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SUMMARY

This paper reports a visual tracking system that can track
moving objects in real-time with a modest workstation
equipped with a pan-tilt device. The algorithm essentially
has three parts: (1) feature detection, (2) tracking and (3)
control of the robot head. Corners are viewpoint
invariant, hence being utilised as the beacon for tracking.
Tracking is performed in two stages of Kalman filtering
and affine transformation. A technique of reducing
greatly the computational time for the correlation is also
described. The Kalman filter predicts intelligently the
fovea window and reduced computation dramatically.
The affine transformation deals with the unexpected
events when there is partial occlusion.

KEYWORDS: Object tracking; Real time; Corner detection;
Machine vision.

1. INTRODUCTION
The objective of tracking is concerned with pursuing an
object of interest that moves randomly. with a video
camera mounted on a pan-tilt device, the implemented
algorithm will be able to detect motion of the moving
object and then command the pan-tilt device to follow
the object such that the object will always lie at the
center of the camera.'”” The execution time poses a sever
constraint in real time performance. Typical inter-frames
processing delay can run up to milliseconds, and in order
to achieve smooth tracking at real time, typically 25 Hz
(called video-rate), various optimizations and improve-
ments are needed. The success of a tracking activity
depends on an efficient feature extraction algorithm.
Further, the design of tracking strategies that will pursue
desired objects closely also plays an important role.
Much recent work has concentrated on the develop-
ment of control algorithms and architectures under the
assumption that vision can provide the necessary position
information to drive the system. Espiau et al. have used
the task-function approach in order to tackle the
problem of competing control tasks in visual servoing.®*
The control strategy is based on finding the image
Jacobian of the visual task which relates the displace-
ment of an image feature to camera displacements.
Secondary tasks are incorporated by projecting their
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demands onto the null space of the Jacobian of the
primary task, the wvisual task which relates the
displacement of an image feature to camera displace-
ments. The visual tasks explored to date have also
explored this idea in the context of stereo visual
servoing. Typical tracking schemes fall into the following
categories: (1) Region based, (2) Contour based and (3)
Point based fixation. When considering purely monocular
cues, various general image features suggest themselves
as likely candidates to provide the required position
information for gaze control. Grey-scale correlation and
variations of this theme are examples of the first category
of tracking algorithm. Inoue et al.'® developed a VLSI
circuit to find minimum normalized absolute image
differences in real time. This system, others based on its
technology, and the work of Pahlavan et al.!' discussed
above, have demonstrated that correlation is an effective
cue for smooth pursuit, and has the benefit of tracking
can take place without a prior model of the targets
appearance. Correlation, however suffers from two major
disadvantages; (1) it is not invariant either to changes in
view-point or to cyclorotation of the scene caused either
by camera or object motion, and (2) it has little immunity
to local occlusions. An example of the second category is
the B-spline snake, developed by Kass et al'? They
model the dynamics of such a contour under forces
exerted by the attraction to image edges; as the image
feature moves, the snake is drawn along with it. The
advantages of occlusion insensitivity and view-point
invariance are incorporated via templates which restrict
the deformation of the contour to be an affine
deformation of the planar template. These advantages,
however require a lot of computation time which is
almost impossible to achieve in real time without parallel
processing or special hardware.

Finally the most obvious example of the third category
is corner detection and tracking. Corner features are
unreliable; they may provide corners for which short
term matches can be made. Nevertheless, corner features
are view-point invariant and also simple to extract from
images. Algorithms for matching individual corners
between frames requrie little or no knowledge at all
about the overall motion of the object which gives rise to
the corners, which means complex bootstrapping is not
required.
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2. HARDWARE SETUP
The tracking system is comprised of a Sparc workstation,
a pan-tilt device and a CCD camera with digitiser.

The pan-tilt system by Directed Perception fulfills the
requirements well and a picturc of the pan-tilt system is
shown in Figure 1. Pan-Tilt Unit (PTU) by Directed
Perception is a popular choice for low-cost, fast and
accurate positioning of cameras and othcr payloads. It
comes with a programmable controller that is both
user-friendly and reliable. Besides it offers easy setup
with standard serial communication.

