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We study the unique solvability of density-dependent incompressible Navier-Stokes
equations in the whole space RV (N > 2). The celebrated results by Fujita and Kato
devoted to the constant density case are generalized to the case when the initial
density is close to a constant: we find local well posedness for large initial velocity,
and global well posedness for initial velocity small with respect to the viscosity. Our
functional setting is very close to the one used by Fujita and Kato.

1. Introduction

In 1934, Leray stated in [18] the existence of global weak solutions with finite energy

B u(t) 2 + 20 / IVu(r)|2: dr < E(0) (1.1)

for incompressible Navier-Stokes equations with constant density,

Ov+v-Vo—puAv+ VIT = f,
divw = 0, (1.2)

U|t:0 = 9.
Since then, despite the large amount of literature devoted to (1.2), the question of
uniqueness for finite-energy solutions when N > 3 has remained an (outstanding)
open problem. On the other hand, uniqueness may be shown in smaller classes of
functions in which global existence has not been proved. Our starting point is the
following classical result.

CLASSICAL RESULT. Let E C 8'(RY) and F C C(R*; E) be two functional spaces
whose norm is invariant for all £ > 0 by the transformation

vo () — lvg(x), v(t,x) — Lo(l%t, Lx). (1.3)

For T > 0, let Fr denote the local version of F' pertaining to functions defined on
[0,T]. Under appropriate compatibility conditions on E and F, the following result
holds true. For any data vy € E, there exists T > 0 such that (1.2) has a unique
local solution v € Fr. If, in addition, ||vo||g < p, then that solution is global.
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1312 R. Danchin

Remark that the scaling condition (1.3) is exactly the one which leaves (1.2)
invariant. In dimension N = 2, the energy defined in (1.1) is invariant by (1.3). As
a consequence, the weak Leray solutions are actually unique in this particular case.

In dimension N = 3, the first example of spaces (E, F') for which the ‘classical
result’ holds has been given by Fujita and Kato in [16]. In their paper, E is the
homogeneous Sobolev space H/2 and

F={uecCRYHY?) | tV/*Vu e C(RT; L?) and t*/4Vu —,_4 0}.

The reader is referred to [2] or [20] for more examples of appropriate spaces
(E,F).

Though exciting from a mathematical viewpoint, studying (1.2) is somewhat dis-
connected to applications in fluid mechanics. Indeed, a ‘real fluid’ is hardly homo-
geneous or incompressible. We here aim at investigating the robustness of the ‘clas-
sical result’ for incompressible fluids with variable density. A similar concern is also

relevant for compressible fluids (see [6-8,10] for more details).
The equations we are interested in read

Orp + div pu = 0,
O (pu) + div(pu @ u) — pAu+ VII = pf,
divu = 0,

(p,u)j1=0 = (po, uo),

(1.4)

where p = p(t,z) € R stands for the density and u = u(t,z) € RY for the velocity
field. The term VII (namely the gradient of the pressure) may be seen as the
Lagrange multiplier associated to the constraint divu = 0. The initial conditions
(po,uo) and the external force f are prescribed. For the sake of simplicity, we shall
assume throughout that x belongs to the whole space RY. Slight changes in the
proofs would give similar results for 2 belonging to the torus T .

It turns out that Leray’s approach is still relevant for (1.4): assuming that
po € L™ is non-negative and that ug € L2, one can prove the existence of global
weak solutions (p, u) with finite energy (for the sake of simplicity, we take f = 0),

t
1/2
12 + 20 [ I7u(r) I dr < okl

In dimension N = 2, one can further get a pseudo-conservation law involving the
norm of u in L°(0,T; H') and of Vu in L?(0,T; H'). This provides smoother weak
solutions. Even in this latter case, however, the problem of uniqueness has not been
solved. We refer to [1] and [19] for an overview of results on weak solutions. Some
recent improvements have been obtained by Desjardins in [13-15].

On the other hand, the unique solvability of (1.4) in a bounded domain 2 with
Dirichlet boundary conditions and smooth data has been known for a long time. The
most complete results seem to have been obtained by Ladyzhenskaya and Solonni-
kov in [17]. There, it is assumed that the initial velocity ug belongs to the Besov
space Bg;wq (¢ > N, N =2,3) and that py belongs to C'(£2) and is positive. As
far as we know, the regularity requirements have not been improved since.

We aim at finding a framework as general as possible for which unique solvability
of (1.4) may be stated. We would also like this framework to be compatible with the
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‘classical result’ in the case where p is a positive constant. Scaling considerations
should help us to determine the relevant functional setting.
Obviously, system (1.4) is invariant for all £ > 0 under the change

(po(x), uo(x)) = (po(lx), Lug(Lx)), (1.5)
(p(t,x),u(t,x), [ (t,x)) — (p(l%t, Lx), u(f>t, Lx), P TT (L%, Lx)). .
If we use the Sobolev spaces setting, we are induced to choose initial data (po,uo)
such that Vo and ug belong to HV/271, As system (1.4) degenerates if p vanishes
or becomes unbounded, it seems reasonable to assume, in addition, that pT € L.
For technical reasons (and p0551b1y more serious ones), we shall assume that ug
belongs to the Besov space 32 1/ rather than to HV/2-1. On the other hand, in
dimension N > 3, the regularlty assumption Vpg € HN/2-1 may be weakened to
Vo € 32 N/j2-1 . In dimension N = 2, one has to assume that Vpy € 32 1
We here recall that homogeneous Besov spaces 32 » (r € [1,400], |s| < 3N if
r>1,s| < 1]\7 otherwise) may be defined as the completlon of C§° for the norm

r/2\1/7
s, < (3( IR a) )
: 201 <Jg|<20

qEL

(with the usual change if r = +00), so that H® = 3572. In §2 we shall give an
equivalent definition of Besov spaces through the use of Littlewood-Paley decom-
position.

Let us emphasize that, by taking pg € L™, Vpg € B and ug € B
is coherent with (1.5). One further assumes that the forcmg term f belongs to
LY (R*; By 7).

