 1S an m-tuple of feature families,
Dr =(Dr,1, Dr2, . .., Dp,,) is an m-tuple of corresponding sets
of feature variants, and Cg = {Cg,1, Cr2, . . ., Cgj} is a set of
feature variant combination rules.

That the configuration rule is implied by the rest of the con-
figuration rules is not always easy to use; there could be thou-

https://doi.org/10.1017/S0890060415000487

Formulating CSPs for the inspection of configuration rules

sands of configuration rules, while the redundant config-
uration rule can be implied by just a small subset of them.
Together with the redundant configuration rule, that is why
feedback for product developers should also contain an
explanation of the redundancy, for example, as a (minimal)
subset of configuration rules that are the reason for redun-
dancy, and/or as a plain-text explanation. The minimal unsa-
tisfiable subformula of the corresponding CSP can be used to
extract the set of configuration rules that made the configura-
tion rule in question redundant; see, for example, Biining and
Kullmann (2009) and Liffiton (2009) for an introduction to
minimal unsatisfiable subformula.

6. CASE STUDY FOR VISUALIZATION OF CSP
SOLUTIONS

The solutions to the CSP variations will now be applied dur-
ing the development of configuration rules. The three tasks
that are addressed with CSP variations are testing feature var-
iant combinations, counting quantities from item sets, and re-
formulation of configuration rules. The last section will show
alarger example, in order to test the scalability of the research
results.

6.1. Testing feature variant combinations

The testing of feature variant combinations is the execution of
the configuration rules to evaluate which feature variant com-
binations are allowed and which are forbidden. For products
with a high number of feature variant combinations, the tests
are conducted on partial configurations; that is, the test in-
cluding number of feature variants is limited. This section
will describe the use of partial reference configurations dur-
ing the testing of feature variant combinations. Partial refer-
ence configurations are feature variant combinations that
should be allowed or forbidden.

6.1.1. Before introducing CSP solutions

An experienced product developer was observed as he was
performing a testing of feature variant combinations. The first
step for the product developer was to execute the configura-
tion rules in order to create a list of allowed partial configura-
tions (see Table 6). The selection of feature variants was
based upon the product developer’s product configuration
knowledge. The product developer then examined the list in
order to find configurations that should be there or should
not. In the table, the product developer was looking for the
engine sizes available for engines without turbo. As shown
in the table, there are two engine sizes (/.2L and /.6L), and
they are both available for engines without turbo. The product
developer knows which items have been developed, and this
has to match which feature variant combinations that are al-
lowed or forbidden. In this case example, the feature variant
without turbo does not require any extra items and hence
should be available for all offered engine size feature variants.
The reference configurations could often be classified as

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

323

Table 6. List of allowed partial configurations

Feature Family A Feature Family B Feature Family C

1.2L Gasoline Turbo
1.2L Gasoline Without turbo
1.6L Gasoline Turbo
1.6L Gasoline Without turbo
1.6L Diesel Turbo

facts, because they are repeated checks that should consis-
tently hold for the product configurations. When the config-
uration rules are changed, the product developer repeats this
testing of feature variant combinations in order to verify
that the reference configurations still are allowed or forbidden
according to his requirements.

6.1.2. After introducing CSP solutions

The testing of feature variant combinations are with the
CSP solutions supported with an automated check of the par-
tial reference configurations. The partial reference configura-
tions that were verified by the product developer are stored as
a list of test cases. The test cases could be introduced into the
configuration rules list as additional configuration rules, as
described in Eq. (3). An example of such list is presented in
Table 7.

If this is done and there are no solutions to the CSP, there is
at least one test case that is no longer allowed (P; or P;). This
means that there is no longer a visual inspection of the feature
variant combinations necessary for these two partial reference
configurations.

The discovery of the partial reference configurations have
to, however, be captured during a manual inspection of the
feature variant combinations, as was described in the Section
6.2.1. The capture of partial reference configurations is cur-
rently nonexistent at the automotive manufacturing company
that was visited. The CSP solutions have thereby a potential
for improving both time efficiency and quality of the config-
uration rules development process currently in use.