The PTU provides precise control of axis spced and
acceleration. Upper and lower speed limits define the
boundary on non-stationary pan-tilt velocities. The base
(start-up) speed specifies the velocity at which the
pan-tilt axis can be started from a full stop without losing
synchronization. To achieve axis speeds above base
speed, acceleration changes are required. The pan-tilt
controller uses trapezoidal acceleration and deceleration
for speeds above the base rate and less than the
maximum allowed speed. The pan-tilt controller provides
on-the-fly position and speed changes. If the direction is
changed on-the-fly, the controller manages all decelera-
tion, direction reversal and acceleration to achicve the
most recently specified target pan-tilt speed and
acceleration rates.

3. IMAGE FEATURES EXTRACTION

Image features extraction involves techniques for
extracting information from an image. It generally
subdivides an image into its constitucnt parts or objects.
The level to which this subdivision is carried out depends
on the problem being solved. In simple static scenes like
a black circular object in a white background, features
extraction is a straightforward task using simple
algorithm like thresholding. Processing time is not a
constraint in this case. However, in real time visual
processing that involves dynamic scenes, the task
becomes complicated. This could account for features of
interest being occluded or deformed into other shapes, or

Fig. 1. The pan-tilt device.
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similar objects may exist and this requires object
recognition, or variations in environment characteristics
like light intensity and background.

Corner detection is considered to be point-based
image features detection. Corner features are view-point
invariant, relatively simple to extract from images.
Algorithms for matching individual corner between
frames need to know little or no information at all about
the overall motion of the object which gives rise to the
corners. However corner detectors are notoriously
unreliable; they may provide corners for which
short-term matches can be made, but will rarely detect
any one corner so that it can be tracked over an
extended period. Immunity to these local problems can
be gained by considering clusters of corners over long
sequences for which there can be a guarantee of at least
some temporal continuity, but this raises the issue of how
to describe collective position and motion of point
clusters. A suggestion to overcome this problem is
discussed later using affine structure.

The main difficulty of corner detection is to achieve
simultaneously accuracy of localization, consistency of
detection and low computational complexity, all
desirable features for fixation in a real-time gaze control
system. The corner detector developed by Wang and
Brady"” defines a corner where the smoothed image
irradiance E in the fovea window satisfies the conjoint of:

(")ZF 2
I'= (5—> — S |VF* = maximum

t2
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on>
IVFP>T, I'>T,

where S is a constant measure of image surface curvature
varying with different differentiation masks, F is the
intensity image after Gaussian smoothing, and 7; and 7,
are user-defined thresholds. t and n are tangential and
normal unit vector to the contour. Figure 2 shows part of
a model train and the detected corners.

Fig. 2. Image of a model train with corners superimposed.
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4. IMAGE FEATURE MATCHING AND
SPEEDUP METHODS

Template matching or so called correlation is a filtering
method to detect a particular feature in an image. The
template is, in effect, a sub-image that looks like the
image of the object. Since the location of an object in an
image is not known, template matching is performed at
every pixel location. A similarity measure is then
computed which reflects how well the image data
matches the template for each possible template location.
The point of best match is selected as the location of the
feature.

The normalised cross correlation is adopted and it is
less dependent on the local properties of the reference
and input images than is the unnormalised correlation.
The correlation coefficient y(i, j) is defined as

o S e —iy =) =)
Sy [0 3) TP Sy Wk — by — ) — &)

where f and w are the templates (n =m X m, m is the
template size) taken around the tracked feature in two
consecutive frames; f and w are the local mean
respectively. It is well known that the above equation is
computationally expensive giving the task of real time
matching. We propose two measures to reduce the
computation without losing the quality of matching: (1)
Introduction of theshold for matching quality; (2)
sub-sampling

)

First, let’s rearrange equation 2. Let D denote the
denominator of equation 2,

1
D = = I
(Ex'y [f(x, y) _f]2 Ex,y [W(X =1 y _]) - "‘_"]2)2
t= nfw
we have

y= <E fw = t)D (3)

By definition, y € [—1, 1]. For y =1 there is a perfect
match and with the increase of noise y decreases. For
v =0 and below, the two patterns are irrelevant. Notice
the fact that D >0, we can set a threshold such that
when X fw —t<0 or I fw <t the matching process
terminates, hence avoid computing the computationally
heavy component D! We reduced the computation time
by taking advantage of the fact that among the many
potential matching candidates, only one is the best
match.