In the present paper, we restrict ourselves to small perturbations of an initial
constant density state: pg is close to a constant (say 1). The study of more dras-
tic perturbations of homogeneous Navier-Stokes equations will be the object of a
forthcoming paper.

Denote

N/2 1 N/2 1

defl/p_l

For fluids with positive density, system (1.4) can be rewritten as

Oia+u-Va=0,
Ou+u-Vu—p(l+a)Au+ (1+a)VII = f,
divu = 0,

(a,u)|t:0 = (ao,uo).

Our main result follows.

THEOREM 1.1. Letr bein [1,400] if N 23 andr =1 if N = 2. There exists a con-
stant c, dependmg only on N, and such that, for any ug € 32 1/ - with divug = 0,
fe L' (R; BY[*™Y) with div f = 0, and ag € BY/* 0 L with

laoll pyznge <e (laolsy, <e if N =2),
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there is a T € (0,00] such that system (1.6) has a unique solution (a,u,VII) with

a € Cy([0,T); By/?) N L>(0,T; L),

ue Cy([0,T); Bay ) N LY (0,T; By )
and

VI € LY(0.T; B> 7).
If, in addition, we have
luoll et + 11 s oy <

for some constant ¢’ depending only on N, one can take T = +0o0.
REMARK 1.2. The assumption div f = 0 may be relaxed (see theorem 5.1 below).

REMARK 1.3. One can further state a result of continuity with respect to the data.
It means that (1.4) is well posed in the sense of Hadamard for data with critical
regularity.

REMARK 1.4. In dimension N = 2, the above result means that system (1.4) is not
far from being well posed for ug € L? and pg close to a constant in H' N L*>°.

REMARK 1.5. Similar results may be proved for fluids with variable positive vis-
cosity u = u(p) provided that the function p is conveniently smooth.

REMARK 1.6. In the present paper, we restrict ourselves to Besov spaces built
on L? that are closely related to Sobolev spaces, and thus to the energy. Our
approach therefore gives a natural extension of Fujita and Kato’s results to density-
dependent fluids. On the other hand, analogous results are very likely to hold true
in spaces built on LP. We expect a statement similar to theorem 1.1 to be true
for ug € Bg{pil, ao € BY? N L>® and f € L}(Rt; Bg{pil) (see §2 below for the
definition of those spaces). Owing to the nonlinear terms, however, one probably
has to assume that p < 2N to get existence, and p < N to get uniqueness. A similar
restriction appeared in [7] for compressible fluids.

The paper is structured as follows. In the first section, we recall a few results
on Besov spaces. In § 3, we give estimates for the linearized equations. Section 4 is
devoted to the proof of uniqueness. In §5, we concentrate on the existence part of
theorem 1.1. A technical commutation lemma is postponed in the Appendix.

1.1. Notation

Throughout the paper, C' stands for a ‘harmless constant’, the precise meaning
of which will be clear from the context. We shall sometimes alternatively use the
notation A S B instead of A < CB, and A ~ B means that A < B and B S A.

Let X be a Banach space. For p € [1,400], the notation LP(0,T; X) stands for
the set of measurable functions on (0,7") with values in X, such that ¢ — || f(¢)]|x
belongs to LP(0,T"). We denote by C([0,T"); X) the set of continuous functions on
0,T) with values in X, and set ([0, T); X) < C([0,T); X) N L=(0, T; X).
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2. Basic results on Besov spaces

Homogeneous LittlewoodPaley decomposmon rehes upon a dyadic partition of
unity: let ¢ € C5°(RY) be supported in, say, ¢ {f € RV, % < €l < %} and such
that

D279 =1, i€#£0.

qEL

Denoting h = F ¢, we then define the dyadic blocks as follows:
Agu def ©(279D)u = 29N /]RN h(2%)u(z — y) dy.
We shall also use the following low-frequency cut-off:
u Z Agu = x(279D)u, with x defy Z p(271).
k<g—1 q>0

The formal decomposition

u = ZAqu (2.1)

qEZ

holds true modulo polynomials: if u € S'(RY), then qez Agu converges modulo
PIRY] and (2.1) holds in &'(RY)/P[RY] (see [21]). Furthermore the above dyadic
decomposition has nice properties of quasi-orthogonality,

AAu=0 if [k—¢| 22 and Ag(S;_qulgu)=0 if [k—q| =5 (2.2)

Homogeneous Besov spaces may be defined through the Littlewood-Paley decom-
position.

DEFINITION 2.1. For s € R, (p,7) € [1,+00]? and u € S'(RY), we set

def rsq r L/
lull g = (D27 lIAgullps )

qEZ
with the usual change if r = +00, and we denote

By = {ue S|l <o

For s < N/p (s < N/p if r = 1), we then define BS . as the completion of Bf” for
|- llg: -IfmeNand N/p+m <s < N/p+m+1 (N/p+m<s<N/p+m+1
if r =1 1), then BST is defined as the subset of distributions u € S’ such that
0% € BS ™ whenever |a] =

Of course, the topology of B;T does not depend on the choice of the Littlewood—
Paley decomposition. When p = 2, it coincides with the one given in the introduc-
tion.

REMARK 2.2. The space B o defined above is slightly smaller than the one defined
in [21] (which is not the completlon of § for || - ||B ). Our choice is motivated
by getting a more concise statement in theorem 1.1: with the definition of [21]
would not have obtained that a is continuous on [0,T] with values in 32
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Let us now state some classical properties for those Besov spaces.
ProprosITION 2.3. The following properties hold.

(i) Derivatives: there exists a universal constant C such that

O ullg, . < 1Vullgyr < Clull s,

(i1) Sobolev embeddings: if p1 < pa and r1 < 1o, then
BS BS N(1/p1—1/p2)

p1,71 p2,T2

iii) Algebraic properties: for s > 0, BS N L™ is an algebra. Moreover, for any
DT
p € [1,+00], then

BV < BN A 1,
and B /p is an algebra if p is finite.

. . . s 52 0s1+(1—0)s
(iv) Real interpolation: (Bplr, B 2o = Bp . %

REMARK 2.4. When manipulating homogeneous spaces, one has to be careful that,
owing to the low frequencies, the inclusion Byt < Bs . (e > 0) is false!

