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The migration of polydisperse particles and the formation of self-organized particle
chains in a square channel flow of non-Newtonian fluids is studied. The effects of
rheological behaviour of the fluid, solution concentration and flow rate are explored
experimentally. The direct forcing/fictitious domain method is adopted to qualitatively
verify the experiments and further analyse the mechanisms of particle migration and
particle chain self-organization. The results show that only particles in viscoelastic fluids
with negligible shear-thinning effect will remain at the channel centreline as the flow
rate increases. The monodisperse particles reach the same velocity when migrating to
the equilibrium position. However, in polydisperse suspensions, the smaller the particle
diameter, the greater the velocity when the particle migrates to the equilibrium position.
In a viscoelastic fluid, the polydisperse particles are more likely to self-organize into long
particle chains along the channel centreline than the monodisperse particles, where the
large and small particles are at the front and end of the chain. The dimensionless alignment
factor (Af ) is adopted to quantify the formation of particle chains, which is the largest in
viscoelastic fluids and rapidly increases before decreasing to a stable value as the flow rate
increases. For larger particle diameter ratios and stronger shear-thinning effect, the long
particle chain self-organization is less obvious. The self-organizing particle chains at the
channel centreline are strongly influenced by the fluid elastic properties and weakly by
the inertial effect; however, the shear-thinning effect disperses the particles and prevents
the formation of long straight particle chains.
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1. Introduction

Separation, trapping and alignment of particles as well as cells in Newtonian and
non-Newtonian fluids during chemical and biological processes have recently attracted
increasing attention among researchers (Haddadi & Di Carlo 2017; Li et al. 2020; Morris
2020; Nie & Lin 2020; Raihan et al. 2020; Lin, Chen & Gao 2021). Randomly distributed
particles in Newtonian or non-Newtonian fluids were found to migrate toward the specified
equilibrium position without the help of extra forces (e.g. electric, magnetic or optical
fields or sheath flow). Recently, the existence of self-organizing equally spaced particle
trains at the equilibrium position in a channel flow was discovered (Kahkeshani, Haddadi
& Di Carlo 2016; Morris 2016). Particles can form approximately circular limit cycles
(Majji & Morris 2018), spiral and ribbon structures (Majji, Banerjee & Morris 2018) in
the Taylor–Couette flow of a Newtonian fluid. Furthermore, the particle chains in which
particles were in contact with each other were observed in the flow of a Newtonian fluid at
the junction of a T-channel (Vigolo, Raadl & Stone 2014; Sojwal & Morris 2021) and the
simple shear flow of viscoelastic fluids (Loon et al. 2013). Specific particle structures are
essential for achieving the desired cellular architectures and arrangements in applications,
such as flow cytometry and tissue engineering (D’Avino, del Greco & Maffettone 2017;
Del Giudice et al. 2018). Therefore, studying the influence of a non-Newtonian fluid on
the particle migration and particle structure is important in clinical, industrial and research
applications.

The mechanisms of the particle migration and particle train self-organization in a
channel flow are gradually becoming clear. In a Newtonian fluid, the particle equilibrium
positions are close to the wall, whereas the number of equilibrium positions depends on
the Reynolds number, channel cross-sectional shape and particle confinement (Shao, Yu
& Sun 2008; Miura, Itano & Sugihara-Seki 2014; Hood, Lee & Roper 2015; Liu et al.
2015; Nakayama et al. 2019). In addition, Kahkeshani et al. (2016) and Hur, Tse & Di
Carlo (2010) found that single-line and staggered particle trains coexisted after particles
migrated to the equilibrium position. Some studies showed that the single-line particle
trains were conditionally stable within a limited number of particles, the leading particle
would leave the train at the downstream position (Gupta et al. 2018; Hu, Lin & Ku 2019).
Hu et al. (2021) generalized four types of stability conditions for self-organizing staggered
particle trains. In viscoelastic fluids, the particles gathered along the centreline of square
and circular channels, and migrated toward the walls because of the shear-thinning
effect (Seo, Kang & Lee 2014; Li, Mckinley & Ardekani 2015; Liu et al. 2017). Yu
et al. (2019) reported the wall midline, diagonal, corner and channel centreline particle
equilibrium positions in a viscoelastic fluid with an enhanced elastic effect. Lim et al.
(2014) used a shear-thinning viscoelastic fluid (hyaluronic acid, HA) to promote the
migration of bioparticles toward the channel centreline at Reynolds numbers of up to
10 000. Del Giudice et al. (2018) focused a single-line particle train at the square channel
centreline using a weak shear-thinning effect, and concluded that the shear-thinning effect
in viscoelastic fluids was responsible for the formation of particle trains. Liu et al. (2020b)
produced single-line particle trains with controllable spacing along the channel centreline
in a viscoelastic fluid by adopting a complex channel structure.

The exact formation mechanisms of particle chains in viscoelastic fluids are still
controversial because most previous studies only focused on simple shear flow. Michele,
Pätzold & Donis (1977) first reported monodisperse particle chains near the walls;
they found that the particles would stop rotating when the particle chain was formed.
Subsequently, several researchers postulated different hypotheses about the mechanisms
of particle chain formation. Feng, Huang & Joseph (1996) pointed out that the normal
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stress difference caused by elasticity changed the pressure distribution near the particles,
yielding particle chain formation. Lyon et al. (2001) observed the formation of long chain
structures under a high shear rate in a Boger fluid. They hypothesized that the normal
stress difference was the main reason behind the chain formation. However, Scirocco, Jan
& Jan (2004) reported that suspensions in a highly elastic Boger fluid did not exhibit any
alignment, even when the Weissenberg number was as high as 260. Won & Kim (2004)
pointed out that no chains formed during shear flow of a viscoelastic fluid, while they were
found in a shear-thinning viscoelastic fluid. They proposed that the shear-thinning effect
was the main factor affecting the formation of particle chains, and the elastic effect caused
the particle lateral migration. Hwang & Hulsen (2011) found that the chain structure in
a shear-thinning viscoelastic fluid depended on the Weissenberg number. Pasquino et al.
(2014) inferred that fluid elasticity was a necessary condition, but the shear-thinning effect
allowed particle chain formation. Loon et al. (2013) reported weak chain structures in
a pure shear-thinning fluid and inferred that shear thinning was a necessary condition,
whereas fluid elasticity played only an ancillary role in chain formation.

The aforementioned studies only focused on monodisperse suspensions, whereas there
have only been a few studies on polydisperse suspensions. Gao et al. (2019) found that
the majority of single-line particle trains in a square channel started with a large particle
and ended with a small one in a bidisperse suspension in a Newtonian fluid. Pednekar,
Chun & Morris (2018) studied the rheological properties of suspensions in Newtonian
fluids at large concentrations and found that dense particle suspensions exhibited the
properties of non-Newtonian fluids, and bidisperse and polydisperse suspensions had
lower viscosities and a weaker normal stress response compared with monodisperse
suspensions. Giesukus et al. (1978) showed that particles in a shear flow of a bidisperse
suspension in a viscoelastic fluid would form separate particle chains of either large or
small particles. Lyon et al. (2001) found that the chains possessing large particles were
first formed in a shear flow. As the shear time increased, some small particles joined the
existing particle chains. Oliveira, Otter & Briels (2013) found that bidisperse suspensions
formed the particle chains during shear flow when the shear rate was greater than a critical
value. Liu et al. (2017) used a viscoelastic microfluidic system to separate nanoscale
exosomes from the microcell culture media in a size-dependent manner. By studying the
formation of particle chains during channel flows of non-Newtonian fluids, Del Giudice
et al. (2018) and D’Avino & Maffettone (2020) found that the monodisperse suspensions
in HA solution would form short particle chains at high particle concentrations. D’Avino,
Hulsen & Maffettone (2013) found that two identical particles approached each other in
a circular channel flow of a viscoelastic fluid with moderate elasticity and small initial
interparticle spacing, and the approach dynamics disappeared at high elasticity numbers.