The second measure of reducing the computation time
for correlation is by means of sub-sampling. For
example, a 7X7 template requires 49 pixels and the
sub-sampled template would require only 4X4=16
pixels. However, this method has to be applied with
caution, since over-do it would cause great lose of signal
and resulting in unstable correlation. Our experiments
have shown that the correlation time can be reduced
greatly and the quality of matching is comparable with
the traditional correlation method in equation 2.
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Incorporating the Kalman filter, we can further improve
the timing by reducing greatly the number of potential
candidates for matching.

Some remarks on correlation based matching

Although correlation provides a faster mean of
performing objective recognition, it has the disadvantage
of not invariant either to changes in view-point caused
either by camera or object motion. In other words,
obtaining correlation for changes in size and rotation can
be difficult. Normalizing for size involves spatial scaling,
a process that in itself adds a significant amount of
computation. Normalizing for rotation is even more
difficult. If a clue regarding rotation can be extracted
from f(x,y), then w(x,y) is simply rotated so that it
aligns itself with the degree of rotation in f(x, y).
However, if the nature of rotation is not known, looking
for the best match requires exhaustive rotations of
w(x, y). This procedure is impractical and, as a
consequence, correlation is seldom used in cases when
arbitrary or unconstrained rotation is present. Normally
dynamic correlation is performed on continuous image
sequence rather than on a few random images. In real
time object tracking, a sequence of frames is captured at
video rate and correlation matching is performed on
every frame of the sequence. The template for matching
is predetermined from the first frame. To minimize the
effect of rotation and changes in object size, the template
is updated dynamically with the subsequent image that is
matched correctly. With this method, the template will
contain the latest information or sub-image of the
moving object even though the particular object has gone
through rotation or scaling.

5. KALMAN FILTERING AND PREDICTION
Cross correlation provides a low level confidence
measure of the matching strength. However, the
computation can be very time consuming since the
template has to match blindly against every position
obtained from the the corner extraction algorithm over
the entire image. Kalman Filter,"'7 can reduce this
problem by predicting the possible location of the
tracked points. This section describes a linear Kalman
filter that monitors and tracks points in the image space.
The system state space is defined as

(k) = [x(k)x(k)y (y)y (k)" (4)

where x and y are the Cartesian coordinates of an object,
X and y are the image velocity of the object at frame k. A
random signal model is defined as

1 % 00 0
0 1 0 0 uy (k)
Pk +1)= P(k) + 5
k+D=10 ¢ - (k) 0 (5
0 0 0 1 uyk
%,—.J
Ak) w(k)

where the noise term u,{(k) and u,(k) represent the
change in pan and tilt velocity respectively over an
interval f,,,. Assuming images are taken in equal time
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interval, then #,,, =T and A(k)=A. Let E[-] denote
the mathematical expectation, then E[w(k)w(k)"]=
Q(k) represents the systems noise covariance matrix. As
an object travels in all direction, the input noise u,(k)
and u,(k) assume Gaussian distribution with zero mean
and they are in general uncorrelated. The camera is
assumed to provide noise estimates of the object
location. The output of camera measurement is defined

as
Qy(k):[l 00 0]%(k)+[v|(k)] ()

0010 va(k)
[ —— [N A—
C v(k)

where the additive noise, v(k) is assumed to be Gaussian
with zero mean and Efv(k) v(k)"]=R(k) gives error
covariance of the noise sequence.

Let P(k) denote the state covariance matrix and
P(k + 1| k) denote the prediction. The vector Kalman
filter estimator is found as

Xk +1)= AZ(k) + Kk + D)[¥(k + 1) — CAZ (k)] (7)
where the filter gain K(k + 1) is given by

K(k +1)=P(k + 1| k)C"(CP(k + 1| k)C" + R(k)] '

(8)
and the state covariance is updated by
P(k+1)=P(k +1|k)—KCP(k + 1| k) )

Having defined the above equations, the Kalman filter
equations are rearranged into the following 2 stages for
computation:

(i) Prediction

Xk +1|k)=AK)X(k | k)

(10)
P(k + 1| k)= A(k)P(k)A" (k) + Q(k)
(ii) Updating (where k <k + 1)
Ik | k)y=AZ(k | k— 1)+ KKk)[¥(k)
—CX(k | k—1)]
(11)