The usual product is continuous in many Besov spaces. The following proposition
(the proof of which may be found in [22, §4.4] (see, in particular, inequality (28)
on p. 174)) will be very useful.

PROPOSITION 2.5. Let 1 < r,p, p1,p2 < +00. The following inequalities hold true:
luwoll gy S Nullzellollg,  +llvllpellullg, i s>0, (2.3)
lwvll goaroa-nre S llull g, vl 532,

N 2
if s1,89 < — and S +32+Nmin(0,1——> >0,
p p

(2.4)
lwollg, S llull gy Moll gy i Isl < N/p. (2.5)

The limit case s1 + s = 0 in (2.4) is of interest. When p > 2, we have
lwoll ponse S Nlullps M0l 555, (2.6)

whenever s is in the range (—N/p, N/p| (see, for example, [22]).

The study of non-stationary partial differential equations requires spaces of type
L(X) = LP(O T; X) for appropriate Banach spaces X. In our case, we expect X
to be a Besov space, so that it is natural to localize the equations through the
LittlewoodPaley decomposition. We then get estimates for each dyadic block and
perform integration in time. But, in doing so, we obtain bounds in spaces that are
not of type L?(0,T; B;’T) (except if 7 = p). That remark naturally leads to the
following definition (introduced in [5]).
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DEFINITION 2.6. Let (r, p,p) € [1,400]3, T € ]0,+00] and s € R. We set

def T r/p\1/T
ol ) % (2 ( [ 1agngea) )

qEZ
with the usual change if r = +00.

Let us remark that, by virtue of Minkowski’s inequality, we have

||U||L" (Bs,) X ||U||L"T(B;‘T) ifp<r
ol < Wi,y i3
Let 6 € [0, 1], The following interpolation inequality holds,

llzg iy < s o Il 52 (2.7)

whenever 1/p=0/p1 + (1 —0)/p2 and s = 0s1 + (1 — 0)sa.
Let us state some estimates for the product in those spaces, the proof of which
is a straightforward adaptation of the one for usual Besov spaces (see [5,22]).

PROPOSITION 2.7. Ifs >0, r € [1,400] and 1/pa+1/ps=1/p1+1/ps=1/p <1
then

||UU||iPT(B§‘T) S HUHLPTI (Lw)”U”ff’T‘l(B;m) + ||U||LPT2 (Lw)”U”i?(B;m)'

If 51,89 < N/p (s1,82 < N/p if r = 1), s1 + s2 + Nmin(0,1 — 2/p) > 0 and
1/p1+1/p2 =1/p <1, then

HUUHEPT(BZ}T“TN“’) S ||U||£"Tl (BZ%)”UHE?(BZ%)‘
The analogous result of the endpoint estimate (2.6) reads (for p > 2)
||uv||LP BN/~ ”u”L"l(Bp I)HUHLW(BP 5) (2.8)
whenever s is in the range (—N/p, N/p] and 1/p; +1/ps=1/p <1

Proof. For the sake of completeness, let us prove (2.8). First remark that, for any
o < 0and p € [1,4+00],

up 2970 gz S Iollzg o (2.9)

Indeed, since o < 0, we can write

||qu||L"T(L°° Z 2 qU(TN”A | e 2 (L) ) S27 qUSUPTZU”A ’U”L" (L>=)-

q'<qg—1

Now, the proof of (2.8) lies on elementary paradifferential calculus. Recall that
paradifferential calculus was introduced by Bony in [3]. The paraproduct between

u and v is defined by
T,v def Z Sq_1ulgv.
qEZ
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We have the following so-called Bony’s decomposition (modulo a polynomial):
uv = Tyv + Tyu+ R(u,v),  with R(u,0) € 3" Agu(Ag_1 + Ay + Agy1)v.
qEZ

Therefore, we only have to prove that the two paraproducts, T,,v and T,u, and the
remainder R(u,v) satisfy (2.8).
For T, v, we write, using (2.2) and Holder’s inequality,

”AunU”LPT(LP)
< D 11Ag(Sy-1ulg)ll g 2oy

lg’ —ql<4
S Z ”Sq’*lu”LpTl(LOQ)”AQ’UHLPTz(LP)
lg’ —ql<4

S 2V (sup 27 NS yull gy g ) (5027 Al 2 (1) )
q’ q

which, according to (2.9), yields
1Ag Tl g 2oy S Nl el s -
Since, obviously,
el 20 e m) < Il zer g

we obtain the desired estimate. Note that, in the limit case s = N/p, the arguments
below still apply, provided that ||u||ip1(Bsfw/p) has been replaced by [[ul[ 21 (10
7 (BX

The symmetric term T,u may be treated similarly.
Let us study the term R(u,v). As p > 2, by virtue of Bernstein’s inequality, we
have
1AgR(w,0)]| e S 27NP|| R(u, v)] Lo/

Therefore, thanks to the Holder inequality,
3
27 NP A R(w,0) | g oy S D0 D[P IAGul por (1)) @A 152 (1))
i=1 ¢

< (Z 2qs||Aqu||LpTl (L,,)> (S];p 2*q3||Aqv||LPTz (Lp)),
q

which completes the proof of (2.8). a

In proposition 2.3 (iv) and in (2.7), we saw how to interpolate between spaces
having different regularity indices. In §4.2, the question of how far from L}(B;OO)
the space L}(B;J) is will arise. The answer is given by the following proposition.

