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Abstract

Exploration with a generative formalism must necessarily account for the nature of interaction between humans and the
design space explorer. Established accounts of design interaction are made complicated by two propositions in Wood-
bury and Burrow’s Keynote on design space exploration. First, the emphasis on the primacy of the design space as an
ordered collection of partial designs ~version, alternatives, extensions!. Few studies exist in the design interaction
literature on working with multiple threads simultaneously. Second, the need to situate, aid, and amplify human design
intentions using computational tools. Although specific research and practice tools on amplification ~sketching, gen-
eration, variation! have had success, there is a lack of generic, flexible, interoperable, and extensible representation to
support amplification. This paper addresses the above, working with design threads and computer-assisted design
amplification through a theoretical model of dialogue based on Grice’s model of rational conversation. Using the
concept of mixed initiative, the paper presents a visual notation for representing dialogue between designer and design
space formalism through abstract examples of exploration tasks and dialogue integration.
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1. INTRODUCTION

Computational design exploration with description formal-
isms can be explicitly modeled as a form of movement in a
structured space of designs. The design space exploration
complex presented by Woodbury and Burrow is one such
formalism.

In their Keynote Article, Burrow and Woodbury explain
the three premises underlying the metaphor of exploration.
All three have important ramifications for the work pre-
sented in this paper. The first premise posits that the cogni-
tive limits of humans in representing and searching problem
spaces can be addressed by modeling designer action as a
form of exploration. The second premise posits that a model
of design space exploration can amplify designer action
through formal mechanisms. The final premise is that the
representation of computational exploration is feasible. The
need to account for and understand the nature of designer

action, amplification of design activities, and the feasibility
of encoding formal and structured spaces remains a signif-
icant research problem. Woodbury and Burrow present two
propositions, namely, the primacy of design space in this
discussion, and secondly, the need to support computa-
tional amplification.

In the context of this framework for computing explora-
tion, namely, the need to develop a better understanding of
what we mean by design space ~as opposed to a search or
solution space! and how human designers can communi-
cate, control, and coordinate the formal process of explor-
ing such structured space of designs, this paper will address
these issues through a discussion of interaction paradigms
for designing, Grice’s model of rational conversation and
mixed initiative.

The formal machinery of design space exploration is
explained in the literature ~Burrow & Woodbury, 1999;
Woodbury et al., 1999, 2000! and is relatively well under-
stood and exemplified in the work of Woodbury and Bur-
row. However, the problem of incorporating this formal
machinery with designer action for amplifying human inten-
tion remains an open one.
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Interaction paradigms provide a mechanism for introduc-
ing human design intent into computational exploration.
Several paradigms for human–computer interaction during
design exploration have been proposed in the literature
~Kochhar, 1994!. These are classified as manual, semiauto-
mated, automated, and cooperative, reflective of the degree
and extent of the division of labor between human and
machine. However, with the shift of emphasis implied by
the work of Woodbury and Burrow, this neat division of
labor model of design interaction is not sufficient to address
the complex issues of designer action and amplification.
For example, the mimicking of manual human action, such
as sketching or sculpting as an interaction model, while
compelling, is unsuitable for design space exploration. Man-
ual action necessarily deals with singleton states, not col-
lections or threads of states.

In our research, the mixed-initiative interaction para-
digm presents a more fine-grained division of labor, allo-
cating and sharing control over the same task jointly between
the user and the system, allowing for multiple threads, recov-
ering from conflict through disambiguation and many other
strategies for interaction known from conversational struc-
ture. This paper argues that a useful starting point for address-
ing this problem lies in conceiving the interaction between
the formalism and the designer as a rational conversation
and proposes a model of dialogue. The concept of mixed
initiative is known from studies of human dialogue, applied
artificial intelligence, and the design of autonomous goal-
directed systems ~Ferguson & Allen, 1994; Allen et al.,
1996!. Such a paradigm provides a systematic exposition of
how communication, coordination, and control strategies
enable a designer to interact with a formal system.

The need for a fine-grained division of tasks, acquiring,
sharing, and relinquishing initiative requires a model for
synchronizing the input and output modalities between the
designer and the exploration formalism. An interaction
model addressing these requirements has been proposed in
the literature ~Datta & Woodbury, 2002!. The central fea-
ture of this model is the maintenance of exploration struc-
ture based on conversational dialogue and its computational
representation.

This paper describes the representation of dialogue
between the designer and state, structure, and moves in the
formalism. It presents a visual notation for representing
dialogue through abstract examples of exploration tasks that
are specifically machine or human driven in an asynchro-
nous fashion. It describes examples of dialogue integration,
where the two distinct modalities are combined in a single
frame, in a synchronous fashion. It concludes with a discus-
sion of the results from the modeling of the nature of dia-
logue in design space exploration.