P(k | k) =P(k |k — 1) — K(k)CPk | k — 1
K(k)=P(k | k = 1)C(CP(k | k = 1)C" + R(k)] '

5.1. Application of Kalman filter to object tracking
Consider a moving object has its positions measured by a
camera. The initial prediction of the object location in
T =1 is arbitrarily chosen, based on the positional
observation from the first two frames:

Z1)=1[0,1,0,1]"

Before finding the prediction of the object location in the
next frame &(2), the following system noise covariance is
established:

0 0 0 0
- 0 o> 0 0

k)= E[wk)w(k)'] = !
Q(k) = E[w(k)w(k)"] 0 0 0
0 0 0 o
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where o7 and o3 are the variances whose values assume
a Gaussian probability function bounded by M =35.
Further, let

5000
01 00

P(0) =
© 0 050
0 0 01

The setting of P(0) is empirical. From equation (10), the
values of #(2|1) and P(2|1) are computed. In the
updating stage, equation (11) is used to find K(k),
followed by P(2|2) and from which the predicted object
location in the next frame %(2]2) is obtained. These
values are then used to recursively generate the next set
of data.

Kalman filter operation provides error analysis which
is not available in Linear Predictor. The noise model
used follows a Normal Probability Distribution function,
where a desire point at boot time has confidence region
of a few sigma (error covariance). Since a 2-D model is
considered, the error covariance when plotted resembles
an ellipse. As Kalman filter update process is in progress,
it changes the error covariance matrix of the tracking
point and if a point is constantly tracked, its error
covariance will decrease. This means that the probability
of that appears in the predicted location in the next
frame is higher (lower error) and this gives rise to a
smaller ellipsoid.

5.2. A comparison on linear prediction and the

Kalman filter

A comparison on the performance between Kalman filter
and Linear Predictor is shown in Figure 3. The
simulation result is performed on an object moving in an
cllipse path with added noise to the actual object
location. Figure 4 gives the square of the prediction error
between these two methods. It is clear that the Kalman
filter predicts more accurately on the object location than

601 Pan position

40-

20

Time step

60

-20

-40 -

Fig. 3. Simulated results for the Kalman filter and Linear
Predictor on a pan operation. Solid line-actual path: Dotted
line—Kalman predictor; Dashed line—Linear predictor.
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Fig. 4. Error square plot for the for Kalman filter and Linear
Predictor on a pan operation. Solid line—Kalman filter; Dotted
line—Linear predictor.

linear prediction. The simulation for the tilt motion is
also carried out and shows the same behaviour.

6. AFFINE STRUCTURE

Tracking a moving object using center-of-mass method
lacks consistency and often yields poor tracking
performance especially when the object is occluded.
Several prople have subscribed to the use of affine
structure in image reconstruction, including reference 3
& 18. A temporal coherence between successive images
forms the essence of affine structure. The affine structure
method is simplified to take the advantage of monocular
image tracking. For a coplanar image, it can be shown
that using 3 basis points are sufficient to determine the
fixation point accurately.'® Besides, this method is shown
to work well even though the object is sheared. This is
true only if the object being tracked is a rigid body. This
assumption is generally valid since most real world
objects are rigid. In the case where the third basis point
is not available, 2 basis points will serve the purpose
although at a reduced accuracy.

6.1. Affine structure using 2 basis points

In case where 3 basis points information are not
available, e.g. the tracked object is partially occluded,
then we present a two basis points method to compute
the fixation point. This method works under a further
assumption, that is the projection is co-planar and the
rotation is about the Z axis only. The fixation point
determined using 2 basis points may not be as accurate
when an object is sheared. In what follows, a weak
camera projection can be justified for the fact that the
distance from the camera is more significant compared to
the object size. With this assumption, the error derived
from finding the fixation point is negligible.

Referring to Figure 5, ¢ is the fixation point of the
initial object while ¢’ is the required fixation point of the
same object that had been rotated and translated (linear
transformation). The motion can be defined as
translation from o to o’ plus a rotation of angle 6. The
translation is given as

t=06"—0

and the rotation can be computed from the following
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0 X

Fig. 5. Affine structure using the 2 basis points o and a.

condition
0=/sa"0'a’

6.2. Transfer of the gaze direction

An important criteria for smooth tracking is that the
same point on the target should be identified from frame
to frame and used to generate the gaze demand. Under
the affine stricture transfer approach, it happens to be
relatively simple and straightforward even if the desired
fixation point on the target is invisible or occluded.