The aforementioned studies indicate that the mechanisms of particle chain formation
are still unclear and whether the effects of elasticity or shear thinning play the dominant
role is still controversial. In addition, studies on the polydisperse particle migration and
formation of self-organizing particle chains in a channel flow of non-Newtonian fluids,
which have a wide range of engineering applications, are very rare. Therefore, the effects
of rheological properties, elastic number, particle diameter and Reynolds number on the
particle lateral migration and formation of particle chains are explored both experimentally
and numerically. The findings will help us to understand how fluid rheology influences the
lateral migration of polydisperse particles and the formation of self-organizing particle
chains in non-Newtonian fluids.

The outline of this paper is as follows. The experimental and numerical methods
adopted are described in § 2, with the collision model and selected validation results
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reported in Appendix A. In § 3, the main results and discussions are presented. We study
the mechanisms of monodisperse and polydisperse particle migration and particle chain
self-organization in a square channel flow of non-Newtonian fluids. For examples of
typical experimental and numerical movies, supplementary movies are available at https://
doi.org/10.1017/jfm.2022.38. A summary of the findings and conclusions is given in § 4.

2. Experiments and simulations

2.1. Experimental details

2.1.1. Experimental methods
In this study, a straight square channel with a height and length of 125 μm and 7 cm,
respectively, is used. The channel is fabricated with polydimethylsiloxanes (PDMS) via
the standard soft lithography method, and a replica mould is constructed on a silicon
wafer with negative photoresists. The PDMS solution, comprising a base and curing agents
mixed at a ratio of 10:1, is poured into the mould. The mould is degassed in a vacuum
chamber for one hour, and then transferred to an oven at 80 °C for 30 min to solidify the
PDMS. After cooling, the PDMS channel is peeled, and an inlet and outlet are carefully
punched. Finally, the channel is fixed to a sliding glass and heated at 120 °C for 1 h to
ensure the bonding strength of the channel.

In order to observe the lateral migration of particles in the channel, an inverted
microscope (Nikon, elipse Ti) with a ×4 objective lens is used in bright field. A prepared
particle suspension is loaded into a syringe and connects it with the channel using a plastic
tube. The injection flow rate is adjusted using a syringe pump (Harvard Pump 11 Elite), and
the particle distribution in the channel is recorded using a high-speed camera (Memrecam
HX-6, NAC Image Technology). The controlled flow rate of the fluid in the channel is
1–300 μl min−1.

2.1.2. Suspension properties
The experimental solutions used include:

(i) Newtonian fluid: deionized water (DW). Glycerin (Sigma-Aldrich, USA) and
deionized water are thoroughly mixed at a ratio of 77:23 to ensure the density of fluid
is equal to that of the particles (density ρ= 1.05 g cm−3), the 0.1w/v% Tween 20
(Sigma-Aldrich, USA) is added to prevent particle aggregation or channel blockage.

(ii) Non-Newtonian fluids: polyvinylpyrrolidone solution (PVP, pure elastic fluid,
molecular weight (Mw) = 360 kDa, Sigma-Aldrich, USA); polyethylene oxide
solution (PEO, shear-thinning viscoelastic fluid, Mw = 4000 kDa, Sigma-Aldrich,
USA); hyaluronic acid solution (HA, shear-thinning viscoelastic fluid, Mw = 900
kDa, Sigma-Aldrich, USA); Xanthan gum solution (XT, pseudoplastic strong
shear-thinning fluid, Macklin, China). For the non-Newtonian fluids, the polymer
powder is dissolved in the above Newtonian fluid by stirring for 24 h using a
magnetic stirrer to fully dissolve the polymer powder.

The rheological properties of fluids with different concentrations (C) are measured using
an MCR rheometer (Anton Paar MCR302, torque range: 0.5–200 mN m, temperature
20 °C). The rheological properties of the aforementioned fluids are shown in figure 1
and table 1. The inertial and elastic effects can be characterized by the Reynolds
number (Re = 2ρQ/(μ0(W + H))) and Weissenberg number (Wi = λγ c = 2λQ/(HW2)),
respectively. Here, Q is the flow rate; μ0 is the viscosity; where W and H is the width
and height of the square channel cross section, respectively. λ is the fluid relaxation time,
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Figure 1. Fluid rheological properties: (a) shear viscosity for different solutions (experimental rheological data
are fitted with the Bird–Carreau model shown by the solid and dotted lines); (b) changes in storage modulus G′
and loss modulus G′′ in the PVP solution; (c) changes in storage modulus G′ and loss modulus G′′ in the PEO
solution; and (d) changes in storage modulus G′ and loss modulus G′′ in the HA solution.

which is evaluated from the measurements of the storage modulus G′ and loss modulus
G′′, as shown in figure 1(b–d). The elasticity number, El, is the ratio of the inertial and
elastic effects, i.e. El = Wi/Re = λμ(W + H)/ρW2H. The experimental rheological data
(indicated by discrete symbols in figure 1a) are well fitted with the Bird–Carreau model
(Bird & Carreau 1968; Lim et al. 2014), which are depicted in figure 1(a) by the solid and
dotted lines

η(γ̇ ) = η∞ + (η0 − η∞)[1 + (γ̇ /γ̇ ∗)2](n−1)/2, (2.1)

where η∞ is the infinite-shear-rate viscosity; η0 is the zero-shear-rate viscosity; γ̇ ∗ is a
characteristic shear rate; n is the power-law exponent, which is shown in table 1.

Monodisperse spherical particles with a diameter of D = 24.61 ± 0.22 μm (4225A,
Thermo Scientific, USA) and polydisperse spherical particles (7525A_FRE, Thermo
Scientific, USA) are diluted in the experimental solutions at a particle concentration of
0.35%. To measure the particle diameter, the polydisperse particles are dissolved in the
Newtonian fluid. Then, the free software Image J is used to analyse the experimental
images of the particle migration in a Newtonian fluid, and the results of particle position
and diameter distribution are obtained. Image J is also used to obtain the particle position
in non-Newtonian fluids. Figure 2 shows that the particle diameters varied between 16 and
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Solutions Concentration (C) n Relaxation time (s) Re Wi El

Water 0 1 0 0.078–23.3 — —
Xanthan 0.2% 0.40 ∼0 0.00015–0.04 — —
PEO 1.0% 0.65 0.044 0.00028–0.084 0.75–225 2682
HA 0.1% 0.89 0.032 0.0028–0.84 0.55–164 195

1.0% 0.63 0.037 0.00012–0.0327 0.63–177 5413
PVP 5% 1 0.002 0.002–0.6 0.04–11.3 19

8% 1 0.0035 0.0006–0.17 0.06–18 106

Table 1. Fluid concentration and parameter range (experimental flow rate Q = 1–300 μl min−1).
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Figure 2. Particle diameter distribution of polydisperse suspension (typical distribution of polydisperse
particles in a microchannel is shown in experimental inset, channel height is 125 μm).