1.1. Background

The representational device of feature structures ~Knight,
1989; Kasper & Rounds, 1990! and attribute value logic

~Pollard & Moshier, 1990; Franz & Jrg, 1994! known from
linguistic theories of generation and from the constraint
programming literature underpin the notation for modeling
language in Carpenter’s typed feature structures ~Carpen-
ter, 1992!. As a representation, typed feature structures are
similar to frame-based ~Minsky, 1975! and terminological
knowledge ~Borgida et al., 1989! representation systems.
The analogy between feature structures and knowledge rep-
resentation schemes comes from associating a collection of
features or attributes with each node or frame. Each feature
represents a slot label and the arcs themselves point to the
fillers, creating a network of associations. Feature struc-
tures comprise a set of nodes, each of which is labeled by
type information. Most knowledge-based systems under-
pinned by symbolic representation support the “matching
of descriptions.” This operation, called unification in the
field of deduction systems provides the “addition and multi-
plication” of descriptions.

A transparent exposition of the modalities of the formal-
ism in a visual manner is one way of expressing and inte-
grating the input and output modalities of both user and
formalism. This approach is similar to the work of Piela
~1989! in the ASCEND modeling system ~Piela et al., 1993!.
ASCEND provides a visual and direct manipulation inter-
face for developing and testing incremental constraint pro-
grams in the domain of process engineering. In the ICE
project ~Zeller & Snelting, 1995; Zeller, 1997! an inter-
active front end enables the user to construct configuration
threads through the addition and modification of configu-
ration constraints. The Oz Explorer ~Schulte, 1997! is another
visual constraint programming tool for supporting the user
driven development of constraint programs. A tree visual-
ization of the constraint problem is the central metaphor for
exploration of any constraint node in the tree. The user can
tailor and program user guided search engines over this tree
for the development of constraint programs. FEGRAMED
~Kiefer & Fettig, 1995! employs a fully interactive front
end that presents the user with a customized view of feature
structures. This feature structure editor can be used for devel-
oping and maintaining feature structures in constraint-
based systems.

1.2. Dialogue requirements in design
space exploration

The theory of design space exploration ~Woodbury et al.,
1999! posits an explicit formal substrate for computing
exploration that employs and develops extensions to
Carpenter’s typed feature structures ~Carpenter, 1992! to
represent and reason over intermediate states, exploration
moves, and an ordering over explored states.

First, the formalism supports the representation of an
exploration state that retains the feature structure properties
of intentionality and partialness. Types, features, and de-
scriptions taken together provide well-founded support for
representing problem and solution states. The state repre-

130 S. Datta

https://doi.org/10.1017/S0890060406060124 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060124


sentation supports useful formal properties such as inten-
tionality, partialness, and structure sharing. Second, the
inference algorithms over this representation support a prin-
cipled notion of exploration moves that enumerate partial
states under a subsumption ordering. Moves are operators
that can generate new states, and navigate and modify exist-
ing states. Third, the exploration formalism supports sev-
eral movement operations over state and space. Underpinning
the exploration of partial satisfiers is an ordering based on
subsumption.

The entities of state, structure, and move identified above
are formally represented using typed feature structures as
the formal substrate as follows:

1.2.1. Dialogue with exploration states

The formalism supports the representation of an explo-
ration state through the concepts of types, features, descrip-
tions, and feature structures. The formalism represents
exploration states through three elements from the feature
structures machinery. These elements are a type hierarchy,
a set or sets of feature structures, and a description lan-
guage for specifying constraints on types and structures.
Types comprising T stand for domain knowledge of the
allowable universe of discourse expressed in terse form.
Structures from F represent exploration states, in this case,
physical and conceptual attributes associated with the design
of buildings. Descriptions from D are constraint expres-
sions in a formal attribute-value description language.
Descriptions are used for problem formulation, constraints
on types, and generated structures.

1.2.2. Ordering of exploration structure

The structure of exploration is represented through the
ordering relation of subsumption. The concept of an ordered
design space underpins the description formalism. In it, the
collection of exploration states is ordered by the relation of
subsumption over exploration states ~feature structures!. Sub-
sumption as a formal inference operation is widely used for
reasoning.1 The subsumption ordering relation can answer
what superclass a given class has according to its set of
attributes. In the context of the exploration formalism, sub-
sumption is a relation of implication that relates more spe-
cific to more general states of exploration. Thus, like
inheritance over types, subsumption defines a partial order-
ing over exploration states ~feature structures!. This order-
ing of feature structures is represented as a directed graph.
The hierarchical graph defined by subsumption over fea-
ture structures is such that a child node may have more than
one parent node. The exploration formalism provides a struc-
turing relation based on subsumption to order collections of
exploration states. This ordering relation provides an invari-
ant structure to the design space. Here, the subsumption

relation may be seen as a generalization relation. Thus, in a
given design space structured by subsumption, a subsumer
state expresses a generalization over the subsumed state. In
it, two design states ~and recursively their subparts! are
related if one subsumes the other, that is, if one contains
strictly less information than the other. This subsumption-
based design space structuring mechanism is reported in
Burrow’s thesis ~Burrow, 2003!. The key feature of this
structuring mechanism is that the subsumption relation cap-
tures a more generic relation than the derivation relation
that structures the spaces of designs generated by a gram-
mar. A detailed view of this formulation is set out in ~Wood-
bury et al., 1999!.