PROPOSITION 2.8. For any (p,p) € [1,4+00]%, s € R and € € (0, 1], we have

||u||~p . < HUHEPT(BS'OQ)IO o ”U”LP(BP )+||u||LP(B )
B0 S T el iz s
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Proof. It merely stems from a judicious splitting into low, medium and high fre-
quencies. Indeed, for any m € N*, we have

”u”LP (B21)
—m

= > (2979 Agullpo1r))2?

g=—o0

m—1 0o
+ > 2 Agull g ey + D QU A Gl g (16))2 7

g=1-m q=m

< ( 3 2‘16) sup 2 A ul g

g=—00

+ (2m — 1) sup 29| Aqull g2 10y + (Z 2~ qf) sup 27CF | Agull £ (1)
q g=m
217me
< (2m— I)HUHiPT(B;:.m) + W(HUHEPT(B;;;) + ||U||£PT(B;,+;))'

Choosing m as the integer part of

1 ”u”LP (B52S) + ”u”LP By
— 1089 -
el g i .

yields the desired inequality. O

3. The linearized equations

3.1. The transport equation

Here, we recall some estimates for the following linear transport equation:

0,f + div(vf) = F,
fit=0 = fo-

The following result suffices for our purposes.

(7)

PROPOSITION 3.1. Let r € [1,+00] and s be such that [s| <1+ +N. Let v be a
solenoidal vector field such that Vv belongs to L*(0,T; BéVT/Z N L°°) Suppose that
fo€ 32 . FeLyo,T; 32 ) and that f € L>=(0,T; 32 ) NC(0,T];8) solves (T ).

There exists a constant C’ depending only on s and N and such that the following
inequality holds true,

t
st < <O (Ifolsg, + [ e OW gy, ar). @)

t
V) = [ 1900y

Moreover, f belongs to C ([0, TY; Bgr)

with
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Estimate (3.1), with the Sobolev space H* instead of B;T, is standard. Estimates
for general non-homogeneous Besov norms have been stated in [9, proposition A.1].
Slight changes in the proof given there yield estimates in homogeneous norms.

3.2. The linearized momentum equation
When the density is close to a constant, we are led to study the following lin-
earized momentum equation:
Ou+v-Vu — pAu+ VII = f,
divu =0, (3.2)

U|t:0 = UgQ.
For that system, we have the following.

PROPOSITION 3.2. Let s € (—1]\7 2—|— AIN), r € [1,40], ug be a divergence-free
vector field with coefficients in B Y and f be a time-dependent vector field with
coefficients in L} (Bgrl) Let u A; be two divergence-free time-dependent vector
fields such that Vo € LY(0,T; By, ﬁ NL*®) and u € C([0,T); B5,") N LL(BsH). I
addition, assume that (3.2) is fulﬁlled for some distribution II.

There exists C = C(s, N) such that the following estimate holds:

lull e () + llull gy sty + IV I 2y 52
< exp(ClIVol 1y o0l + Ol 2y 550
Proof. Applying A, to system (3.2) yields
O:Aqu+v - VAu — pAAqu+ VAT = Ay f + [v,Aq] - Vu.

Let P denote the L? projector on divergence-free vector fields. Take the L? scalar
product of the above equality with Aju. After some obvious computations based
on integration by parts or Bernstein’s inequality, we gather that, for some universal
positive constant k,

1d
2.dt

whence

—llAgulls + kp2® [ Agullts < IAGullz2 (18P fllzz + v, Ag] - Vullz2),

94(s—1) [ Aqullrgs (r2) + k29T [Aqullry (L2
<217V Aguoll e + 297V AGP F Iy 1) + 27V [[v, Ag] - Vallpy. 12)-

Take the ¢"(Z) norm of the above inequality. Making use of Minkowski’s inequality,
we end up with

lull pae gy + Rpllullpy gy

T 1/r
<ol + 10z + [ (S s Al Tullpa2r e )
q
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The commutator may be bounded according to lemma A.1 in the Appendix,
provided that |s — 1] < 3N + 1. We eventually find that
lell 2o gy + melluell 25 g .,
< lluoll =1 + 1Pl g3 31, + € / 190 20 Il - . (3.3)
There remains to estimate the pressure term. We first apply div to system (3.2)
and get AIT = div f — div(v - Vu). The usual product laws in Besov spaces do not

allow us to get estimates for s describing the whole range (—%N, 2+ %N) We shall
make use of Bony’s decomposition. Remembering that divu = divev = 0, we get

Ar=divf— Y (Tpwdju' —Tpu 007 — 8;0;R(u’,v7)).
1<4, <N

Then basic continuity results for the paraproduct (see, for example, [22, § 4.4]) yield
T
18712y 55,2y < 198y + C | Ml oIVl

where def = QI — P.
Adding the latter inequality to (3.3) and applying Gronwall’s lemma completes
the proof. O

4. Uniqueness results

In this section, we study the problem of uniqueness for a solution with critical
regularity. For some reason, which will be explained in §4.2, the statement (and
the proof) of the uniqueness result is different depending on N > 3 or N = 2, the
latter case being far more technical.

4.1. Case where N > 3
We shall prove the following proposition.

PROPOSITION 4.1. Let (a',u', VII') and (a®,u? VII?) solve (1.6) with the same

data ag € Bévéj NL>®, ug € Bé\j{%l with divug =0, and f € L}OC([O,T*);B%/QA)

such that Qf € Li ([0,T*); Bé\jl/%Z). Suppose that, for i =1,2,

loc
a' € C([0,T*): ByL2) N L®(0,T* L),
u' € C(0. 7 By ) N L (10,77 By ),
VIT' € L, (10,7%):; By 7).
Then there exists a constant ¢ > 0, depending only on N and such that if

”al”L%o*(Bgéijoo) < ¢, (41)
then (a?,u? VII?) = (a',u!, VII).
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Proof. We remark that the L norm of ¢! and a? is conserved. Moreover, as

laoll gy re < e,

inequality (3.1) insures that the smallness condition (4.1) is also fulfilled by a? (with
2¢ instead of ¢) on some non-trivial finite time-interval [0, T7].
The equations for

(da,ou,VIII) def (a® —a',u® — ', VII? — VIT')
read
d¢da + u? - Véa = —du - Va',
Orou + u? - Véu — pAdu + VIl = —6u - Vu' + a'(uAdu — VIT) (4.2)
+ Sa(pAu® — VIT?).