38 μm. Thus, the blockage ratio of the monodisperse particle is 0.20, which is in the range
of 0.13–0.3 for the polydisperse suspension.

For a particle migrating in the channel, the inertial force can be evaluated as follows:

F iL = F iL w + F iL s ∼ ρD4γ̇ 2, (2.2)

where F iLw and F iLs are the wall-induced lift and shear-gradient-induced lift, respectively;
ρ is the fluid density; γ̇ is the fluid shear rate.

In a non-Newtonian fluid, a non-uniform normal stress difference will produce the
elasticity-driven lift, F eL. The first normal stress difference, N1, is much larger than the
second normal stress difference, N2. Therefore, F eL is proportional to the variation of N1
over the particle diameter, and acts along the direction of low-shear-rate region

F eL ∼ D3∇(N1γ̇
2). (2.3)

2.2. Simulation details

2.2.1. Direct forcing/fictitious domain method
Migration of neutrally buoyant spherical particles in a square channel flow of an
Oldroyd-B/Giesekus viscoelastic fluid is simulated in this study to reproduce qualitatively
selected experimental observations and analyse the mechanisms of particle migration
and particle chain self-organization. The direct forcing/fictitious domain (DF/FD) method
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is a direct numerical simulation method, which is an improved version of the earlier
distributed Lagrange multiplier/fictitious domain code. For particles in both Newtonian
and non-Newtonian fluids (Oldroyd-B/Giesekus viscoelastic fluids), the present method
was described in detail and successfully verified in our previous publications (Yu & Shao
2007; Wang, Yu & Lin 2018; Yu et al. 2019; Liu et al. 2020a); the detail of the method
can be seen in Yu & Shao (2007) and Yu et al. (2019). Here, we only briefly describe the
DF/FD algorithm in the following:

Momentum equations

∂u
∂t

+ u · ∇u = μr∇2u
Re

− ∇p + (1 − μr)∇ · B
ReWi

λp in Ω, (2.4)

u = U + ωp × r in P(t), (2.5)

(ρr − 1)V∗
p

dU
dt

= −
∫

P
λp dx, (2.6)

(ρr − 1)J∗ d(ωp)

dt
= −

∫
P

r × λp dx. (2.7)

Continuity equation
∇ · u = 0 in Ω. (2.8)

For the viscoelastic fluid, the Giesekus constitutive equation is used

∂B
∂t

+ u · ∇B − B · ∇u − (∇u)T · B + 1 − n
Wi

(B − I)2 + B − I
Wi

= 0 in Ω, (2.9)

where u and p are the fluid velocity and pressure, respectively; λp is the Lagrange
multiplier (pseudo body force); μr is the ratio of the solvent viscosity (μs) to the total
zero-shear-rate viscosity of the fluid (μ0); Ω is the entire domain including the interior
and exterior of the solid particle; U and ωp are the particle translational velocity and
angular velocity; r is the position vector with respect to the mass centre of the particle;
ρr is the particle–fluid density ratio, ρr = ρs/ρ (ρs is the particle density), here ρr = 1;
V∗

p =Vp/H3 is the dimensionless particle volume, Vp is the particle volume; J∗ = J/ρsH5

is the dimensionless moment of inertia; B is the configuration tensor, which is related
to the polymer stress tensor τ = ηp(B − I)/λ; n is the mobility parameter to quantify
the shear-thinning effect (where n = 1 gives the Oldroyd-B constitutive equation with
consistent viscosity).

When a spherical particle approaches another particle or a wall, a collision model
is introduced in the adopted numerical method. The model is described in detail in
Appendix A, and the corresponding validation is shown in figure 24.

2.2.2. Simulation set-up
The lateral migration of the neutrally buoyant spherical particles with different diameters
in a straight square channel flow of an Oldroyd-B/Giesekus viscoelastic fluid is
schematically shown in figure 3. A Cartesian reference frame is considered with the
origin at the channel centreline. The periodic boundary condition along the x direction
is introduced with a constant pressure gradient to sustain the channel flow, and a
no-slip boundary condition is applied on the channel walls. The length and the time
are scaled as the channel height H and the characteristic velocity U0 at the channel
centreline, respectively. The channel length (periodic), height and width are denoted
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L

H

H

y z
xU0 Dsmall

Dbig

P5P4 P3 P2 P1

ds0

Figure 3. Schematic of polydisperse particle migration in three-dimensional square channel flow of
Oldroyd-B/Giesekus viscoelastic fluid. Polydisperse particles are initially placed with equal initial spacing (ds0)
at an off-centre location (din = (y/H, z/H) = (−0.1, −0.1)). Particles will migrate toward the channel centreline
and form a particle chain at a downstream position.

as L, H and H, respectively. The computational domain spans [−L/2, L/2] × [−H/2,
H/2] × [−H/2, H/2], corresponding to dimensionless values of 4 × 1 × 1, and the mesh
number is 512 × 128 × 128 along the x, y and z directions, respectively. The mesh size is
h = H/128, the time step size is 5 × 10−4. The Reynolds number in the numerical method
is Re = U0ρH/μ0, where U0 is the maximum velocity of the fluid at the channel centre.
To study the mechanisms of the lateral migration and particle chain self-organization,
particles are initially released at an off-centre location (din = (y/H, z/H) = (−0.1, −0.1)).
The initial spacing between two neighbouring particle surfaces is fixed as ds0 = 0.1. The
diameter of the large particle is fixed using the blockage ratio k = D/H = 0.3, and the
blockage ratios of other particles are changed from 0.1 to 0.3. The ratio of diameters of the
largest and smallest particles is defined as ε= Dbig/Dsmall. In order to describe the particle
migration process clearly, the particles are numbered as P1, P2, P3, P4 and P5 from right
to left, their corresponding diameters are D1, D2, D3, D4 and D5, and the subscripts 1, 2,
3, 4 and 5 are used to denote the serial number of the particles, respectively.

3. Results and discussion

3.1. Formation of particle chain
Figure 4(a,c) shows that, in the viscoelastic PVP solution (C = 5%) with Re = 0.24 and
Wi = 4.5 (Q = 120 μl min−1), the final equilibrium position of laterally migrating particles
in the polydisperse suspension is at the channel centreline. This is consistent with the
observations of monodisperse particle migration reported in previous experimental and
numerical studies (Li et al. 2015; Del Giudice et al. 2018; Yu et al. 2019). Images are
acquired at 30 000 images per second. The particles at the equilibrium position can form
long straight particle chains, in which the particles are in contact with each other. The
large and small particles are located at the front and the end of the chain, respectively. The
simulated two (D1 = 0.28, D2 = 0.21, Re = 0.24, Wi = 4.5) and five particles (D1 = 0.30,
D2 = 0.25, D3 = 0.24, D4 = 0.22, D5 = 0.20, Re = 1.0, Wi = 2.0) self-organize the chain in
a square channel flow of an Oldroyd-B fluid, as shown in figure 4(b,d), respectively. The
small particles in figure 4(b,d) will catch up with the large ones and form long straight
particle chains, regardless of the number of particles. The experimentally observed particle
chains are qualitatively reproduced by the adopted numerical method. In order to control
the influence of the initial interparticle spacing on the particle chain formation process,
in the numerical simulations two particles (D1 = 0.28, D2 = 0.21, Re = 0.24, Wi = 4.5) are
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Flow direction
Experiment
Simulation