1.2.3. Algorithms for computing exploration moves

Exploration moves are cast in terms of moves in a design
space upward or downward in an information ordering. The
formalism provides a set of operators, namely, incremental
p-resolution ~Burrow & Woodbury, 1999!, indexing and
reuse, design unification, design antiunification, and hys-
terical undo ~Woodbury et al., 2000! for the generation of
new exploration states, modification of existing states, and
movement between states.

Given this representation of state move and structure in a
description formalism, the requirements for user inter-
action with the design space exploration are addressed.

2. CONVERSATIONAL MODEL OF DIALOGUE

The key notion underpinning the model of dialogue is con-
versational structure. This establishes a shared representa-
tion of discourse that enables the participants ~human and
computational! in the dialogue to negotiate, reference, and
confirm mutual understanding.

A conversational model of dialogue enables the possibil-
ity of extended interaction ~Allen, 1999! between the user
and the system. Grice’s ~1975! maxims of rational conver-
sation is one such formulation.2 Admitting Grice’s conver-
sational maxims is one way of achieving a tight coupling of
user actions with the formal substrate and implementing a
model of dialogue.

Grice ~1989! observes that human dialogue is character-
ized by rationality, cooperation, common purpose, and direc-
tion. He states,

Our talk exchanges do not normally consist of a succes-
sion of disconnected remarks, and would not be rational
if they did. They are characteristically, to some degree at
least, cooperative efforts; and each participant recog-
nizes in them to some extent, a common purpose or set of
purposes, or at least a mutually accepted direction.

1For example, description logics ~Lambrix, 1996! provide a reasoning
operation called subsumption. Subsumption also provides a powerful tool
for case-retrieval and standards processing ~Hakim & Garrett, 1993!.

2The literature on conversational structure is large and is review is
beyond the present scope. It suffices here to have a model suitable for
organizing mixed-initiative interaction with a computer. For this, rational
conversation is a good model and Grice an exemplar.
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Based on the above observation on human conversation,
Grice formulates a set of conversational maxims. The first
is quality, implying truthful and accurate information. The
second is quantity, neither more nor less information than
is required for the dialogue. The third is relation: only infor-
mation appropriate to the task is considered. The fourth is
manner: clear and unambiguous information is necessary
for conversation. Grice’s model of rational conversation
forms the basis for addressing communication, coordina-
tion, and control issues in the interaction model.

Given a sound representation of communication and coor-
dination, it is necessary to address the sharing of control
over the thread of exploration. An incremental model of
turn taking between the user and the formalism enables
both participants in dialogue to acquire, shift, and allocate
control of the exploration process. The dialogue layer must
support a robust structure of turn taking between the user
and the formalism. Incrementality and turn taking enable
the best joint interpretation of input and output modalities
between the designer and the formalism during exploration.

3. THE FEATURE NODE REPRESENTATION

A common symbolic representation is proposed for support-
ing the modalities of input and output during mixed-
initiative exploration. Exploration dialogue between the user
and the formalism is represented through a visual represen-
tation of a feature node.

The dialogue layer must support communication and coor-
dination between the designer and the formalism. Repre-
senting the input and output modalities of dialogue between
the user and the formalism is a key requirement of mixed
initiative in the dialogue layer. The user or the formalism
must be able to communicate and coordinate the input and
output modalities during dialogue. The input and output
modalities of the description formalism are clearly defined
in the terms of the formal substrate. Descriptions and par-
tial satisfiers, the base representation of input and output
from the formalism are given, ipso facto, in terms of feature
structures. The dialogue layer must provide an account of
the input and output modalities of the designer. A common
representation that can unify both modalities of exploration
is necessary.

The conception of a design state is made transparently
visible to the user through a visual feature node, VNode.
Through the construct of the visual feature node, a princi-
pled formulation of mixed-initiative conversational struc-
ture can be established between user and formalism. These
properties of a VNode are based on Grice’s ~1989!model of
rational conversation. The relationship between the domain
contruct of an exploration state and the visual feature node
is shown in Figure 1. Here, the representation of dialogue
based on rationality, cooperation, common purpose, and
direction through the visual feature node is addressed.

The concept of a visual feature node enables a principled
formulation of dialogue representation. As shown in Fig-

ure 2, the visual feature node, VNode provides a common
frame for representing mixed-initiative dialogue in the inter-
action model. Two distinct views are mapped onto the same
representation. First, the results of exploration initiated by
the description formalism are available as partial satisfiers
~incorporating types, features, descriptions! of a VNode.
Second, the representation of the results of user manipula-
tion are available as feature nodes ~incorporating problem
states, choices, and functions, interaction history! through
the extrinsic attributes of the VNode.

3.1. A visual notation

The visual notation expresses the input and output modali-
ties from both the user and the formalism. The visual nota-
tion extends the representation of attribute-value feature
structures.

The attribute-value matrix or AVM notation visually
describes feature structures. A visual feature node maps the
intrinsic and extrinsic attributes of a feature node, FNode
onto elements of the AVM notation. This mapping anno-
tates the visual feature node with the type, feature names,
feature values and coreferences taken from the underlying
partial satisfier. The connection between a visual feature
node, VNode and an FNode is given as follows:

VNode [ VNode{FNode. ~1!