6.2. Counting quantities from item sets

The case that will be used to illustrate how items are counted
from item sets is based on two items: ITM001 and ITM00?2.
This is a typical situation for the product developer, who has

Table 7. List of partial reference
configurations

Index Partial Reference Configuration
P, Without turbo aNDp 1.2L
P, Without turbo AND 1.6L
“See Eq. (3).

https://doi.org/10.1017/S0890060415000487

324

to know if two items can be combined or not, which would be
the prerequisite if an evaluation of clashes and functionality
should take place. The possible combinations for items are al-
ternative, could be used together, or should not be used at all
for certain product configurations. This has previously been
shown in Figure 5.

6.2.1. Before introducing CSP solutions

An example of how item usage rules could be visualized is
shown in Table 8. Each row in the table contains one item
usage rule. For example, the first row says that IF the cus-
tomer ordered feature variant /.6L, Turbo and Gasoline,
THEN the /.6L turbocharged engine item denoted ITM001
should be included into the product assembly.

Before the introduction of CSP solutions, the product
developers has to analyze both feature variant combination
rules as well as the product model authorization rules in order
to judge if there are any product configurations that does not
have an item from ITM0O01 or ITM00?2.

6.2.2. After introducing CSP solutions

The CSP variations suggested in this paper check whether
there is any product configuration that has more than one item
from an item set. This is achieved by introducing the item
usage rules as feature variant combination rules, as described
in Eq. (4). This means that for our case with /TM00I and
ITMO002, the equation will have the additional feature variant
combination rules:

Ct = (1.6L anD Turbo aND Gasoline), item usage rule for
item ITMO001, here indexed as u, and C] = ({.6L AND Die-
sel), item usage rule for item /TM002, here indexed v.

If there are allowed configurations in this new configura-
tion problem, then ITM00I and ITMO0O2 can be included to-
gether for some allowed configuration of the original prob-
lem. If there are no allowed configurations in the new
problem, then the items are mutually exclusive in the original
problem.

The result from the new configuration problem gave that
there is a feature variant combination that is allowed, which
then has neither /TM00I nor ITM002. This was the feature
variant combination shown in the last row in Table 9. It
was found that the engines without turbo did not have an
item for 1.6-L gasoline engines.

The item usage rule feedback should be provided to the
product developers upon request; that is, it is a calculation
to aid the product developers during the development of con-

Table 8. Example of item usage rules

A. Tidstam et al.

Table 9. Example of how items can be counted from an item
set

Item ID 1.6L Turbo Without Turbo Gasoline Diesel
ITM001 X X X

1TM002 X X
No item? ? ? ?

figuration rules. Not all item usage rules should have the ex-
actly-one condition, which do not necessarily indicate an er-
ror in the configuration rules. The usefulness of the item
usage rule feedback is however tremendous, because this
evaluation is done manually today and it is a complex calcu-
lation that has to take all product configuration data for a
product family into account.

6.3. Reformulation of configuration rules

The reformulation of configuration rules can be requested
from product developers, for example, when more informa-
tion about the configuration rules is needed.

6.3.1. Before introducing CSP solutions

The reformulation of configuration rules was at the case
company only taking place when the configuration rules
were authored. The configuration rules were then not refor-
mulated if they were not necessary because of modification
in the configuration rules set. The reformulation of configura-
tion rules is thereby a discussion between the product
developers when the configuration rules are authored. The re-
sult from the discussion is an authoring of configuration rules,
as in the example with item usage rules in Table 10. Often the
item usage rules have been given an authoring after a negotia-
tion of product developers’ preferences.