0.2

0.1

0 5 10 15

ds

Δt

(a) (e)

(b)

(c)

(d)

Figure 4. (a) Experimental results for two particles (channel height is 125 μm); (b) numerical results for
two particles in the XOZ plane (i.e. at y = 0), two particles are initially released at channel centreline with
ds0 = 0.15; (c) experimental results for six particles (channel height is 125 μm); (d) numerical results for five
particles in the XOZ plane (i.e. at y = 0), particles are initially released at an off-centre location (din = (y/H,
z/H) = (−0.1, −0.1)); and (e) comparison of experimental and numerical interparticle spacing for two particles
(values of t in experiments are sampling times of the high-speed camera, and in simulations are the calculated
dimensionless time).

initially placed at the channel centreline with ds0 = 0.15. A quantitative comparison is
shown in figure 4(a,e). The simulated changes in the interparticle spacing with time agree
well with the experimental results (figure 4a).

3.2. Effect of diameter ratio
In order to describe the range of particle migration, a dimensionless migration factor
(	y/D) is defined as	y/D = (ypmax − ypmin)/D, where ypmax and ypmin are the maximum and
minimum positions of the particles, respectively. The dimensionless alignment factor (Af )
is adopted to quantify the formation of particle chains as Af = ∑Lmax

L=1 NLL2/
∑Lmax

L=1 NLL,
where NL is the number of particle chains that contain L particles (Pasquino et al. 2014).
All the particles are separated if Af = 1, thus Af is always ≥1.

In the PVP solution (C = 5%) with Wi = 1.5 (Q = 40 μl min−1), the distributions of
monodisperse and polydisperse particles in square channel flow are shown in figure 5(a,b).
All the particles migrate toward the channel centreline. However, from the distributions
of polydisperse particles at different flow rates shown in figure 5(c), it can be seen that
not all the particles can migrate toward the centreline when Wi = 0.038 (Q = 1 μl min−1).
Figure 5(d) shows that the migration factor (	y/D) in the polydisperse suspension is larger
than that in the monodisperse suspension at a low flow rate. As the flow rate increases,
the value of Wi is also increased, the migration factors for both the polydisperse and
monodisperse suspensions decrease rapidly and particles tend to congregate on the channel
centreline with the same migration factor. In the monodisperse suspension, only short
particle pairs are formed and the alignment factor is not changed significantly with the
increase in Wi and Q. Conversely, polydisperse particles can form long chains, even in this
diluted suspension when the Weissenberg number is larger than 0.1875 (Q = 5 μl min−1).
The alignment factor increases rapidly with the flow rate, then decreases slightly and
eventually tends to a stable value. The alignment factor in the polydisperse suspension is
larger than that in the monodisperse suspension, which means the polydisperse suspension
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Figure 5. Particle migration and self-organizing particle chains: (a) typical image of monodisperse
suspension; (b) typical image of polydisperse suspension; (c) distributions of polydisperse suspension for
different Weissenberg numbers; and (d) migration and alignment factors for different Weissenberg numbers.

particles are more likely to self-organize into long particle chains at the channel centreline
than those in the monodisperse suspension.

The numerical results of velocities and interparticle spacings for particles with the same
diameter (ε= 1.0, D = 0.3, Re = 1.0, Wi = 1.0, and ds0 = 0.1) in the Oldroyd-B fluid are
presented in figure 6(a). The interparticle spacing (ds) is calculated between the nearest
surface points as ds = xD1 − xD2 − (D1 + D2)/2. In the Oldroyd-B viscoelastic fluid, the
normal stress will push particles to the centre of the channel, where the shear rate is
zero. Therefore, the process of five particle cross-stream migration occurs first, and once
they have reach the stable equilibrium position (channel centreline), a particle train with
a nearly equal interparticle spacing is formed in the second stage. The velocity of each
particle reaches the same value when migrating at the equilibrium position. Figure 6(b)
shows the final flow field and the three-dimensional particle structure in the XOZ plane
(i.e. at y = 0). There are two independent vortices formed between two neighbouring
particles after the train is formed at the equilibrium position.

To study the influence of the initial interparticle spacing (ds0), two equal particles
with different ds0 are initially placed at the channel centreline (ε= 1.0, D = 0.3, Re = 1.0,
Wi = 1.0 and din = (0, 0)). The evolutions of the interparticle spacing ds for different ds0
are compared in figure 7. The lagging particle will slowly approach the leading one when
the initial particle distance is small (i.e. ds0 = 0.025–0.2), while the spacing between the
two particles with a large initial distance (i.e. ds0 = 0.25–0.75) does not change obviously.
Therefore, the self-organization of the long straight particle chain in figure 5(a) is not
obvious, and only some short particle pairs are formed (the value of ds is 0) in the
monodisperse suspension when the initial interparticle spacing is small.

To examine the effect of diameter ratio (ε) on the particle migration behaviour at
the second stage, two particles with different diameter ratios are initially placed at the
channel centreline with the same initial interparticle spacing (ds0 = 0.3). The results in
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Figure 6. Evolution of particle velocity and spacing for particles with equal diameter (ε= 1.0, D = 0.3,
Re = 1.0, Wi = 1.0 and ds0 = 0.1): (a) the upper figure shows the velocity evolution, the lower figure shows
the spacing evolution; and (b) final three-dimensional particle structure in the XOZ plane (i.e. at y = 0).
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Figure 7. Evolution of two particle surface spacing with different initial distances (D = 0.3, Re = 1.0,
Wi = 1.0 and din = (y/H, z/H) = (0, 0)).

figure 8 clearly show that the interparticle spacing between the two particles with the
same diameter is not changed. When the diameter of the leading particle is larger than that
of the lagging one (i.e. ε > 1.0), the small particle catches up to the larger one and forms
a short particle chain (ds = 0). Furthermore, the smaller the lagging particle, the faster is
the particle chain formed. Conversely, no particle chain is formed when the diameter of
the leading particle is smaller than that of the lagging one (i.e. ε < 1.0).

In the Oldroyd-B viscoelastic fluid when Re = 1.0, Wi = 1.0, the migration process
of five particles with different diameters (ε= 1.15, D1 = 0.30, D2 = 0.29, D3 = 0.28,
D4 = 0.27 and D5 = 0.26) is analysed in figure 9. Yu et al. (2019) found that a particle first
migrated toward the cross-section diagonal line, and then moved to the channel centreline
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Figure 8. Evolution of spacing of two particles with different diameter ratios (Re = 1.0, Wi = 1.0, ds0 = 0.3
and din = (y/H, z/H) = (0, 0)).

along that diagonal line. Additionally, the results shown in figure 9(a) demonstrate that
all particles with different diameters migrate diagonally toward the channel centreline,
which is consistent with Yu et al. (2019). Figure 9(b) shows that the particles will
reach the equilibrium position at a downstream position at approximately 100 times the
channel height. As shown in (2.3) and (2.4), the inertial force and elasticity-driven lift
are proportional to the particle diameter, thus larger particles will migrate toward the
equilibrium position faster than small particles. While figure 9(b) further shows that
the velocity of each particle (along the flow direction) at the equilibrium position is
different, the small particle has a larger velocity than the larger ones. The evolutions of
interparticle spacing along the flow direction shown in figure 9(c,d) clearly demonstrate
that the self-organized particle train with nearly equal spacing has disappeared. After all
the particles migrate to the equilibrium position at the channel centreline, the smaller
particles (in figure 9b) will move faster than the larger ones and catch up with them. Then,
the long straight particle chain is formed (the value of ds in figure 9c is 0). The particles
in the chain are in contact with each other, and the largest and smallest particles are at
the front and the end of the chain (figure 9d), respectively. Figure 9(d) shows the final
flow field and the three-dimensional particle structure on the XOZ plane (i.e. at y = 0). It
can be seen that the vortices between particles disappear after particle chain formation.
In addition, all the particles in the chain migrate along the flow direction with the same
velocity as a single system. This process is also shown in supplementary movie 1.