The VNode composes and aggregates elements of the
underlying representation. As shown in Eq. ~1!, a VNode
can be decomposed into an FNode. The link between the
visual notation and the underlying representation is expressed
with a dot notation. In an FNode, the values of a feature
may be atomic, complex, or another feature node. The value
of a feature node FNode, is given either by a feature-value
pair or feature-value map. The smallest element of the visual
feature node is the feature-value pair. The feature-value pair
represents the relation between a feature and its value. This
is shown in Figure 3.

The feature-value map specifies the relation between a
feature node and its subnodes. For example, in Figure 3, the
feature-value map represents the functional relationship
between the geom and its value. A feature-value map is
enclosed by the delimiters “@” and “#” and annotated by the
type label drawn from its partial satisfier. In the example,
the partial satisfier is of type, geometry. Feature nodes sup-
port recursive containment. Thus, the value of a feature
node may be another feature node. The attribute-value nota-
tion is easily adapted for a visual representation of a feature-
value map as follows: the feature-value map can be
conceptualized as a recursive container of entities of type
feature-value pair. In Figure 3, the feature-value pair repre-
sents the functional relation between the feature mass_el
and its value, which is minimally the type massing. The
value of mass_el may also be complex, such as a query
description, resolution step, or function application or exter-
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Fig. 1. Mapping domain layer constructs to the dialogue layer through the visual feature node.
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nal complex datatype. The value of mass_el may also be
another feature structure.

In a visual feature node, VNode, two or more paths can
share the same information. This is called structure shar-
ing. Paths engaging in structure sharing are called reentrant.
Shared structure in a visual feature node is represented by
coreferences, also called tags. The coreference n denotes an
index value where n is the identity of the node that is shared
between one or more feature structures. Coreferences and
their denotation by indices is straightforward in the avm
notation. As shown in Figure 4, reentrancy, or structure
sharing is indicated by reference tags such as 1. The slots
are the features and the values are written next to them.

A model of turn taking is proposed for synchronizing the
modalities of action available to both the user and formal-
ism during exploration. Through interaction with the intrin-
sic and extrinsic attributes of a visual feature node, the user
and the formalism are able to acquire, relinquish, shift, and
allocate initiative during the exploration process.

3.2. Choices

The notation supports user choices in the VNode through
the representation of alternatives, resolution steps, and func-
tion applications.

The notation incorporates the operators of the descrip-
tion language: conjunctions and disjunctions. Conjuncts and
disjuncts in feature structures are denoted using the same
notation as feature value pairs. In place of the feature labels,
the labels conjunct and disjunct are used, with the values as
feature structures. This common representation can be scaled
to represent the conjunction of disjuncts and the disjunction
of conjuncts. In linguistic attribute-value formalisms ~Pol-
lard & Sag, 1987; Pollard & Moshier, 1990!, conjuncts and
disjuncts are denoted by special delimiters, such as “$” and
“%,” and their edge names are either omitted, suppressed, or
obscured. This is not necessary in this interactive
representation.

An example of a conjunct of disjunctive visual feature
nodes is shown in Figure 5. User interaction is necessary to
resolve the structures associated with the features mass_el
and geom of the feature structure of type entity. The dis-
junctive nodes of type disjunct are represented as a feature-
value map. Each feature-value map is accessed by a feature
conjunct, of type conjunct. Each feature-value map has
four possible disjuncts, which are represented as a feature-
value pair, whose features are defined by disjunct n where
n is an index over disjuncts.

The user can choose a single conjunct for each of the
features of the node entity shown in Figure 5. For example,
if the designer selects the disjuncts disjunct_2 and dis-
junct_7, shown in Figure 6, as the appropriate values of
mass_el and geom, respectively, the node that results will
carry the structure shown in Figure 6. Through the dialogue

Fig. 2. The elements of the visual feature node map onto the domain layer constructs. The intrinsic attributes represent the formal
features along which the exploration may proceed. The extrinsic attributes represent designer moves.

Fig. 3. ~a! A feature-value pair and ~b! a feature-value map are shown.
The pair attributes:property is indicated by a coreference tag, indexed
by the number 1, to a node outside of the diagram fragment shown.
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layer construct, VNode, it is possible to expose the inter-
nal representation of descriptions ~problem states!, partial
satisfiers ~solutions!, and alternatives ~choices! for user inter-
action. Because the VNode is recursively defined, a collec-
tion of choices and user interaction history is expressed as a
collection of visual feature nodes. Thus far, the notation has
shown how the intrinsic attributes of a feature node FNode
can be visually represented for direct manipulation by the
designer. It is also possible to represent the attributes of a
FNode that are extrinsic to the formalism, using the same
notation.

For example, a function can be represented in the visual
feature node. Functions can be encoded within the feature-
value map representation such that the functor annotates
the feature-value map and the arguments are features. An
example of the duality of a function and its arguments with
a feature node representation is shown in Figure 7. This

representation allows the feature structure to encode tradi-
tional command languages found in geometry-based design
systems. The specification of a command or function then
returns a value, which can be atomic, complex, or a feature
structure. The use of feature structures to encode functions
can also be used to pass commands.3

The expressiveness of feature structure command repre-
sentations needs to address the possibility of cyclic feature
structures and structure sharing. A cycle arises when fol-
lowing a nonempty sequence of features out of a node leads
back to that node, which is a useful property in the finite
modeling of knowledge ~Carpenter, 1992, pp. 51–52!. A
recognition mechanism is necessary to interrupt infinite loops

3Programming languages like LIFE ~Aït-Kaći & Cosmo, 1993! use
types for commands.