6.3.2. After introducing CSP solutions

Some configuration rules might be implicit because of
combined effects from several configuration rules. Some of
these implicit configuration rules can be made explicit by
reformulation. Equation (6) is used for finding feature fami-
lies that can be introduced to the item usage rules during
the reformulation. The results from the equation gave that
there is a feature family with feature variant City that could
be introduced, as shown in Table 11. The table shows a refor-
mulation of the item usage rules for both ITM00I and

Table 10. Item usage rules formulated after a negotiation
between the product developers

Item ID 1.6L Turbo Gasoline Diesel Item ID 1.6L Turbo Gasoline Diesel
ITM001 X X X ITM001 X X X
1T™M002 X X ITM002 X X

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000487

Formulating CSPs for the inspection of configuration rules

Table 11. Reformulated item usage rules by introducing
feature variant City

Item ID 1.6L Turbo Gasoline Diesel City
ITM001 X X) X
ITMO002 X X 0

ITM002 from Table 10. The introduction of feature variant
City is a reformulation of the item usage rules and conse-
quently has introduced a pair of parenthesis in the matrix.
This reformulation was possible because City is the only al-
lowed feature variant from that family on all allowed config-
urations for ITM002. The introduction of Ciry did not however
result in any parenthesis, or reformulation, for ITM001, be-
cause this City may or may not be allowed in the allowed con-
figurations with ITMOOI. The parenthesis for Turbo for
ITMO00!I was introduced because it is possible to take away
the feature variant from the item usage rule without affecting
for which configurations the item should be implied.

By using the CSP solutions, the reformulation of config-
uration rules can be shown upon request. It is then no longer
required to actually reformulate the configuration rules, but
possible reformulations can be shown in the visualization
of configuration rules.

6.4. Larger industrial example

This section is applying the variations of CSP for reformula-
tion of configuration rules as well as counting of items on a

325

larger set of items. The case study showed examples with
only two items, which is a common example when there
are two alliterative components. There are however situations
when there is a larger set of items that need to be analyzed.
The example for larger set of items was selected based on a
design engineer’s, from the case company, request, and is
shown in Table 12. The table provides 15 items, which are
complemented with all the configurations that are allowed
but does not imply any items from those. The potentially
missing items are marked No Item? as well as question marks,
as was previously shown in the case study. The potential re-
formulations of the configuration rules are marked with pa-
rentheses, as was also previously shown in the case study.

The feasibility of the example depends on its size limita-
tions. The table for the 15 items has grown with additional
six rows for configurations that are potentially missing items.
This increase in number of rows depends on which items are
selected to be visualized together, which then requires in-
structions for how to use the result from the CSP solutions.
It is also shown in the table that the potential reformulation
of configuration rules does not have any effect on the size
of the table at all. This result is then promising for examples
where the limited size of the table is very important.

6.5. Computational feasibility

This section will describe the time efficiency when the CSP
variations were solved with the algorithm SAT4J. The infer-
ence engine used was thereby a SAT solver. The three config-
uration rules sets are from the three large automotive manu-
facturing companies. The data set from Renault Megane

Table 12. Larger example for the visualization of constraint satisfaction problem solutions

A B

Item ID a2 bl b2

15
—_

Quantity

b3 cl c2 c3 c4 dl d2

No item?
ITM001
ITM002
ITMO003
ITM004
ITMO005
ITM006
No item?
No item?
No item?
ITM007 2
No item?
No item?
ITM008
ITM009
ITMO010
IT™MO011
IT™MO012
IT™O013
ITMO014
ITMO015

RN NN
el R oo o R
el ol

—
R R N

—

KX XX
el

DN NN
el

A
e Mo 0 D
~D
~2

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000487

326

(Amilhastre et al., 2002) is available online (http:/www.irit.
fr/~Helene.Fargier/, but see the direct link at http:/www.
irit.fr/recherches/ ADRIA/Documents/Fargier/Config/all.Ip).
The details of the data sets are presented in Table 13.

We benchmarked the time for verifying a partial configura-
tion, the time to compute one allowed partial configuration
when enumerating allowed partial configurations, the time
to verify whether a given subset of feature families can be
used to reformulate an item usage rule, and the time to ana-
lyze the effect of adding a configuration rule. Verifying al-
lowed partial configurations and generating allowed partial
configurations could be done incrementally (Een & Sorens-
son, 2004), reusing the solver instance; therefore, the timings
are provided for incremental solving. Item usage rule verifica-
tion requires creating a new problem, so the timing for item
usage rule verification includes the time to generate the prob-
lem and to initialize the solver.