The effect of diameter ratio (ε) on the formation of the particle chain is analysed in
figures 9 and 10. The insets in figure 10 show the typical particle distribution along the
flow direction. The final particle structures and flow fields are compared in figure 11(a,b).
When the diameter of the smallest particle is reduced to D = 0.2, as shown in figure 10(a),
a long straight particle chain is also formed at the channel centreline. Then, the formed
particle chain bends slightly and remains stable at a further downstream position. For
further increase of the diameter ratio, as shown in figure 10(b), the long particle chain
formation at the channel centreline is less obvious, the length of the stable particle chain
is reduced and the interparticle spacing is changed significantly.
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Figure 9. Migration of particles with Wi = 1.0, Re = 1.0, and ε= 1.15 (five particles with diameters D1 = 0.30,
D2 = 0.29, D3 = 0.28, D4 = 0.27 and D5 = 0.26 are initially ordered from smallest to largest along the flow
direction): (a) trajectories of particles with different diameters in channel cross-section; (b) evolution of particle
trajectories in the XOZ plane and particle velocity along the flow direction; (c) evolution of interparticle
spacing; and (d) final three-dimensional particle structure in the XOZ plane (i.e. at y = 0) (see supplementary
movie 1).

Because the inertial force and the elasticity-driven lift are proportional to the particle
diameter, small particles migrate toward the channel centreline more slowly than the
bigger ones, which can clearly be seen in figure 11(c). Thus, the small particles required
a longer migration time and travel distance to reach the channel centreline. In addition,
the small particles are affected by the vortices of the formed particle chain, which will
keep them away from the channel centreline. This is more obvious for the larger diameter
ratio (figure 11b). Thus, the self-organization of long particle chains is less obvious for the
particles with a large diameter ratio.

When the particles migrate to the channel centreline, as shown in figure 9(b), the
velocity of the small particles is greater than that of the large particles. According to the
Faxen law, a finite sized particle in a parabolic Stokes flow exhibits only a streamwise
translational slip velocity with respect to the local unperturbed flow, u∞ (Abbas et al.
2014). Faxén (1922) first derived the expressions for the drag force, F d, exerted by the fluid
on a rigid particle of radius a as F d = 6πμsa[u∞ − U s] + πμsa3∇2u∞, where U s is the
streamwise translational slip velocity of the particle. Thus, after the particles migrate to the
channel centreline, their velocity can be evaluated as u∞ − U s ∼ (−a2∇2u∞/6), which
is inversely proportional to the particle size. Thus, small particles will move faster than
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Figure 10. Migration of particles with different diameter ratios (ε). Five particles are initially ordered from
smallest to largest along the flow direction: (a) ε= 1.5, D1 = 0.30, D2 = 0.25, D3 = 0.24, D4 = 0.22 and
D5 = 0.20 (please note that the interparticle spacing is defined between the nearest surfaces, e.g. for the fourth
and fifth particles, ds = xD4 − xD5 − (D4 + D5)/2, thus the particle spacing will be negative when particle chain
is bent); and (b) ε= 3, D1 = 0.30, D2 = 0.25, D3 = 0.20, D4 = 0.15 and D5 = 0.10. The insets are the typical
particle structures in the XOZ plane (i.e. at y = 0).
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Figure 11. Final three-dimensional particle structure and flow field in the XOZ plane (i.e. at y = 0) when
ε= 1.5 (a); ε= 3.0 (b); and (c) evolution of particle trajectories in XOZ plane (solid line) and XOY plane
(dotted line).

larger particles, and will catch up with them to form the particle chain. In order to compare
quantitatively the effect of particle diameter ratio, the maximum particle velocities after
migrating to the equilibrium position for different ε are compared in figure 12. When
the particle diameters are equal (ε= 1.0), the particle velocity is not changed obviously.
However, as the particle diameter ratio increases, the trend changes more obviously, i.e.
the smaller the particle diameter, the greater the velocity when the particle migrates to the
equilibrium position.

The travel distance (xchain) and migration time (t′chain) are particularly important for
microfluidic applications to ensure particle separation and sorting. The effect of diameter
ratio on the travel distance and migration time required to form the particle chain is shown
in figure 13. Additionally, the values for two particles to form a chain (shown in figure 8)
are compared here. The travel distance and migration time for the migrating particle pair
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Figure 12. Maximum velocity for five particles (up) at the equilibrium position. Particle diameter
is increased from top to bottom as indicated by red arrow: ε= 1.0 (D1 = D2 = D3 = D4 = D5 = 0.3),
ε= 1.07 (D1 = 0.30, D2 = 0.295, D3 = 0.29, D4 = 0.285, D5 = 0.28), ε= 1.15 (D1 = 0.30, D2 = 0.29,
D3 = 0.28, D4 = 0.27, D5 = 0.26), ε= 1.25 (D1 = 0.30, D2 = 0.285, D3 = 0.27, D4 = 0.255, D5 = 0.24),
ε= 1.36 (D1 = 0.30, D2 = 0.28, D3 = 0.26, D4 = 0.24, D5 = 0.22), ε= 1.50 (D1 = 0.30, D2 = 0.25, D3 = 0.24,
D4 = 0.22, D5 = 0.20), ε= 2.0 (D1 = 0.30, D2 = 0.25, D3 = 0.20, D4 = 0.175, D5 = 0.15), ε= 3.0 (D1 = 0.30,
D2 = 0.25, D3 = 0.20, D4 = 0.15, D5 = 0.10).
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Figure 13. Travel distance and migration time required to form the particle chain for different diameter ratios.

decrease monotonically with increasing diameter ratio. When five particles migrate to
the channel centreline, the particle chain is formed sequentially, for which the four travel
distances and migration time are compared in figure 13. The leading and second particles
need the smallest travel distance and migration time to form a particle chain (Chain1−2),
and then the remaining particles sequentially join. The four plots in figure 13 show that
the travel distance and migration time required to form the particle chain decrease first
with increasing diameter ratio. This is consistent with the former conclusions that the
smaller particles move faster than the larger ones and catch up with them to form the chain.
The opposite is also true, i.e. no particle chain is formed for the particles with the same
diameter. However, when the particle diameter ratio is further reduced, the travel distance
and migration time to form the particle chain increase slowly. When the diameter of the
lagging particle is reduced to 0.1, the fourth and fifth particles never join the particle chain,
as shown in figures 10(b) and 11. When small particles migrate to the channel centreline,

936 A5-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.38


X. Hu, P. Lin, J. Lin, Z. Zhu and Z. Yu

(a)

(b)

(c)

(d)

Figure 14. Migration and formation of particle chains in four non-Newtonian fluids with the same flow rate
(Q = 40 μl min−1): (a–d) typical images of particles in PVP, HA, PEO and XT solutions, respectively (see
supplementary movies 2, 3, 4).