Fig. 4. A visual feature node incorporating coreference notation. The shared feature structure of type property is indicated by the
coreference tag, indexed by the number 1.

Fig. 5. An example of a conjunct of disjunctive visual feature nodes. The disjunctive nodes are accessed by a node of type conjunct
and represented as a feature-value map and each disjunct is represented as a feature-value pair, whose features are defined by
disjunct n where n is an index over disjuncts.
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in a visual feature node representation for commands. The
restriction on commands is that structure sharing is not con-
sidered a valid part of the command syntax. If coreferences
do occur, the structures they represent are copied uniquely
within each command.

Another way of visualizing functions within feature struc-
tures is to encode the functional definition as the value of a
feature-value pair. In this scheme, for a function append~X,Y !
with two arguments, a type function exists, such that its
value is a function definition with the syntax append~X, Y !.

An example of a procedural function in visual form is
shown in Figure 8. User interaction on this node involves
three possible behaviors. First, the application of the func-
tion to an appropriate node results in a new node, consistent
with the application. Second, the unification of a functional
node with an appropriate feature, results in a new feature
structure, following the laws of unification for typed fea-
ture structures. Third, the function can be unfolded into its
constituent subparts following the interaction defined above
and its values subject to exploration. An example of the
latter is shown in Figure 9. The unfolding of a functional
representation shows that the feature node representation of
the function translate~a, b, c! is of type translate and the
arguments are the three feature-value pairs, tx, ty, and tz.

3.3. Interaction with visual feature nodes

The visual feature node representation is extended to incor-
porate behaviors that admit user level actions extrinsic to
the formalism. Interaction with a large collection of visual
feature nodes requires functionality for panning, zooming
in and out of context, search, and the expansion of tags.
Visual feature nodes are nested entities. User navigation of

a large collection of feature nodes is enhanced by function-
ality for zooming in and out of nodes, imploding nested
nodes, and the expansion of coreference tags. If the nesting
is very deep or broad, panning functionality provides the
ability to scroll through the whole feature node. Zoom and
implode interaction behavior provide functionality for con-
trolling depth nesting. By using this functionality the user
can fold ~implode! and unfold ~zoom! feature nodes. The
user obtains information about substructures of a node by
zooming into them. Further, zooming into the selected sub-
structure enables a reorientation of context such that the
selected node becomes the new root node of exploration.
An example of unfolding substructures by user interaction
is given in Figure 10.

3.3.1. Zooming and imploding nodes

Feature nodes can be nested recursively to arbitrary lev-
els containing many substructures. The interactive mecha-
nism accounts for folding the nested substructures of a
feature-value map to hide their underlying notation and for
unfolding the imploded structure to see the details of a fea-
ture value map. In the visual representation, this is realized
by allowing users to open or close substructures visually
through the symbol � ~Fig. 11!

The unfolding symbol � shows up in two different situ-
ations. A restriction may be placed on the depth of display
of a feature-value map. Any substructure in a feature-value
map that exceeds that depth, is represented by the sym-
bol �. This is automatically managed by the dialogue layer
and the nesting levels set through preferences. The user can

Fig. 6. The resultant visual feature node arising out of the resolution of
disjunctive nodes by user interaction.

Fig. 7. Encoding a function as a feature-value map. The function append
~X, Y ! which concatenates values can be represented as the feature-value
map of type append and the two features arg1 and arg2. The features,
arg1 and arg2 encode the values X and Y as two feature-value pairs.

Fig. 8. The function translate~a, b, c! is represented as a feature-value
pair and contained within a visual feature node, with feature transform
and value translate~a, b, c!.

Fig. 9. An unfolding of a functional representation shows the feature struc-
ture notation of the function translate~a, b, c!. The type of the function is
translate. The arguments are unfolded into the three feature-value pairs,
tx, ty, and tz.
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also manipulate the feature-value map interactively. The
feature-value map will be shown as folded, until it is explic-
itly unfolded. Thus, the � symbols on the feature-value
map coming from depth restriction are generated and
removed dynamically while the user navigates a feature
structure. In contrast, the maps that are unfolded manually
need explicit interaction to change their display. This enables
the user to control the level of detail shown, while zooming
and imploding very large feature node collections.

Pan functionality is provided by enclosing the feature
structures in scroll bars. This is a standard means for pro-
viding canvas real estate. User interaction with the scroll
bars allows context to be shifted horizontally and vertically.

3.3.2. Interaction with coreference tags

Path equality in structures is one of the oldest informa-
tion structuring concepts in computational design, the first
instance being Sutherland ~1963!. This notion is captured
through structure sharing between feature structures at the
formal substrate.

From the perspective of the designer, path equality in the
underlying formalism is visually displayed through coref-
erence tags. Thus, the appearance of coreference tags in the
visual representation indicate nodes that are strictly struc-
ture shared partial satisfiers. In the context of exploration,
these correspond to entities that are feature values that, by
definition, are feature structures.