To benchmark the time to compute one allowed partial
configuration when enumerating allowed partial configura-
tions, we randomly generated subsets of feature families, con-
taining from 3 to 30 feature families, and measured the time to
generate 10 allowed partial configurations within each subset
of feature families.

To benchmark the time for verifying a partial reference
configuration, we randomly created 500 partial configura-
tions containing from 3 to 30 feature families, and measured
the time to verify whether a configuration is allowed or for-
bidden; Table 13 presents the average time for each data set.

Item usage rules were available only for product configura-
tion data A, and there we measured the time to verify whether a
given subset of feature families could be used to reformulate an
item usage rule, by randomly selecting an item usage rule and
generating random subsets of feature families, as well as by re-
moving feature families from the original item usage rule. The
measured times for reformulating the item usage rule include
the time to generate the problem and initialize the solver.

Answering the questions presented in this paper took frac-
tions of a second. The tests were performed on a desktop PC

Table 13. Feasibility study

A. Tidstam et al.

with 2-GHz processor and § GB of RAM. SAT4J (Le Berre &
Parrain, 2010) was used as a CSP solver, with an extra layer of
software for preprocessing the data, generating CSP in-
stances, and interpreting solver answers. Generating partial
configurations and enumerating configurations that become
forbidden upon adding a configuration rule take even less
time; one configuration can be generated in less than 0.01
s, using the incremental solving capabilities of SAT4J (Een
& Sorensson, 2003, 2004).

These calculation times show that despite the problem for-
mulations being NP-complete, practical times are short
enough for interactive use by product developers.

7. CONCLUSIONS

The aim of this paper was to create CSP variations whose so-
lutions automate previous manual tasks during the develop-
ment of vehicle configuration rules. This paper addressed
three development tasks taking place during the inspection
of vehicle configuration rules: the reformulation of vehicle
configuration rules, the testing of feature variant combina-
tions, and the counting of item quantities from an item set.
These three development tasks were addressed with CSP var-
iations. The CSP variations were tested on vehicle configura-
tion rules, and their feasible implementation in a visualization
of vehicle configuration rules was proven. Thus, it was shown
that the created CSP variations could actually be implemented
into the development process of vehicle configuration rules.

The CSP variations proposed in this paper were shown to ad-
dress similar challenges that were previously studied in Sinz
et al. (2003) and Astesana et al. (2010a, 2010b). This paper
should be seen as a continuation of these studies. It is a contin-
uation because more variations of the CSP were created, and
their implementation into the development process of vehicle
configuration rules was described. The study of the develop-
ment process is mentioned in the addressed research question.
Which formulations of the CSP can make the inspection of con-
figuration rules in propositional logic more efficient, when it

Product Configuration Data

A B Renault Megane
Problem Properties
Configuration rules 64161 9010 857
Feature families 511 217 102
All (allowed + forbidden) vehicle configurations 10150 10% 10%°
Whereof allowed vehicle configurations 10124 103 102
Timing Results
Time 1: partial configurations (s/verified configuration) 0.005 0.004 0.010
Time 2: partial reference configurations (s/verified configuration) 0.009 0.008 0.011
Time 3: item usage rule reformulations (s/verified reformulation) 0.75 NA NA

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

http://www.irit.fr/~Helene.Fargier/
http://www.irit.fr/~Helene.Fargier/
http://www.irit.fr/~Helene.Fargier/
http://www.irit.fr/recherches/ADRIA/Documents/Fargier/Config/all.lp
http://www.irit.fr/recherches/ADRIA/Documents/Fargier/Config/all.lp
http://www.irit.fr/recherches/ADRIA/Documents/Fargier/Config/all.lp
https://doi.org/10.1017/S0890060415000487

Formulating CSPs for the inspection of configuration rules

comes to the reformulation of configuration rules, the testing of
feature variant combinations, and the counting of item quanti-
ties from an item set? The research question has three subques-
tions that were each addressed with development of CSP varia-
tions in this paper. The CSP variations developed are examples
of how manual tasks can be automated. The time efficiency for
inspection of vehicle configuration rules should therefore be
improved, especially because we demonstrated that the auto-
mated computations take less than a second to complete.