As usual when proving uniqueness, the presence of a transport equation is respon-
sible for the loss of one derivative in the estimates involving da. This induces us to

bound (da, du, VOII) in the space quwv/zfl, where
s def s S — S —
C([0,T]; B3 o) x (Lp(BsiH) N C([0,T]; B3 ;)N x (Lp(Bs )Y,

endowed with the norm

def
s, VI g pllall e g+ allull gy + lll e sy + IV Ty -

We claim that (da,du, VIIT) belongs to FN/2 ! (a fact that is not straightfor-

ward, since we work in homogeneous Spaces) Indeed, decompose (u?, VII') into
(@' +up, VII' + VII1), where (ur,VIIL) is the solution to the following Stokes

equation:
Oruy, — pAup + VI, = f,
divur =0, (4.3)
U|t:0 = UugQ-.

Thanks to proposition 3.2 above and proposition 2.1 in [5], we have
up € C([0,T); By ) NLY0,T: By ™) and VI € LY0,T; By "7 ).
Moreover, (u*, VII*) solves
o' — pAu' = P(—u' - Vu' + o' (pAu' — VITY)),  (4.4)
div((1 + a")VIT?) — div Of = —div(u" - Vu') — pdiv(a’Au’). (4.5)

Proposition 2.5 ensures that the right-hand side of (4.4) belongs to L?(0, T} BN/2 3),
and thus to L'(0,T; Bévl/z 3) for finite T'. Therefore, if we make the hypothesm

Of € L'0,T; By{*?)
and assume, in addition, that ||a’ ||LOQ BY2AL) is small, we find that

VIT' € LY(0,T; By " 7%).
Hence the right-hand side of (4.4) belongs to L'(0,T; BN/2 %).
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Therefore,
@' e LN0,T; By{?) N C([0,T); By{* %) and VII' e LY(0,T; BY[* ™).
On the other hand, d;a’ € L%(ngil), so that (a®—ag) € C([0, T); Bévéj*l) Since
da = (a® — ag) — (a' —ag), Su=u*>—a" and VIl =VII*—VII',

we conclude that (da, du, VIT) € N/2 '
To get an estimate for ||(da, du VéH)H N/2-1, We apply propositions 3.1 and 3.2
to system (4.2). In view of (2.4) and (2. 5) we ﬁnd for t < T,

003 cyge-ye il oy IV Oy a2y

Clva?||

/2
< Ce

15N
Li(By 1)

Xt e 5272 oy GGy ooy + VBT 1y yrraa))
100 e eyl Al gy + VI -y)
10wl e g IV Ly o)
and

I6all N/2-1y < Cexp(C|| VU2, ,

|oul| . i

N/2 N/2)||Va

N/2—1
)’

Lg*(By!? L}(B, me))| LY(B Lg° (By /2

From the above inequalities and the smallness assumption (4.1), we get

|| ((5(1, (511,7 vdH)”FtN/2—1

CIIVu?|| N2
< Ce Li(B2) )(c+u||u2||L1(BN/2+1 + ||VH2||L1(BN/271)

+ ||Vl ||L1 )2 )||(6a du, VSII)

||FN/2 1.

We remark that t — ||(da,du, VSII)||,. ~/2-1 IS a continuous function. Therefore,
if we assume that Cc < 1, the above "inequality leads to (8a,du, VSII) = 0 for
small time. Standard arguments then yield uniqueness on the whole time-interval
[0,7]. O

4.2. Case where N = 2

The proof of uniqueness is more intricate in the case where N = 2. Let us explain
the reason why. As emphasized in the previous section, owing to the presence
of a transport equation, we loose one derivative when estimating (da, du, VOIT).
This is going to cause problems in the case where N = 2 for this loss of regu-
larity forces us to use the endpoint estimate (2.6): the sum of regularity indices
of certain nonlinear terms in (4.2) vamshes As a matter of fact, if we assume
that du belongs to Ll(O T; 32 1) and a' € L>(0,T; 32 « N L), the term a'Adu
does not belong to L1 (0 T; 32 1) (as required to close the estimates), but rather
to the larger space L(0,T; 32 OO) Therefore, the right-hand side of the second
equation in (4.2) belongs only to L'(0,T’; 32 OO) and proposition 3.2 yields bounds
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for du in the (larger) space L} (Bl )N L>(0,T; 32 L ). Tt turns out that assuming
ou € L} (Bl ) suffices to get an estimate for alAéu in L} (B;io), provided that
we make a stronger hypothesis on a!, namely, a! € LOO(B 1) (see (2. 8))

However, we still are in trouble since the bound for Su in L} (B o) does not
provide us with estimates for the right-hand side of the first equatlon in (4.2).
An additional bound in L'(0,7T; L) for du is needed. The key to that ultimate
difficulty is given by the following logarithmic interpolation inequality (see the proof
of proposition 2.8):

II5U||£1T<BS,OQ>+”‘5“”%(’95»0’). (4.6)

5l < J15u 1og(
Lt (Bha) Lh(Bheo) loullzs c3...)

One can now state our uniqueness result in dimension N = 2.

PROPOSITION 4.2. Let (a',u', VII') and (a®,u? VII?) solve (1.6) with the same
data ay € 32 1 o € 32 1 with divug = 0, and f € L{ ([0, T*);BSJ) with Qf €
Li ([0, T%); 32 L). Suppose that, fori=1,2,
a’ € C(10,T); 8') N L5 ([0, T%); B3,
ut € C0,T%); B1) N Lhe((0,7%); B2,
VII' € Lioo([0,7%); BY ).

Then there exists a constant ¢ > 0 such that, if
1
lallzee, (3 ,) <6 (4.7)
then (a?,u? VII?) = (a',u!, VII).

Proof. In order to track the dependence with respect to the data, we assume
throughout that the two solutions (a',u', VII') and (a?,u?, VII?) correspond to
(possibly) different data (aj,ud, f1) and (a3, u?, f2). We shall further denote

def def def
Jag = af —ap, Sug = ug—uy and 6f = fo— fi.