(a)

(b)

(c)

(d)

Figure 15. Migration and formation of particle chains in four non-Newtonian fluids with the same flow rate
(Q = 300 μl min−1): (a–d) typical images of particles in PVP, HA, PEO and XT solutions, respectively (see
supplementary movies 5, 6, 7).

they will move away from the equilibrium position at a large velocity (see in figure 12)
under the influence of the vortices shed by the other particles, the length of the formed
particle chain is reduced and the self-organization of the particle chain is less obvious for
the particles with a large diameter ratio.

3.3. Effect of rheological properties
The effect of shear-thinning properties on the particle migration and formation of particle
chains in polydisperse suspensions are further analysed in this section. As shown in table 1,
the power-law exponents of PVP (C = 5%), HA (C = 0.1%), PEO (C = 1.0%) and XT
(C = 0.2%) solutions are 1, 0.89, 0.65 and 0.4, respectively. Those values mean that the
shear-thinning effect in the XT solution is the strongest, while it is negligible in the
PVP solution. The distributions of the polydisperse particles in the four non-Newtonian
fluids at the same flow rate are compared in figure 14 (Q = 40 μl min−1), figure 15
(Q = 300 μl min−1) and figure 16. The process of self-organization of particle chains can
be seen in supplementary movies 2–7.

In the XT solution, the particles in figures 14(d) and 16(a) congregate near the channel
centreline and walls, and only short particle chains are formed near the walls when
Q = 40 μl min−1. With increasing flow rate (Q = 300 μl min−1), as shown in figures 15(d)
and 16(b), the number of particles near the walls is greatly reduced, and the distribution
of particles near the channel centreline becomes wider. However, no particle chain is
formed, indicating that such particle chains do not exist in strong shear-thinning solutions
with negligible elasticity. In the shear-thinning viscoelastic PEO solution, figures 14(c)
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Figure 16. Particle distributions in four non-Newtonian fluids: (a) PVP, HA, PEO and XT solutions with
Q = 40 μl min−1; and (b) PVP, HA, PEO and XT solutions with Q = 300 μl min−1 (horizontal lines in this
figure are the numerical results in the Giesekus viscoelastic fluid (Re = 1.0 and Wi = 1.0), EXP and Sim are
abbreviation for experiments and simulations.

and 16(a) show that all the particles migrate to the channel centreline and form the long
particle chain when Q = 40 μl min−1. As the flow rate increases to Q = 300 μl min−1,
figures 15(c) and 16(b) show that the formed long straight particle chains at the centreline
have disappeared, many short particle pairs and short curved particle chains have formed
in a wide range of channel cross-section by the effect of shear thinning. In HA and PVP
solutions, as shown in figures 14(a,b), 15(a,b) and 16, the particles remain at the channel
centreline and long particle chains still exist within the present experimental flow rate.

As shown in figure 16(b), the positions of particles (ε= 1.5, 2.0 and 3.0) are numerically
simulated in a Giesekus viscoelastic fluid for a travel distance of 200. The strong nonlinear
characteristics of the constitutive equation of the viscoelastic fluid and the large values
of the Weissenberg number often make the problem computationally challenging (Del
Giudice et al. 2018; Yu et al. 2019). Due to this drawback of our algorithm, it is
incapable of dealing with relatively high Weissenberg numbers and has difficulty in exactly
modelling the rheological properties of complex fluids used in the present experiments.
Nevertheless, we have managed to reproduce qualitatively some experimental results for
Re = 1 and Wi = 1, and power-law exponents n = 1.0, 0.8, 0.6, 0.4. The experimental
particle distribution in four different non-Newtonian fluids is compared with the numerical
results in figure 16(b). The particles aggregation decreases as the diameter ratio increases,
and on decreasing the power-law exponent value, i.e. the particles aggregate in the wider
area of the channel cross-section under the stronger shear-thinning effect and higher
diameter ratios. This is essentially consistent with the experimental results (figures 5a,b,
14 and 15).

In the present experiments, the highest fluid Reynolds numbers are 0.6, 0.84, 0.084 and
0.04 in PVP, HA, PEO and XT solutions, respectively. The elasticity numbers (table 1) are
2682, 195 and 19 for the PEO (C = 1.0%), HA (C = 0.1%) and PVP (C = 5%) solutions,
respectively. Thus, the inertial effect is relatively small, and the particle migration is
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Figure 17. Changes in migration and alignment factors with Reynolds number: (a) XT and PEO solutions;
and (b) PVP and HA solutions.

dominated by the elasticity effect. The particle chain in the PEO solution is the first to
break (figure 15c), even though the elasticity number is the highest. The migration and
alignment factors of the PEO solution (figure 17a) decrease first, but then slowly increase
because of the increasing effect of shear thinning at higher flow rates, and more short
curved particle chains are formed in a wider channel cross-sectional area (figure 15c).

Figure 17(b) shows that in the HA and PVP solutions, the migration factor first decreases
rapidly and then remains unchanged, whereas the alignment factor first increases and then
slowly decreases to a stable value. The alignment factor in the PVP solution is the highest,
even though the elasticity number is the smallest, indicating that the formation of long
straight particle chains at the channel centreline is the most obvious in the viscoelastic
fluid with a negligible shear-thinning effect.

The shear-thinning property of the Giesekus fluid is quantified in its constitutive
equation by the mobility parameter n ((2.9)), and it becomes stronger with decreasing
n. The influence of n on the behaviour of self-organizing particle chains is shown in
figure 18 for Re = 1.0, Wi = 1.0 and x/H = 300, respectively. It can be seen in figure 18(a,b)
that a short curved particle chain can form near the channel centreline in the Gieselus
viscoelastic fluid with n = 0.8, which as different from the long particle chains formed at
the channel centreline of the Oldroyd-B fluid (figure 10a). In addition, the formation of
short particle chains is less obvious at larger diameter ratios, the small particles keep away
from the channel centreline (figure 18b).

When n is decreased further to 0.4 (figure 18c,d), only the largest particle (D = 0.3)
migrates to the equilibrium position. Other particles stay away from the channel centreline
and the particle distribution becomes wider in the flow field. This is consistent with the
present experiments that show wider particle distributions when the shear-thinning effect
is enhanced (figures 16 and 17). In addition, the self-organization of particle chains is no
longer obvious, and the vortex structures between particles become more complicated.
The main reason for this phenomenon is that the parabolic velocity profile of the channel
flow is flatter with the higher shear-thinning effect, and the equilibrium positions of the
particles are also distributed in a wider part of the channel cross-section (Yu et al. 2019;
Hu et al. 2020). Thus, the small particles seldom migrate to the channel centreline by the
shear-thinning effect and the vortex structures.
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Figure 18. Typical images of particle distributions and fluid velocity in the XOZ plane (i.e. at y = 0) in
Giesekus fluid with Re = 1.0, Wi = 1.0, and x/H = 300: (a) n =0.8, ε= 1.5, D1 = 0.30, D2 = 0.25, D3 = 0.24,
D4 = 0.22 and D5 = 0.20; (b) n = 0.8, ε= 3, D1 = 0.30, D2 = 0.25, D3 = 0.20, D4 = 0.15 and D5 = 0.10;
(c) n = 0.4, ε= 1.5, D1 = 0.30, D2 = 0.25, D3 = 0.24, D4 = 0.22 and D5 = 0.20; and (d) n = 0.4, ε= 3,
D1 = 0.30, D2 = 0.25, D3 = 0.20, D4 = 0.15 and D5 = 0.10. The particles are initially ordered from smallest
to largest along the flow direction with din = (y/H, z/H) = (−0.1, −0.1).