An issue that needs to be tackled is when the object is
occluded to an extent that only one point invisible. This
problem is solved by assuming a weak perspective case.
Then the fixation point is simply computed using
translation operation and then in the subsequent frames,
more basis points are hoped to be recovered when the
object move out of the shade.

In the case of total occlusion, no information about the
location of the object is available. Although using a
bigger fovea window increases the chance of searching
for object in the next frame, the delay due to visual
processing is longer. More often than not, such delay
results in the object moving out of that bigger fovea
window if the speed of object is high. Instead of using a
bigger fovea window, an attempt is made to predict the
location of fovea window in the next frame by
substituting the current measurement of object location
with the predicted value. This attempt assumes that
object travels at a constant velocity and such an attempt
will fail when the object travels in opposite direction.

7. IMPLEMENTATION AND RESULTS

In this section, a real time object tracking example will
be discussed in detail. This example will serve to
illustrate how the system is integrated, together with
various concepts and methodologies discussed in the
earlier sections. In this example, the pan-tilt unit is
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commanded to track a model train that is traveling on a
track. This is a simplified version of real-time object
tracking, ie. therc is only one moving object in the fovea
window.

Figure 6 shows a test scene of the model train traveling
around the track. Two tracking algorithms are developed
based on the moving corners but they differ in term of
calculating the fixation point. The first algorithm uses the
centroid of moving corner points as fixation point;
whereas the sccond algorithm uses affine structure to
calculate the fixation point.

7.1. Tracking using centroid of moving corners

The main feature of this algorithm is that the fixation
point of the object is calculated from the centroid of the
moving corners. In this implementation, a number of
corners are sclected as the active corners (typically
seven). The fixation point of the object is the centroid of
these active corners. Template for correlation matching
(ie. 7x7 pixels in size) at each active corner is saved.
Each active corner is assigned with a matching [factor,
match which indicates the number of time the particular
active corner has matched with the image or not matched
with the image. For example, a statement match =3
means that the particular active corner has a matching
corner for the past 3 frames. A negative match number
will indicate that the active corner has failed to match for
thec past 3 frames. Normalized correlation matching is
performed to determine how many moving corners have
been successfully detected and matched. For each
currently matched corncr, the old template is updated
with the newly matched corner template (by using the
concept of dynamic corrclation) and matching factor is
increased by one. For the unmatched corncr, the
matching factor is decreased by one. A particular active
corner will be dropped and replaced by another corner il
it has not been matched for the past few frames (je. 3).
The centroid of all the matched corners will be the
fir ation point. The pan-tilt is commanded to move the
pan and tilt axis to offsct the position error (differcnce
between the fixation point and center of the screen).

7.2. Tracking using affine structure

Tracking using affine structure gives risc to a more stable
tracking performance compared with the tracking with
centroid point. Implementation of the tracking algorithm
for affine structure is similar to that for the tracking using

Object tracking

centroid of the moving corners. The main consideration
here is the selection of the basis point for the affine
structure. The top three active corners with the highest
match value will be assigned to affinc structure. The
purpose is to choose the older age of the track (ie. over
how many frames this corner has been tracked, the
likelihood being that older tracks are more relaible). If
only two active corncrs are available, affine structure
calculation for two points is used. In the case of only one
active corner is qualified, translation on the fixation point
based on that matched corner point is calculated. In the
event of total occlusion or none of the active corners is
matched, the predicted value for Kalman filter is used as
fixation point. This process is repcated for a few
subsequent frames (typically four) after which the target
is considered lost.

7.3. Results

Both algorithms implemented arc able to track the
model train closely. A typical length of computation time
for various routines within a frame is listed in the table.
The computation time obtained is based on the model
train tracking with seven active corners. A total time of
70 mScc is needed to process each frame, thus a rate of
15 Hz 1s achieved.