Of course, if dag is small enough in 32 1, then the smallness condition (4.7) (with
2¢ instead of ¢) is also fulfilled by a? on some non-trivial finite time-interval [0, 7.
As explained above, we are induced to estimate (da, du, VSIT) in the space

Gr € C([0,T); BY ) x (LA(BL ) N C(10,T]; By L)% x (Lh(By L)% (4.8)

That (da, du, VIT) belongs to G may be proved by considerations similar to those
of the case where N > 3, provided that we make the hypothesis

dag € Bgm, dug € Bgio and of € E}(Bgio)

There is no additional difficulty for da. The only difference for (du, VAIT) is that,
owing to the product laws in dimension N = 2, the right-hand side of equa-
tion (4.5) only belongs to L2(0,T; 32 2), and thus to L*(0, T 32 2 ), which implies
VIt e LY(0,T; 32 1), provided that ||a1||LOQ(Bl y < L
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Coming back to (4.4) and using once more the product laws, one concludes that
(@, VIT') € (C(0,T): By L) N L (B3 ) x (Lh(B5 L)
From now on, let us assume that 7' > 0 has been chosen so small as to satisfy
exp(CIVu?[ly 1) < 2, (4.9)

where C' is the largest constant appearing in propositions 3.1 and 3.2.
Applying proposition 3.1 and using inequality (2.5) yields

1
||5a||Lgo(Bg,m) S ||5a0||Bgm + ||5u||L%(B%’1)||Va ||Lgo(Bg’1)’
Now, inserting the logarithmic inequality (4.6) in the above estimate, we find

||5a||Lf°(BS,OQ)

< l13aoll g _

loull g2y )+ Noullzresz )
+llat || oo sn 10wl 71 log(e+ s e >
L (B2,1) Lt(B2,oo) ||(5u||[”/%(321m)

Clearly,

loull gz ) < It lorsg,y + 1oy sz )

oull 23 sy ) < lutllyag,) + 102 lsg,) < 'l ze sy, )+t 2 sy -

Therefore,
V(t) >

06l f oo (g < o : oullz1 ¢ 1 , 4.10

loall e iy ) S N0aollsy  +elldullzy sy ) Og(e+ 1ullzyps ) 10

where V is a non-decreasing locally bounded function on [0, 7).
On the other hand, applying proposition 3.2 to the second equation in (4.2) leads
to

181y e+ Sl iy )+ IVl gy s,
S ||5UO||B£; + ”6]0“2(35,;) + [[ou - VUl”i“B;iQ)
+ [[da(pAu? — VH2)||E§(B£;) + [la* (pASu — V‘SH)HM(BQ;)’ (4.11)
Thanks to (2.8),
||a1(uA6u - VdH)HE%(B;io) S ||al||£f°(35,1)||/lA5U - V5H||i§(£’32j;)'

Therefore, if ¢ has been chosen small enough in (4.7), the last term in the right-hand
side of (4.11) may be absorbed by the left-hand side. By making use of Minkowski’s
inequality and (2.6), we eventually find

160 e (g2 yu + wlldull gy iy ) + IVl 2y 551

S louoll g1, + 10f 1 22 5

t
b U0 gy Wl + s = 9122 gy ol gy ) i
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Denote

def
W(t) = 16l e py2yu+ N0ull gy gy ) +IVOT gy 51 )

def
Wo = l[duoll g1, + 1012y 51,y
def
Z(t) S 1Vul (®)ll gy, + lpdu® () = VIP0)]l g -

Inserting (4.10) in the above inequality, we get, for a constant C' depending only
on f,

W(t) < C’(Wo + ll6aoll g _ /Ot Z(7)dr + /Ot Z(T)W(7) log(e + %) dT>.

Since, for a > 0 and z € (0, 1],
log(e + az™') < (1 —logz)log(e + a),

we eventually find
t
W) < c(wo + ll5aol 54 / Z(r) dr
> Jo

+ log(e+ V(t))/o Z(MW(r)(1 —logW (1)) dT>,

provided that W < 1 on [0, ¢].

As V and W are continuous non-decreasing functions and Z € L1(0,7), it is
easy to check from the above inequality and a Gronwall-type argument (see, for
example, [4, lemma 5.2.1]) that, for all ¢ € [0, T] (with T satisfying condition (4.9)),

CWo + C|dag|| ; b Z(7) dr\expl—C log(e+V (1)) [ Z(r) dr]
W) ( o+ Clldaolipg _ Jy Z(7) > 0 1)

e e

provided that
T -
CWo + 0”6(10”33 / Z(T) dr < elfexp[clog(e+V(T)) Iy Z(7) d-r].
= Jo

In particular, if
Wo = [ldaoll 5y =0,

we get W = 0 on [0,T], whence also da = 0. Standard arguments then yield
uniqueness on the whole interval [0, 7). O

REMARK 4.3. What we actually get from (4.12) is Holder continuity of the solution
(seen as a Gp-valued function) with respect to the initial data. Note that the Holder
exponent strongly depends on the solution itself and coarsens when 7' increases. We
recall that a similar phenomenon occurs for the two-dimensional incompressible
Euler equations with bounded vorticity (see the work by Yudovitch in [23]). On the
other hand, in the case where N > 3, we can obtain (locally) Lipschitz continuity
in the space quy/zfl.
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REMARK 4.4. Whether uniqueness may be proved under the weaker assumption
a; € L*°(0,T;L> N Bj ) is unclear. Having a1 € L§F(Bj ) is crucial when esti-
mating a'(uAdu — VIT).

REMARK 4.5. A similar method has been used for proving uniqueness in dimension
N = 2 for isentropic compressible fluids, or in dimension N = 3 for polytropic fluids
(see [11]).

5. Existence

This section is devoted to the proof of solvability for (1.6) in the case where data
have critical regularity. The result below clearly entails theorem 1.1.