Coreference tags are used in two ways, both shown in
Figure 12. First, a coreference is used to annotate a feature-
value pair that structure shares a feature-value map. Sec-
ond, it is used to simplify the visual representation of partial
satisfiers, by simple substitution of the shared feature-value
map by the coreference tag, denoted by n. The coreference
tag can be substituted by the partial satisfier it denotes by
user interaction. If the partial satisfier is represented, the

coreference appears outside the feature-value map, as shown
in the value of properties. If the coreference is used to
refer to the partial satisfier, it appears inside the feature-
value map as shown in the value of attributes.

The user can move within a collection of nodes using the
find operation. Search for a nested node using the find oper-
ation is supported by the use of tags. A successful search
results in the matching feature-value pair being panned into
focus. The user can specify the find function to search only
for features, types, coreferences, or atomic values. In the
case of coreference search, the tag number is used to locate
the partial satisfier corresponding to the specified tag. This
is useful in dialogue situations when structure shared par-
tial satisfiers are widely separated. Tags mark structure shared
nodes and these can be expanded in situ following the gen-
eral convention of appearing in the first location in which
they are introduced. When tag expansion occurs during dia-
logue, the coreferences are updated and the partial satisfi-
ers that they represent are redisplayed. These extensions
are discussed in the next sections.

4. INTEGRATION OF DIALOGUE

The second requirement, dialogue integration, combining
two modalities into a common frame, is described in this
section. Having defined the visual feature node, its repre-
sentation and its support for interaction, it is now possible
to address how this construct supports dialogue integration.

Dialogue integration utilizes the unification operation.
Unification is an appropriate basis for mixed-initiative inte-
gration as it can combine complementary input or redun-
dant input from both modalities of exploration. Further, in
the case of contradictory inputs, unification can rule out the
possibility of integration. A feature node consists of a col-
lection of feature-value pairs. The value of a feature may be
an atom, a variable, or another feature-value map. When
two maps are unified, a composite map containing all of the
feature specifications from each component structure is
formed. This is subject to the restriction that any feature
common to both feature structures must not clash in value.
If the values of a common feature are atoms, they must be
identical. If one is a variable, it becomes bound to the value
of the corresponding feature in the other feature structure.
If both are variables, they become bound together, constrain-
ing them to always receive the same value. If the values
themselves are feature structures, then the unification oper-
ation is applied recursively.

Fig. 10. An example of an imploded feature node hiding the contained substructures. The symbol � indicates that the substructures
of the feature-value map of type entity are closed. User interaction on this node is necessary to open these hidden structures.

Fig. 11. Another example of an imploded feature node. The symbol �
indicates that the feature-value map of type property and geometry con-
tains nested subnodes that can be unfolded by user interaction.
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4.1. Supporting partiality

As shown in Section 3.1, a visual feature node ~VNode!
inherits key behavioral properties of typed feature struc-
tures. Thus, given the well-defined semantics of types, fea-
tures, and descriptions, the visual feature node supports
partiality of input and output. The representation frame-
work of visual feature nodes, type annotated frame delim-
iters, feature-value pair0feature-value map, and coreference
tags carry the specification of partial information. Partial
information during dialogue provides the opportunity for
both user and formalism to underspecify, relying on the
extension of dialogue through turn taking. A partially spec-
ified exploration move is represented as an underspecified
visual feature node. In this situation, a subset of feature-
value pairs is not instantiated, following the intentional nature
of feature structure representation. Instead, they are assigned
a certain type, corresponding to the semantics of the move.
This bears explanation through an example of turn taking
on a partial specification.

An example of supporting partiality in mixed-initiative
dialogue is explained in Figure 13. In this example, a given
description can be integrated with a massing of type geom-
etry, the resultant is assigned an underspecified location
feature, whose value is required to be of type point. The
description, massing, is assigned to the visual feature node
shown. In this scheme, it is possible to state during explo-
ration that there exists an entity of massing with three fea-
tures properties, object, and location.

In the visual feature node representation, it is possible to
specify the features properties of type property and object
of type geometry but not the feature location, which is
assigned a generic type, point. Thus, the visual node cap-
tures the idea that there exists a geometric object of type
massing and that its feature location is constrained to be
of type point. Given the equivalence of structures and
descriptions, the underspecified visual feature node shown
in Figure 13 can be interpreted as a formal command for the
generation of massing elements. More importantly, the pos-
sibilities for locating the massing element are open to mixed-
initiative specification by the user’s action on a visual feature
node or through the resolution of formal constraints.

This is explained in Figure 14 with another underspeci-
fied feature node of type command, whose feature loca-
tion is constrained to be of type point with specified
coordinates. Note that this is only true under the assump-
tion that feature nodes can carry maximal values such as the

Fig. 12. An example of substitution of a feature-value map with a coreference tag 1. The coreference tag is an index to the nested
partial satisfier of type property that is shared by the features properties and attributes.

Fig. 13. The visual feature node for an underspecified entity of type mass-
ing. Substructures can be shared in a visual feature node. For example, the
properties of massing are the same as the attributes of geometry. Fur-
ther, the specification of property can be changed either through the prop-
erties of massing or through the attributes of geometry.