The numerical results further confirm that the formation of long particle chains on the
channel centreline is mainly promoted by the fluid elasticity. The shear-thinning effect
disperses the particles and prohibits the formation of long straight particle chains at the
channel centreline.

3.4. Effect of elasticity number
The formation of particle chains in the PEO and XT solutions is not obvious, especially
at high shear rates. As shown in table 1, the values of Wi and El can be increased by
improving the fluid concentration, thus, only the migration of polydisperse suspensions
for different concentrations in the PVP (C = 5%, 8%) and HA (C = 0.1%, 1.0%) solutions
are compared herein to further explore the effect of fluid elasticity on the particle lateral
migration and formation of particle chains.

By comparing figure 19(a,b,e) with figures 14(a) and 15(a), the polydisperse particles
in the PVP solutions with different fluid concentrations migrate toward the equilibrium
position. As shown in figure 19(e), the particles in the PVP solution with the higher fluid
concentration migrate to the channel centreline faster at a low flow rate, and the two plots
of the migration factor converge to the same value. The alignment factor in figure 19(e)
is decreased with increasing fluid concentration, but the two plots have a similar trend.
By contrast, as shown in figures 19(c,d, f ), 14(b) and 15(b), the particles also migrate to
the channel centreline faster under the higher concentration of the HA solution at a low
flow rate, but the particle distribution at the higher fluid concentration become slightly
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Figure 19. Particle migration and formation of particle chains in PVP and HA solutions: (a) PVP, C = 8%,
El = 106, Q = 40 μl min−1; (b) PVP, C = 8%, El = 106, Q = 300 μl min−1; (c) HA, C = 1.0%, El = 5413,
Q = 40 μl min−1; (d) HA, C = 1.0%, El = 5413, Q = 300 μl min−1; (e) changes in migration and alignment
factors in PVP solution with C = 5% and C = 8%; and ( f ) changes in migration and alignment factors in HA
solution with C = 0.1% and C = 1.0%. Changes in migration and alignment factors with Reynolds number.

wider with the increase in the flow rate. Figure 19(c,d, f ) shows that the appearance of
a long straight particle chain is no longer obvious under the higher concentration of the
HA solution, and the particles remain separated at the low flow rate. When the flow rate
is increased, the alignment factor increases slowly when the migration factor increases,
and the short particle pairs are formed within a wider channel cross-sectional area, which
is consistent with the phenomenon observed in the PEO solution. Considering jointly the
results in figure 1 and table 1, it can be seen that the shear-thinning effect in the HA
solution increases rapidly with the increase in the fluid concentration, the particles will
migrate away from the channel centreline and long particle chains are less obvious due to
the shear-thinning effect.

The effect of elastic number (El = Wi/Re, with Re = 1) on the formation of particle
chains in the Oldroyd-B viscoelastic fluid is studied for ε= 1.5. When El = 0 (Newtonian
fluid), as shown in figure 20(b), the particles with different diameters migrate to
the vicinity of the wall. No particle chains are formed, which is consistent with the
experimental results shown in the inset in figure 2. Because the particle diameters are
different, small particles will be affected by two different vortices produced by the
neighbouring two particles, causing them first to move closer to and then further away
from the other particles in an oscillatory fashion along the flow direction. When the
particle diameters are equal, there is no fluctuation in the spacing between particles in the
viscoelastic (figure 6b) or Newtonian fluid (Hu et al. 2019). When El is increased to 0.01,
particles in the Oldroyd-B fluid begin to migrate toward the channel centreline; however,
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Figure 20. Effect of elasticity number on particle migration in the Oldroyd-B fluid with ε= 1.5. The five
particles with diameters D1 = 0.30, D2 = 0.25, D3 = 0.24, D4 = 0.22 and D5 = 0.20 are initially ordered from
smallest to largest along the flow direction with din = (y/H, z/H) = (−0.1, −0.1): (a) particle distribution in the
XOZ plane (i.e. at y = 0) when El = 0.01, and x/H = 300; (b) evolution of interparticle spacing with El = 0; and
(c) evolution of interparticle spacing with El = 2.0.

as shown in figure 20(a), they do not reach a stable stage on the channel centreline because
of the weak elastic effect. Thus, the large particles are subjected to a stronger elastic
force and move faster toward the channel centreline than the other particles. The vortex
pattens between particles are complex and the particle distribution is irregular, the small
particles are affected by the vortices shed by the larger ones and particle chains cannot
form. Increasing El further to 1.0 and 2.0 (figures 10a and 20c), all the particles in the
Oldroyd-B fluid migrate to the equilibrium position at the channel centreline and form a
long particle chain.

The effect of elastic number (El = Wi/Re, with Re = 1) on the travel distance (xchain)
and migration time (t′chain) required to form the particle chain (figures 10a and 20a,c)
are compared in figure 21. After the five particles migrate to the channel centreline, the
leading and second particles form the chain (Chain1−2) first, and then the remaining
particles join them one by one. The travel distance and migration time required to form
the long particle chain decrease monotonically with increasing elastic number. In addition,
as shown in figures 10(a) and 20(a,c), the travel distance required to maintain a stable
particle chain along the flow direction is increased at higher El values. In other words,
the particles forming a stable particle chain become faster at higher El values. Thus,
the present numerical results are consistent with the experimental observations that the
particle migration to the channel centreline and formation of long straight particle chains
are mainly promoted by fluid elasticity.

As mentioned previously, an ability to conduct simulations with relatively large
Weissenberg numbers, such as those used in the present experiments, is a limitation of
the numerical method. Thus, only Weissenberg numbers of up to 2.0 are considered in the
simulations. A decrease in the alignment factor at large Weissenberg numbers is not found
in the present numerical results.
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Figure 21. Travel distance (xchain) and migration time (t′chain) to form the particle chain at different elastic
numbers (El = Wi/Re, with Re = 1).

3.5. Effect of Reynolds number
Because the microfluidic chip cannot operate at excessive experimental pressures and
flow rates, and the limitation of our high-speed camera in capturing particle distributions
at large flow rates related to the maximum frames per second taken, the observed
experimental fluid inertial effects reported in table 1 are always negligible. Thus, only the
numerical results are used to analyse the effect of Reynolds number on particle migration
and self-organization of particle chains in Oldroyd-B fluid.