Instructions Time (m Sec)
Image capture 10
Corner detection 35
Correlation etc. 25
Total 70

Trajectory plotted in Figure 7 and 8 compare the
trajectory of the object relative to pan and tilt position
for part of the train sequence. The trajectory plot shows
that tracking using centroid of moving corners suffers
from instability especially when the model train is
moving around the curve (as shown at frame No. 125 for
pan movement in Figurc 7). This instability is caused by:
a big jump of fixation point on the object from frame to
frame, and an ecrror in prediction fovea window due to
incorrect fixation point used for Kalman filter prediction.

The main objective of tracking is to maintain the
object trajectory at the center of the fovea window.
Delay caused by motor stepping a visual processing
results in the trajectory being deviated from the centre of
image coordinate. A sinusoidal trajectory path is

Fig. 6. A test scenc of a model train traveling around a track.
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Fig. 7. Tracking with centroid.

obtained since the object is traveling around a elliptical
track as shown in Figure 6.

Tracking using affine structure shows a relatively small
deviation in the exact fixation location compared to the
tracking algorithm using centroid of moving corners since
the former provides a stable gaze direction. The possible
errors in fixation point using affine structure are
attributed to: the false match of active corners, and the
shearing effects.

8. DISCUSSION

One of the aims in object tracking is to achieve smooth
pursuit, possibly on any dynamic scene. Unfortunately,
various assumptions due to hardware limitations and
surrounding environments limit the types of objects
being tracked. For example, visual processing delays can
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run up to milliseconds. As more corners are captured,
longer processing time becomes intolerable to real-time
requirements. Delays result in phase shift, lower
bandwidth and subsequently instability. Therefore it is
recommended that dedicated DSP hardware or parallel
implementation is used to speed up the visual processing.

Falsely matches of a particular corner between two
frames may generate a significance error in determining
fixation point by affine structure. One possible method to
reduce the probability of matching error is to restrict the
corner selected in current frame for correlation
matching. The new corner position in the new frame can
be predicted using the Kalman filter prediction equations
and a search neighborhood whose size is based on the
predicted position covariance is defined. Closest corner
detected in the neighborhood satisfying a correlation
threshold is chosen to be best matched corner. However,

pan axis

150 200 250 300 350 400
tilt axis
RN o W “\ ’WM !
/ V\VJJV
Time

0 50 100 150

200 250 300 350 400

Fig. 8. Tracking with affine structure. Pan and tilt demands for two circular circuit of the train track. Tracking with centroid of
moving corners suffer from instability especialy when the model train is moving around the curve as shown at frame No. 125 of the

pan movement.
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searching for every corner position using Kalman filter is
time consuming and preferably to be done using a faster
hardware.

The pan and tilt movements are accomplished using
two stepper motors coupled in two orthogonal axes. It is
noted that performance of the two motors differs due to
the fact that the load is attached at the top of tilt axis.
Thus, a higher base speed is used for tilt operation.
Vibrations are also attributed to the characteristics of
stepper motor which moves in steps. Besides if a high
starting torque is achieved, then the amount of load it
can carry would be larger. During real time operation,
handshaking is seldom used due to time constraint. Such
constraint means that velocity changes are seldom
performed when the motor is working at high speed. In
order to achieve smooth pursuit even at high velocity
changes, a servo motor would fit this purpose well.
Nevertheless, we found that the performance of our
pan-tilt system is satisfying as no such high velocity
changes are required.

9. CONCLUSION

In this paper, it has been shown that visual processing
elements and active tracking algorithms are important
for real-time object tracking. Satisfactory results in terms
of speed, reliability and stability were achieved, even
though the hardware used for visual processing was a
modest Sun Sparc workstation. Hardware setup for the
visual system and pan-tilt were successfully calibrated to
give an optimum performance of the object tracking
system. Kalman filter prediction was proven to give
better accuracy in predicting the location of fovea
window which contains the object compared to linear
prediction. A real time features extraction method,
corner detection was used to segment the moving object
into a clster of moving corners. These corners serve as
interest points for correlation matching and provide a
stable fixation point for gaze control system. Correlation
matching was implemented successfully to match the
moving corners from frame to frame. The success rate of
matching is increased by introducing the concept of
dynamic correlation. Affine structure concept was proved
to be useful in providing a stable fixation point based on
the available temporal continuity within a moving corner.
The original concept of affine structure for 3 basis points
was modified to cater for 2 basis points. This concept is
important when the number of moving corners is
reduced to two due to occlusion or unstable corners.
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