Fig. 14. The visual feature node for an underspecified entity of type
command.
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coordinates of a location.4 It follows from the above, that if
“massing” from Figure 13 is compatible with command
from Figure 14, the unification of the two will provide a
feature structure whose location feature location will result
in the more specific of the two values. To be compatible in
type, the result must be the meet or a subtype of the meet of
the two argument types. Hence, the result of a typed unifi-
cation is a more specific feature structure or atom drawn
from the type hierarchy. Thus, in a mixed-initiative scenario,
the user might provide a location value for an underspecified
geometry generated by the formalism.Alternatively, the user
might specify a geometry for which the description formal-
ism provides one or a number of possible locations in a cur-
rent problem state. Through turn taking, both the location and
geometry of an element in a solution state can be resolved.

4.2. Supporting structure sharing

Structure sharing is another fundamental property of typed
features that plays a significant role during mixed-initiative
dialogue. Visual feature nodes enable the user to develop
specific exploration paths in great detail and then provide
the resultant feature structure to the generator ~Fig. 15!.
The generator can reuse the resultant feature structure mul-
tiple times in other feature node contexts through structure
sharing. Recall that feature nodes compose feature struc-
tures ~Section 3.1!. Thus, at the visual feature node level,
dialogue constructs can take advantage of structure sharing
in their underlying feature structures.

Feature structures can be shared across a design space.
By reusing shared feature structures, the user can converge
information from other exploration paths into the current
path of exploration. This bears explanation. For example,
there may be two bathrooms in two distinct house designs

that are identical. The feature node collections that repre-
sent the exploration steps of the first and second designs are
distinct paths in the satisfier space. The problem states and
choices made by the designer in both paths are also distinct
states. However, a portion of the solution state, subsequent
to exploration, is identical, in this case, the bathroom design.

In design space, this fact would result in the existence of
two distinct feature structures containing the same informa-
tion ~feature structures are intensional!. The feature node
allows the designer to structure share the bathroom solution
of the second design with the first. Once this equivalence is
declared, the exploration structure of the first is converged
into the exploration structure of the second design. It is
important to note that two distinct visual feature nodes can
represent two distinct exploration threads in satisfier space.
Through structure-sharing dialogue, feature structures can
be shared, reused, and converged in design space.

In Figure 13, the properties of massing are the same as
the attributes of geometry. Further, the specification of
type property can be reformulated either through the fea-
ture properties of type massing or through the feature
attributes of type geometry. During exploration, the gen-
erative component can instantiate a massing element, with
an unspecified feature orientation. Subsequently, the user
might specify an orientation by direct manipulation, by draw-
ing an arrow that has a value direction for its feature angle.
The process of typed feature structure unification enables
the explorer to structure share the value of feature angle of
the feature structure of type direction with the value of
orientation. Thus, when the two features are unified suc-
cessfully, the resultant feature node of massing has a new
value for the feature orientation. This value is now given
by the more specific value of the feature angle. Note that
the property of structure sharing can be nested. Feature
nodes are recursively contained through the feature-value
map and feature-value pair relations of the notation. Struc-
ture sharing and its representation using coreference tags
presents the notation with the ability to avoid redundant
substructures.5

4.3. Supporting dialogue disambiguation

Mutual disambiguation is another property supported in the
visual feature node. An exploration move that is partially
specified is open to multiple interpretations. In such a situ-
ation, a collection of many feature-value pairs may be avail-
able for unification. For example, if a given description can
be integrated with a massing of type geom, it can be assigned
an underspecified location feature, whose value is required
of be of type geom as shown in the previous discussion of
partiality in Figure 13. In the description node, massing can

4In the design of GENESIS, Heisserman ~1991, p. 133! notes that the
inability to specify an intensional model of geometric information remains
a major drawback for interactive systems for generative design.

5In the design of GRAMMATICA, Carlson ~1993! notes that the ability
to detect and represent duplicates remains a major challenge for inter-
active exploration of design spaces.

Fig. 15. The substructures can be shared in a visual feature node. For
example, the properties of massing are the same as the attributes of
geometry. Further, the specification of property can be changed either
through the properties of massing or through the attributes of
geometry.
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also be assigned a feature node of type location from a
number of sources. For instance, the location might be con-
strained to be adjacent to a previously created entity of
massing. Thus, it is possible that there exists not one, but a
number of feature nodes of compatible type with type mass-
ing with the feature, location. The dialogue layer pro-
vides a mechanism for mutual disambiguation, such that it
is possible to specify the feature location of any compat-
ible type at the current state of exploration to disambiguate
the choice. Given multiple options for interpreting the value
of the feature node of type location shown in Figure 13, a
disambiguation process is a necessary attribute of dialogue
to resolve nondeterminism. The same process of dialogue
disambiguation applies to disjunctive nodes. Given a num-
ber of possible alternative choices, the designer can disam-
biguate a disjunction by interaction with the visual feature
node representing the disjuncts.

For example, in a user-driven query, the formalism might
compute a range of possible feature nodes that are exten-
sions of type location. The dialogue layer makes them avail-
able to the user as a collection of visual feature nodes.
Alternatively, for an explorer-driven step, for instance, a
command to create an entity of type massing, the type loca-
tion can be disambiguated by the user through inter-
active browsing of the current state, selection of a current
point, command input, structure sharing, or a constraint
specification.