THEOREM 5.1. Let r € [1,4+00] and p > 1. There exists a constant ¢ depending only
on N and such that, for anyug € BN/2 Y with divug = 0, feLY(RY; Bévl/z 1) with
Qf e LP (R+,BJY/2 2) (LY (R*; By L) suffices if N = 2), and ag € BY/> N L™

loc loc
with

||ao||3géq2mm <, (5.1)
there exists T € (0, 400] such that system (1.6) has a solution (a,u, VIT) with
aECb([O T) BN/2)0LOO(O,T;LOO), uEC’b([O T) BN/2 l)le(O T: BN/2+1)

and VII € L*(0,T; BN/2 1), and, for a constant K depending only on N,

||a||L°°(BN/2ﬁL°°) < KHG’OHBQ{?QLm (52)
and
||u||LOQ(BN/2 1 +/L||U||L1 3N/ +||VH||L1 (BY{21
< K(luolgypos + 1y gy (5:3)

Besides, VII belongs to LY, (0, T; BN/2 >YifN > 3 (LY .(0,T; Bgio) if N > 2) and

there exists a universal positive constant K such that T may be bounded by below by

max{

”Qf”L (BN/2 )

—K 2(1
+ 37 292D (1A ug | 2 +||Aq7’f||L1<L2>)(1_e - t) <177 }
> : - 1+ Uo/p

with
def
Up = luoll gz + MMl 1 gypz=1) PI-

If, in addition to (5.1), we have
ol ge—s + 1711 gppeery <

for some suitably small constant ¢’ depending only on N, we can take T = +o0.
In the case N = 3, uniqueness holds true. In the case where N = 2, uniqueness
holds if r =1 and ||a0||B21 . Sec
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REMARK 5.2. The assumption on Qf is used for proving uniqueness and provides
some compactness. It may be removed by proving uniqueness in non-homogeneous
spaces and using a contraction argument rather than compactness for stating the
convergence of approximate solutions. The proof is more technical than the one we
present here though.

Proof.

STEP 1 (smooth approximate solutions). We first smooth out the data. For n € N,

define
"dﬁfZAao, "defZAuo and f”defZAf

l[g|<n lgl<n lgl<n

Remark that af and u? belong to H>, and that f € L*(R*; H>). Therefore, there
exists a T, > 0 (possibly infinite) such that system (1.6) with data (af},ug, f™)
has a unique solution (a™,u™, VII™) with (see, for example, [12] and the references
therein)

a™ € C([0,T™); H*), "€ C([0,T™); H*®) and V"€ L ([0,T™); H>®).
STEP 2 (uniform estimates). We claim that inf,cny 7™ may be bounded by below
by some T' € (0, 400] for which (a™,u"™, VII™), e is uniformly bounded in
(L0, T5 1) 0 LF (Byi[")) = (L (B ™)
NLYO,T; BYPT)N x (LH0,T; By P )N,
Let (ur, VIIL) solve the non-stationary Stokes system
Owur, — pAuy, + VI, = f,
divuy, =0, (5.4)

UL|jt=0 = 0,

and write
up N Ay and VIIEE ST AV

lalsn lal<n
Decompose (u™, VII™) into

u” dﬁfuL—i—un and V" =VII}+ VII".

Obviously, (a™,u", VII™) satisfies

0ia” +u" - Va" =
o +u™ - Va" — pAu" + VII" = —u" - Vu} + o™ (uAu" — VII™),

5.9
diva"™ =0, (5-5)
(a",u") =0 = (ag,0).
Let K % |F~1x||z1. We readily have, V7’ € [r, +oq],
sup 65 g3 < Kol sy and s s < Kol
neN neN 21 21
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Hence, by virtue of propositions 3.1 and 3.2, and of inequality (2.5),

”an”L&—s(Bé‘,’f*l) +N||an”L1T(B§{{2+1) + ”vj]n”LlT(Bg{?*l)

< eCHVu"HMT(Bg{z)
x (Hu ||Loo(BN/2 1)||VUL||L1 (BN/2)

10 2o (I g gy + IV gras)

and

Clva|

< Ke Lh (B3 )||a0|| N/2

0™ (5730500) <

Ly (B, nLe"

Let a > 0 be a small parameter to be fixed hereafter and assume that 7" has been
chosen so small as to satisfy

/J'HULHLIT(BQ{WA) + ||VHL||L1T(B§]{271) < a, ”uL”fl%o(BéVF*l) < Up. (H)

From the definition of (u}, VIIT), we easily gather that

IE o) + IV TE D oy < Ko ol gy < KUy (56
Hence
||1_L ||LOQ(BN/2 1 +/L||U ”Ll N/2+1 +||VHn||L1 (BN/2 b
ety g

< Ce
a
(207 gy + U0
el wyrzon~) @t pl@ iy ey + ”VH"HLIT(BQY{“)))
and

™ 2 m/2ep) < K exp((C/p)(a + plla™ll g gz Dllaoll gz poe

From the above inequalities, it is not hard to check by induction that if (H) is
fulfilled and, in addition,

C 2CU, 1
8C|laoll /2 <1 and Ta(1+—0> < 3

onLee L
then, for all n € N and 7’ € [r, +00], we have

la"] - N/2-1) + pllu” ”Ll 3N/ +||VHn||L1 L(BY[??) \Ol(2+80U0/L71),

(5.7)
5.8

Ls= (B3}

”a ||L°°(BN/2OL°°) 2K||(10|| N/2OL°°’
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Now, according to [7, proposition 2.3], we have

unl o vy < Nuoll gams + Wy gy P,

sl oo, < C[ S 2D (18 ualze + 18Py o)

qEZ
1— efnuT22q
X ———
R

IVl gy ey < 1@y sy

and, obviously,

Therefore, system (H) is satisfied for small positive T', and we conclude that (5.6),
(5.7) and (5.8) hold for all n € N.
Note that

div((1 4+ a™)VII™) = div(Qf™ —u™ - Vu™ + p(1 + a™)Au™).
Hence, if N > 3, the assumption
Qf € i, (R™: By{*™?)

entails that VII™ is uniformly bounded in L} (0,T; BN/2 2) If N = 2, similar

arguments lead to VII™ uniformly bounded in L (0,T; Bgm).
Of course, if, for sufficiently small ¢/, we have

Uo + ||Qf||L1(B§{2*1) < dp,

then all the estimates above may be made global.
In order to justify the above computations, we still have to check that T" < T".
Writing
7* % min(T", T),
we readily have
Vu" € L0, T BY[?).