As shown in figures 10(a) and 22, the variation of the interparticle spacing between
two neighbouring particles along the flow direction is increased as the Reynolds number
increases. When the Reynolds number increases to 50, the self-organization of long
straight particle chain at the channel centreline is no longer obvious. As the travel distance
increases, the small particles eventually catch up with the leading ones and form a curved
particle chain. The final formed particle chain is shown in figure 10(a) and the insets in
figure 22, which show essentially the same structural characteristics. Thus, the inertial
effect has a weaker influence on the formation of the particle chain than the shear-thinning
effect, which is consistent with the experimental results (figures 14, 15 and 17).

The effect of Reynolds number (here for Wi = 1) on the travel distance (xchain) and
migration time (t′chain) required to form the particle chain (figures 10a and 22) are
compared in figure 23. The travel distance and migration time required to form the long
particle chain increase with increasing Reynolds number. The effects of fluid inertia on the
travel distance and migration time will be more obvious for the formation of particle chains
with small particles, i.e. the values of xchain and t′chain required to form the Chain3−4 and
Chain4−5 increase markedly (figure 23). The elasticity-induced particle migration toward
the channel centreline depends very strongly on the Weissenberg number, whereas the
Reynolds number plays a negative role (Yu et al. 2019). Thus, with a stronger inertial
effect, the small particles need to cover a longer distance to reach the channel centreline
and a longer travel distance is required to form the particle chain.

4. Summary

In this work, the migration of polydisperse and monodisperse particles and formation of
self-organizing particle chains in the square channel flow of non-Newtonian fluids are
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Figure 22. Effect of Reynolds number on self-organizing particle chains in the Oldroyd-B fluid with Wi = 1.0,
and ε= 1.5, five particles with diameters D1 = 0.30, D2 = 0.25, D3 = 0.24, D4 = 0.22 and D5 = 0.20 are
initially ordered from smallest to largest along the flow direction with din = (y/H, z/H) = (−0.1, −0.1):
(a) evolution of interparticle spacing at Re = 10; and (b) evolution of interparticle spacing at Re = 50. The
insets are the typical particle distribution and the fluid velocity in the XOZ plane (i.e. at y = 0).
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Figure 23. Effect of Reynolds number (Wi = 1) on travel distance (xchain) and migration time (t′chain) required
to form the particle chain.

studied experimentally. The DF/FD method is adopted to elaborate qualitatively on the
experimental results and analyse the mechanisms of particle chain self-organization in
Oldroyd-B/Giesekus viscoelastic fluids. The following main conclusions are obtained.

In a Newtonian fluid, the polydisperse particles migrate toward the equilibrium position
near the walls. In a fluid with strong shear-thinning effect, particles are distributed near the
channel centreline and walls and the migration factors remain constant. In shear-thinning
viscoelastic fluids, the migration factor of the polydisperse suspension first decreases and
then increases slowly with an increase of the flow rate. Only the particles in a viscoelastic
fluid with negligible shear-thinning effect remain on the channel centreline as the flow
rate increases. The migration velocity in polydisperse suspensions is slower than that in
the monodisperse suspension at low flow rates. The velocities of monodisperse particles
reach the same value when migrating to the equilibrium position. For the polydisperse
particles at the equilibrium position, the velocity of the small particle is greater than that
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of the large ones, and the smaller the particle diameter, the greater the velocity when the
particle migrates to the equilibrium position.

In a viscoelastic fluid, long straight particle chains are self-organized on the channel
centreline in polydisperse suspensions, with an alignment factor that is increased rapidly,
and then decreased to a stable value as the flow rate increases. Small particles at the
equilibrium position move faster than the larger ones and then catch up with them to form
a particle chain, in which the large and small particles are located at the front and the
end of the chain, respectively. On the other hand, in the monodisperse suspensions, only
some short particle pairs are formed at the channel centreline when the initial interparticle
spacing is small. With increasing diameter ratio, the self-organization of long particle
chains is less obvious, and the length of stable particle chains is reduced. The travel
distance and migration time required to form the particle chain decreases first, and then
slowly increases. There is also no particle chain formed at the equilibrium position in the
Newtonian fluid. Overall, the formation of long particle chains at the channel centreline
depends strongly on the fluid elasticity number and weakly on the Reynolds number, while
the shear-thinning effect disperses particles and prevents the formation of long straight
particle chains at the channel centreline.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.38.
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Appendix A. Collision model

A.1. Lubrication force correction
When a spherical particle approaches another particle or a wall, the fluid film between
the two surfaces can be very thin. There will be a large hydrodynamic resistance, which
cannot be resolved for numerically by adopting a typical grid used in the current numerical
method. Thus, a lubrication force correction model is introduced when the distance
between the two surfaces is smaller than approximately the mesh size. The lubrication
force has the following form (Xia et al. 2020; Yu et al. 2021):

F l
ij = −6πμaun,ij[ψ(χ)− ψ(χal)], (A1)

where un,ij is the normal relative velocity between the ith and jth objects (wall or particle);
ψ(χ) is a function of the normalized gap distance, χ = ζn/a with ζn being the distance
between two surface, a is the particle radius; χal = Δx/a is the threshold distance below
which the lubrication force correction is valid, Δx is the mesh size.
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Case (a) (b)

Stc = ρsuinD/9μf 27 152
uin (m s−1) 0.518 0.585
uc (m s−1) 0.746 0.537
ρs/ρf 8.083 8.342
g (m s−2) 9.81 9.81
Domain size 12D × 24D × 12D 6D × 48D × 6D
Grid cells 256 × 512 × 256 128 × 1024 × 128

Table 2. Physical and numerical parameters for a particle impacting normally on a wall. uin is the impact
velocity and uc = √

4D/3(ρr − 1)g is the characteristic velocity.
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Figure 24. Comparison of the numerical trajectories and experimental data (Gondret et al. 2002) of a particle
colliding with a wall, the horizontal axis is dimensionless time normalized by tref = √

D/g, and tc is the start
time of collision: (a) Stc = 27 and (b) Stc = 152.

The function ψ for the particle–particle interactions is

ψ = 1

(1 − κ)2ε
− 1 − 7κ + κ2

5(1 − κ)3
ln ε + K(κ)

− 1 − 18κ − 29κ2 − 18κ3 + κ4

21(1 − κ)4
ε ln ε + εL(κ)+ O(ε2 ln ε), (A2)

where the radius of another particle is −a/κ , so that κ ≤ 0, for the case of a particle moving
towards a wall plane, κ = 0; the value of K1(κ) and L1(κ) appearing in (A2) for various κ
can be seen in Jeffrey (1982).

The function ψ for the particle–wall interactions is simply assumed as κ = 0 in (A2).
The adopted numerical method with the lubrication force correction is validated

by comparing the numerically simulated bounce trajectory of a particle colliding
perpendicularly with a wall with experimental data (Gondret, Lance & Petit 2002). The
detailed physical and numerical parameters are listed in table 2. In order to achieve
the targeted particle velocity (uin) before collision, the particle velocity is prescribed as
uy = uin(e−20t − 1) at ζ n ≥ D/2 during a short initial time period (here, ζ n is the distance
from the bottom of the particle surface to the wall), and then the particle is released freely.
The particle trajectories for Stc = 27 and Stc = 152 with and without the lubrication force
correction are compared with the experimental data of Gondret et al. (2002) in figure 24.
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We can see in figure 24 that the results obtained with the lubrication force correction are in
good agreement with the experimental data, while the simulations without the lubrication
force correction overestimate the rebound trajectories, particularly for Stc = 27. Thus, the
lubrication force correction can be considered as producing correct results.
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