This study has studied the inspection of vehicle configura-
tion rules, which is one of several development process activ-
ities. The motivation for the chosen limitation to only include
the inspection activity is that it takes place on existing vehicle
configuration rules. Existing vehicle configuration rules enable
testing of the CSP variations. Nevertheless, earlier process ac-
tivities without any formalized vehicle configuration rules
could also possibly benefit from the use of CSP solutions.

Our future work is to develop a demonstrator that allows
product developers to take advantage of the CSP solutions as
they are conducting their development activities. Thus far, exam-
ples of configuration rules have been supported with the CSP so-
lutions and given to product developers at a large automotive
manufacturing company. These examples have only been based
on suggestions of suitable configuration rules from experienced
product developers. What is then missed compared to the normal
usage of a visualization tool is the importance of creating a selec-
tion of configuration rules that would be meaningful to be visua-
lized. This selection of configuration rules may not necessarily
be a trivial step, depending on how the companies group their
configuration rules. Apart from that, the CSP variations were
very well appreciated by the users, especially because the
methods could simply be implemented as extra configuration
rules, which made the result understandable and trustable.

ACKNOWLEDGMENTS

This work was carried out at the Wingquist Laboratory VINN Excel-
lence Centre within the Area of Advance Production at Chalmers,
supported by the Swedish Governmental Agency for Innovation
Systems (VINNOVA). The support is gratefully acknowledged.

REFERENCES

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., & Lucena, C.
(2006). Refactoring product lines. Proc. Int. Conf. Generative Program-
ming and Component Engineering, GPCE '06. New York: ACM Press.

Anmilhastre, J., Fargier, H., & Marquis, P. (2002). Consistency restoration and
explanations in dynamic CSPs—application to configuration. Artificial
Intelligence 135(1-2), 199-234.

Aspvall, B., & Plass, M. (1979). A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Information Processing Letters
8(3), 121-123.

Astesana, J.-M., Bossu, Y., Cosserat, L., & Fargier, H. (2010a). Constraint-
based modeling and exploitation of a vehicle range at Renault’s: require-
ment analysis and complexity study. Proc. Workshop on Configuration,
ECAI 2010. Amsterdam: IOS Press BV.

Astesana, J.-M., Cosserat, L., & Fargier, H. (2010b). Constraint-based vehi-
cle configuration: a case Study. Proc. Int. Conf. Tools With Artificial In-
telligence, ICTAI 2010. New York: IEEE.

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

327

Batory, D.S., Benavides, D., & Ruiz-Cortés, A. (2006). Automated analysis of
feature models: challenges ahead. Communications of the ACM 49(12), 45.

Baumeister, J., & Freiberg, M. (2010). Knowledge visualization for evalu-
ation tasks. Knowledge and Information Systems 29(2), 349-378.

Baumeister, J., Puppe, F., & Seipel, D. (2004). Refactoring methods for
knowledge bases. Engineering Knowledge in the Age of the Semantic
Web. Berlin: Springer—Verlag.

Bertin, J. (1983). Semiology of Graphics: Diagrams, Networks, Maps. Madi-
son, WI: University of Wisconsin Press.

Bucki, J. (2015). Bill of Materials. Accessed at http:/operationstech.about.
com/od/glossary/g/BillMaterials.htm on May 1, 2015.

Biining, H.K., & Kullmann, O. (2009). Minimal unsatisfiability and autark-
ies. In Handbook of Satisfiability (Biere, A., Heule, M., van Maaren, H.,
& Walsh, T., Eds.), pp. 339-402. Amsterdam: IOS Press.