As al} € H*, proposition 3.1 ensures that ™ € L% (H*) whenever s € (0,1 + iN).
On the other hand, af € L?, so that a™ € L*(0,T*; L?). We conclude that

a" € L>(0,T*;H®) forall s <1+ $N.

The blow-up criterion derived in [12, proposition 0.5] ensures that no blow-up
may occur at time T*. Hence T' < T™ < 400 or T =T = +00.

STEP 3 (convergence). The convergence of (u}, VII}) to (ur, VIIL) readily stems
from the definition of Besov spaces.

As for the convergence of (a™, a7, V]_Yf), it relies upon compactness properties
of the sequence, which are obtained by considering the time derivative of the solu-
tion. Indeed, taking advantage of Qf € Li. (0, T; Bé\;ﬁj*z) and using the bounds
(5.7) and (5 8), system (5.5) and proposition 2.7, it is not hard to prove that
VII™ is uniformly bounded in L? (0,T; 3270072). Then arguments similar to the
ones used in [6] for the compressible Navier-Stokes equations lead to the following
lemma.
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LEMMA 5.3.

(i) The sequence (0a™)nen is uniformly bounded in L*(0,T; BN/2 1),

(ii) The sequence (0;u™)nen is uniformly bounded in Li (0,T; BN/2 %).

As the embeddings
BN/2 pN2-1 g gN/2-l pN/2-2

2,7r,loc - 2,7r,loc 2,00,loc 2,1,loc
are compact, we get the convergence (up to an extraction) of (a”,u™, VII™) to a
limit (a, u, VIT) belonging to
(L0, T; L) N L5 (By/?)) x (L0, T; By > ")
ALY, T; By PP )N (L0, T3 BY[* )N

and satisfying (5.2) and (5.3).
Combining with the uniform estimates (5.7) and (5.8), we conclude that (a™, u",
VII™) tends (in Gr) to some limit (a,w, VII) which belongs to

(L0, T; L) N L5 (B /) x (L0, T; By > ")
NLN0,T; BN A (LMo, T; BY2 )N
and satisfies (5.2) and (5.3).

Continuity in time with values in 32 N/2 for @ stems from proposition 3.1. More-
over, as a is the solution to a transport equation by a solenoidal vector field whose
gradient belongs to L (0, T; L*°), the L° norm of a is a constant. Continuity for u
may be proved as in [6].

Uniqueness is a straightforward corollary of propositions 4.1 and 4.2. O

Additional regularity assumptions on the data yield more regular solutions. Slight
changes in the proof above would give the following result.

THEOREM 5.4. Let (ao,uo, f) satzsfy the hypotheses of theorem 5.1 and assume m
addition, that ag € BSW ug € 32 , f € LY (RT; Bgrl) for some s € ]sN, AN + 1]
and r € [1,+00]. Then there exists a T > 0 (which may be chosen as in the state-
ment of theorem 5.1) such that system (1.6) has a unique solution (a,u, VII) that
satisfies the same properties as in theorem 5.1 and, in addition, belongs to

Cu([0,T); B3 ) x (Col[0,T); B3 ") N Lip (B3 1))N x (Lp(B3 )™

Appendix A.

For the sake of completeness, we prove here the commutation estimate needed in § 3.
The statement given below is actually a bit more general.

LEMMA A.1. Let 1 <p, r< 400, p<1,n>—1 and v be a solenoidal vector field.
In addition, assume that

p—n+ Nmin(1,2/p) >0 and p+ N/p>0.
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Then the following inequality holds true:

1/r
(Z v, Ay - Va||er2rq(N/p+p1n)> <90l gavge o1 Vall sgomas.
qEZ

If p =1, then ||[Vv|| gn/pto—1 has to be replaced by ||[Vul| zv/e If n = —1, then

nLee”
||Va||B£4p7W71 has to be replaced by ||Va||B£4mem.
Proof. Throughout the proof, the summation convention over repeated indices is
used.

By virtue of Bony’s decomposition (see §3), and as dive = 0, the commutator

may be decomposed into
[0, Ag] - Va = [T5, Ad)dja+TAp,av" — AgTo,a0" — AgdjR(a,v7), (A1)

where T v stands for T,v + R(u,v).
We further decompose the first term in the right-hand side of (A 1) into

[T, Adja= > [Sq-107,AgApd;a.
lg' —q|<4

(That the summation may be restricted to |¢' — ¢| < 4 is due to (2.2).)
Writing

e 1y
and applying the first-order Taylor’s formula, we get, for z € RV,

[S 1U A ] /8 a(
/ / Yy - VSy—1vi (z — 2797y)) Ay dja(x — 27 %) drdy.
]RN
Since, for p < 1, ‘ )
IV S 107 [[pee S 2007 ||V0]| gy

we get, for some series (cq)qez such that 30 ;¢ =1,
[T, Ag)0alll e S cg2 9NV V0| 551 IVall /o1
< Cq2ftZ(N/p+p*n71)||VU||B£4P+%1||Va||B£{4pilim

The above inequality still holds for p = 1, provided we use ||Vv|/p~ instead of

190l 3o
According to (2.2), the second term of the right-hand side of (A 1) can be rewrit-
ten as ‘ ‘
T'Aqajavj = Z Sq'+20q05aA g7,
q'>q—2
whence
QNI DT o g S 20500 ST A0 el Agdall
q'>2q—2
3" 2@ AN o] o [ Val i
q'=2q—2 " ’
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Convolution inequalities combined with the continuous embedding

B}Jj\fr/pfnfl s B=n—1

00,00

yield the desired estimate, provided that p+ N/p > 0.

Basic continuity properties for the paraproduct in Besov spaces enable us to

bound the last two terms. Indeed, according to [22, §4.4], we have, for n > —1,

I To,av” | gvgpto—1-n S IVall gonalloll oo,

with [ Va| r~ instead of [|9;al|g-n-1 if n = —1, and

10, (@, 09| o0 S ol o lall oo

if p —n+ Nmin(1,2/p) > 0. O
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