It follows from the above that when conflicts or multiple
choices arise during exploration, mixed initiative in the dia-
logue layer can provide for mutual disambiguation through
the visual notation.

In the visual feature node, this process of disambiguation
is mutual. It can be interpreted either as a formal command
for the generation of massing elements by the explorer or a
user-driven process wherein the possibilities for locating
the massing element are open to exploration through the
specification by the user’s action on the visual feature nodes.

Figure 16 shows a feature node of type massing, whose
feature location is constrained to be of type point. The
feature value can be resolved either by the user or by the
formal generator. It follows that if the location feature of
massing is compatible with one or more locations of com-
patible location, the unification of the two can be resolved
through a process of mutual disambiguation.

In the example of disambiguation shown here, there are
several partial interpretations: one for massing, and two for
location. Because either of the two locations might be equally
valid for the unification to succeed, only a process of mutual
disambiguation can isolate the valid choice of location. The
dialogue layer allows either of the above and does not dis-
tinguish between the modality of exploration, direct speci-
fication by the user or constrained search by the generator.
In each case, the unification-based integration strategy
ensures that mixed-initiative exploration compensates for
exploration nondeterminism through type constraints on the
values of features. Further, the restrictions imposed on these

values ensure that the exploration maintains integrity and
consistency during the process of disambiguation.

5. DISCUSSION

The introduction of conversational structure through mixed
initiative to design space exploration enables the designer
to maintain exploration freedom, preserves the underlying
structure of exploration, and permits a finer granularity of
dialogue. The characteristics of the model of dialogue pre-
sented here can be summarized as follows:

Fig. 16. ~top! The feature node of type massing with two options location
and command for disambiguation of feature location. ~bottom! The fea-
ture node showing location after disambiguation.
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1. Maintenance of exploration freedom: The dialogue
model maintains freedom for incorporating the inten-
tional actions of the designer at any state of explora-
tion. The visual feature node provides a unified model
for representing the set of problems, subproblems,
problem revisions, and associated designs that a
designer actually considers. Problems need not be
fixed. Designs can be partial or complete with respect
to the initial problem formulation. A designer may
make varied choices that imply different kinds of
design space operations.

2. Preservation of order: The dialogue model enables
order preserving exploration. The structure of explo-
ration is represented through the ordering relation of
subsumption. The concept of an ordered design space
underpins interaction between the designer and the
description formalism. In it, the collection of explo-
ration states are ordered by the relation of subsump-
tion. Exploration moves are cast in terms of moves in
a design space upward or downward in an informa-
tion ordering. Mixed initiative provides a principled
way for keeping track of additions, deletions, and other
forms of change as the exploration progresses without
negating the underlying subsumption ordering of pos-
sible states.

3. Granularity of dialogue: The dialogue model permits
a finer granularity of interaction between the designer
and the formalism. It supports incrementality and turn
taking in the process of exploration dialogue. Through
incrementality, emphasis is shifted from the final results
of exploration to its intermediate constructive steps.
Through turn taking, the formal movement algo-
rithms are made accessible to the designer. The incre-
mental, turn taking model of interaction permits a
sound treatment of exploration nondeterinism, where
disjunctions in description queries, alternative con-
straints, conflicts, and errors can be resolved by user
intervention.

6. SUMMARY

This exposition of interaction with formal systems for design
support has focused on conversational structure as a model
of dialogue. However, as Woodbury and Burrow show, inte-
grating human users and computational formalisms remain
a key problem for design space exploration. As borne out
by the examples in their paper, the visual feature node pre-
sented here demonstrates the case for designer action but
remains a limiting case for exploration. The visual feature
node representation must allow for what Woodbury and
Burrow term “amplification.”

The two requirements posed in developing the above dia-
logue model, dialogue representation and dialogue integra-
tion, are addressed through the development of an intrinsic
and extrinsic logic for unfolding the components of the
visual notation. The feature structure representation and its

interaction logic are brought together through the construct,
the visual feature node. Framed by Grice’s maxims of con-
versational rationality, the designer is able to participate in
a limited dialogue with the description formalism to con-
struct problems, navigate solutions, make choices, and record
the history of exploration.

As Woodbury and Burrow state, the design space must
be admitted as a primary object of research in the field. To
do so, the configuration, structure, and visualization of design
space requires further work and need to be addressed. The
findings at this stage also indicate a clear demarcation
between the discrete modes of thinking about generative
design ~rules, types, features! and continuous modes of
manipulation known from interaction with real-world geo-
metric design problems. This is hinted at on several occa-
sions in Woodbury and Burrow’s paper, but no clear direction
has emerged. Dialogue needs to be extended from a con-
versational mode ~as described in this paper! to a language
designers understand best, visual representations, and geom-
etry. Thus, although some advances have been made in under-
standing joint responsibility over discrete moves between
highly structured states, a clear formulation of mixed ini-
tiative ~the rationality of dialogue between a formalism and
a human designer! in the joint exploration of nontrivial design
geometry remains an open problem.
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