Chakraborty, R. (2010). Knowledge Representations. Accessed at http:/www.
myreaders.info/03-Knowledge_Representations.pdf on May 1, 2015.
Cook, S.A. (1971). The complexity of theorem-proving procedures. Proc.

ACM Symp. New York: ACM Press.

Dowling, W.F., & Gallier, J.H. (1984). Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Program-
ming 1(3), 267-284.

Een, N., & Sorensson, N. (2003). Temporal induction by incremental SAT solv-
ing. Electronic Notes in Theoretical Computer Science 89(4), 543-560.

Een, N., & Sorensson, N. (2004). An extensible SAT-solver. Theory and Ap-
plications of Satisfiability Testing 2919, 502-518.

Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consis-
tency-based diagnosis of configuration knowledge bases. Artificial Intel-
ligence 152(2), 213-234.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactor-
ing: Improving the Design of Existing Code. Boston: Addison—Wesley
Professional.

Hertli, T., Moser, R.A., & Scheder, D. (2011). Improving ppsz for 3-sat using
critical variables. Proc. Int. Symp. Theoretical Aspects of Computer Sci-
ence, STACS 2011. Leibniz, Germany: Schloss Dagstuhl.

Junker, U. (2006). Configuration. In Handbook of Constraint Programming
(Rossi, F., van Beek, P., & Walsh, T., Eds.), pp. 837-874. New York:
Elsevier Science.

Krebs, T., Wolter, K., & Hotz, L. (2004). Mass customization for evolving
product families. Proc. Int. Conf. Economic, Technical and Organizational
Aspects of Product Configuration Systems, Copenhagen, June 28-29.

Kiibler, A., Zengler, C., & Kiichlin, W. (2010). Model counting in product
configuration. Proc. Workshop on Logics for Component Configuration,
LoCoCo, 2010. Sydney: EPTCS.

Le Berre, D., & Parrain, A. (2010). The Sat4j library, release 2.2 system de-
scription. Journal on Satisfiability, Boolean Modeling and Computation
7, 59-64.

Liffiton, M.H. (2009). Analyzing infeasible constraint systems. PhD Thesis.
University of Michigan.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction prob-
lems. National Conf. Artificial Intelligence, AAAI-90. Boston: AAAT Press.

Object Management Group. (2009). Production Rule Representation (PRR),
International Standard (IEC) 61131-3. Needham: Object Management
Group.

Russell, S.J., & Norvig, P. (2003). Artificial Intelligence: A Modern Ap-
proach. Upper Saddle River, NJ: Pearson Education.

Shortliffe, E. (1976). Computer-Based Medical Consultations, MYCIN. Am-
sterdam: Elsevier.

Sinz, C., Kaiser, A., & Kiichlin, W. (2003). Formal methods for the valida-
tion of automotive product configuration data. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 17(1), 75-97.

Soininen, T., Tiihonen, J., Ménnisto, T., & Sulonen, R. (1998). Towards a
general ontology of configuration. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 12, 357-372.

Thiim, T., Batory, D.S., & Kastner, C. (2009). Reasoning about edits to fea-
ture models. Int. Conf. Software Engineering, pp. 254-264. Los Alami-
tos, CA: IEEE. .

Tidstam, A., Bligard, L.-O., Ekstedt, F., Voronov, A., Akesson, K., & Malm-
qvist, J. (2012). Development of industrial visualization tools for valida-
tion of vehicle configuration rules. Proc. Int. Symp. Tools and Methods of
Competitive Engineering, TMCE’12. Voorschoten: Emerald Eye.

Tsang, E.P. (1993). Foundations of Constraint Satisfaction. London: Aca-
demic Press.

van Maaren, H. (2000). A short note on some tractable cases of the satisfia-
bility problem. Information and Computation 158(2), 125-130.

http://operationstech.about.com/od/glossary/g/BillMaterials.htm
http://operationstech.about.com/od/glossary/g/BillMaterials.htm
http://operationstech.about.com/od/glossary/g/BillMaterials.htm
http://www.myreaders.info/03-Knowledge_Representations.pdf
http://www.myreaders.info/03-Knowledge_Representations.pdf
http://www.myreaders.info/03-Knowledge_Representations.pdf
https://doi.org/10.1017/S0890060415000487

328

Voronov, A. (2013). On formal methods for large-scale product configura-
tion. PhD Thesis. Chalmers University of Technology.

Wehle, H.-D. (2011). Cloud Billing Service. Accessed at http:/www.ibm.
com/developerworks/cloud/library/cl-devcloudmodule/ on May 1, 2015.

Anna Tidstam is an IT Specialist in engineering systems at
Thermo Fisher Scientific in Miinchen, Germany. She holds
MS and PhD degrees from Chalmers University of Technology.
Dr. Tidstam’s PhD thesis focused on the development of vehi-
cle configuration support tools and involved collaboration with
Swedish, German, and French automotive companies.

Johan Malmgqpvist is a Chair Professor in product develop-
ment at Chalmers University of Technology. His research ad-
dresses development methodologies and IT support for
product development. Dr. Malmqvist’s current research fo-
cuses on methods and tools for development of product—service
systems, for product configuration, and for strategic develop-
ment of methodologies and IT support for product develop-
ment solutions. He has authored more than 100 publications
in books, journal articles, and conference papers.

https://doi.org/10.1017/50890060415000487 Published online by Cambridge University Press

A. Tidstam et al.

Alexey Voronov is a Senior Researcher at Viktoria Swedish ICT.
He attained his PhD and MS degrees from Chalmers University
of Technology. His PhD thesis was about formal methods for
large-scale product configuration. Dr. Voronov’s research inter-
ests include algorithms, formal methods, and complex systems.

Knut Akesson is Associate Professor in the Department of Sig-
nals and Systems at Chalmers University of Technology. He
holds a MS in computer science and technology from Lund In-
stitute of Technology at the University of Lund, and a PhD in
control engineering from Chalmers University of Technology.
Dr. Akesson’s main research is in using formal methods on au-
tomated manufacturing systems. He has focused on using formal
methods to solve manufacturing and product-related problems.

Martin Fabian is Professor of automation in the Department
of Signals and Systems at Chalmers University of Technol-
ogy. His research interests include formal methods for auto-
mation systems in a broad sense, merging the fields of control
engineering, computer science, and production engineering.
He has authored more than 100 publications and is codevel-
oper of the formal methods software tool Supremica.

http://www.ibm.com/developerworks/cloud/library/cl-devcloudmodule/
http://www.ibm.com/developerworks/cloud/library/cl-devcloudmodule/
http://www.ibm.com/developerworks/cloud/library/cl-devcloudmodule/
https://doi.org/10.1017/S0890060415000487

	Formulating constraint satisfaction problems for the inspection of configuration rules
	Abstract
	INTRODUCTION
	Inspection of configuration rules
	Research approach

	LITERATURE REVIEW
	USE CASE SCENARIO FOR INSPECTION OF RULE-BASED CONFIGURATION
	COMPUTATION MODEL FOR RULE-BASED CONFIGURATION WITH FEATURES AND ITEMS
	VARIATIONS OF CSP ADDRESSING INSPECTION ACTIVITIES
	Testing feature variant combinations
	Counting quantities from item sets
	Verifying at-most-one condition
	Verifying at-least-one condition

	Reformulation of configuration rules
	Reformulation of item usage rules
	Are all configurations implying an item also implying another item?
	Can two items ever be selected together?
	Are two feature variants equivalent?
	Are two feature families equivalent?
	Is a feature variant redundant?
	Is a feature family redundant?
	Is a feature variant combination rule redundant?

	CASE STUDY FOR VISUALIZATION OF CSP SOLUTIONS
	Testing feature variant combinations
	Before introducing CSP solutions
	After introducing CSP solutions

	Counting quantities from item sets
	Before introducing CSP solutions
	After introducing CSP solutions

	Reformulation of configuration rules
	Before introducing CSP solutions
	After introducing CSP solutions

	Larger industrial example
	Computational feasibility

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

